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Abstract. We investigate fixed energy scattering from conical potentials having an irregular
cross-section. The incident wave can be any arbitrary non-trivial Herglotz wave. We show
that a large number of such local conical scatterers scatter all incident waves, meaning that
the far-field will always be non-zero. In essence there are no incident waves for which these
potentials would seem transparent at any given energy. We show more specifically that there is
a large collection of star-shaped cones whose local geometries always produce a scattered wave.
In fact, except for a countable set, all cones from a family of deformations between a circular
and a star-shaped cone will always scatter any non-trivial incident Herglotz wave. Our methods
are based on the use of spherical harmonics and a deformation argument. We also investigate
the related problem for sources. In particular if the support of the source is locally a thin cone,
with an arbitrary cross-section, then it will produce a non-zero far-field.
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1. Introduction

When a wave of constant wavenumber encounters a penetrable obstruction, it typically pro-
duces a scattered wave. The scattered wave transmits information about the obstruction, which
is a fact that is exploited by various imaging modalities [1616, 2929]. However, an incident wave
does not necessarily scatter even in the presence of a scatterer [1212]. In the quantum mechani-
cal context we call the energy of such a wave function a non-scattering energy. When dealing
with with acoustic or electromagnetic scattering, we use the term non-scattering wavenumber
instead. It might happen that a potential or an obstruction is e�ectively transparent at certain
fixed energies or wavenumbers, producing a zero far-field irrespective of the incident wave (see
e.g. [2424, 3232, 3737]). A striking converse to this type of phenomenon was first studied in [88], where
the authors showed that an obstacle with a corner always scatters, i.e. it always produces a
scattered wave that does not decay quickly, regardless of what the incident wave is or what
energy it has. This type of obstacle is not transparent to any incident wave, i.e. it is always
visible. The absence of non-scattering energies has in recent years been studied by a number
of authors, see e.g. [44, 55, 66, 88, 1414, 1515, 1818, 1919, 2727, 3636]. One of the themes of this paper is to study
the absence of non-scattering-energies for potentials that are obtained from irregular cones.
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It should also be pointed out that non-scattering energies are closely related to the so
called interior transmission eigenvalues [1313]. These are, in the acoustic setting, eigenvalues for a
certain non elliptic and non self-adjoint spectral problem on the support of an inhomogenity
of the refractive index. A non-scattering-energy is a always an interior transmission eigenvalue
when the scatterer has compact support. The converse does not hold. It is well known that
transmission eigenfunctions can be approximated by normalized Herglotz waves [4545]. Such
waves will produce arbitrarily small scattering. However this does not imply that there would
be an incident wave producing no scattering. This only happens in the case of a non-scattering
energy, and only if this sequence of Herglotz waves aproximates a non-scattering incident
wave. The study of interior transmission eigenvalues has it roots in the analysis of certain
numerical reconstruction methods in inverse scattering, namely the linear sampling method
and the factorization method (for more on these see [1616, 1717, 2929, 3030]). Energies which admit
interior transmission eigenvalues cause challenges for these methods. For a survey on the
topic of interior transmission eigenvalues see [1313].

Another topic related to non-scattering are sources that produce no wave in the far field.
A source f in acoustic scattering (∆ + k2)u = f produces a far-field u∞(θ) = Cf̂(kθ), for
details, see [66]. Therefore understanding source scattering at a fixed wavenumber is related
to understanding the Fourier restriction problem [2323]. By a nonradiating source, we mean a
source that does not produce a wave in the far field at some wavenumber or energy. The
topic of sources that radiate at all energies was first studied in [22], where it was shown that
that nonradiating sources having a convex or nonconvex corner or edge on their boundary
must vanish there. Subsequent studies of sources that always radiate include [33, 66, 77]. Here we
extend the results in [22] by showing that sources obtained from very thin or very wide cones
will always produce a radiating wave irrespective of their cross section.

We will describe very briefly and in a non technical wave the various concepts needed to
understand our theorems. This is also to fix notation. Proper mathematical definitions are
given in Section 22.
Recall that the scattering of an incident particle wave of energy λ > 0 by a potential V can

be modeled by the equation

(1.1) (−∆ + V − λ)u = 0
in Rn. Here u is the superposition of the wave function ui of an incident particle and a
scattered wave us, which is created by the interaction between ui and the scatterer V . The
scattered wave will have an asymptotic expansion, and a detectable part of that is called the
scattering amplitude or far-field pattern.

By a non-scattering energy for a potential V , we mean a λ > 0 for which there is an
incident wave which produces no scattering from V at energy λ. In other words, the scattering
amplitude is zero even though the incident wave is not. A potential which always scatters is
one that does not have any non-scattering energies.

We will analyze potentials whose support has a conical singularity on its boundary. We will
consider cones C ⊂ Rn, n = 3, that are determined by a compact cross section K ⊂ Rn−1,
0 ∈ intK in suitable coordinates by

C =
{

(tx′, t) ∈ Rn : x′ ∈ K, t ≥ 0
}
.(1.2)

For technical reasons, we will also need some regularity assumptions.

Definition 1.1. We call a cone C of the form (1.21.2) regular if the following conditions are
satisfied.

(i) C is contained in a strictly convex closed circular cone,
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(ii) C has a connected exterior, and
(iii) C has a bounded cross-section K ⊂ R2 such that χK ∈ Hτ (R2) for some τ ∈ (1/4, 1/2).
We will in particular be interested in star-shaped cones, which we define as follows.

Definition 1.2. We say that a cone C of the form (1.21.2) is star-shaped if there exists a continuous
σ : [0, 2π]→ (ρ0, π/2), ρ0 ∈ (0, π/2) with σ(0) = σ(2π) and

(1.3) C ∩ S2 :=
{

(sinϑ cosϕ, sinϑ sinϕ, cosϑ) ∈ S2 : ϕ ∈ [0, 2π), 0 ≤ ϑ < σ(ϕ)
}
.

Such a cone is denoted by Cσ and we usually take both σ and ρ0 given by the context.

We will relate a conical potential to a cone as follows. Given a cone C with coordinates chosen
as in (1.21.2), let VC be the potential

VC := ϕχC + Φ,(1.4)

where ϕ ∈ C1/4+ε
c (R3), ε > 0, and Φ ∈ e−γ|·| L2(R3), γ > 0, and supp Φ ⊂ {x3 > 0}.

Next, we state our main result for scattering from a potential. The theorem is a direct
consequence of Theorem 5.35.3 and Proposition 7.67.6 (in the latter set Cσ

1 = Cσ , to obtain the
theorem).

Theorem 1.3. Assume that Cσ is a star-shaped cone that is regular, in the sense of definition 1.11.1.
Then for all δ > 0, there exists a cone C , such that the Hausdor� distance11

distH
(
∂C ∩ S2, ∂Cσ ∩ S2

)
< δ,

and such that all conical potentials VC of the form (1.41.4) always scatter.

Remark 1.4. We remark that more can be said: If we deform Cσ continuously to a circular
cone according to Definition 7.17.1, then all the cones in that family will have a shape that always
scatters except possibly for a countable set of exceptions given by Proposition 7.67.6.

The main novelty of Theorem 1.31.3 is that it shows that there are a large number of conical
potentials that always scatter, which have an irregular geometry, and the scattering happens
for any incident Herglotz wave. Earlier results in the case of R3, have dealt with fairly regular
geometries such as corners between hyperplanes [88] and circular cones or curvilinear polyhedra
[1818, 1919, 3636]). Where [3636] uses a similar approach as we do here, utilizing complex geometrical
optics solutions, and [1818, 1919] use techniques from the theory of boundary value problems
in corner domains. More recent results apply to more complicated geometries, such as [1414]
using stationary phase method and [3838] using the methods from the theory of free boundary
value problems. These results are not applicable to a general Herglotz incident wave and
instead assume that it does not vanish on the boundary. Non vanishing is a major technical
simplification. The proof in [88] would be much shorter if one would assume that ui(0) 6= 0
there. This is also demonstrated in this paper between Section 33 and sections 44, 55. The main
di�culty is as follows: if one assumes the source problem or a non vanishing incident wave,
then one only needs to prove the non vanishing of an integral involving spherical harmonics
of degree 2, as in Definition 3.13.1. With a general incident wave one needs instead to prove the
non vanishing of the integral for all degrees, as in Definition 5.15.1.

Let us discuss briefly the proof of Theorem 1.31.3. Our starting point is the use of complex
geometrical optics solutions and the theory of spherical harmonics. We use the latter to derive

1Here we use the Hausdor� distance between the sets A and B which is given by

distH(A, B) := max
(

sup
x∈A

d(x, B), sup
y∈B

d(y, A)
)

.

where d(x, A) := infy∈A d(x, y), and d is induced by the Euclidean metric.
3



a projection condition for cones which will guarantee potentials that always scatter. We call
such cones admissible medium cones. See Definition 5.15.1.
The admissibility of a cone can be further verified by means of certain determinants being

non zero. We use this determinant condition to prove that circular cones are admissible
medium cones (and that they therefore always scatter) by computing explicit formulas for the
determinants. This gives an alternative proof for the three dimensional result of [1919, 3636] without
the issue of a countable set of unhandled cones.

Testing for the determinant condition requires us to use certain results on the associated
Legendre polynomials. We derive them in Section 88. In particular, we need a modification of
the classical Christo�el-Darboux formula in page 43 of [4242]. Then to analyze potentials related
to star-shaped cones, we perform a deformation argument, where we interpolate between the
points of a circular cone and a star-shaped cone. Spherical harmonics are analytic, which
can be used to show that the determinants of the deformed cones depend analytically on the
deformation parameter. Analyticity then guarantees that certain critical integrals cannot vanish
except in a countable set of points, and Theorem 1.31.3 follows.

We would like to further point out that even though our construction of complex geometrical
optics solutions follows the argument of [3636], we need to modify their argument to work with
cones with irregular cross section. This is done in Section 44, where we also provide some
explicit examples of cones with rather complex geometry to which our argument applies but
previous arguments didn’t.

We turn to the related problem of sources that radiate at every energy level next. Several
types of source problems in wave propagation can be modeled by the Helmholtz or static
Schrödinger equation. We will consider the following,

(−∆− λ)u = f(1.5)

in Rn together with a radiation condition at infinity, the Sommerfeld radiation condition (2.32.3).
It selects the outgoing wave from all possible solutions to (1.51.5). The above problem models
a wave u created by the source f that is oscillating at energy λ > 0 and is radiating out to
infinity. We will consider sources of the form

f = ϕχC + Φ,(1.6)

where ϕ ∈ L∞(Rn) is compactly supported, Φ ∈ e−γ|·| L2(Rn) with γ > 0 is supported
on a half-space, and C is a cone of the form (1.21.2) with vertex outside the above-mentioned
half-space. It can be shown that the wave u has the asymptotic expansion

(1.7) u(x) = ei
√
λ|x|

|x|n−1
2
αr(θ) +O

(
|x|−

n+1
2
)
.

The function αr ∈ L2(Sn−1) is called the far-field pattern radiated by f . We say that a source
term f always radiates if αr 6= 0 for all λ > 0.

We will be interested in sources f determined by a fairly general family of cones that we
call admissible source cones, Definition 3.13.1. These cones can have very irregular cross sections,
e.g. with a fractal boundary. Our main result concerning these types of sources is a direct
consequence of Theorem 3.93.9 in Section 33.

Theorem 1.5. Assume that C ⊂ R3 is a cone of the form (1.21.2), that is also an admissible source
cone in the sense of Definition (3.13.1). Suppose furthermore that f is the source term (1.61.6), where ϕ
is Hölder continuous at 0 and ϕ(0) 6= 0. Then for all λ > 0, we have that αr 6= 0 in (1.71.7). That
is, f always radiates.
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The first results on sources that always radiate were obtained in [22], where it was shown that
sources having a convex or non-convex corner or edge on their boundary always radiate. The
main novelty of Theorem 1.51.5 is that it shows that a source determined by a cone with a
singularity at the vertex, will always radiate essentially regardless of the geometry of the cross
section of the conical source. This follows because of propositions 3.63.6 and 3.73.7.

The paper is structured as follows. In Section 22 we review some preliminary results and
notation that we use in the other sections. In particular, we set the notation for spherical
coordinates. We then study the source problem in Section 33. After this, we construct complex
geometrical optics solutions for potentials constructed from irregular cones in Section 44. In
Section 55, we define the concept of an admissible medium cone and show that potentials
related to these always scatter. Section 66 proves that circular cones are admissible medium
cones. After this, in Section 77, we prove Theorem 1.31.3. Finally, in Section 88, we derive various
formulas for associated Legendre polynomials that were used in earlier sections.

2. Preliminaries

We will review various results that are needed in the sequel. We start by specifying some
function spaces after which we give a short review of basic scattering theory based on [11, 2626].
It is the same setup as in [3535, 3636] for static scattering theory. The reader can find further
details in these references.

Following [11, 2626, 3535, 3636] we use the spaces B(Rn) and B∗(Rn). The space B(Rn) consists
of those u ∈ L2(Rn) for which the norm

‖u‖B(Rn) =
∞∑
j=1

(2j−1
∫
Xj
|u|2 dx)1/2

is finite. See Section 14.1 in [2626]. Here X1 = {|x| < 1} and Xj = {2j−2 < |x| < 2j−1} for
j ≥ 2. This is a Banach space whose dual B∗(Rn) consists of all u ∈ L2

loc(Rn) such that

‖u‖B∗(Rn) = sup
R>1

[
1
R

∫
|x|<R

|u|2 dx
]1/2

<∞.

The set C∞c (Rn) of compactly supported smooth functions is dense in B(Rn) but not in
B∗(Rn). Their closure in B∗(Rn) is denoted by B̊∗(Rn), and u ∈ B∗(Rn) belongs to B̊∗(Rn)
if and only if

lim
R→∞

1
R

∫
|x|<R

|u|2 dx = 0.

We will also use B∗2 and B̊∗2 , which take into account the derivatives up to second order of the
function. These are defined via the norm

‖u‖B∗2 (Rn) =
∑
|α|≤2
‖Dαu‖B∗(Rn) = ‖u‖B̊∗2 (Rn).

Next, we give a short review of the relevant parts of scattering theory. In static or time
harmonic scattering theory of energy λ > 0 one considers the equation

(2.1) (−∆ + V − λ)u = 0

in Rn where u is a total wave function that is the superposition of an unperturbed incident
wave function ui and a wave us scattered by the potential function. That is, u = ui+us where

(2.2) (−∆− λ)ui = 0, (−∆ + V − λ)us = V ui
5



in Rn. One further requires that the scattered wave us satisfies the Sommerfeld radiation
condition

(2.3) lim
r→∞

r
n−1

2
(
∂rus − ikus

)
= 0

uniformly over x̂ = x/r where r = |x|.
The potential V is a short range potential, by which we mean that V ∈ L∞(Rn) and that

there are constant C, ε > 0, such that

(2.4) |V (x)| ≤ C(1 + |x|)−1−ε

almost everywhere in Rn. Note that this allows for potentials whose support is unbounded.
Will will furthermore assume that the incident wave is given by a Herglotz function, i.e.

(2.5) ui(x) =
∫
Sn−1

ei
√
λθ·xg(θ) dS, g ∈ L2(Sn−1).

It follows that ui ∈ B∗2(Rn). See Proposition 2.1 in [3535]. They also show that the incident
particle ui has the asymptotics

(2.6) ui(x) = ei
√
λ|x|

|x|n−1
2
g(θ) + e−i

√
λ|x|

|x|n−1
2
g(−θ) +O

(
|x|−

n+1
2
)

and moreover that the scattered wave has the asymptotics

(2.7) us(x) = ei
√
λ|x|

|x|n−1
2
αs(θ) +O

(
|x|−

n+1
2
)
.

The function αs is called the scattering amplitude or the far field pattern. The relative scattering
operator is the map

(2.8) Sλ : g 7→ αs, Sλ : L2(Sn−1)→ L2(Sn−1).
For more technical details see [1717] or more generally sections 7 and 8 in [11]. An αs ≡ 0 implies
that us decays quickly at infinity. We see thus define that λ is a non-scattering energy if the
kernel of Sλ is non-trivial. More precisely

Definition 2.1. We call λ > 0 a non-scattering energy for a short range potential V if there is
a g ∈ L2(Sn−1) such that g 6= 0 and Sλg = 0.

The following Lemma provides another characterization of a non-scattering-energy.

Lemma 2.2. Let V be a short-range potential. Then λ > 0 is a non-scattering energy for V if
there exist functions v, w ∈ B∗2(Rn) so that w 6≡ 0 and

(2.9)


(−∆ + V − λ)v = 0,

(−∆− λ)w = 0,
v − w ∈ B̊∗2(Rn)

in Rn.

Proof. Suppose that v and w are as in the claim. Now define

ui := w, us := v − w.
Clearly ui and us solve equations (2.22.2). The incident wave ui = w can be written as a Herglotz
wave function by Theorem 14.3.3 in [2626]. In other words there exists an g ∈ L2(Sn−1) so that

ui(x) =
∫
Sn−1

ei
√
λθ·xg(θ) dS, g ∈ L2(Sn−1).

6



Furthermore since us = v − w ∈ B̊∗2(Rn), we see that

lim
R→∞

1
R

∫
|x|<R

|us|2 dx = 0

which would be impossible by (2.72.7) unless αs ≡ 0. Hence Sλg = 0. �

We will also make use of the following Rellich-type theorem which is Theorem 4 in [4444].

Theorem 2.3. Let n ∈ {2, 3, . . .}, λ > 0, γ > 0, and let f ∈ e−γ|·| L2(Rn) be such that f |H ≡ 0
for some half-space H ⊂ Rn. If u ∈ B̊∗2 solves the equation

(−∆− λ)u = f

in Rn then u|H ≡ 0.

We use the spherical coordinate system given below. Denote by Sn−1 the unit sphere
in Rn. Note that we will be a bit sloppy with notation, but this will not cause confusion.
For example, given a function f : S2 → C we will denote by f(x) its value at a point
x ∈ S2. But we might also denote this value by f(ϑ, ϕ) and implicitly assume that x =
(sinϑ cosϕ, sinϑ sinϕ, cosϑ). For x ∈ R3 we use the spherical coordintes

(2.10)


x1 = r sinϑ cosϕ,
x2 = r sinϑ sinϕ,
x3 = r cosϑ,

where r ≥ 0, 0 ≤ ϕ < 2π, 0 ≤ ϑ ≤ π.
Much of our analysis will be based on the use of spherical harmonics. We denote the space

of spherical harmonics of degree N by SHN . Moreover we will use the basis functions Y m
N ,

given by

(2.11) Y m
N (ϕ, ϑ) = (−1)m

√√√√2N + 1
4π · (N −m)!

(N +m)! e
imϕ Pm

N (cosϑ)

for N ∈ N, m ∈ {−N,−N+1, . . . , N−1, N} and where Pm
N is the usual associated Legendre

polynomial, which are defined by the Legendre polynomials PN in (8.18.1). For more information
on these, see [2222, 3131, 4040]. We shall have an opportunity to use the following classical result
from the theory of spherical harmonics, known as Laplace’s second integral representation for
Pm
N . See Section 63 of Chapter III in [2525].

Theorem 2.4. Let N ∈ N and let m be an integer such that |m| ≤ N . Then, for 0 ≤ ϑ < π/2,
we have

(2.12)
1

2π

∫ 2π

0

eimψ dψ

(cosϑ+ i sinϑ cosψ)N+1 = (N −m)! (−1)m

N ! Pm
N (cosϑ).

Remark 2.5. In fact, slightly more can be said: if m happens to be an integer with |m| > N ,
then the integral on the left-hand side vanishes for 0 ≤ ϑ < π/2.

Finally, we will be making use of the following lemma, which is essentially Lemma 3.6 in [88]
or Lemma 4.3 in [3636].

Lemma 2.6. Let n ∈ {2, 3, . . .}, β ≥ 0, 1 ≤ q ≤ ∞, f ∈ Lq(Rn), and let R : Rn → C be a
measurable function such that

R(x) = O(|x|β)
7



for x ∈ Rn. Also, let ρ ∈ Cn \ {0}, and let C ⊂ Rn be a closed cone with vertex at the origin
such that

inf
x∈C\{0}

x · Re ρ
|x| · |Re ρ| > 0.

Then ∫
C
e−ρ·xR(x) f(x) dx . |ρ|n/q−β−n

∥∥∥e−Re ρ/|ρ|·x|x|βχC
∥∥∥
Lq′ (Rn)

‖f‖Lq(Rn),

where, as usual, 1 ≤ q′ ≤ ∞ so that 1/q + 1/q′ = 1.
In particular, the value q = ∞ is acceptable, and then the exponent n/q − β − n reduces to
−β − n as one would expect. The lemma is proven by the change of variables x = y/|ρ| and
an application of Hölder’s inequality.

3. The Source Problem

In this section we prove Theorem 1.51.5. We begin with a few definitions.

Definition 3.1. We call a closed cone C ⊂ R3 with vertex at the origin an admissible source
cone if it is contained in some closed strictly convex circular cone, if its exterior is connected,
and if its spherical cross section C ∩ S2 has the property that∫

S2∩C
Y m

2 dS 6= 0

for some m ∈ {−2,−1, 0, 1, 2}. Here Y m
2 denotes a spherical harmonic of degree two (2.112.11).

Remark 3.2. We point out that Definition 3.13.1 is invariant with respect to rotation. That is, if
C satisfies all the conditions of the definition, then the rotated cone

O[C] = {Ox |x ∈ C}
also satisfies the conditions for any O ∈ SO(3,R).
We will show that smooth enough sources that have a jump on the boundary near a vertex of
an admissible cone produce a non-zero far-field, see Theorem 3.93.9. But before that, we will give
some examples of admissible source cones. In particular, cones whose vertex angle is small
are admissible no matter the shape of their cross-section.

Definition 3.3. Let γ ∈ (0, π/2). Then we define Cγ to be the closed strictly convex circular
cone

Cγ =
{
x ∈ R3

∣∣∣|x′| ≤ x3 tan γ
}

where x′ = (x1, x2). We also define a “magic angle” ϑ0 to be the unique angle ϑ0 ∈ (0, π/2)
for which cosϑ0 = 1/

√
3.

Remark 3.4. In degrees, the magic angle ϑ0 is approximately 54.74◦.
Proposition 3.5. Let γ ∈ (0, π/2). Then Cγ is an admissible source cone.
Proof. The cone Cγ is contained in a closed strictly convex circular cone, namely Cγ itself. It
is also clear that the exterior R3 \ Cγ is connected. To prove the integral condition, we shall
prove that ∫

Cγ∩S2
Y 0

2 (x) dx 6= 0.

After moving to spherical coordinates, writing Y 0
2 in terms of the Legendre polynomial P2 as

in (2.112.11), and observing that the integrand is independent of the variable ϕ, we only have to
show that ∫ γ

0

(
3 cos2 ϑ− 1

)
sinϑ dϑ 6= 0.

8



But we can compute that ∫ γ

0

(
3 cos2 ϑ− 1

)
sinϑ dϑ = cos γ sin2 γ,

and clearly the product is non-zero. �

Proposition 3.6. If C ⊂ R3 is a closed strictly convex cone with vertex at the origin, if C is
not a set of measure zero, if C has connected exterior, and if C ⊆ Cϑ0 , then C is an admissible
source cone.

Proof. This follows directly from the observation that, in spherical coordinates, the function Y 0
2

is strictly positive when ϑ > ϑ0. Thus, in the integral∫
C∩S2

Y 0
2 (x) dx

the integrand is strictly positive for all x, except possibly for x lying in a set of measure zero,
and therefore the integral must also be strictly positive. �

Proposition 3.7. If C ⊂ R3 is a closed strictly convex cone with vertex at the origin, if C is not a
set of measure zero, if C has connected exterior, and if C ⊆ Cγ \ intCϑ0 for some γ ∈ (ϑ0, π/2),
then C is an admissible source cone.

Proof. This case can be handled in exactly the same way as the previous example, except that
now Y 0

2 is strictly negative almost everywhere in C ∩ S2. �

Proposition 3.8. If C ⊂ R3 is a closed cone with vertex at the origin, if C has connected
exterior, and if Cγ1 ⊆ C ⊆ Cγ2 for some γ1 ∈ (0, ϑ0) and γ2 ∈ (ϑ0, π/2) such that

cos γ1 sin2 γ1 + cos γ2 sin2 γ2 > cosϑ0 sin2 ϑ0,

then C is an admissible source corner.

Proof. Again, the point is that, in spherical polar coordinates, Y 0
2 is strictly positive when

ϑ < ϑ0 and strictly negative when ϑ0 < ϑ < π/2, and so∫
C∩S2

Y 0
2 dS ≥

∫
Cγ1∩S2

Y 0
2 dS +

∫
(Cγ2\Cϑ0)∩S2

Y 0
2 dS.

After moving to spherical coordinates, writing Y 0
2 in terms of P2 and simplifying, we see that

the original integral is strictly positive if

cos γ1 sin2 γ1 +
(
cos γ2 sin2 γ2 − cosϑ0 sin2 ϑ0

)
> 0,

and this is precisely the hypothesis we made. �

We can prove the main theorem about always scattering sources. Note in the proof that
since the cone C might have a very rough boundary, we cannot use the simple integration by
parts formula from [22].

Theorem 3.9. Let γ > 0 and let Φ ∈ e−γ|·| L2(R3) be such that Φ|H ≡ 0 for some open half-
space H ⊂ R3. Assume also that the origin belongs to the component of R3 \ supp Φ containing
H . Let ϕ ∈ L∞c (R3) be such that there exist constants α > 0 and ϕ0 ∈ C such that

|ϕ(x)− ϕ0| . |x|α

for almost all x ∈ R3. Let C ⊂ R3 be an admissible source cone with vertex at the origin. Finally,
assume that u ∈ B̊∗2 solves the equation

(−∆− λ)u = ϕχC + Φ
in R3. Then ϕ0 = 0.
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Proof. Let r > 0 be so small that the ball B(0, 2r) is contained in the component of R3\supp Φ
containing H . By Theorem 2.32.3, unique continuation and the connectedness of the exterior of
C from Definition 3.13.1, we must have u|B(0,2r)\C ≡ 0. We also observe that, by rotating the
entire configuration, if necessary, we may assume that C is oriented so that C\{0} ⊂ R2×R+.
Next, let

√
λ ≤ τ < ∞ and ψ ∈ R. We shall employ the complex geometrical optics

solution exp(−ρ · x) where ρ ∈ C3 is defined by

ρ = ρ(τ, ψ) = τ(0, 0, 1) + i
√
τ 2 + λ(cosψ, sinψ, 0).

In particular, we have ρ · ρ = −λ, so that

(−∆− λ)e−ρ·x = 0.
We study the limit τ → ∞, and so all the implicit constants below will be independent of τ ,
even though they are allowed to depend on ψ, ϕ, α, r, ϕ0, C , u, the implicit constant in the
theorem statement, and the cut-o� function χ chosen below. In the
We choose a cut-o� function χ ∈ C∞c (R3) so that χ|B(0,r) ≡ 1 and that χ|R3\B(0,2r) ≡ 0,

and we write A for the annulus B(0, 2r)\B(0, r). Then, using our knowledge of the supports
of χ,∇χ,∆χ, Φ and u, we may argue that

0 =
∫
R3
χu(−∆− λ)e−ρ·x dx =

∫
R3
e−ρ·x(−∆− λ)(χu) dx

=
∫
C
e−ρ·x χϕdx−

∫
C∩A

e−ρ·x(2∇χ · ∇u+ u∆χ) dx.

In C , the factor e−ρ·x is exponentially decaying, and we may estimate, for some constant δ > 0
depending only on C and r, that |eρ·x| . e−δτ for x ∈ C ∩ A. We now conclude that∫

C∩A
e−ρ·x(2∇χ · ∇u+ u∆χ) dx . e−δτ = o(τ−3),

since the constants are independent of τ .
We may now continue with

o(τ−3) =
∫
C
e−ρ·x χϕdx = ϕ0

∫
C
e−ρ·x χdx+

∫
C
e−ρ·x χ(ϕ(x)− ϕ0) dx.

We have |Re ρ|/|ρ| ≥ 1/
√

3. Thus, by Lemma 2.62.6,∫
C
e−ρ·x χ(ϕ(x)− ϕ0) dx . |ρ|−α−3 � τ−3−α = o(τ−3).

We may also estimate∫
C
e−ρ·x(1− χ) dx . e−δτ/2

∫
C\B(0,r)

e−Re ρ·x/2 dx . e−δτ/2 = o(τ−3).

Thus, we may further continue with a change of variables to get

o(τ−3) = ϕ0

∫
C
e−ρ·x dx = ϕ0

|ρ|3
∫
C
e−ρ/|ρ|·y dy,

leading to

ϕ0

∫
C
e−ρ/|ρ|·x dx = o(1).

Since e−ρ/|ρ|·x . e−x3/
√

3 in C , and ρ/|ρ| → ρ0/|ρ0|, where
ρ0 = ρ0(τ, ψ) = τ(0, 0, 1) + iτ(cosψ, sinψ, 0),

we get by the dominated convergence theorem, after taking τ →∞,

ϕ0

∫
C
e−ρ0/|ρ0|·x dx = 0.

10



Moving next to polar coordinates, we obtain

0 = ϕ0

∫
C
e−ρ0/|ρ0|·x dx = ϕ0

∫
C∩S2

∫ ∞
0

e−(ρ0/|ρ0|·y)r r2 dr dy = ϕ0

∫
C∩S2

2
(ρ0/|ρ0| · y)3 dy.

Let m ∈ {−2,−1, 0, 1, 2}. Moving to spherical coordinates, multiplying both sides with eimψ ,
and integrating with respect to ψ over the interval (0, 2π) gives

0 = ϕ0

∫ 2π

0
eimψ

∫
C∩S2

sinϑ dϕ dϑ
(cosϑ+ i sinϑ cos(ψ − ϕ))3 dψ

= ϕ0

∫
C∩S2

eimϕ
∫ 2π

0

eimψ
′
dψ′

(cosϑ+ i sinϑ cosψ′)3 sinϑ dϕ dϑ.

Using Laplace’s second representation formula, i.e. Theorem 2.42.4, and multiplying by appropriate
constant factors gives

0 = ϕ0

∫
C∩S2

Y m
2 dS.

Since, by Definition 3.13.1, the last integral must be nonzero for some choice of m, we conclude
that ϕ0 = 0. �

4. Complex geometrical optics solutions

Here we construct so called complex geometrical optics solutions (CGO-solutions for short)
for the Schrödinger equation with a cone like potential. To this end we first show that the
admissible cones give continuous multiplication operators between certain Sobolev spaces.
This argument closely follows the argument in [3636]. We then construct the relevant CGO-
solutions, as in that paper, as a consequence of the Lp-resolvent estimates of [2828] and the
multiplier properties of the cone like potential. We end the section by giving some example
cones with fairly complicated structure that admit CGO-solutions.

We need to show that V is a pointwise multiplier. The idea is to first establish that if
the cross-section of the cone is such that the characteristic function of the cross-section has
suitable properties, then also a cylinder with the same cross-section has those properties. This
can then be used to cut a infinite cone in to finite pieces with the relevant property, and using
scaling properties of the Sobolev norms we get the relevant property for the cone itself.

Our starting point is a slightly reformulated version of Proposition 3.9 in [3636].

Lemma 4.1. Let D ⊂ R2 be bounded and such that χD ∈ Hτ,2(R2) for some τ ∈ [0, 1/2), and
let C be the cylinder

C = {(x′, x3) ∈ R3 : x′ ∈ D, |x3| ≤ 1}.
Then χC ∈ Hτ,p(R3) for all p ∈ [1, 2].

Proof. Let us prove the claim for p = 2. The claim for p < 2 follows from this case because
χC has compact support. Set x := (x′, x3), and I := [−1, 1]. Note that

χC(x) = χD(x′)χI(x3),
so that

χ̂C(ξ) = χ̂D(ξ′)χ̂I(ξ3).

For χI one has the estimate

|χ̂I(ξ3)| = | sin(ξ3)|
|ξ3|

≤ C〈ξ3〉−1.

11



One has 〈ξ〉2τ ≤ C〈ξ′〉2τ 〈ξ3〉2τ . Using these facts gives then that

‖χC‖2
Hτ,2(R3) ≤ C

∫
R3
〈ξ′〉2τ |χ̂D(ξ′)|2〈ξ3〉2τ |χ̂I(ξ3)|2 dξ

≤ C‖χD‖2
Hτ,2(R2)

∫
R
〈ξ3〉2τ 〈ξ3〉−2 dξ3

<∞,
provided that τ < 1/2. �

The previous lemma can be used as in [3636] to deduce the following proposition.

Lemma 4.2. Let τ ∈ [0, 1/2) and suppose D ⊂ R2 is bounded with χD ∈ H2,τ (R2). For δ > 0
let Cδ be the cone

Cδ = {(tδx′, t) ∈ R3 : t ∈ [0,∞), x′ ∈ D}.
Then 〈x〉−αχCδ ∈ Hτ,p(R3) if p ∈ (1, 2] and α > 3/p.

Proof. This lemma is the analogue of Proposition 3.7 in [3636]. Its proof can be easily modified
to work in our case. We only need to use our Lemma 4.14.1 instead of Proposition 3.9 in [3636]. �

We consider a potential V defined using the characteristic function of the previous lemma
next.

Proposition 4.3. Let Cδ be as in Lemma 4.24.2. Consider the potential

V (x) := ϕ(x)〈x〉−αχCδ ,

where τ ∈
(
0, 1

2

)
, α > 9/4 and ϕ ∈ Cτ+ε(R3) for some ε > 0. Then

(4.1) ‖V g‖Hτ,4/3(R3) ≤ C‖g‖Hτ,4(R3)

for any g ∈ Hτ,4(R3) and
(4.2) ‖V ‖Hτ,4/3(R3) <∞.

Proof. Use the notation
Ṽ := 〈x〉−αχCδ ,

so that V = ϕṼ . Since Ṽ ∈ Hτ,2(R3) by Lemma 4.24.2, we get as a direct consequence of
Proposition 3.5 in [3636] that the multiplication operator g 7→ Ṽ g is continuous Hτ,4(R3) →
Hτ,4/3(R3), and hence the estimate

‖Ṽ g‖Hτ,4/3(R3) ≤ C‖g‖Hτ,4(R3)

follows. In more detail, choose p̃ = 2 in Proposition 3.5 in [3636], which gives p = 4 and
the Hölder conjugate p′ = 4

3 . Furthermore by the results on p. 205 in [4343], we see that
multiplication by ϕ ∈ Cτ+ε(R3) is continuous on Hτ,p(R3), so that

‖V g‖Hτ,4/3(R3) = ‖ϕṼ g‖Hτ,4/3(R3) ≤ C‖Ṽ g‖Hτ,4/3(R3) ≤ C‖g‖Hτ,4(R3).

Lemma 4.24.2 with p = 4/3 and this same result in [4343] shows (4.24.2) immediately. �

The previous proposition shows that potentials of the form ϕ〈x〉−αχCδ give continuous
multiplier operators in the sense of (4.14.1). The uniform Sobolev estimates of [2828] and multiplier
property (4.14.1) can be used to deduce the following existence result for a inhomogeneous
equation. Then, the norm bound (4.24.2) implies the existence of complex geometrical optics
solutions for the homogeneous partial di�erential equation (−∆ + V − λ)ψ = 0. This is a
standard argument, done for potentials supported on a circular cone in Proposition 3.3 of [3636].
We nevertheless repeat parts of the proof here for the convenience of the reader.
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Proposition 4.4. Let τ ∈ R. And suppose V ∈ D′(R3) is such that
‖V g‖Hτ,4/3(R3) ≤ C‖g‖Hτ,4(R3)

for all g ∈ Hτ,4(R3). Then there exist constants C > 0 and R > 0 such that whenever ζ ∈ Cn

satisfies |Re ζ| ≥ R and f ∈ Hτ,4/3(R3) the equation
(−∆ + 2ζ ·D + V )ψ = f(4.3)

has a solution ψ ∈ Hτ,4(R3) satisfying

‖ψ‖Hτ,4(R3) ≤ C|Re ζ|−1/2‖f‖Hτ,4/3(R3).

Proof. Here we only repeat the case involving a nonzero V . The first part of the proof of
Proposition 3.3 in [3636], gives an solution operator Gζ for the case V = 0, for which

Gζ : Hτ,4/3(R3)→ Hτ,4(R3),

and (−∆ + 2ζ ·D)Gζg = g for any g ∈ Hτ,4/3(R3). Furthermore Gζ obeys the norm estimate

‖Gζg‖Hτ,4(R3) ≤ C|Re ζ|−1/2‖g‖Hτ,4/3(R3)

for all g in that space. Proposition 4.34.3 implies that

‖V Gζg‖Hτ,4/3(R3) ≤ C|Re ζ|−1/2‖g‖Hτ,4/3(R3)

again for all g as before. We can now choose an R > 0, so that CR−1/2 = 1
2 , and then

assuming |Re(ζ)| ≥ R we have

‖V Gζg‖Hτ,4/3(R3) ≤ 1
2‖g‖Hτ,4/3(R3)(4.4)

for any g. Note that a solution to the equation (−∆ + 2ζ ·D + V )Gζv = f is given by any
solution to v + V Gζv = f . If we can solve v satisfying

(I + V Gζ)v = f,

then we get a solution ψ to (4.34.3) by setting ψ = Gζv. Estimate (4.44.4) shows that (I + V Gζ)−1

can be expressed as a Neumann series converging in Hτ,4/3(R3). By using the norm estimate
for Gζ and (4.44.4) we have moreover that

‖ψ‖Hτ,4(R3) ≤ C|Re ζ|−1/2‖v‖Hτ,4/3(R3) ≤ C|Re ζ|−1/2‖f‖Hτ,4/3(R3).

�

The solvability result gives us then finally the existence of suitable CGO solutions.

Theorem 4.5. Let λ ∈ R+, let ρ ∈ C3 satisfy ρ ·ρ = −λ, and assume that |Im ρ| is large enough.
Define

V (x) = ϕ(x) 〈x〉−α χC(x)
for x ∈ R3, where C ⊂ R3 is a closed cone with a bounded cross-section D ⊂ R2 satisfying
χD ∈ Hτ (R2), α ∈ (9/4,∞), and ϕ ∈ Cτ+ε(R3) for some τ ∈ (1/4, 1/2) and ε ∈ R+.
Then there exists a solution u = e−ρ·x (1 + ψ) to the equation

(−∆ + V − λ)u = 0
in R3, where ψ ∈ Lq(R3), q = 12/(3− 4τ) ∈ (6, 12), and∥∥∥ψ∥∥∥

Lq(R3)
. |Im ρ|−3/q−δ

for some fixed δ ∈ R+.
13



Figure 1. A cone with Koch snowflake cross section

Proof. To simplify notation, let ζ = iρ. It is then required to construct a solution of the form

u = eiζ·x(1 + ψ), ζ ∈ C3, ζ · ζ = λ.

We thus need to solve the equation

(−∆ + 2ζ ·D + V )ψ = −V.
The potential V satisfies the two conditions

‖V g‖Hτ,4/3(R3) ≤ C‖g‖Hτ,4(R3), ‖V ‖Hτ,4/3(R3) <∞

by Proposition 4.34.3. The former is true for any g ∈ Hτ,4(R3) and C is independent of g.
Proposition 4.44.4 gives us then a solution ψ ∈ Hτ,4(R3) satisfying the estimate

‖ψ‖Hτ,4(R3) ≤ C|Re ζ|−1/2‖V ‖Hτ,4/3(R3).(4.5)

By the Sobolev embedding Theorem we have that

‖ψ‖Lqτ (R3) ≤ C‖ψ‖Hτ,4(R3),

when 0 < τ < n/p and qτ = np/(n − τp) where n = 3 is the dimension and p = 4 is the
Sobolev integrability. We have

qτ = 12
3−4τ ∈ (6, 12).

since τ ∈ (1/4, 1/2) by assumption. Now we write

1
2 = 3

qτ
+ qτ−6

2qτ =: 3
qτ

+ δ

and for the estimate of ψ in the claim we want to have δ > 0, whichis equivalent to having
qτ > 6. This holds because τ > 1/4. Combining the above with (4.54.5) implies that

‖ψ‖Lqτ (R3) ≤ C|Re ζ|(−3/qτ−δ)‖V ‖Hτ,4/3(R3),

where qτ ∈ (6, 12). �

We end this section by considering a concrete examples of the type of potential V for which
the above results hold.

Example 4.6. Consider the following conic set

C = {(tx′, t) ∈ R3 : x′ ∈ K, t ∈ [0,∞)},
14



Figure 2. The Apollonian gasket A on the left and the set Ã on the right.

where K ⊂ R2 is the interior of the famous Koch snowflake, see Figure 11. By Corollary 1.2 in
[2121] we know that

τ < 1− 1
2

log 4
log 3 ⇒ χK ∈ Hτ,2(R2).

We can now choose τ ∈ (1
4 ,

1
2), such that 1

4 < τ < 1− 1
2

log 4
log 3 ≈ 0.37. Let α > 9/4 and

V (x) = 〈x〉−αχC .

Theorem 4.54.5 implies then that we can construct CGO solutions V with the desired remainder
estimates.

The next example is a cone with a porous structure. We will use some further results from
[2121] to analyze this. We use in particular the fact that we can determine what Sobolev space the
characteristic function of a set is in by looking at the box-counting dimension of the boundary
of the set.

Example 4.7. Let A be the Apollonian gasket. See Figure 22. The set A can be constructed
iteratively by starting with the four largest circles. One then adds all the circles that are
mutually tangent to any three of the initial four circles. In this way, one obtains four new
circles, or eight circles in total. One then adds the circles that are mutually tangent to the
eight circles similarly, and so forth.

Now consider the set Ã ⊂ R2, which is constructed as the Apolloninan gasket, but so that Ã
contains the entire interior disk of the circles, but only of those added on every other iteration
in the construction of A. See Figure 22.

Now we consider the conic set

C = {(tx′, t) ∈ R3 : x′ ∈ Ã, t ∈ [0,∞)},

The set Ã is a porous set with non zero Lebesgue measure, which can be analyzed in a
straightforward manner. Clearly we have that

∂Ã ⊂ ∂A = A.

The exact Hausdor� dimension dimH(A) of the Apolloninan Gasket is unknown, but dimH(A) <
1.314534, see e.g. [1010]. The Apollonian gasket has furthermore the property that the so called
box-counting dimension (or Minkowsksi dimension) of its closure coincides with the Hausdor�
dimension, i.e. dimM(A) = dimH(A), see [4141]. Thus we have that

dimM(A) = dimH(A) < 1.314534.
15



By the monotonicity of the box-counting dimension (see p.48 in [2020]) we obtain that dimM(∂Ã) ≤
dimM(A) ≤ 1.32. We can now apply the results in [2121] (see also [3939]). Let D ⊂ Rn, then in
general we have that

(4.6) dimM(∂D) < n− pτ ⇒ χD ∈ Hτ,p(Rn),

for 1 ≤ p < ∞. See Theorem 1.3 in [2121] and the related comments. For ∂Ã and p = n = 2,
the condition becomes

dimM(∂Ã) < 2− 2τ,
which follows if τ < 1 − 0.5 · 1.32 = 0.34. Again, we see that Theorem 4.54.5 implies that we
can construct CGO solutions for the potential V = 〈x〉−αχC with the desirable remainder
estimates if α > 9/4, since we can choose τ so that 1/4 < τ < 0.34.

Remark 4.8. Condition (4.64.6) has a partial converse that states that for sets D ⊂ Rn, we have
that

dimM(∂D) > n− pτ ⇒ χD /∈ Hτ,p(Rn),

for 1 ≤ p <∞. See [2121]. This sets some limits on the applicability of the above constructions.
It follows that we cannot obtain CGO-solutions with the above method for potentials supported
on cones whose cross-section D ⊂ R2 has a fractal boundary with dimM(∂D) large enough,
since the CGO construction demands that τ > 1/4.

5. Admissible cones always scatter

In this section we define the notion of an admissible medium cone. Admissibility amounts
essentially to an orthogonality condition and certain regularity assumptions. We then prove
that admissible medium cones result in potentials that always scatter. After this we formulate
a simple determinant condition for medium cones that are admissible.

Definition 5.1. We call a closed cone C ⊂ R3 an admissible medium cone, if

(i) C is contained in a strictly convex closed circular cone,
(ii) C has a connected exterior,
(iii) C has a bounded cross-section D ⊂ R2 such that χD ∈ Hτ (R2) for some τ ∈ (1/4, 1/2),

and
(iv) for any spherical harmonic H 6≡ 0 of arbitrary degree N , there exists an index m ∈
{−N − 2, . . . , N + 2} so that ∫

C∩S2
Y m
N+2H dS 6= 0.

Remark 5.2. We could equivalently formulate the last condition this way: For any spherical
harmonic H 6≡ 0 of arbitrary degree N , there exists a spherical harmonic Y of degree N + 2
so that ∫

C∩S2
Y H dS 6= 0.

Theorem 5.3. Let λ ∈ R+, and let V = ϕχC + Φ, where ϕ ∈ C1/4+ε
c (R3) for some ε ∈ R+,

Φ ∈ e−γ|·| L2(R3) for some γ ∈ R+ so that Φ|H ≡ 0 for some open half-space H ⊂ R3, and
so that the origin belongs to the component of R3 \ supp Φ containing H , and where C is an
admissible medium cone with vertex at the origin. Finally, assume that λ is a non-scattering
energy for the potential V . Then ϕ(0) = 0.

16



Proof. By Lemma 2.22.2, there exist solutions v, w ∈ B∗2(R3) to the equations(−∆ + V − λ) v = 0,
(−∆− λ)w = 0,

in R3, so that u = v − w ∈ B̊∗2(R3) and w 6≡ 0. Let r ∈ R+ be so small that the ball
B(0, 2r) is contained in the component of R3 \ supp Φ containing H . By Theorem 2.32.3,
unique continuation and the connectedness of the exterior of C from Definition 5.15.1, we have
u|B(0,2r)\C ≡ 0.

By rotating the whole setup, we may assume that C \ {0} ⊂ R2 × R+. Next, we let
τ ∈

[√
λ,∞

[
and ψ ∈ R in order to choose a complex vector ρ ∈ C3 through

ρ = ρ(τ, ψ) = τ(0, 0, 1) + i
√
τ 2 + λ (cosψ, sinψ, 0).

In particular, we have ρ · ρ = −λ, and, assuming that τ is large enough, Theorem 4.54.5 gives us
a solution u0 = e−ρ·x (1 + ψ) to the equation

(−∆ + ϕχC − λ)u0 = 0
in R3 satisfying ψ ∈ Lq(R3) for some q ∈ (6, 12), and satisfying the estimate

‖ψ‖Lq(R3) . τ−3/q−δ,

where δ ∈ R+ is fixed. We shall study the limit τ →∞, and so all the implicit constants will
be independent of τ , but they are allowed to depend on everything else.

Since w is real-analytic and w 6≡ 0, there exists a homogeneous complex polynomial H(x)
of some degree N ∈ {0} ∪ Z+ such that H(x) 6≡ 0 and

w(x) = H(x) +O(|x|N+1),
for all x ∈ B(0, 2r). The equation (−∆− λ)w = 0 implies that H is harmonic. This can
be seen by applying the di�erential operator to the Taylor expansion of w. The argument is
essentially the same as in Lemma 17 of [99].

We choose a cut-o� function χ ∈ C∞c (R3) so that χ|B(0,r) ≡ 1 and χ|R3\B(0,2r) ≡ 0, and
write A for the annular domain B(0, 2r) \ B(0, r). We may then argue, remembering that V
and ϕχC coincide in the support of χ, that

0 = −
∫
R3
χu (−∆ + ϕχC − λ)u0 dx = −

∫
R3
u0 (−∆ + V − λ) (χu) dx

=
∫
C
u0 χϕw dx+

∫
C∩A

u0 (2∇χ · ∇u+ u∆χ) dx.

Since we may estimate |e−ρ·x| . e−δ
′τ in the domain A for some constant δ′ ∈ R+ not

depending on τ , we have∫
C∩A

u0 (2∇χ · ∇u+ u∆χ) dx . e−δ
′τ = o(τ−N−3).

Now, we may expand the integrand u0 χϕw in the remaining integral in steps to get

o(τ−N−3) =
∫
C
u0 χϕw dx =

∫
C
e−ρ·x ψχϕw dx+

∫
C
e−ρ·x χ

(
ϕ− ϕ(0)

)
w dx

+ ϕ(0)
∫
C
e−ρ·x χO(|x|N+1) dx+ ϕ(0)

∫
C
e−ρ·x χH dx.

Using Lemma 2.62.6 and the remainder estimate of Theorem 4.54.5 for ψ, we have for the first of
the four integrals on the right-hand side that∫

C
e−ρ·x ψχϕw dx . |ρ|3/q−N−3

∥∥∥e−Re ρ/|ρ|·x |x|N χC
∥∥∥
Lq′ (Rn)

‖χϕψ‖Lq(Rn) . τ−N−3−δ.
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For the second integral we use that Hölder continuity which implies that |ϕ(x) − ϕ(0)| ≤
C|x|1/4+ε and Lemma 2.62.6 with q =∞, so that have that∫
C
e−ρ·x χ

(
ϕ− ϕ(0)

)
w dx . |ρ|−N−3

∥∥∥e−Re ρ/|ρ|·x |x|N χC
∥∥∥
L1(Rn)

‖χϕψ‖L∞(Rn) . τ−N−3−1/4−ε.

For the third integral we use Lemma 2.62.6 similarly and obtain that

ϕ(0)
∫
C
e−ρ·x χO(|x|N+1) dx . τ−N−1−3.

In particular, all three are o(τ−N−3), and we may continue

o(τ−N−3) = ϕ(0)
∫
C
e−ρ·x χH dx = ϕ(0)

∫
C
e−ρ·xH dx− ϕ(0)

∫
C
e−ρ·x (1− χ)H dx.

The last integral may be estimated to be

ϕ(0)
∫
C
e−ρ·x (1− χ)H dx . e−δ

′τ/2
∫
C\B(0,r)

e−Re ρ·x/2 |H| dx . e−δ
′τ/2 = o(τ−N−3).

Now with a change of variables,

o(τ−N−3) = ϕ(0)
∫
C
e−ρ·xH dx = ϕ(0) 2(N+3)/2

|ρ|N+3

∫
C
e−
√

2ρ/|ρ|·xH dx,

or more simply,

ϕ(0)
∫
C
e−
√

2ρ/|ρ|·xH dx = o(1).

In the limit τ →∞, we have that ρ/ |ρ| → ρ0/ |ρ0|, where

ρ0 = ρ0(τ, ψ) = τ(0, 0, 1) + iτ (cosψ, sinψ, 0).

And Since e−ρ/|ρ|·x . e−x3/
√

3 in C , the dominated convergence Theorem gives, when taking
τ →∞, that

ϕ(0)
∫
C
e−
√

2ρ0/|ρ0|·xH dx = 0.

Writing ω for the vector
√

2ρ0/ |ρ0| = 〈i cosψ, i sinψ, 1〉, and remembering that ω · y has a
positive real part for y ∈ C ∩ S2, we may compute through the use of polar coordinates that

0 = ϕ(0)
∫
C
e−ω·xH dx = ϕ(0)

∫
C∩S2

∫ ∞
0

e−(ω·y)r rN+2 dr H(y) dy = ϕ(0)
(N + 2)!

∫
C∩S2

H(y) dy
(ω · y)N+3 .

Let m ∈ {−N − 2,−N − 1, . . . , N + 2}. Moving to spherical coordinates, multiplying the
last identity by eimψ , and integrating with respect to ψ over [0, 2π], changing the order of
integration and making the change of variables ψ′ = ψ − ϕ gives

0 = ϕ(0)
∫
C∩S2

eimϕ
∫ 2π

0

eimψ
′
dψ′

(cosϑ+ i sinϑ cosψ′)N+3 H sinϑ dϑ dϕ,

from which Laplace’s second representation theorem, i.e. Theorem 2.42.4, gives us

0 = ϕ(0)
∫
C∩S2

eimϕ PN+2(cosϑ)H sinϑ dϑ dϕ = ϕ(0)
∫
C∩S2

Y m
N+2H dS.

Since C was assumed to be an admissible medium cone, the last integral is non-zero for some
choice of m, and thus ϕ(0) = 0. �
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In the rest of this section we show that the admissibility of a medium cone can be ascertained
by studying certain determinants, which we will shortly define.

We are particularly interested in families of cones {Cρ : ρ ∈ I ⊂ R} depending on the
parameter ρ. Consider the (2N + 1)-tuple Ψ of basis functions of SHN+2, such that

Ψ = (ψ−N , .., ψN), ψi 6= ψj, ψj ∈
{
Y k
N+2 : k = −(N + 2), .., N + 2

}
.

Define the functions

Ik,lN (ρ) :=
(
ψk, Y

l
N

)
L2(Kρ)

=
∫
Kρ
ψkY

l
N dS,

where Kρ := Cρ ∩ S2.
These give us information of the projections of the basis functions Y l

N on the basis functions
in ΨN in the L2(Kρ)-space. Define the matrices

CΨ,N(ρ) :=


I−N,−NN (ρ) . . . I−N,NN (ρ)

...
. . .

...
IN,−NN (ρ) . . . IN,NN (ρ)

 .
And let the corresponding determinants be

DΨ,N(ρ) := det CΨ,N(ρ).
Note that we are mainly interested in a specific choice of Ψ, which is

Ψ0 :=
(
Y −NN+2, Y

−N+1
N+2 , .., Y N

N+2

)
,

as this choice of Ψ is particularly useful for analyzing circular cones. Moreover we will use
the abbreviations

(5.1) CN(ρ) := CΨ0,N(ρ), DN(ρ) := DΨ0,N(ρ).
The columns of the matrices CΨ,N gives the coe�cients of the projections of the basis vectors
Y k to vectors in Ψ. The next lemma gives a simple condition for admissibility in terms of the
determinants DΨ,N(ρ).

Lemma 5.4. Suppose that Cρ satisfies the regularity conditions (i)-(iii) of Defintion 5.15.1. Then Cρ
is an admissible medium cone if for every N ∈ N, there is a ΨN , for which DΨN ,N(ρ) 6= 0.

Proof. Assume that Cρ is not an admissible medium cone, so that there exists an N and
H ∈ SHN , H 6= 0, s.t. ∫

Kρ
Y H dS = 0,

for all Y ∈ SHN+2. We can write H , as

H =
N∑

j=−N
alY

l
N .

Then in particular∫
Kρ

(a−NY −NN + · · ·+ aNY
N
N )Y −N−2

N+2 dS = 0,

...∫
Kρ

(a−NY −NN + · · ·+ aNY
N
N )Y N+2

N+2 dS = 0.
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So that for any choice of Ψ, the vector ᾱ := (α−N , .., αN) 6= 0 is such that

CΨ,N(ρ)ᾱ = 0.
This implies that all the matrix CΨ,N(ρ) is singular, for any choice of Ψ. In particular we have
that

DΨ,N(ρ) = 0,
for all Ψ which proves the claim. �

6. Circular cones

Here we use the properties of spherical harmonics to prove that circular cones are admissible
medium cones, utilizing the determinant condition of Lemma 5.45.4. We also use some results
on associated Legendre polynomials, which we prove later in Section 88.

In this and the following sections, we use the notation below for circular cones. Compare
with Definition 3.33.3. Recall also the notational convention mentioned before (2.102.10) that allows
us to write (ϑ, ϕ) ∈ S2 instead of x ∈ S2, x = (sinϑ cosϕ, sinϑ sinϕ, cosϑ).

Definition 6.1. By a circular cone Cρ we denote a cone that can be represented in a spherical
coordinate system as

Cρ :=
{

(r, ϑ, ϕ) ∈ R3 : r > 0, ϑ ∈ (0, ρ), 0 ≤ ϕ < 2π
}
,

where ρ ∈ (0, π/2). Also we let Kρ := Cρ ∩ S2. Note that a half space is not a spherical cone
according to this definition.

Recall that the elements of the matrix CN(ρ) are given by

Ik,lN (ρ) =
∫
Kρ
Y k
N+2Y

l

N dS,

and moreover that

CN(ρ) :=


I−N,−NN (ρ) . . . I−N,NN (ρ)

...
. . .

...
IN,−NN (ρ) . . . IN,NN (ρ)

 ,
Furthermore we set

DN(ρ) = det CN(ρ).
The next proposition shows that circular cones are admissible medium cones, and taken
together with Theorem 5.35.3 we see that circular cones always scatter.

Proposition 6.2. A circular cone Cρ is an admissible medium cone.

Proof. By Lemma 5.45.4 it is clear that it is enough to show that DN(ρ) 6= 0. In the case of a
circular cone the matrix CN(ρ) is an diagonal matrix, since

k 6= l ⇒ Ik,lN (ρ) =
∫
Kρ
Y k
N+2Y

l
N dS = 0.

Thus we have a matrix of the form

CN(ρ) :=


I−N,−NN (ρ) . . . 0

...
. . .

...
0 . . . IN,NN (ρ)

 .
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Assume that m ∈ {−N, . . . N}. The diagonal elements are then of the form

Im,mN (ρ) =
∫
Kρ
Y m
N+2Y

m

N dS

= C
∫ 2π

0

∫ ρ

0
eimϕPm

N+2(cosϑ)e−imϕPm
N (cosϑ) sinϑ dϑdϕ

= 2πC
∫ ρ

0
Pm
N+2(cosϑ)Pm

N (cosϑ) sinϑ dϑ

= 2πC
∫ 1

x0
Pm
N+2(x)Pm

N (x) dx

= 2πC ′
∫ 1

x0
P
|m|
N+2(x)P |m|N (x) dx,

where x0 = cos ρ, and where we used the definition in (8.18.1) to deduce that P−mM = cPm
M , for

some constants c. We will evaluate the integral on the last line. Clearly we can assume that
m ≥ 0. By lemmas 8.18.1, 8.38.3, 8.48.4 and 8.58.5, we know that

∫ 1

x0
Pm
N+2(x)Pm

N (x) dx = (1− x2
0)2aN+1x0



(N−m)/2∑
j=0

cj[Pm
m+2j(x0)]2, N −m is even

(N−m−1)/2∑
j=0

c̃j[Pm
m+1+2j(x0)]2, N −m is odd.

In particular we have that∫ 1

x0
Pm
N+2(x)Pm

N (x) dx ≥

Cx0(1− x2
0)[Pm

m (x0)]2, N −m is even

Cx0(1− x2
0)[Pm

m+1(x0)]2, N −m is odd
> 0,

since Pm
m and Pm

m+1 have no zeros on the interval x0 ∈ (0, 1), and since x0 ∈ (0, 1), because
ρ ∈ (0, π/2). It follows that all the diagonal elements of CN(ρ) are bounded away from zero,
when ρ ∈ (0, π/2), and hence

DN(ρ) 6= 0.
A circular cone is thus an admissible medium cone. �

7. A density argument for star-shaped cones

In this section we finish the proof of Theorem 1.31.3 by proving Proposition 7.67.6. The latter
shows that all star-shaped cones have admissible medium cones arbitrarily close to them.
Theorem 5.35.3 imples that these admissible ones always scatter.

Let us begin by recalling Definition 1.21.2 of a star-shaped cone, that states that a cone Cσ ,
with the vertex at the origin, is star-shaped, if

Cσ ∩ S2 :=
{

(ϑ, ϕ) ∈ S2 : 0 ≤ ϕ < 2π, 0 ≤ ϑ < σ(ϕ)
}
,

where σ : [0, 2π]→ (ρ0, π/2), ρ0 ∈ (0, π/2) is a continuous, with σ(0) = σ(2π).
In the following, we are interested in deformations of circular cones (Definition 6.16.1) into a

star-shaped cone, which we call star-shaped deformations.

Definition 7.1. A star-shaped deformation of a circular cone Cρ0 , ρ0 ∈ (0, π/2), is a family of
cones ρ 7→ Cσ

ρ with vertex at the origin and having an intersection of the form

Cσ
ρ ∩ S2 =

{
(ϑ, ϕ) ∈ S2 : ϕ ∈ [0, 2π), 0 ≤ ϑ < ρσ(ϕ) + (1− ρ)ρ0

}
, ρ ∈ [−ε, 1],

for some continuous σ : [0, 2π]→ (ρ0, π/2) with σ(0) = σ(2π), and some ε > 0 small enough
that Cσ

−ε is star-shaped.
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Note that Cσ
ρ is a circular cone when ρ = 0, in particular Cσ

0 = Cρ0 . For ρ = 1, we have
Cσ
ρ = Cσ

1 = Cσ . The star-shaped deformation is thus essentially given by an interpolation
between the points in the circular cone Cρ0 and the star-shaped cone Cσ .

As in the previous sections, we are interested in the functions

Ik,lN,σ(ρ) :=
∫
Cσρ ∩S2

Y k
N+2Y

l

N dS,

this time integrated over the star-shaped deformation cap instead of a circular cap. Further-
more recall that

CN,σ(ρ) :=


I−N,−NN,σ (ρ) . . . I−N,NN,σ (ρ)

...
. . .

...
IN,−NN,σ (ρ) . . . IN,NN,σ (ρ)

 ,
and that

(7.1) DN,σ(ρ) := det CN,σ(ρ).

We will also be dealing with the associated Legendre polynomials22 which are defined in (8.18.1)
in terms of the Legendre polynomials Pn, but we reproduce the equation here for convenience.

Pm
n := (−1)m(1− x2)m/2∂mx Pn, P−mn := (−1)m (n−m)!

(n+m)!P
m
n ,

where m = 0, .., n. Moreover we set Pm
n := 0, for m > n.

It will be convenient to extend the definition of the associated Legendre polynomials to C.
Note that extending the factor (1 − x2)1/2 can be done in several ways depending on which
branch of the square root we choose.

Definition 7.2. For z ∈ C we define

Pm
n (z) := (−1)m(1− z2)m/2∂mz Pn(z), P−mn (z) := (−1)m (n−m)!

(n+m)!P
m
n (z),

where we choose the square root so that it has the branch cut along (−∞, 0), that is
√
z =√

reiϕ =
√
reiϕ/2, when ϕ ∈ (−π, π).

Lemma 7.3. The functions Pm
n are complex analytic in {x+ iy ∈ C : −1 < x < 1, y ∈ R}.

Proof. Since ∂mz Pn(z) is a polynomial and (1− z)m/2 is a product, it will be enough to show
that (1− z2)1/2 is complex analytic on {x+ iy ∈ C : −1 < x < 1, y ∈ R}. Now

(1− z2)1/2 =
√
z ◦ (1− z) ◦ z2.

Since Re z2 = x2 − y2 ∈ (−∞, 1) when −1 < x < 1, we have

z2 : {x+ iy ∈ C : −1 < x < 1, y ∈ R} → {x+ iy ∈ C : x < 1, y ∈ R}

is analytic and

(1− z) : {x+ iy ∈ C : x < 1, y ∈ R} → {x+ iy ∈ C : x > 0, y ∈ R}

is analytic. Finally
√
z : C \ (−∞, 0] → C is analytic since we choose the branch cut in

Definition 7.27.2 to be (−∞, 0). The range of (1 − z) is contained in the former’s domain and
so the restriction of

√
z to the range of (1 − z) is analytic too. Thus (1 − z2)1/2 is complex

analytic on {x+ iy ∈ C : −1 < x < 1, y ∈ R}, which proves the claim. �

2which are not always polynomials!
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Next we will shows that DN,σ are analytic functions in the parameter ρ. For this it is convenient
to make use of the following elementary lemma. But before that, let us recall some notation.
For two sets of complex numbers A,B ⊂ C we define

AB = {ab ∈ C : a ∈ A, b ∈ B}, A+B = {a+ b ∈ C : a ∈ A, b ∈ B}.
This notation is particularly useful for talking about rectangles.

Lemma 7.4. Let a < b and c < d be real numbers and δ a positive real number. Let g, h ∈
L∞(a, b) ∩ C(a, b) and denote

R′ := (c, d) + i(−δ, δ).
Suppose that

(i) a complex valued function f is complex analytic on R := R′g[(a, b)], where g[(a, b)] is the
image of the interval (a, b) under g. Assume furthermore that

(ii) for any z0 ∈ R′, one has the estimate
∫ b
a |f(z0g(t))h(t)| dt <∞.

For z0 ∈ R′, let
F (z0) :=

∫ b

a
f(z0g(t))h(t) dt.

Then F is complex analytic on R′. In particular F is real analytic on (c, d).

Proof. Firstly notice that the first part of condition (ii) guarantees that F is well defined on the
rectangle R′. Secondly, it su�ces to compute the derivative F ′(z0) when z0 ∈ R′ to prove the
claim. Choose a sequence (zm), s.t. zm → 0 in C. Define

FD
m (z0) :=

∫ b

a

f((z0 + zm)g(t))− f(z0g(t))
zm

h(t) dt

and we are going to show that FD
m converges as m → ∞ and the limit will be F ′(z0). Note

that z0 ∈ R′, which is an open set, and since we are interested in the limit only, we may
assume that for all m the whole segment from z0 to z0 + zm is in a compact subset K b R′,
which depends only on z0 and R′. This implies that

(7.2) ξg(t) ∈ Kg[(a, b)] b R′g[(a, b)] = R
for any t ∈ (a, b) and ξ on that segment, i.e. that ξg(t) will stay a positive distance from ∂R.
This will be used later in the proof after a mean value theorem.

To study the limit of FD
m (z) define

Dm(z0, t) := f((z0 + zm)g(t))− f(z0g(t))
zm

.

Let us study the limit of these as m → ∞. Firstly, the pointwise limit. If g(t) = 0 then
Dm(z0, t) = 0 so the pointwise limit exists and is 0. If g(t) 6= 0 then the pointwise limit of
Dm(z0, t) is f ′(z0g(t))g(t) a formula which also applies to the case g(t) = 0. Next, let us
show that the |Dm(z0, ·)| have an integrable upper bound in the interval (a, b). If g(t) 6= 0,
we have

|Dm(z0, t)| =
∣∣∣∣f((z0 + zm)g(t))− f(z0g(t))

zmg(t)

∣∣∣∣|g(t)|

. |f ′(ξg(t))||g(t)| ≤ sup
ζ∈Kg(a,b)

|f ′(ζ)||g(t)|.

by the mean value theorem for some ξ ∈ C which lies on the segment connecting z0 to
z0 + zm. This also holds when g(t) = 0. The supremum above is a finite number because f is
complex analytic in R by (i), and so its derivative f ′ is bounded on its compact subsets. The
set Kg(a, b) is such a set according to (7.27.2). This means that for any fixed z0 there is a finite

23



constant C depending on a, b, c, d, δ, z0 and f such that |Dm(z0, t)| ≤ C|g(t)| ≤ C‖g‖∞ for
all t ∈ (a, b), and this is integrable.
By the dominated convergence Theorem and since h ∈ L∞(a, b), we have that for each

z0 ∈ R′ the following holds

lim
m→∞

Fm(z0) = lim
m→∞

∫ b

a
Dm(z0, t)h(t) dt

=
∫ b

a
lim
m→∞

Dm(z0, t)h(t) dt

=
∫ b

a
f ′(z0g(t))g(t)h(t) dt

and that the latter is a finite complex number. This gives the existence of F ′(z0). Hence F is
complex analytic in R′. �

Lemma 7.5. The functions ρ 7→ DN,σ(ρ) of any star-shaped deformation ρ 7→ Cσ
ρ , ρ ∈ (−ε, 1)

are real analytic functions in (−ε0, 1) for some 0 < ε0 ≤ ε. They are also not identically zero.

Proof. Using spherical coordinates and referring to (2.112.11) we have that

Ik,lN,σ(ρ) =
∫
Cσρ ∩S2

Y k
N+2Y

l

N dS

=
∫ 2π

0

∫ ρ0+ρ(σ(ϕ)−ρ0)

0
Y k
N+2(ϑ, ϕ)Y l

N(ϑ, ϕ) sin(ϑ) dϑdϕ

= CN

∫ 2π

0
ei(k−l)ϕ

∫ cos(ρ0+ρ(σ(ϕ)−ρ0))

0
P k
N+2(x)P l

N(x) dxdϕ

Changing the variable symbols in preparation for Lemma 7.47.4, we can write

Ik,lN,σ(z0) = CN

∫ 2π

0
f(z0g(t))h(t) dt

where f = f1 ◦ f2 and

f1(z) =
∫ z

0
P k
N+2(w)P l

N(w) dw,

f2(z) = cos(ρ0 + z),
g(t) = σ(t)− ρ0,

h(t) = ei(k−l)t

and the integral in the definition of f1 is interpreted as the complex line integral of the straight
line segment from 0 to z.

We want to apply Lemma 7.47.4 to show that Ik,lN,σ is real analytic in (−ε0, 1) for some ε0 > 0.
In order to do this we need to check that the conditions (i) and (ii) of the Lemma 7.47.4 can be
satisfied. For condition (i), we need to find ε0 > 0 and δ0 > 0 so that f is complex analytic
on the rectangle

(7.3) R := R′g[(0, 2π)],
where

(7.4) R′ := (−ε0, 1) + i(−δ0, δ0)
and ε0 ≤ ε so that Cσ

ρ is defined for ρ ∈ (−ε0, 1). Choose ε0 > 0 by

(7.5) ε0 := min
(

ρ0

2‖g‖L∞
, ε
)
.
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Since g(t) ∈ (0, π/2− ρ0) for all t, and by our choice of ε0, we have for x0 ∈ (−ε0, 1), that
ρ0/2 < ρ0 + x0g(t) < π/2.

Recal also that
cos(x+ iy) = cos(x) cosh(y)− i sin(x) sinh(y),

where each of cos, cosh, sin, sinh are real-valued when their arguments are real. Let δ2 > 0
be arbitrary and let

(7.6) δ0 := δ1

‖g‖L∞
, δ1 = 1

2 min
(

arsinh δ2, arcosh
( 1

cos(ρ0/2)

))
both of which are positive, and they give δ0g(t) ∈ (0, δ1) for all t. Then for −ε0 < x0 < 1 and
−δ0 < y0 < δ0, we have that

f2((x0 + iy0)g(t)) = cos(ρ0 + (x0 + iy0)g(t))
= cos(ρ0 + x0g(t)) cosh(y0g(t))− i sin(ρ0 + x0g(t)) sinh(y0g(t))
⊂ cos[(ρ0/2, π/2)] cosh[(0, δ1)]− i sin[(ρ0/2, π/2)] sinh[(−δ1, δ1)]
⊂ (0, cos(ρ0/2) cosh δ1) + i(− sinh δ1, sinh δ1).

Denote α = 0, β = cos(ρ0/2) cosh δ1. Then by our choice of δ1 we see that α < β < 1 and
sinh δ1 < δ2, and so

f2((x0 + iy0)g(t)) ⊂ (α, β) + i(−δ2, δ2) =: R′′

for x0 ∈ (−ε0, 1), y0 ∈ (−δ0, δ0) and t ∈ (0, 2π). In other words,

(7.7) f2 : R → R′′

is complex analytic. In particular the associated Legendre polynomials Pm
n are analytic in the

range of f2. In fact, R′′ is a positive distance 1 − β away from any point where we do not
know them being analytic. See Lemma 7.37.3.

Let us prove next that f is complex analytic on the rectangle R given in (7.37.3). We know that
P k
N+2P

l
N is analytic on the vertical strip {x+ iy ∈ C : −1 < x < 1, y ∈ R} by Lemma 7.37.3.

Hence
f1 : z 7→

∫ z

0
P k
N+2(w)P l

N(w) dw

is likewise analytic in the strip {x + iy ∈ C : −1 < x < 1, y ∈ R}, which happens to
contain R′′. Thus f = f1 ◦ f2 is analytic on R and so condition (i) of Lemma 7.47.4 is satisfied.
Next, we show that condition (ii) is satisfied, i.e. that we have

∫ 2π
0 |f(z0g(t))h(t)|dt <∞ for

any z0 ∈ R′. Recall that |h(t)| = 1 in our case. Notice that f1 is in fact uniformly bounded on
R′′. This is because f1 is analytic in the vertical strip mentioned above, and R′′ is contained
in it with distance 1 − β > 0 from its boundary. Since f2 : R → R′′, and f1 : R′′ → C is
uniformly bounded, we have f = f1 ◦ f2 : R → C uniformly bounded. Given z0 ∈ R′ and
t ∈ (0, 2π) we have z0g(t) ∈ R and so we have a uniform bound for f(z0g(t)). Hence the
integral is finite.

Lemma 7.47.4 imples that the maps ρ 7→ Ik,lN,σ(ρ) are real analytic on (−ε0, 1) where ε0 is given

by (7.57.5). The determinant functions DN,σ are obtained from matrices having elements Ik,lN,σ as
their components. The determinant is a sum of products of these elements and is therefore
also real analytic in (−ε0, 1).
Finally, by the proof of Proposition 6.26.2 we know that DN,σ(0) 6= 0, since Cσ

0 is a circular
cone. The functions DN,σ are thus not identically zero in ρ. This completes the proof. �

We will now show that there exists a number of star-shaped cones, which are not necessarily
circular, but still admissible medium cones.
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Proposition 7.6. Let ρ 7→ Cσ
ρ , ρ ∈ (−ε, 1), be a star-shaped deformation which satisfies the

regularity assumptions (i)–(iii) of Definition 5.15.1. Let 0 < ε0 < ε be as in Lemma 7.57.5. Then there
is a countable set Z such that all Cσ

ρ with ρ ∈ (−ε0, 1) \ Z are admisible.

Proof. By Lemma 7.57.5 we know that for every N the map ρ 7→ DN,σ(ρ) is analytic on (−ε0, 1)
without being identically zero. Consider the set

Z =
{
ρ ∈ (−ε0, 1) : DN,σ(ρ) = 0 for some N

}
.

Lemma 5.45.4 implies that all of the cones Cσ
ρ with ρ ∈ (−ε0, 1) \ Z are admissible medium

cones because ρ ∈ (−ε0, 1) \ Z implies that DN,σ(ρ) 6= 0 for all N .
The set Z is countable as a countable union of countable sets. This follows because DN,σ

has at most a countable number of zeros in (−ε0, 1) since it is analytic and not identically
zero there by Lemma 7.57.5. �

8. Results on associated Legendre polynomials

In this section we derive some results on associated Legendre polynomials, that are utilized
in computing explicitly the determinants DN in the case of circular cones, which is done in
Section 66. First we extend some well known formulas for certain inner products of Legendre
polynomials to the case of the associated Legendre polynomials, after which we derive a
modification of the Christo�el-Darboux formula, which can be used to analyze these inner
products.

Recall firstly that the associated Legendre polynomials are defined in terms of the Legendre
polynomials Pn, as

(8.1) Pm
n := (−1)m(1− x2)m/2∂mx Pn, P−mn := (−1)m (n−m)!

(n+m)!P
m
n ,

where m = 0, .., n. Moreover we set Pm
n := 0, for m > n. The Legendre polynomials are

defined in [1111] equation (9), p.10.
We will first derive an integral formula for the special case of the associated Legendre

polynomials of the form P 0
n , i.e. in the case when they coincide with the Legendre polynomials

Pn. This formula can be found in [1111] equation (5), p.172. We however give the proof as a
convenience to the reader.

Lemma 8.1. Let x0 ∈ (−1, 1). Then we have the following formula∫ 1

x0
P 0
nP

0
n+2 dx = C(1− x2

0)
(
∂xP

0
n+2P

0
n − P 0

n+2∂xP
0
n

)∣∣∣
x=x0

,

where C = 1/(4n+ 6).
Proof. Note firstly that P 0

n = Pn. The Legendre polynomials in the claim solve the ODEs

∂x
(
(1− x2)∂xPn

)
+ n(n+ 1)Pn = 0,

∂x
(
(1− x2)∂xPn+2

)
+ (n+ 2)(n+ 3)Pn+2 = 0.

Multiplying by Pn and Pn+2, and subtracting the resulting equations gives, then that

−(4n+ 6)
∫ 1

x0
PnPn+2 dx =

∫ 1

x0
∂x
(
(1− x2)∂xPn

)
Pn+2 − ∂x

(
(1− x2)∂xPn+2

)
Pn dx

= (1− x2)
(
∂xPnPn+2 − Pn+2∂xPn

)∣∣∣∣1
x0

= (1− x2
0)
(
Pn+2(x0)∂xPn(x0)− ∂xPn+2(x0)Pn(x0)),
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which proves the claim. �

Now we generalize the formula of Lemma 8.18.1 to the case where m = 1, .., n − 1. First we
derive the following simple formula (which can be found in e.g. [1111] p. 205).

Lemma 8.2. For m ≥ 1, we have the formula

∂x
(
(1− x2)m∂mx Pn

)
= −C(1− x2)m−1∂m−1

x Pn,

where C = n(n+ 1)−m(m− 1).

Proof. By taking repeated derivatives of the Legendre ODE

(1− x2)∂2
xPn − 2x∂xPn + n(n+ 1)Pn = 0,

one arrives by an induction argument at the formula

(1− x2)∂m+1
x Pn − 2mx∂mx Pn + (n(n+ 1)−m(m− 1))∂m−1

x Pn = 0.
Multiplying by (1− x2)m−1, gives then that

∂x
(
(1− x2)m∂mx Pn

)
= −(n(n+ 1)−m(m− 1))(1− x2)m−1∂m−1

x Pn.

�

We are now ready to generalize the result of Lemma 8.18.1 to the case m = 1, .., n− 1.

Lemma 8.3. Let x0 ∈ (−1, 1) and m = 1, .., n− 1. Then we have the following formula∫ 1

x0
Pm
n P

m
n+2 dx = C(1− x2

0)
(
∂xP

m
n+2P

m
n − Pm

n+2∂xP
m
n

)∣∣∣
x=x0

,

where C = 1/(4n+ 6).

Proof. Assume that 1 ≤ m ≤ n− 1. By integration by parts we get that∫ 1

x0
Pm
n P

m
n+2 dx =

∫ 1

x0
(1− x2)m∂mx Pn+2∂

m
x Pn dx

= −
∫ 1

x0
∂x((1− x2)m∂mx Pn+2)∂m−1

x Pn dx+
∣∣∣∣1
x0

(1− x2)m∂mx Pn+2∂
m−1
x Pn.

Then using the formula of Lemma 8.28.2 we have that∫ 1

x0
Pm
n P

m
n+2 dx = C1

∫ 1

x0
(1− x2)m−1∂m−1

x Pn+2∂
m−1
x Pn dx+

∣∣∣∣1
x0

(1− x2)m∂mx Pn+2∂
m−1
x Pn

= C1

∫ 1

x0
Pm−1
n+2 P

m−1
n dx+

∣∣∣∣1
x0

(1− x2)m∂mx Pn+2∂
m−1
x Pn,

where C1 = (n+ 2)(n+ 3)−m(m− 1). Likewise we can use integration by parts to deduce
that ∫ 1

x0
Pm
n P

m
n+2 dx = C2

∫ 1

x0
Pm−1
n+2 P

m−1
n dx+

∣∣∣∣1
x0

(1− x2)m∂m−1
x Pn+2∂

m
x Pn.

where C2 = n(n+ 1)−m(m− 1). Subtracting these we obtain that

C3

∫ 1

x0
Pm−1
n+2 P

m−1
n dx =

∣∣∣∣1
x0

(
(1− x2)m∂m−1

x Pn∂
m
x Pn+2 − (1− x2)m∂mx Pn∂m−1

x Pn+2

)
,

where the constant is given by C3 := C1 −C2 = 4n+ 6. This can be further simplified, since
by a straight forward computation

(1− x2)m∂m−1
x Pn+2∂

m
x Pn = (1− x2)Pm−1

n+2 ∂xP
m−1
n + (m− 1)xPm−1

n+2 P
m−1
n ,
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and likewise

(1− x2)m∂mx Pn+2∂
m−1
x Pn = (1− x2)∂xPm−1

n+2 P
m−1
n + (m− 1)xPm−1

n+2 P
m−1
n .

Putting this together gives then that

C3

∫ 1

x0
Pm−1
n+2 P

m−1
n dx =

∣∣∣∣1
x0

(1− x2)
(
Pm−1
n ∂xP

m−1
n+2 − ∂xPm−1

n Pm−1
n+2

)
.

This proves the claim for the cases m = 1, .., n− 1. �

Finally we prove the results of lemmas 8.18.1 and 8.38.3, for the case m = n.

Lemma 8.4. Let x0 ∈ (−1, 1). Then we have the following formula∫ 1

x0
P n
nP

n
n+2 dx = C(1− x2

0)
(
∂xP

n
n+2P

n
n − P n

n+2∂xP
n
n

)∣∣∣
x=x0

,

where C = 1/(4n+ 6).

Proof. Note that ∂n+1
x Pn = 0. By integration by parts we have that

(8.2)
0 =

∫ 1

x0
(1− x2)n+1∂n+1

x Pn+2∂
n+1
x Pn dx

= −
∫ 1

x0
∂x((1− x2)n+1∂n+1

x Pn+2)∂nxPn dx+
∣∣∣∣1
x0

(1− x2)n+1∂n+1
x Pn+2∂

n
xPn.

Let’s rewrite the first term on the r.h.s. of the last line. Using Lemma (8.28.2) we have that

∂x((1− x2)n+1∂n+1
x Pn+2) = −(4n+ 6)(1− x2)n∂nxPn+2.

Notice that by inserting this back into to (8.28.2) we get the term on the l.h.s. of the claim.
It is thus enough to show that the boundary term in (8.28.2) gives the expression on the r.h.s.

of the claim. For this we use the fact that

(1− x2)n+1∂n+1
x Pn+2∂

n
xPn = (1− x2)P n

n

(
(1− x2)n/2∂n+1

x Pn+2
)

= (1− x2)P n
n

(
∂xP

n
n+2 − ∂x(1− x2)n/2∂nxPn+2

)
.

Now we have that

∂xP
n
n = ∂x(1− x2)n/2∂nxPn,

so the previous equations yields by a short computation that

(1− x2)n+1∂n+1
x Pn+2∂

n
xPn = (1− x2)

(
P n
n ∂xP

n
n+2 − P n

n+2∂xP
n
n

)
.

Going back to (8.28.2) we see that

(4n+ 6)
∫ 1

x0
(1− x2)n∂nxPn+2∂

n
xPn dx = −

∣∣∣∣1
x0

(1− x2)
(
P n
n ∂xP

n
n+2 − P n

n+2∂xP
n
n

)
,

and that the claim holds. �

Next we prove the following Christo�el-Darboux type formula, which is a slight modification
of the usual formula (see p.43 in [4242]). Note that the r.h.s. of the claim has a sign determined
by the sign of x.
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Lemma 8.5. Let 0 ≤ m ≤ n. We have the following identity

Pm
n ∂xP

m
n+2 − ∂xPm

n P
m
n+2 = 2an+1x



(n−m)/2∑
j=0

cj[Pm
m+2j]2, n−m is even

(n−m−1)/2∑
j=0

c̃j[Pm
m+1+2j]2, n−m is odd

where the coe�cients cj are given by

cj :=
{
an, j = (n−m)/2,
am+2jbn−1bn−2 . . . bm+2j, j < (n−m)/2.

And the coe�cients c̃j are given by

c̃j :=
{
an, j = (n−m− 1)/2,
am+1+2jbn−1bn−2 . . . bm+1+2j, j < (n−m− 1)/2.

And where coe�cients ak and bk are given by

ak := 2k + 1
k −m+ 1 , bk := k +m+ 1

k −m+ 2 , for m ≤ k,

and ak = 0 = bk , when m > k.

Proof. The recurrence relation

(n−m+ 1)Pm
n+1 = (2n+ 1)xPm

n − (n+m)Pm
n−1

implies that

(8.3)
Pm
n+1 = anxP

m
n − bn−1P

m
n−1,

Pm
n+2 = an+1xP

m
n+1 − bnPm

n .

Using the second of these equalities gives that

Pm
n (x)Pm

n+2(y)− Pm
n (y)Pm

n+2(x) = an+1
(
yPm

n+1(y)Pm
n (x)− xPm

n+1(x)Pm
n (y)

)
.(8.4)

Lets evaluate the two terms on the r.h.s. of the equality. By successively applying the recurrence
relation in (8.38.3) we get the equations

Pm
n+1(y)Pm

n (x) = anyP
m
n (y)Pm

n (x)− bn−1P
m
n−1(y)Pm

n (x),
Pm
n−1(y)Pm

n (x) = an−1xP
m
n−1(x)Pm

n−1(y)− bn−2P
m
n−2(x)Pm

n−1(y),
Pm
n−1(y)Pm

n−2(x) = an−2yP
m
n−2(x)Pm

n−2(y)− bn−3P
m
n−2(x)Pm

n−3(y),
Pm
n−3(y)Pm

n−2(x) = an−3xP
m
n−3(x)Pm

n−3(y)− bn−4P
m
n−4(x)Pm

n−3(y),
...

where the last non-zero line is{
Pm
m+1(y)Pm

m (x) = amyP
m
m (x)Pm

m (y), if n−m is even,

Pm
m (y)Pm

m+1(x) = amxP
m
m (x)Pm

m (y), if n−m is odd,

since we defined P k
l = 0, when k > l. It will be convenient to define

z1 :=
{−y, if n−m is even,

x, if n−m is odd.
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Using these equations to rewrite the first term on the r.h.s of (8.48.4), we get that

yPm
n+1(y)Pm

n (x) =any2Pm
n (y)Pm

n (x)
− an−1bn−1xyP

m
n−1(x)Pm

n−1(y)
+ an−2bn−1bn−2y

2Pm
n−2(x)Pm

n−2(y)
− an−3bn−1bn−2bn−3xyP

m
n−3(x)Pm

n−3(y)
...

− ambn−1 . . . bmz1yP
m
m (y)Pm

m (x).

For the second term on the r.h.s of (8.48.4), we get similarly the expression

xPm
n+1(x)Pm

n (y) =anx2Pm
n (x)Pm

n (y)
− an−1bn−1yxP

m
n−1(y)Pm

n−1(x)
+ an−2bn−1bn−2x

2Pm
n−2(y)Pm

n−2(x)
− an−3bn−1bn−2bn−3yxP

m
n−3(y)Pm

n−3(x)
...

− ambn−1 . . . bmz2xP
m
m (x)Pm

m (y).

where the z2 in the last term is defined as

z2 :=
{−x, if n−m is even,

y, if n−m is odd.

Subtracting the two equalities gives then that

yPm
n+1(y)Pm

n (x)− xPm
n+1(x)Pm

n (y) =an(y2 − x2)Pm
n (y)Pm

n (x)
+ an−2bn−1bn−2(y2 − x2)Pm

n−2(x)Pm
n−2(y)

+ . . .

+ ambn−1 . . . bm(xz2 − yz1)Pm
m (x)Pm

m (y).

Notice that the last term is non zero only if n−m is even, and in this case it equals to y2−x2.
Going back to (8.48.4), we get that

Pm
n (x)Pm

n+2(y)− Pm
n (y)Pm

n+2(x)
x− y

= −an+1

(
an(y + x)Pm

n (y)Pm
n (x)

+ an−2bn−1bn−2(y + x)Pm
n−2(x)Pm

n−2(y) + . . .
)

Adding ±Pm
n+2(y)Pm

n (y) in the denominator and taking the limit y → x, gives that

Pm
n ∂xP

m
n+2 − ∂xPm

n P
m
n+2 = 2an+1x



(n−m)/2∑
j=0

cj[Pm
m+2j]2, if n−m is even

(n−m−1)/2∑
j=0

c̃j[Pm
m+1+2j]2, if n−m is odd

where the coe�cients cj are given by

cj :=
{
an, if j = (n−m)/2,
am+2jbn−1bn−2 . . . bm+2j, if j < (n−m)/2 .
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and the coe�cients c̃j are given by

c̃j :=
{
an, if j = (n−m− 1)/2,
am+1+2jbn−1bn−2 . . . bm+1+2j, if j < (n−m− 1)/2 .

�
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