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Abstract. Working memory (WM) has been intensively used to enable
the temporary storing of information for processing purposes, playing an
important role in the execution of various cognitive tasks. Recent studies
have shown that information in WM is not only maintained through per-
sistent recurrent activity but also can be stored in activity-silent states
such as in short-term synaptic plasticity (STSP). Motivated by impor-
tant applications of the STSP mechanisms in WM, the main focus of the
present work is on the analysis of the effects of random inputs on a leaky
integrate-and-fire (LIF) synaptic conductance neuron under STSP. Fur-
thermore, the irregularity of spike trains can carry the information about
previous stimulation in a neuron. A LIF conductance neuron with mul-
tiple inputs and coefficient of variation (CV) of the inter-spike-interval
(ISI) can bring an output decoded neuron. Our numerical results show
that an increase in the standard deviations in the random input current
and the random refractory period can lead to an increased irregularity
of spike trains of the output neuron.
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Langevin stochastic models · spike time irregularity · random input cur-
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1 Introduction

Human working memory (WM) is a crucial part of human brain studies. In gen-
eral, the simplest assumption is that information in WM is maintained through
persistent recurrent activity. However, recent studies have shown that infor-
mation can be maintained without persistent firing, namely, information can
be stored in activity-silent states. Short-term synaptic plasticity (STSP) is one
of the candidate mechanisms for storing information in activity-silent states,
STSP leads to rapid changes in the strength of connections between neurons
that reflects new information being presented to the network system [1,2]. STSP
strongly affects the information processing in the nervous system. STSP is used
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to study by using the description of intracellular recordings of postsynaptic po-
tentials or currents evoked by presynaptic spikes. However, STSP can also af-
fect the statistics of postsynaptic spikes [3]. A comprehensive description of the
combined effect of both short-term facilitation and depression on noise-induced
memory degradation in one-dimensional continuous attractor models has been
provided in [4]. STSP makes neurons sensitive to the distribution of presynaptic
population firing rates [5]. On the other hand, the dynamics of firing rate and
irregularity of single neurons are closely connected [6,7]. Using a computational
model to study the formation of silent assemblies in a network of spiking neu-
rons, the authors in [8] have found that even though the formed assemblies were
silent in terms of mean firing rate, they had an increased coefficient of variation
of inter-spike intervals.

In this paper, we consider the effects of random inputs to a LIF conductance
neuron with STSP for applications in WM. In particular, we develop a LIF
synaptic conductance model under a facilitation type of short-term synaptic
plasticity dynamics. We study the effects of random external current inputs and
random refractory periods on the spiking activities of neurons in a cell membrane
potential setting of such LIF conductance neuron. Our analysis is carried out
by considering a Langevin stochastic dynamic in a numerical setting for a cell
membrane potential with random inputs. The numerical results demonstrate
that the random inputs affect the spiking activity of the neuron. Under a weak
excitatory input to the LIF conductance neuron together with the short-term
facilitation, the memory can be reactivated. Furthermore, an increase in the
standard deviations of Gaussian white noise inputs can lead to an increase in
the irregularity of spike trains of the output neuron.

2 Synaptic conductance model description

The simplest assumption in the modelling of synapses is that the synaptic
weights are fixed. To get closer to the real situation, we will investigate synapses
whose weights change in some input conditions. One of the candidates for such
changes in the synaptic weights is the STSP. In general, STSP is a phenomenon
in which synaptic efficacy changes over time in a way that reflects the history of
presynaptic activity. There are two types of STP: Short-Term Depression (STD)
and Short-Term Facilitation (STF), with opposite effects on synaptic efficacy,
which have been experimentally observed.

The mathematical model of STSP is characterized by a limited pool of synap-
tic resources available for transmission R, which is the amount of available re-
sources to the presynaptic neuron. For instance, the overall amount of synaptic
vesicles at the presynaptic terminals. We know that the number of presynaptic
resources changes in a dynamic fashion depending on the recent history of spikes.
Specifically, at a presynaptic spike, the fraction u (the fraction of resources used
each time a neuron fires) of the available pool to be utilized increases due to
spike-induced calcium influx to the presynaptic terminal. Then, u is consumed
to increase the post-synaptic conductance. During each spike, u decays back to
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zero with time constant τf , while R recovers to 1 with time constant τd. We
define the following dynamics of excitatory (subscript E) STSP (see, e.g., [2]):

duE
dt

= −U0−uE
τf

+ U0(1− u−E)δ(1− tsp),
dRE

dt
= 1−RE

τd
− u+ER

−
Eδ(1− tsp),

dgE(t)
dt

= −gE
τE

+ ḡEu
+
ER

−
Eδ(1− tsp),

(1)

where U0 is a constant determining the increment of u, u−E and R−
E represent

the corresponding values before the arriving spike, while u+E denotes the moment
right after the spike. In (1), ḡE represents the maximum excitatory conductance,
while gE(t) is calculated for all spike times sp. Here, δ(·) denotes the Dirac
delta function, while τE is the given time constant. Moreover, the dynamics of
inhibitory STSP can be described by replacing the subscript E with I in system
(1).

STSP involves mechanisms for both facilitation of transmitter release, where
synaptic strength increases with consecutive presynaptic spikes, and depression
with synaptic strength decreases. The dynamics of u and R determine if the joint
effect of uR is dominated by depression or facilitation. In the regime of τd � τf
and for large U0, the synapse is STD-dominated due to an initial spike incurs
a large drop in R that takes a long time to recover. In the regime of τd � τf
for small U0, the synapse is STF-dominated since the synaptic efficacy is in-
creased gradually by spikes. The kinetic dynamics of depressed and facilitated
synapses observed in many cortical areas have been successfully reproduced by
using such STSP phenomenological model. In this work, we consider a LIF synap-
tic conductance model with STSP for working memory. This model is sustained
by calcium-mediated synaptic facilitation in the recurrent connections of neo-
cortical networks. The facilitating transmission is displayed by all excitatory-to-
excitatory connections in the system. Moreover the amount of available resources
(RE such that 0 ≤ RE ≤ 1) and the utilization parameter uE(x) modulate the
synaptic efficacy. Such factors define the fraction of resources used by each spike,
reflecting the residual calcium level. During a spike, the amount of uERE is used
to produce the postsynaptic current, thus RE reduces. This process is known as
neurotransmitter depletion [1]. See, e.g., Figs. 1-2 for (STF) changes represented
for firing rates of the presynaptic spike train. The amplitude synaptic conduc-
tance g changes with every incoming spike until it reaches its stationary state,
and the ratio of the synaptic conductance corresponding to the 1st and 10th
spikes changes as a function of the presynaptic firing rate in the STF case. In
Fig. 2, we observe that the small fluctuations are visible in the data presented
for the conductance corresponding to the 10th spike and the conductance ra-
tio of the synaptic conductance corresponding to the 1st and 10th spikes. Such
small fluctuations come from the fact that total synaptic resources are finite and
recover in a finite time. Hence, at high frequency inputs, synaptic resources are
rapidly neglected at a higher rate than their recovery. After the first few spikes,
only a small number of synaptic resources are left. Therefore, the steady-state
synaptic conductance at high frequency inputs decreases.
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Fig. 1. [Color online] Short-term synaptic facilitation (STF) changes for firing rates
ri = re = 20 of the presynaptic spike train and the amplitude synaptic conductance g
changes with every incoming spike until it reaches its stationary state.

Fig. 2. [Color online] The ratio of the synaptic conductance corresponding to the first
and 10th spikes as a function of the presynaptic firing rate in the STF case.

2.1 LIF synaptic conductance dynamics

In this section, we consider a model of synaptic conductance dynamics under
the STSP presented in (1). In particular, neurons receive myriad excitatory and
inhibitory synaptic inputs at dendrites. To understand better the mechanisms
underlying neuronal computation, we investigate the dynamics of STSP in a LIF
neuron via electrophysiological recording techniques.

In general, the synaptic input in vivo is characterized by the combination
of excitatory neurotransmitters. Such excitatory neurotransmitters depolarize
the cell and drive it towards a spike threshold. Inhibitory neurotransmitters
hyperpolarize it, driving it away from the spike threshold. These factors cause
specific ion channels on the postsynaptic neuron to open. Then, the neuron’s
conductance changes. Therefore, the current will flow in or out of the cell (see,
e.g., [9,10]). This synaptic conductance process can be modelled by assuming



Effects of random inputs and short-term synaptic plasticity in a LIF model 5

that the presynaptic neuron’s spiking activity produces transient changes in
the postsynaptic neuron’s conductance (gsyn(t)). Such conductance transients
(gsyn(t)) can be generated by using the system (1).

Using Ohm’s law allows us to convert conductance changes to the current as
follows:

Isyn(t) = gsyn(t)(V (t)− Esyn), (2)

where Esyn denotes the direction of current flow of the excitatory (EE) or in-
hibitory (EI) of the synapse.

The total synaptic input current Isyn is the combination of both excitatory
and inhibitory inputs. Suppose the total excitatory and inhibitory conductances
received at time t are gE(t) and gI(t), and their corresponding reversal potentials
are EE and EI , respectively. The total synaptic current can be defined as (see,
e.g., [11]):

Isyn(V (t), t) = −gE(t)(V − EE)− gI(t)(V − EI). (3)

Next, we note that the corresponding membrane potential dynamics of the
LIF neuron under synaptic current can be described as follow (see, e.g., [11])

τm
d

dt
Vm(t) = −(Vm(t)− EL)− gE(t)

gL
(Vm(t)− EE)− gI(t)

gL
(Vm(t)− EI) +

Iinj
gL

,

(4)

where Vm is the membrane potential, Iinj is the external input current, τm is the
membrane time constant, gL denotes the leak conductance, while EL is the leak
potential.

We consider a random synaptic input by introducing the following random
input current (additive noise) IInj = µInj+σInjη(t) (pA), where η is the Gaussian
white noise with mean µInj and standard deviation σInj.

By considering such Gaussian white noise input currents, the equation (4)
can be considered as the following Langevin stochastic equation (see, e.g., [12]):

τm
d

dt
Vm(t) = −(Vm(t)− EL)− gE(t)

gL
(Vm(t)− EE)− gI(t)

gL
(Vm(t)− EI)

+
1

gL
(µInj + σInjη(t)) if V (t) ≤ Vth. (5)

In this paper we investigate the effects of random refractory periods. We
define the random refractory periods tref with tref = µref + σrefN , where N is
the normal distribution.

In our model, to approximate the stochastic neuronal firings, we use the
simplest input spikes with the Poisson process [13,10]. The input spikes will be
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added to the system via the quantity δ(t− tsp) in (1). We assume that the input
spikes are given when every input spike arrives independently of other spikes.
For designing a spike generator of spike train, we define the probability of firing a
spike within a short interval (see, e.g. [14]) P (1 spike during ∆t) = rj∆t, where
j = e, i with re, ri representing the instantaneous excitatory and inhibitory firing
rates, respectively. A Poisson spike train is generated by first subdividing time
into a group of short intervals through small time steps ∆t. At each time step, we
define a random variable xrand with uniform distribution over the range between
0 and 1. Then, we compare this quantity with the probability of firing a spike,
which reads:

{
rj∆t > xrand, generate a spike,

rj∆t ≤ xrand, no spike is generated.
(6)

2.2 Firing rate and spike time irregularity

In general, the irregularity of spike trains can carry information about previous
stimulation in a neuron. A LIF conductance neuron with multiple inputs and
coefficient of variation (CV) of the inter-spike-interval (ISI) can bring an output
decoded neuron. In particular, we have found that the increase of σInj and σref
can lead to an increase in the irregularity of the spike trains (see also [8]).

Spike regularity can be calculated as the following coefficient of variation of
the inter-spike-interval (see, e.g., [8]):

CVISI =
σISI
µISI

,

where σISI is the standard deviation and µISI is the mean of the ISI of an indi-
vidual neuron.

In the next section, we plot and analyze the output firing rate as a function
of Gaussian white noise mean or direct current value, known as the input-output
transfer function of the neuron.

3 Numerical results for the LIF synaptic conductance
model

In this subsection, we take a single pyramidal neuron at the dendrite and study
how the neuron behaves under STF dynamics and when it is bombarded with
both excitatory and inhibitory spike trains (see, e.g., [11,1,2]).

In what follows, the simulations have been carried out by a modification
of the numerical method provided in the open source framework at https://

github.com/ (see W2D3 Biological Neuron Models in the Neuromatch Academy
directory).

In the simulations, we choose the parameter set as follows: EE = 70 (mV),
EL = −60 (mV), EI = −10 (mV), Vth = −55 (mV), Vreset = −70 (mV),

https://github.com/
https://github.com/
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∆t = 0.1, τm = 10 (ms), re = 20, ri = 20, nE = 20 spikes, nI = 80 spikes,
ḡE = 1.2×4 (nS), ḡI = 1.6×4 (nS), τE = 5 (ms), τI = 100 (ms), U0E = U0I = 0.2,
τdE = τdI = 200 (ms), τfE = τfI = 1500 (ms) . Here, nE and nI represent
the number of excitatory and inhibitory presynaptic spike trains, respectively.
These parameters have also been used in for dynamic clamp experiments and we
take them for our model validation. In this section, we use the excitatory and
inhibitory conductances provided in Fig. 2 for all of our simulations. Further, we
use the experimental data provided in [2] and [11] for our model validation.

The main numerical results of our analysis here are shown in Figs.3-11, where
we have plotted the time evolution of the membrane potential calculated based
on model (4), the input-output transfer function as well as the spike regularity
profile of the neuron. We investigate the effects of random inputs on a LIF
neuron under synaptic conductance dynamics and a facilitation type of short-
term synaptic plasticity dynamics. By using a Poissonian spike input, we observe
that the random external current and random refractory period influence the
spiking activity of a neuron in the cell membrane potential. Our simulations
demonstrate that as long as the synapses remain facilitated, the memory can
be reactivated by presenting a weak excitatory input to the LIF conductance
system, even though the neural activity is at the spontaneous level. Furthermore,
the presence of random input current impacts the spiking activities of the system.

Fig. 3. [Color online] Left: Excitatory conductances profile. Right: Inhibitory conduc-
tances profile.

In particular, in Fig. 4, we have plotted the Gaussian white noise current
profile, the time evolution of the membrane potential V (t) with Gaussian white
noise input current and direct input current (Iinj = Idc = 200 (pA)). In the case
with Gaussian white noise input current in the second row of Fig. 4, the neuron
does not reach its threshold for a long time from 1 to nearly 1000 (ms). There
are only the two spikes that come over the threshold. However, in the bottom
row of Fig. 4, with the direct input current, we observe that the neuron fires a
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Fig. 4. [Color online] Top row: Gaussian white noise current profile. Middle row: Time
evolution of membrane potential V (t) with Gaussian white noise current. Bottom row:
Time evolution of membrane potential V (t) with direct input.

spike within an interval of about 20 (ms) (see, e.g., [1]). It is clear that the mem-
ory can be reactivated under a weak excitatory input to the LIF conductance
system (nE = 20 and nI = 80 spikes). The presence of Gaussian white noise in
the system increases the distance between each spike and decreases the spiking
activity of the neuron compared with the case of direct input current.

In Fig. 5, by increasing the values of τdE = τdI = 1400 (ms), we observe that
the spiking activity of the neuron increases in both two cases: Gaussian white
noise input and direct input currents. In the second row of Fig. 5, the spikes of
the neuron increase compared to the cases presented in Fig. 4. Specifically, in
the third row of Fig. 5, almost all spikes reach their threshold after a time of 570
(ms) in the case of direct input current. In the second row of Fig.5, the presence
of the random input current in the system leads to an increase in the distance
between spikes that decrease the spiking activity in the system.

In Fig. 6, we have plotted the spike count profile as a function of average
injected current. With σInj = 1 and tref = 8 (ms), we have 124 spikes for both
cases: Gaussian white noise input and direct input currents. There is no difference
in the spike count between the two cases.

In Fig. 7, we consider the random refractory period for the case with Gaussian
white noise current, and the standard refractory period v for the case with the
direct input current. We observe that the spike count dramatically reduces in
the case of random input current and random refractory period compared to the
cases in Fig. 6. It is clear that the random refractory period affects the spiking
activity of the system.
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Fig. 5. [Color online] Top row: Gaussian white noise current profile. Middle row: Time
evolution of membrane potential V (t) with Gaussian white noise current. Bottom row:
Time evolution of membrane potential V (t) with direct input.

Fig. 6. [Color online] The input-output transfer function of the neuron, output firing
rate as a function of input mean. Parameters: direct input current σInj = 1, tref = 8
(ms).

In Fig. 8, using random refractory periods for both cases: Gaussian white
noise and direct input current, we observe that the spikes decrease in both cases.
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Fig. 7. [Color online] The input-output transfer function of the neuron, output firing
rate as a function of input mean. Parameters: σInj = 1, µref = 8, σref = 1, tref = 8 (ms)
for direct input current.

Fig. 8. [Color online] The input-output transfer function of the neuron, output firing
rate as a function of input mean. Parameters: σInj = 1, µref = 8, σref = 1.

In particular, the spike count remains the same (14 spikes) from IInj = 100 (pA)
to IInj = 380 (pA). Then it reduces to 11 spikes in the case of Gaussian white
noise input current. Similarly, from IInj = 225 (pA), the spike count decreases
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from 9 spikes to 6 spikes also in the case of direct input current. This effect is
caused by the presence of a random refractory period in the system.

Fig. 9. [Color online] Spike irregularity profile in the case with direct current. Param-
eters: σInj = 1, µref = 8, σref = 1.

In Fig. 9, we look at the corresponding spike irregularity profile of the spike
count in Fig. 8. We see that there is not much change in the coefficient of variation
of the inter-spike-interval with values around 0.9. There is a slight decrease of
the spike irregularity from the average injected current with values from 280
(pA) to 400 (pA).

In Fig. 10, we consider the same cases as in Fig. 8. The only difference is that
we increase the values of the standard deviations of the random input current
and random refractory period to σInj = 5 and σref = 2.5. We observe that the
spikes decrease when the average injected current increases. This is visible also
in the corresponding spike irregularity profile in Fig. 11, at the average injected
current of value 250 (pA), we see a decrease of the spike irregularity coefficient
CVISI from 1.7 to 1.1. It is clear that even with a decrease in the spike irregularity
the coefficient CVISI, in this case, is still larger than in the cases presented in Fig.
9. This is due to the fact that when we increase the mean of the Gaussian white
noise, at some point, the effective input means are above the spike threshold
and then the neuron operates in the so-called mean-driven regime. Hence, as the
input is sufficiently high, the neuron is charged up to the spike threshold and
then it is reset. This essentially gives an almost regular spiking.

Additionally, we notice that the presence of a random refractory period in-
creases the distance of the time interval between two nearest neighbor spikes
as well as decreases the spiking activity in the system. However, with a weak
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Fig. 10. [Color online] The input-output transfer function of the neuron, output firing
rate as a function of input mean. Parameters: σInj = 5, µref = 8, σref = 2.5.

Fig. 11. [Color online] Spike irregularity profile in the case with Gaussian white noise
current. Parameters: σInj = 5, µref = 8, σref = 2.5.

excitatory input to the LIF conductance system together with the STF, the
spiking activity of the neuron still occurs and the memory can be reactivated.
Under suitable values of average injected current as well as the values of random
input current and random refractory period, the irregularity of spike trains in-
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creases. This effect leads to an improvement in the carrying of information about
previous stimulation in the neuron.

4 Conclusions

We have proposed and described a LIF synaptic conductance model with ran-
dom inputs. Using the description based on the Langevin stochastic dynamics
together with the STSP, we have analyzed the effects of noise in a cell mem-
brane potential. In particular, we have provided details of the model along with
representative numerical examples. Our computational experiments have demon-
strated that the presence of random input current and random refractory period
decrease the spiking activity of the neuron in the system. The memory can be
reactivated under a weak excitatory input to the LIF conductance system with
STF. When the values of average injected current are large enough together
with suitable values of the standard deviations of Gaussian white noise inputs,
the irregularity of spike trains increases. A better understanding of uncertainty
factors in LIF conductance neurons with STSP dynamics would contribute to
further progress and model developments for WM in human brain studies.
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