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THE DIMENSION OF THE IMAGE OF THE ABEL MAP

ASSOCIATED WITH NORMAL SURFACE SINGULARITIES

JÁNOS NAGY AND ANDRÁS NÉMETHI

Abstract. Let (X, o) be a complex normal surface singularity with rational homology sphere link

and let X̃ be one of its good resolutions. Fix an effective cycle Z supported on the exceptional

curve and also a possible Chern class l′ ∈ H2(X̃,Z). Define Ecal
′
(Z) as the space of effective

Cartier divisors on Z and cl
′
(Z) : Ecal

′
(Z) → Picl

′
(Z), the corresponding Abel map. In this note

we provide two algorithms, which provide the dimension of the image of the Abel map.

Usually, dimPicl
′
(Z) = pg, dim Im(cl

′
(Z)) and codim Im(cl

′
(Z)) are not topological, they are

in subtle relationship with cohomologies of certain line bundles. However, we provide combinatorial

formulae for them whenever the analytic structure on X̃ is generic.

The codim Im(cl
′
(Z)) is related with {h1(X̃,L)}

L∈Im(cl
′
(Z))

; in order to treat the ‘twisted’

family {h1(X̃,L0 ⊗L)}
L∈Im(cl

′
(Z))

we need to elaborate a generalization of the Picard group and

of the Abel map. The above algorithms are also generalized.

1. Introduction

1.1. Fix a complex normal surface singularity (X, o) and let X̃ be one of its good resolutions.

We assume that the link of (X, o) is a rational homology sphere. Denote by L the lattice H2(X̃,Z)

(endowed with its negative definite intersection form), by L′ its dual lattice H2(X̃,Z) and by S ′ ⊂ L′

the Lipman cone of antinef cycles. The irreducible exceptional curves are denoted by {Ev}v∈V , their

duals in L′ by {E∗
v}v∈V , E := ∪vEv. (For details see section 2).

In [NN18a] for any effective cycle Z ≥ E and Chern class l′ ∈ −S ′ the authors introduced

(based on [Gro62, Kl05, Kl13]) and investigated the set of effective Cartier divisors ECal
′

(Z) and

the corresponding Abel maps cl
′

(Z) : ECal
′

(Z) → Picl
′

(Z), where Picl
′

(Z) is the affine subspace of

the Picard group of line bundles over Z with Chern class l′. The image of the Abel map consists

of line bundles without fixed components. [NN18a] and follow-up articles contain several properties

of the Abel map, e.g. characterisation when it is dominant, or its relationship with cohomological

properties of line bundles. See [NN18b] and [NN19a] for the study in the case of generic and elliptic

singularities. In all these treatments the investigation of the image Im(cl
′

(Z)) was extremely useful.

The main goal of the present article is the computation of dim Im(cl
′

(Z)) and the deduction of

several new consequences. We consider these as necessary steps towards a long–term final goal: the

development of the Brill–Noether theory of normal surface singularities.

Though the dimension (l′, Z) (and the homotopy type) of the connected complex manifold

ECal
′

(Z) is topological (i.e. it depends only on the link, or on the lattice L), the dimension h1(OZ) of

the target affine space Picl
′

(Z) depends essentially on the analytic structure: if we fix the topological
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type (and Z), the cohomology group H1(OZ) usually depends on the chosen analytic structure sup-

ported by the fixed topological type. The same is true for both dim Im(cl
′

(Z)) and codim Im(cl
′

(Z)):

though (surprisingly) there is a topological characterisation of those cases when cl
′

(Z)) is dominant,

oppositely, the cases e.g. when cl
′

(Z)) is a point or it is a hypersurface have no such topological

characterisations. In particular, both integers dim Im(cl
′

(Z)) and codim Im(cl
′

(Z)) are subtle an-

alytical invariants. In fact, it turns out that codim Im(cl
′

(Z)) equals h1(Z,Lim
gen), where Lim

gen is a

generic line bundle from Im(cl
′

(Z)). For more about such general facts regarding the Abel maps

(and also about several concrete examples) see [NN18a, NN18b, NN19a].

Maybe it is worth to emphasize that in the case of the Abel map associated with a smooth pro-

jective curve the dimension of the image is immediate (for this classical case consult e.g. [ACGH85,

Fl10]). This (and almost any other comparison) shows the huge technical differences between the

classical smooth curve cases and our situation (which, basically, is the Brill–Noether theory of a

non–reduced exceptional curve supported by the exceptional set of a surface singularity resolution).

1.2. The algorithms. In the body of the article we present two inductive algorithm for the com-

putation of dZ(l
′) := dim Im(cl

′

(Z)). The induction follows a sequential blow up procedure starting

from the resolution X̃. Write −l′ =
∑

v∈V avE
∗
v ∈ S ′ \ {0} (hence each av ∈ Z≥0). Then, for every

v ∈ V with av > 0 we fix av generic points on Ev, say pv,kv
, 1 ≤ kv ≤ av. Starting from each

pv,kv
we consider a sequence of blowing ups: first we blow up pv,kv

and we create the exceptional

curve Fv,kv ,1, then we blow up a generic point of Fv,kv ,1 and we create Fv,kv ,2, and we do this, say,

sv,kv
times (an exact bound is given in 3.2). We proceed in this way with all points pv,kv

, hence

we get
∑

v av chains of modifications. Hence, a set of integers s = {sv,kv
}v∈V, 1≤kv≤av

provides a

modification πs : X̃s → X̃. In X̃s we find the exceptional curves ∪v∈VEv ∪ ∪v,kv
∪1≤t≤sv,kv

Fv,kv ,t.

At each level s we set Zs := π∗
s
(Z) and −l′

s
:=

∑
v,kv

F ∗
v,kv ,sv,kv

(in L′(X̃s), where Fv,kv ,0 = Ev). We

also write ds := dim Im(cl
′
s(Zs)). Note that d0 = dZ(l

′), and it turns out that ds = 0 whenever the

entries of s are large enough. (Sometimes we abridge the pair (v, kv) by (v, k).)

In order to run an induction, for any s and (v, k) let sv,k denote that tuple which is obtained

from s by increasing sv,k by one. The inductive algorithm compares ds with all possible dsv,k .

Using the fact (cf. the proof of Theorem 8.1.1) that ECal
′

s
v,k (Zsv,k) is birational with a codimen-

sion one subspace of ECal
′
s(Zs), we obtain

(1.2.1) ds − dsv,k ∈ {0, 1}.

A very subtle part of the theory is to identify all those pairs (s, sv,k), where the gaps/jumps occur

(that is, when the difference in (1.2.1) is 0 or 1). The identification of such places carries a deep

analytic content (and even if in some cases it can be characterised topologically — e.g., in the case

of a generic analytic structure —, it might be guided by rather complicated combinatorial patterns).

Example 1.2.2. To create a good intuition for such a phenomenon, let us recall the classical case

of Weierstrass points. Let C be a smooth projective complex curve of genus g and let us fix a point

p ∈ C. For any s ∈ Z≥0 consider ℓ(s) := h0(C,OC(sp)). Then ℓ(0) = 1 and ℓ(2g − 1 + k) = g + k

for k ≥ 0. Moreover, ℓ(s)− ℓ(s− 1) ∈ {0, 1} for any s ≥ 0. Those s values when this difference is 0

are called the gaps, there are g of them. For a generic point the gaps are {1, 2, . . . , g}, otherwise p

is called a Weierstrass point. For Weierstrass point the set of gaps might depend on the choice of p

and on the analytic structure of C. The characterization of all possible gap–sets is still unsettled.

In order to characterize completely our gaps/jump places, we will use test functions. For such a

test function, say τs, we will require the following properties. Firstly, it is a function s 7→ τs ∈ Z≥0,
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such that ds ≤ τs for any s. Usually, τs is defined by a weaker (more robust) geometric construction,

which approximates/bounds Im(cl
′

(Z)), and which hopefully is easier to compute. Secondly, ts

satisfies the following remarkable testing property formulated by the next pattern theorem.

Pattern Theorem. The sequence of integers ds are determined inductively as follows:

(1) ds − dsv,k ∈ {0, 1} (cf. (1.2.1)),

(2) if for some fixed s the numbers {dsv,k}v,k are not the same, then ds = maxv,k{ dsv,k}. In the

case when all the numbers {dsv,k}v,k are the same, then if this common value dsv,k equals τs, then

ds = τs = dsv,k ; otherwise ds = dsv,k + 1.

More precisely, we wish to determine from the collection {dsv,k}v,k the term ds (as a decreasing

induction). Using (1) this is ambiguous only if all this numbers are the same, say d. In this case ds

can be d or d + 1. Well, if the inequality (†) ds ≤ τs is not obstructed by the choice of ds = d+ 1,

then this value is taken. Otherwise it is d. That is, ds is as large as it can be, modulo (1) and (†).

This can be an interesting procedure even if s is a 1–entry parameter. E.g., in the case of

classical Weierstrass points, the inequality ℓ(s) ≤ 1+ ⌊s/2⌋ (valid for s ≤ 2g− 1), given by Clifford’s

theorem, by this ‘maximal–testing procedure’ gives the sequence {1, 1, 2, 2, . . .} for s ≥ 0, with gaps

{1, 3, . . . , 2g − 1}. In fact, in the case of hyperelliptic curves the Weierstrass points are the branch

points of the hyperelliptic projection and their gap–set is uniformly {1, 3, 5, . . . , 2g − 1}. (However,

for non–hyperelliptic curves we are not aware of the existence of a non-trivial test function.)

If the Pattern Theorem from above holds, then it turns out (see e.g. Corollary 3.2.4) that

ds = mins≤s̃{|̃s− s|+ τs̃} for any s. (Here |s| =
∑

v,k sv,kv
.) In particular,

(1.2.3) dZ(l
′) = d0 = min

0≤s

{|s|+ τs}.

Such type of formulas already appeared in the computation of dZ(l
′) for weighted homogeneous

singularities (and specific l′) in [NN18a], case which lead us to the present general case. (The type

of formula, and also the conceptual approach behind, can also be compared e.g. with Pflueger’s

formula regarding the dimension of the Brill–Noether varieties of a generic smooth projective curve

C with fixed gonality, cf. [P16, JR17].) Nevertheless, the approach of the testing function (and the

corresponding min–type close formulae) is the novelty of the present manuscript.

1.3. The testing functions for ds. Obviously, the above theorem is valuable only if τs is essentially

different than ds and also if it is computable from other different geometrical behaviours. It is also

clear that not any upper bound ds ≤ τs satisfies the testing property (2): this is satisfied only for

bounds τ(s) with very structural relationship, symbiosis with the original ds. Hence it is not easy to

find testing functions, they must ‘testify’ about some deep geometric property: even the existence

of computable testing function(s) is really remarkable.

Our first test function is defined as follows. Consider again Z ≥ E, l′ ∈ −S ′ associated with

a resolution X̃ , as above. Then, besides the Abel map cl
′

(Z) one can consider its ‘multiples’

{cnl
′

(Z)}n≥1. It turns out that n 7→ dim Im(cnl
′

(Z)) is a non-decreasing sequence, Im(cnl
′

(Z))

is an affine subspace for n ≫ 1, whose dimension eZ(l
′) is independent of n ≫ 0, and essentially

it depends only on the E∗–support of l′ (i.e., on I ⊂ V , where −l′ =
∑

v∈I avE
∗
v with all {av}v∈I

nonzero). From construction dZ(l
′) ≤ eZ(l

′), however they usually are not the same. Furthermore,

eZ(l
′) = eZ(I) plays a crucial role in different analytic properties of X̃ (surgery formula, h1(L)–

computations, base point freeness properties). For details see [NN18a] or subsections 2.2 and 2.4

here, especially definition 3.1.1 and Theorem 2.2.5 (and also the proof of Theorem 3.2.2). Now, at

any step of the tower X̃s one can consider this invariant eZs
(l′
s
), an integer denoted by es.
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Theorem 3.2.2 (the ‘first algorithm’) guarantees that es is a testing function for ds.

The invariants {es}s are still hard to compute (cf. 4.1). However, the first algorithm is a necessary

intermediate step for the second algorithm, valid for another testing function.

The advantage of the second testing function is that it is defined at the level of X̃ only. It is

based on Laufer’s perfect pairing H1(OZ)⊗GZ → C, where GZ denoted the space of classes of forms

H0(X̃,Ω2
X̃
(Z))/H0(X̃,Ω2

X̃
). GZ has a natural divisorial filtration {Gl}0≤l≤Z , where Gl is generated

by forms with pole ≤ l. Its dimension (via Laufer duality) is h1(Ol). (For more see [NN18a] and 2.4

here.) Next, for any s define the cycle ls ∈ L of X̃ by

ls := min
{∑

v∈V

min
1≤kv≤av

{sv,kv
}Ev, Z

}
∈ L.

Set also gs := dim Gls as well. It turns out (see 4.1) that ds ≤ es ≤ h1(OZ)−gs. Usually, the equality

es = h1(OZ) − gs rarely happens, however, it happens whenever the testing property requires it!

Theorem 4.1.2 (the ‘second algorithm’) says that h1(OZ)− gs is a testing function for ds indeed.

The cases of superisolated singularities is exemplified.

The second algorithm has several consequences. E.g., a ‘numerical’ one, cf. (4.1.6):

dZ(l
′) = min

0≤Z1≤Z
{ (l′, Z1)+h1(OZ)−h1(OZ1

) }, or, codim Im(cl
′

(Z)) = max
0≤Z1≤Z

{ h1(OZ1
)−(l′, Z1) }.

The cycles Z1 for which the above minimum is realized have several additional geometric properties

(cf. Lemma 4.1.14 and 4.2). In particular, such a Z1 imposes the following conceptual consequence:

Structure Theorem for the image of the Abel map. Fix a resolution X̃, a cycle Z ≥ E and

a Chern class l′ ∈ −S ′ as above. Then there exists an effective cycle Z1 ≤ Z, such that: (i) the

map ECal
′

(Z) → H1(Z1) is birational onto its image, and (ii) the generic fibres of the restriction of

r, rim : Im(cl
′

(Z)) → Im(cl
′

(Z1)), have dimension h1(OZ) − h1(OZ1
). In particular, for any such

Z1, the space Im(cl
′

(Z)) is birationally equivalent with an affine fibration over ECal
′

(Z1) with affine

fibers of dimension h1(OZ)− h1(OZ1
).

1.4. The case of generic analytic structure. In section 5 we prove that if X̃ has a generic

analytic structure (in the sense of [La73, NN18b]), and Z ≥ E and l′ ∈ −S ′ then both dim Im(cl
′

(Z))

and codimIm(cl
′

(Z)) are topological. E.g., we have (where χ is the usual Riemann–Roch expression):

(1.4.1) codim Im(cl
′

(Z)) = max
0≤Z1≤Z

{
− (l′, Z1)− χ(Z1) + χ(E|Z1|)

}
.

The maximum at the right hand side is realized e.g. for the cohomology cycle of Lim
gen ∈ Im(cl

′

(Z)) ⊂

Picl
′

(Z). Furthermore,

h1(Z,L) ≥ max
0≤Z1≤Z

{
− (l′, Z1)− χ(Z1) + χ(E|Z1|)

}

for any L ∈ Im(cl
′

(Z)) and equality holds for generic Lim
gen ∈ Im(cl

′

(Z)).

The identity (1.4.1), valid for a generic analytic structure of X̃, extends to an optimal inequality

valid for any analytic structure.

Theorem 1.4.2. Consider an arbitrary normal surface singularity (X, o), its resolution X̃, Z ≥ E

and l′ ∈ −S ′. Then codim Im(cl
′

(Z)) = h1(Z,Lim
gen) satisfies

(1.4.3) codim Im(cl
′

(Z)) ≥ max
0≤Z1≤Z

{
− (l′, Z1)− χ(Z1) + χ(E|Z1|)

}
.

In particular, for any L ∈ Im(cl
′

(Z)) one also has

h1(Z,L) ≥ h1(Z,Lim
gen) = codim Im(cl

′

(Z)) ≥ max
0≤Z1≤Z

{
− (l′, Z1)− χ(Z1) + χ(E|Z1|)

}
.
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The right hand side of (1.4.3) is a sharp topological lower bound for codim Im(cl
′

(Z)). The

inequality (1.4.3) can also be interpreted as the semi-continuity statement

codim Im(cl
′

(Z))(arbitrary analytic structure) ≥ codim Im(cl
′

(Z))(generic analytic structure).

1.5. Generalization. Sections 7 and 8 target generalizations of the previous parts, valid for {h1(Z,L)}L∈Imcl
′ (Z),

to the shifted case, valid for {h1(Z,L0⊗L)}L∈Imcl
′(Z), where L0 ∈ Picl

′
0(Z) is a fixed bundle without

fixed components. In order to run a parallel theory based on Abel maps, we have to create the new

Abel map cl
′

L0
(Z) : ECal

′

(Z) → Picl
′

L0
(Z), where Picl

′

L0
(Z) is an affine space associated with the

vector space Pic0L0
(Z) ≃ H1(Z,L0). (Picl

′

L0
(Z) appears also as an affine quotient of the classical

Picl
′

(Z) as well.) Section 7 contains the definitions and the needed exact sequences. Section 8

contains the extension of the two algorithms to this situation.

2. Preliminaries

2.1. Notations regarding a good resolution. [N99b, N07, N12, NN18a] Let (X, o) be the germ

of a complex analytic normal surface singularity, and let us fix a good resolution φ : X̃ → X of

(X, o). Let E be the exceptional curve φ−1(0) and ∪v∈VEv be its irreducible decomposition. Define

EI :=
∑

v∈I Ev for any subset I ⊂ V .

We will assume that each Ev is rational, and the dual graph is a tree. This happens exactly when

the link M of (X, o) is a rational homology sphere.

L := H2(X̃,Z), endowed with a negative definite intersection form ( , ), is a lattice. It is freely

generated by the classes of {Ev}v∈V . The dual lattice is L′ = HomZ(L,Z) = {l′ ∈ L⊗Q : (l′, L) ∈

Z}. It is generated by the (anti)dual classes {E∗
v}v∈V defined by (E∗

v , Ew) = −δvw (where δvw stays

for the Kronecker symbol). L′ is also identified with H2(X̃,Z), where the first Chern classes live.

All the Ev–coordinates of any E∗
u are strict positive. We define the Lipman cone as S ′ := {l′ ∈

L′ : (l′, Ev) ≤ 0 for all v}. As a monoid it is generated over Z≥0 by {E∗
v}v.

L embeds into L′ with L′/L ≃ H1(M,Z), abridged by H . Each class h ∈ H = L′/L has a unique

representative rh ∈ L′ in the semi-open cube {
∑

v rvEv ∈ L′ : rv ∈ Q ∩ [0, 1)}, such that its class

[rh] is h.

There is a natural (partial) ordering of L′ and L: we write l′1 ≥ l′2 if l′1 − l′2 =
∑

v rvEv with all

rv ≥ 0. We set L≥0 = {l ∈ L : l ≥ 0} and L>0 = L≥0 \ {0}.

The support of a cycle l =
∑

nvEv is defined as |l| = ∪nv 6=0Ev.

The (anti)canonical cycle ZK ∈ L′ is defined by the adjunction formulae (ZK , Ev) = (Ev, Ev)+2

for all v ∈ V . We write χ : L′ → Q for the (Riemann–Roch) expression χ(l′) := −(l′, l′ − ZK)/2.

2.1.1. Natural line bundles. Let φ : (X̃, E) → (X, o) be as above. Consider the ‘exponen-

tial’ cohomology exact sequence (with H1(X̃,O∗
X̃
) = Pic(X̃), the group of isomorphic classes of

holomorphic line bundles on X̃ , and H1(X̃,O
X̃
) = Pic0(X̃))

(2.1.2) 0 → Pic0(X̃) −→ Pic(X̃)
c1−→ H2(X̃,Z) → 0.

Here c1(L) ∈ H2(X̃,Z) = L′ is the first Chern class of L ∈ Pic(X̃). Since H1(M,Q) = 0, Pic0(X̃) ≃

H1(X̃,O
X̃
) ≃ Cpg , where pg is the geometric genus. Write also Picl

′

(X̃) = c−1
1 (l′). Furthermore,

see e.g. [O04, N07], there exists a unique homomorphism (split) s1 : L′ → Pic(X̃) of c1, that is

c1 ◦ s1 = id, such that s1 restricted to L is l 7→ O
X̃
(l). The line bundles s1(l

′) are called natural line

bundles of X̃ . For several definitions of them see [N07]. E.g., L is natural if and only if one of its

power has the form O
X̃
(l) for some integral cycle l ∈ L supported on E. In order to have a uniform

notation we write O
X̃
(l′) for s1(l

′) for any l′ ∈ L′.
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For any Z ≥ E let OZ(l
′) be the restriction of the natural line bundle O

X̃
(l′) to Z. In fact, OZ(l

′)

can be defined in an identical way as O
X̃
(l′) starting from the exponential cohomological sequence

0 → Pic0(Z) → Pic(Z) → H2(X̃,Z) → 0 as well. Set also Picl
′

(Z) = c−1
1,Z(l

′).

2.2. The Abel map [NN18a]. For any Z ≥ E let ECa(Z) be the space of (analytic) effective Cartier

divisors on Z. Their supports are zero–dimensional in E. Taking the line bundle of a Cartier divisor

provides the Abel map c = c(Z) : ECa(Z) → Pic(Z). Let ECal
′

(Z) be the set of effective Cartier

divisors with Chern class l′ ∈ L′, i.e. ECal
′

(Z) := c−1(Picl
′

(Z)). The restriction of c is denoted by

cl
′

: ECal
′

(Z) → Picl
′

(Z).

A line bundle L ∈ Picl
′

(Z) is in the image im(cl
′

) if and only if it has a section without fixed

components, that is, ifH0(Z,L)reg 6= ∅, whereH0(Z,L)reg := H0(Z,L)\∪vH
0(Z−Ev,L(−Ev)). By

this definition (see (3.1.5) of [NN18a]) ECal
′

(Z) 6= ∅ if and only if −l′ ∈ S ′ \ {0}. It is advantageous

to have a similar statement for l′ = 0 too, hence we redefine ECa0(Z) as {∅}, a set/space with one

element (the empty divisor), and c0 : ECa0(Z) → Pic0(Z) by c0(∅) = OZ . In particular,

(2.2.1) H0(Z,L)reg 6= ∅ ⇔ L = OZ ⇔ L ∈ im(c0) whenever c1(L) = 0.

Hence, the extended statement valid for any l′ is:

(2.2.2) ECal
′

(Z) 6= ∅ ⇔ −l′ ∈ S ′.

Sometimes even for L ∈ Picl
′

(X̃) we write L ∈ Im(cl
′

) whenever L|Z ∈ Im(cl
′

(Z)) for some Z ≫ 0.

This happens if and only if L ∈ Pic(X̃) has no fixed components.

It turns out that ECal
′

(Z) (−l′ ∈ S ′) is a smooth complex algebraic variety of dimension (l′, Z)

and the Abel map is an algebraic regular map. For more properties and applications see [NN18a,

NN18b].

2.2.3. The modified Abel map. Multiplication by OZ(−l′) gives an isomorphism of the affine

spaces Picl
′

(Z) → Pic0(Z). Furthermore, we identify (via the exponential exact sequence) Pic0(Z)

with the vector space H1(Z,OZ).

It is convenient to replace the Abel map cl
′

with the composition

c̃l
′

: ECal
′

(Z)
cl

′

−→ Picl
′

(Z)
OZ(−l′)
−→ Pic0(Z)

≃
−→ H1(OZ).

The advantage of this new set of maps is that all the images sit in the same vector space H1(OZ).

Consider the natural additive structure sl
′
1,l

′
2(Z) : ECal

′
1(Z)× ECal

′
2(Z) → ECal

′
1+l′2(Z) (l′1, l

′
2 ∈

−S ′) provided by the sum of the divisors. One verifies (see e.g. [NN18a, Lemma 6.1.1]) that sl
′
1,l

′
2(Z)

is dominant and quasi–finite. There is a parallel multiplication Picl
′
1(Z) × Picl

′
2(Z) → Picl

′
1+l′2(Z),

(L1,L2) 7→ L1 ⊗ L2, which satisfies cl
′
1+l′2 ◦ sl

′
1,l

′
2 = cl

′
1 ⊗ cl

′
2 in Picl

′
1+l′2 . This, in the modified case,

using OZ(l
′
1 + l′2) = OZ(l

′
1)⊗OZ(l

′
2), reads as c̃

l′1+l′2 ◦ sl
′
1,l

′
2 = c̃l

′
1 + c̃l

′
2 in H1(OZ).

Definition 2.2.4. For any l′ ∈ −S ′ let AZ(l
′) be the smallest dimensional affine subspace ofH1(OZ)

which contains Im(c̃l
′

). Let VZ(l
′), be the parallel vector subspace of H1(OZ), the translation of

AZ(l
′) to the origin.

For any I ⊂ V , I 6= ∅, let (XI , oI) be the multigerm X̃/∪v∈IEv
at its singular points, obtained by

contracting the connected components of ∪v∈IEv in X̃ . If I = ∅ then by convention (XI , oI) is a

smooth germ.

Theorem 2.2.5. [NN18a, Prop. 5.6.1, Lemma 6.1.6 and Th. 6.1.9] Assume that Z ≥ E.

(a) For any −l′ =
∑

v avE
∗
v ∈ S ′ let the E∗–support of l′ be I(l′) := {v : av 6= 0}. Then VZ(l

′)

depends only on I(l′). (This motivates to write VZ(l
′) as VZ(I) where I = I(l′).)
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(b) VZ(I1 ∪ I2) = VZ(I1) + VZ(I2) and AZ(l
′
1 + l′2) = AZ(l

′
1) +AZ(l

′
2).

(c) dim VZ(I) = h1(OZ)− h1(OZ|V\I
).

(d) If Lim
gen is a generic bundle of Im(cl

′

) then h1(Z,Lim
gen) = h1(OZ)− dim(Im(cl

′

)).

(e) For n ≫ 1 one has Im(c̃nl
′

) = AZ(nl
′), and h1(Z,L) = h1(OZ)− dimVZ(I) = h1(OZ|V\I

) for

any L ∈ Im(cnl
′

).

For different geometric reinterpretations of dimVZ(I) see also [NN18a, §9].

2.3. Theorem 4.1.1 of [NN18a] says that cl
′

(Z) is dominant if and only if χ(−l′) < χ(−l′ + l) for

any 0 < l ≤ Z. In particular, the dominance of cl
′

(Z) is a topological property. If cl
′

(Z) is dominant

then cl
′

(Z ′) is dominant for any 0 < Z ′ ≤ Z.

2.4. Review of Laufer Duality [La72], [La77, p. 1281]. Following Laufer, we identify the dual

space H1(X̃,O
X̃
)∗ with the space of global holomorphic 2-forms on X̃ \ E up to the subspace of

those forms which can be extended holomorphically over X̃ .

For this, use first Serre duality H1(X̃,O
X̃
)∗ ≃ H1

c (X̃,Ω2
X̃
). Then, in the exact sequence

0 → H0
c (X̃,Ω2

X̃
) → H0(X̃,Ω2

X̃
) → H0(X̃ \ E,Ω2

X̃
) → H1

c (X̃,Ω2
X̃
) → H1(X̃,Ω2

X̃
)

H0
c (X̃,Ω2

X̃
) = H2(X̃,O

X̃
)∗ = 0 by dimension argument, while H1(X̃,Ω2

X̃
) = 0 by the Grauert–

Riemenschneider vanishing. Hence,

(2.4.1) H1(X̃,O
X̃
)∗ ≃ H1

c (X̃,Ω2
X̃
) ≃ H0(X̃ \ E,Ω2

X̃
)/H0(X̃,Ω2

X̃
).

2.4.2. Above H0(X̃ \ E,Ω2
X̃
) can be replaced by H0(X̃,Ω2

X̃
(Z)) for a large cycle Z (e.g. for

Z ≥ ⌊ZK⌋). Indeed, for any cycle Z > 0 from the exacts sequence of sheaves 0 → Ω2
X̃

→ Ω2
X̃
(Z) →

OZ(Z +K
X̃
) → 0 and from the vanishing h1(Ω2

X̃
) = 0 and Serre duality one has

(2.4.3) H0(Ω2
X̃
(Z))/H0(Ω2

X̃
) = H0(OZ(Z +K

X̃
)) ≃ H1(OZ)

∗.

Since H1(OZ) ≃ H1(O
X̃
) for Z ≥ ⌊ZK⌋, the natural inclusion

(2.4.4) H0(Ω2
X̃
(Z))/H0(Ω2

X̃
) →֒ H0(X̃ \ E,Ω2

X̃
)/H0(Ω2

X̃
)

is an isomorphism.

This pairing reduces to a perfect pairing at the level of an arbitrary Z > 0, cf. [NN18a, 7.4].

Indeed, consider the above perfect pairing 〈·, ·〉 : H1(X̃,O
X̃
)⊗H0(X̃ \ E,Ω2

X̃
)/H0(Ω2

X̃
) → C given

via integration of class representatives. In H1(X̃,O
X̃
) let A be the image of H1(X̃,O

X̃
(−Z)),

hence H1(X̃,O
X̃
)/A = H1(OZ). On the other hand, in H0(X̃ \ E,Ω2

X̃
)/H0(Ω2

X̃
) consider the

subspace B := H0(Ω2
X̃
(Z))/H0(Ω2

X̃
) of dimension h1(OZ) (cf. (2.4.3)). Since 〈A,B〉 = 0, the

pairing factorizes to a perfect pairing H1(OZ)⊗H0(Ω2
X̃
(Z))/H0(Ω2

X̃
) → C. It can be described by

the very same integral form of the corresponding class representatives.

2.4.5. The linear subspace arrangement {VZ(I)}I ⊂ H1(OZ) and differential forms. The

arrangement {VZ(I)}I transforms into a linear subspace arrangement of H0(Ω2
X̃
(Z))/H0(Ω2

X̃
) via

the (Laufer) non–degenerate pairing H1(OZ)⊗H0(Ω2
X̃
(Z))/H0(Ω2

X̃
) → C as follows. Let ΩZ(I) be

the subspace H0(Ω2
X̃
(Z|V\I))/H

0(Ω2
X̃
) in H0(Ω2

X̃
(Z))/H0(Ω2

X̃
), that is, the subspace generated by

those forms which have no poles along generic points of any Ev, v ∈ I.

Proposition 2.4.6. [NN18a, 8.3] Via Laufer duality VZ(I) = ΩZ(I)
⊥ = {x : 〈x,ΩZ(I)〉 = 0} for

Z ≥ E.
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2.4.7. Furthermore, for any l′ ∈ −S ′ \ {0} consider a divisor D ∈ ECal
′

(Z), which is a union of

(l′, E) disjoint divisors {Di}i, each of them OZ–reduction of reduced divisors {D̃i}i of X̃ intersecting

E transversally. Set D̃ = ∪iD̃i and L := c̃l
′

(D) ∈ H1(OZ). Write also Z =
∑

v∈V rvEv.

We introduce a subsheaf Ω2
X̃
(Z)regRes

D̃ of Ω2
X̃
(Z) consisting of those forms ω which have the

property that the residue Res
D̃i

(ω) has no poles along D̃i for all i. This means that the restrictions

of Ω2
X̃
(Z)regRes

D̃ and Ω2
X̃
(Z) on the complement of the support of D̃ coincide, however along D̃

one has the following local picture. Introduce near p = E ∩ D̃i = Evi ∩ D̃i local coordinates

(u, v) such that {u = 0} = E and D̃i has local equation v. Then a local section of Ω2
X̃
(Z) in this

system has the form ω =
∑

k≥−rvi ,j≥0 ak,ju
kvjdu ∧ dv. Then, by definition, the residue Res

D̃i
(ω)

is (ω/dv)|v=0 =
∑

k ak,0u
kdu, hence the pole–vanishing reads as ak,0 = 0 for all k < 0. Note that

Ω2
X̃
(Z − D̃) and the sheaf of regular forms Ω2

X̃
are subsheaves of Ω2

X̃
(Z)regRes

D̃ .

Set ΩZ(D) := H0(X̃,Ω2
X̃
(Z)regRes

D̃ )/H0(X̃,Ω2
X̃
). This can be regarded as a subspace ofH1(OZ)

∗ =

H0(X̃,Ω2
X̃
(Z))/H0(X̃,Ω2

X̃
).

Theorem 2.4.8. [NN18a, Th. 10.1.1] In the above situation one has the following facts.

(a) The sheaves Ω2
X̃
(Z)regRes

D̃/Ω2
X̃

and OZ(KX̃
+ Z −D) are isomorphic.

(b) H1(Z,L)∗ ≃ ΩZ(D).

(c) The image (TD c̃)(TDECal
′

(Z)) of the tangent map at D of c̃ : ECal
′

(Z) → H1(OZ) is the

intersection of kernels of linear maps TLω : TLH
1(OZ) → C, where ω ∈ H0(X̃,Ω2

X̃
(Z)regRes

D̃ ).

If I is the E∗–support of l′ (that is, D̃ intersects E exactly along ∪v∈IEv), then ΩZ(I) ⊂ ΩZ(D) ⊂

H1(OZ)
∗. Dually, via Proposition 2.4.6 and Theorem 2.4.8(c) (and up to a linear translation of

Im(TD c̃))

(2.4.9) (TD c̃)(TDECal
′

(Z)) = ΩZ(D)⊥ ⊂ ΩZ(I)
⊥ = VZ(I) ⊂ H1(OZ).

Let us fix a point p ∈ E and a local coordinate system (u, v) around p such that E = {u = 0},

cf. 2.4.7. Fix also some ω ∈ H0(X̃,Ω2
X̃
(Z)) which has pole of order o > 0 at the exceptional divisor

in E containing p. We say that (the divisor of) ω has no support point at p if it can be represented

locally as (ϕ(u, v)/uo)du∧dv with ϕ holomorphic and ϕ(0, 0) 6= 0. The other points are the support

points denoted by supp(ω).

Lemma 2.4.10. Fix ω ∈ H0(X̃,Ω2
X̃
(Z)) such that there exists a point p ∈ Ev, a local divisor

D̃1 in X̃ with the following properties: (a) D̃1 is part of certain D̃ = D̃1 + D̃2, such that D̃1 ∩

E = D̃1 ∩ Ev = p 6∈ D̃2 ∪ supp(ω), and (b) D̃ is a lift of D ∈ ECal
′

(Z), and the class of ω in

H0(X̃,Ω2
X̃
(Z))/H0(X̃,Ω2

X̃
) restricted on ImTD c̃l

′

(Z) is zero. Then ω has no pole along Ev.

Proof. Assume that ω has a pole of order o > 0 along Ev. Fix some local coordinated (u, v) at

p := D̃1 ∩ Ev such that ω locally is du ∧ dv/uo and D̃1 is {g(u, v) = 0}. A deformation gt(u, v) of

g produces a tangent vector in TDECa
l′(Z) and the action of ω on it is given by (for details see

[NN18a, 7.2])

(2.4.11)
d

dt

∣∣∣
t=0

∫

|u|=ǫ, |v|=ǫ

log
gt(u, v)

g(u, v)
·
du ∧ dv

uo
.

Hence if we realize a deformation gt for which the expression from (2.4.11) is non–zero, we get a

contradiction. Note that g necessarily has the form cvk +
∑

n>k cnv
n + uh(u, v) = cvk + h′ for some

k ≥ 1, cn ∈ C and c ∈ C∗. Then set gt = c(v − tuo−1)k + h′. Then the t–coefficient of the integrant

is kdu∧dv
uv

· (1 − h′

cvk + ( h′

cvk )
2 − · · · ), hence (2.4.11) is non–zero. �
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Definition 2.4.12. Additionally to the linear subspace arrangement {ΩZ(I)}I ⊂ H0(Ω2
X̃
(Z))/H0(Ω2

X̃
) ≃

H1(OZ)
∗ we consider a more subtle object, a filtration indexed by l ∈ L, 0 ≤ l ≤ Z as well,

called the multivariable divisorial filtration of forms. Indeed, for any such l we define Gl :=

H0(Ω2
X̃
(l))/H0(Ω2

X̃
) ⊂ H0(Ω2

X̃
(Z))/H0(Ω2

X̃
), equivalent to H1(Ol)

∗ →֒ H1(OZ)
∗, dual to the nat-

ural epimorphisms H1(OZ) ։ H1(Ol). In particular, Gl ≃ H1(Ol)
∗. Gl is generated by forms with

pole ≤ l. In particular, G0 = 0, GZ is the total vector space, Gl1 ⊂ Gl2 whenever l1 ≤ l2, and

Gl1 ∩ Gl2 = Gmin{l1,l2}.

Note that if l =
∑

v 6∈I rvEv and all rv ≫ 0 then Gmin(l,Z) = ΩZ(I).

3. The first algorithm for the computation of dim Im(cl
′

(Z))

3.1. We fix Z ≥ E and l′ ∈ −S ′ as above.

Definition 3.1.1. For any l′ ∈ −S ′ with E∗–support I (∅ ⊂ I ⊂ V) we set the following notations:

eZ(l
′) = eZ(I) := dimVZ(l

′) = dimVZ(I) and dZ(l
′) := dim Im(cl

′

(Z)).

From definitions and Propositions 2.2.5 and 2.4.6 (see also (2.4.9))

dZ(l
′) ≤ eZ(l

′)

eZ(I) = h1(OZ)− h1(OZ|V\I
) = h1(OZ)− dimΩZ(I).

(3.1.2)

Usually dZ(l
′) 6= eZ(l

′). Next statement provides a criterion for the validity of the equality.

Lemma 3.1.3. Let l′ ∈ −S′ with E∗–support I and Z ≥ E. Assume that L is a regular value

of c̃l
′

in Im(c̃l
′

) such that for any ω ∈ H0(X̃,Ω2
X̃
(Z)) there exists a section s ∈ H0(L)reg such

that div(s) ∩ supp(ω) = ∅. (This is guaranteed e.g. if the bundle L has no base points.) Then

TL(Imc̃l
′

) = AZ(l
′), hence dZ(l

′) = eZ(l
′).

Proof. Since L is a regular value, L is a smooth point of Im(c̃l
′

) and TLIm(c̃l
′

) = Im(TD c̃l
′

) for any

D ∈ (c̃l
′

)−1(L) (cf. [NN18a, 3.3.2]). We have to prove that TLIm(c̃l
′

) = AZ(l
′); we prove the dual

identity in the space of forms, namely, (TLIm(c̃l
′

)⊥ = ΩZ(I) (see (2.4.9)).

Assume the contrary, that is, (TLIm(c̃l
′

))⊥ 6= ΩZ(I). Since ΩZ(I) ⊂ (TLIm(c̃l
′

))⊥ (the duality

integral on ΩZ(I) × TLIm(c̃l
′

) is zero, cf. [NN18a, 7.2] or (2.4.9)) we get, that there is a form

ω ∈ (TLIm(c̃l
′

))⊥ \ ΩZ(I).

Next chooseD ∈ (c̃l
′

)−1(L) such that its lift D̃ satisfies D̃∩supp(ω) = ∅. But ω ∈ (TLIm(c̃l
′

))⊥ =

(Im(TD c̃l
′

))⊥ and ω 6∈ ΩZ(I) contradict Lemma 2.4.10. �

In this section we provide an algorithm, valid for any analytic structure, which determines dZ(l
′) in

terms of a finite collection of invariants of type eZ(l
′), associated with a finite sequence of resolutions

obtained via certain extra blowing ups from X̃.

3.2. Preparation for the algorithm. Fix some resolution X̃ of (X, o) and −l′ =
∑

v∈V avE
∗
v ∈

S ′ \{0} (hence each av ∈ Z≥0). In the next construction we will consider a finite sequence of blowing

ups starting from X̃. In order to find a bound for the number of blowing ups recall that for any

representative ω in H0(X̃ \ E,Ω2
X̃
)/H0(X̃,Ω2

X̃
) the order of pole of ω along some Ev is less than

or equal to the Ev–multiplicity mv of max{0, ⌊ZK⌋} (see e.g. [NN18a, 7.1.3] or 2.4 here). Then,

for every v ∈ V with av > 0 we fix av generic points on Ev, say pv,kv
, 1 ≤ kv ≤ av. Starting

from each pv,kv
we consider a sequence of blowing ups of length mv: first we blow up pv,kv

and

we create the exceptional curve Fv,kv ,1, then we blow up a generic point of Fv,kv ,1 and we create

Fv,kv ,2, and we do this all together mv times. We proceed in this way with all points pv,kv
, hence we

get
∑

v av chains of modifications. If avmv = 0 we do no modification along Ev. A set of integers
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s = {sv,kv
}v∈V, 1≤kv≤av

with 0 ≤ sv,k ≤ mv provides an intermediate step of the tower: in the

(v, kv) tower we do exactly sv,kv
blowing ups; sv,kv

= 0 means that we do not blow up pv,kv
at all.

(In the sequel, in order to avoid aggregation of indices, we simplify kv into k.) Let us denote this

modification by πs : X̃s → X̃. In X̃s we find the exceptional curves ∪v∈VEv ∪ ∪v,k ∪1≤t≤sv,k
Fv,k,t;

we index the set of vertices as Vs := V ∪ ∪v,k ∪1≤t≤sv,k
{wv,k,t}. At each level s we set the next

objects: Zs := π∗
s
(Z), Is := ∪v,k{wv,k,sv,k}, −l′

s
:=

∑
v,k F

∗
v,k,sv,k

(in L′
s
, where Fv,k,0 = Ev),

ds := dim Imcl
′
s(Zs) and es := eZz

(Is) (both considered in X̃s).

By similar argument as in (3.1.2) one has again ds ≤ es for any s.

From definitions, for s = 0 one has I0 = |l′|, e0 = eZ(l
′) and d0 = dZ(l

′).

There is a natural partial ordering on the set of s–tuples. Some of the above invariants are

constant with respect to s, some of them are only monotonous. E.g., by Leray spectral sequence one

has h1(OZs
) = h1(OZ) for all s. One the other hand,

(3.2.1) if s1 ≤ s2 then es1 = h1(OZs1
)− dimΩZs1

(Is1 ) ≥ h1(OZs2
)− dimΩZs2

(Is2) = es2

because ΩZs1
(Is1 ) ⊂ ΩZs2

(Is2). In fact, for any ω, the pole–order along Fv,k,sv,k+1 of its pullback

is one less than the pole–order of ω along Fv,k,sv,k . Hence, for s = m (that is, when sv,k = mv for

all v and k, hence all the possible pole–orders along Im automatically vanish) one has ΩZm
(Im) =

H0(X̃m,Ω2
X̃m

(Zm))/H0(Ω2
X̃m

). Hence em = 0. In particular, necessarily dm = 0 too.

More generally, for any s and (v, k) let sv,k denote that tuple which is obtained from s by increasing

sv,k by one. By the above discussion if no form has pole along Fv,k,s then ΩZs
(Is) = ΩZ

s
v,k

(Isv,k ),

hence es = esv,k . Furthermore, by Laufer duality (or, integral presentation of the Abel map as in

[NN18a, §7]), under such condition ds = dsv,k as well.

Therefore, we can redefine es and ds for tuples s = {sv,k}v,k even for arbitrary sv,k ≥ 0: es =

emin{s,m} and ds = dmin{s,m} (and these values agree with the ones which might be obtained by the

first original construction applied for larger chains of blow ups).

The next theorem relates the invariants {ds}s and {es}s.

Theorem 3.2.2. (First algorithm) With the above notations the following facts hold.

(1) ds − dsv,k ∈ {0, 1}.

(2) If for some fixed s the numbers {dsv,k}v,k are not the same, then ds = maxv,k{ dsv,k}. In the

case when all the numbers {dsv,k}v,k are the same, then if this common value dsv,k equals es, then

ds = es = dsv,k ; otherwise ds = dsv,k + 1.

The proof of Theorem 3.2.2 together with the proof of Theorem 4.1.2 (the ‘Second algorithm’)

from the next section will be given in a more general context in section 8.

3.2.3. Theorem 3.2.2 is suitable to run a decreasing induction over the entries of s in order to

determine {ds}s from {es}s. In fact we can obtain even a closed–form expression.

Corollary 3.2.4. With the notations of Theorem 3.2.2 one has ds = mins≤s̃≤m{|̃s − s| + es̃} for

any 0 ≤ s ≤ m. (Here |s| =
∑

v,k sv,kv
.) In particular,

dZ(l
′) = d0 = min

0≤s≤m

{|s|+ es}.

(By the end of 3.2 one also has mins≤s̃≤m{|̃s−s|+es̃} = mins≤s̃{|̃s−s|+es̃} and min0≤s≤m{|s|+es} =

min0≤s{|s|+ es}.)

Proof. By Theorem 3.2.2(1) for any s̃ ≥ s one has ds − ds̃ ≤ |̃s − s|, and by (3.1.2) ds̃ ≤ es̃. These

two imply ds ≤ |̃s − s| + es̃, hence ds ≤ mins≤s̃≤m{|̃s − s| + es̃}. Next we show that ds in fact
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equals |̃s − s|+ es̃ for some s̃. The wished s̃ is the last term of the sequence {si}ti=0 constructed as

follows. Set s0 := s. Then, assume that si is already constructed, and that there exists (v, k) such

that dsi = d(si)v,k + 1. Then set si+1 := (si)
v,k (for one of the choices of such possible (v, k)). This

inductive construction will stop after finitely many steps (since each ds ≥ 0). But if dst = d(st)v,k

for all (v, k), then by 3.2.2(2) dst = est . Hence est = dst = ds − |st − s|. �

4. The second algorithm for the computation of dim Im(cl
′

(Z))

4.1. Preparation. The algorithm from the previous section determines the dimensions of the Abel

maps dZ(l
′) in terms of a finite collection of invariants of type eZ(l

′) associated with a finite sequence

of resolutions obtained via certain extra blowing ups from X̃. Though, in principle, eZ(l
′) is much

simpler than dZ(l
′) (it is the ‘stabilizer’ of dZ(l

′)), the algorithm is still slightly cumbersome, it is

more theoretical, it is not easy to apply in concrete examples: one needs to know all the integers

{es}s, that is, cf. Proposition 2.2.5, all the integers {h1(OZs|Vs\Is
}s associated with the tower of

blowing ups. (However, it is a necessary intermediate step in the proof of the new algorithm).

The new algorithm is considerably simpler, e.g. it can be formulated in terms of the resolution

X̃ (see also the comments below). It provides dZ(l
′) in terms of the filtration {Gl}l of 2–forms.

As a starting point, consider the construction from 3.2. For any s define the cycle ls ∈ L of X̃ by

ls := min
{∑

v∈V

min
1≤kv≤av

{sv,kv
}Ev, Z

}
∈ L.

Set Gs := Gls and gs := dimGs as well. Note that (via pullback) there is an inclusion Gs ⊂ ΩZs
(Is).

Indeed, if the pole order of certain ω along Ev is ≤ sv,kv
then its pullback along Fv,kv ,sv,kv

has no

pole. Hence gs ≤ dimΩZs
(Is) = h1(OZ)− es too (cf. (3.1.2)). In particular,

(4.1.1) ds ≤ es ≤ h1(OZ)− gs.

However, in principle it can happen that for a certain ω with even higher pole than ls its pullback

is in ΩZs
(Is). E.g., if ω in some local coordinates (u, v) of an open set U is vdu ∧ dv/uo (and

U ∩ E = {u = 0}) then its pullback via blowing up (once) at u = v = 0 has pole order o− 2. This

phenomenon can happen even if we blow up a generic point: imagine a family of forms ωt with

‘moving divisor’, parametrized by t given by (v − t)du ∧ dv/uo. Then, even if we blow up E at

a generic point u = v − t0 = 0, in the family {ωt}t there is a form ωt0 whose pole along Ev is o

while its pullback has pole o − 2. Hence the equality of subspaces Gs ⊂ ΩZs
(Is), or of the equality

es = h1(OZ)− gs in principle is subtle and it is hard to test.

Note also that the invariant h1(OZ)− gs conceptually (and technically) is much simpler than es.

E.g., it depends only on v 7→ minkv≤av
{sv,kv

}, and it can be described via a cycle of X̃ (namely

ls) instead of the geometry of the tower X̃s. Nevertheless, via the next theorem, it still contains

sufficient information to determine ds, in particular dZ(l
′). In order to emphasize the parallelism

between the two algorithms we formulate them in a completely symmetric way (in particular, the

first parts are completely identical).

Theorem 4.1.2. (Second algorithm) With the above notations the following facts hold.

(1) ds − dsv,k ∈ {0, 1}.

(2) If for some fixed s the numbers {dsv,k}v,k are not the same, then ds = maxv,k{ dsv,k}. In the

case when all the numbers {dsv,k}v,k are the same, then if this common value dsv,k equals h1(OZ)−gs,

then ds = h1(OZ)− gs = dsv,k ; otherwise ds = dsv,k + 1.

For the proof see section 8.



12 J. Nagy, A. Némethi

Corollary 4.1.3. With the notations of 4.1 and of Theorem 4.1.2, for l′ ∈ −S′ and Z ≥ E one has

(4.1.4) dZ(l
′) = min

s

{ |s|+ h1(OZ)− gs }.

The proof runs similarly as the proof of Corollary 3.2.4.

The formula (4.1.4) can be rewritten in a different flavour.

Corollary 4.1.5. For l′ ∈ −S′ and Z ≥ E one has

(4.1.6) dZ(l
′) = min

0≤Z1≤Z
{ (l′, Z1) + h1(OZ)− h1(OZ1

) }.

Proof. From 2.4.12 gs = dim Gs = h1(Ols) and also |s| ≥
∑

v av(ls)v = (l′, ls), and 0 ≤ ls ≤ Z, hence

mins{ |s| + h1(OZ) − gs } ≥ min0≤Z1≤Z{ (l′, Z1) + h1(OZ) − h1(OZ1
) }. The opposite inequality is

also true since any such Z1 can be represented as a certain ls with |s| = (l′, ls). �

Example 4.1.7. (1) (cl
′

(Z) constant) For any 0 ≤ Z1 ≤ Z one has (l′, Z1) ≥ 0 and h1(OZ) ≥

h1(OZ1
), hence dZ(l

′) = 0 happens exactly when there exists Z1 with (l′, Z1)+h1(OZ)−h1(OZ1
) = 0,

or, (l′, Z1) = 0 and h1(OZ) = h1(OZ1
). This means that Z1 ≤ Z|V\I , where I is the E∗–support

of l′, a fact which (together with h1(OZ) = h1(OZ1
)) implies h1(OZ) = h1(OZ|V\I

) too. Hence,

dZ(l
′) = 0 if and only if h1(OZ) = h1(OZ|V\I

). This is exactly the statement of [NN18a, 6.3(v)].

(2) cl
′

(Z) is dominant if and only if dZ(l
′) = h1(OZ), hence, via (4.1.6), if and only if h1(OZ1

) ≤

(l′, Z1) for any 0 ≤ Z1 ≤ Z. This can be seen in a different way as follows. First, if cl
′

(Z) is

dominant, then, for any 0 < Z1 ≤ Z, cl
′

(Z1) is dominant too, hence (l′, Z1) = dim(ECal
′

(Z1)) ≥

dim(H1(OZ1
)). Conversely, if (l′, Z1) ≥ h1(OZ1

) and Z1 > 0 then (l′, Z1) − h1(OZ1
) > −h0(OZ1

),

that is, χ(−l′) < χ(−l′ + Z1), hence cl
′

(Z) is dominant by [NN18a, Thm. 4.1.1], cf. 2.3 here. Note

that the characterization 2.3 for dominant property is topological.

(3) By (4.1.6) Im(cl
′

(Z)) is a hypersurface if and only if min0≤Z1≤Z{(l′, Z1)−h1(OZ1
)} = −1.

Since h0(OZ1
) ≥ 1, this implies that χ(−l′) = min0≤l≤Z χ(−l′ + l).

The converse statement is not true: take e.g. a Gorenstein elliptic singularity with length of elliptic

sequence m+1. (For elliptic singularities consult [N99, NN19a, NN19b]. For more on the Abel map

of elliptic singularities see [NN19a].) Set Z ≫ 0 and −l′ = Zmin, the fundamental (minimal) cycle.

Then Im(cl
′

(Z)) = 1 and h1(Z) = pg = m + 1. However, χ(Zmin) = min0≤l≤Z χ(Zmin + l) = 0.

Therefore, if m = 1 then Im(cl
′

) is a hypersurface, but for m ≥ 2 it is not. It is instructive to

consider with the same topological data (elliptic numerically Gorenstein singularity with m ≥ 1,

Z ≫ 0, −l′ = Zmin) the generic analytic structure. Then pg = 1 (cf. [La77, NN18b]) but Im(cl
′

(Z))

is a point (this follows from part (1) too). Hence Im(cl
′

(Z)) is a hypersurface for any m ≥ 1. In

particular, the property that Im(cl
′

(Z)) is a hypersurface is not a topological property.

Example 4.1.8. (Superisolated singularities) Assume that (X, o) is a hypersurface superiso-

lated singularity whose link is a rational homology sphere. More precisely, (X, o) = {F (x1, x2, x3) =

0}, where the homogeneous terms Fi of F are as follows: {Fd = 0} defines an irreducible ratio-

nal cuspidal curve in CP2 and {Fd+1 = 0} ∩ Sing{Fd = 0} is empty in CP2. (For details see

[Lu87, LMN05, NN18a].) Consider the minimal good resolution and let E0 be the irreducible ex-

ceptional curve corresponding to C (the exceptional curve of the first blow up of the maximal

ideal). Assume that l′ = −kE∗
0 for some k ≥ 1 and Z ≥ ZK . For any m = (m1,m2,m3) ∈ Z3

≥0

write |m| =
∑

i mi. Then by the discussion from [NN18a, 11.2] one has the following facts:

pg = d(d−1)(d−2)/6 = #{m : |m| ≤ d−3}, this is exactly the cardinality of the set of forms of type

xmω, where ω is the Gorenstein form. The pole order of ω along E0 is d−2, and the vanishing order
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of xm along E0 is |m|. {xmω}m constitute a basis in H0(Ω2
X̃
(Z))/H0(Ω2

X̃
). Hence, for 0 ≤ s ≤ d−2

one has gs = dimGsE0
= #{m : d− 2− s ≤ |m| ≤ d− 3} and h1(OZ)− gs =

(
d−s
3

)
. In particular,

dZ(−kE∗
0 ) = min

0≤s≤d−2
{ks+

(
d−s
3

)
}.

In [NN18a, 11.2] dZ(−kE∗
0 ) was computed in a different way as

∑d−3
j=0 min{k,

(
j+2
2

)
}. The identifi-

cation of the two numerical answers is left to the reader. (Use
∑t

j=0

(
j+2
2

)
=

(
t+3
3

)
.)

Example 4.1.9. For weighted homogeneous germs (and l′ = −kE∗
0 , where E0 is the central

vertex of the star shaped graph) dZ(l
′) was computed by a similar method in [NN18a, §12].

Remark 4.1.10. (1) In Theorems 3.2.2 and 4.1.2 (and Corollaries 3.2.4 and 4.1.3 as well) the

functions s 7→ es and s 7→ h1(OZ)− gs serve as ‘test–functions’: “if this common value dsv,k equals

the test value, then ds = dsv,k , otherwise ds = dsv,k +1”. Via this fact in mind, the second algorithm

is rather surprising: the test function for each fixed v depends only on s 7→ min0≤kv≤av
sv,kv

= (ls)v,

hence does not depend on the number of integers {sv,kv
}0≤kv≤av

, or, on av. However, the final

output, namely ds (and the right hand side of (4.1.4) and the algorithm itself) do depend on l′. We

encourage the reader to work out the algorithm for an example when av ≥ 2 (say, for −l′ = 2E∗
v ).

(2) Notice that the formulas mins(|s|+h1(Z)− gs) and mins(|s|+ es) can be defined without any

restriction on the numbers gs and es, however in our case these numbers are restricted. For example

we have mins≥s1
(|s| − |s1|+ h1(Z)− gs)−min

s≥s
v,k
1

(|s ≥ sv,k1 |+ h1(Z)− gs) ∈ {0, 1} for all v, k, s1.

Or, gs ≤ |s| for all s if and only if χ(−l′) < χ(−l′ + l) for all Z ≥ l > 0 (cf. Example 4.1.7(2)).

(3) (Bounds for codim Im cl
′

(Z)) In some expression the codimension of Im(cl
′

(Z)) appears

more naturally. E.g., we have the following two general statements from [NN18a, Prop. 5.6.1] (under

the conditions of Corollary 4.1.5):

(a) h1(Z,L) ≥ codim Im(cl
′

(Z)) for any L ∈ Im(cl
′

(Z)). Equality holds whenever L is generic in

Im(cl
′

(Z)).

(b) codim Im cl
′

(Z) ≥ χ(−l′)−min0≤l≤Z χ(−l′ + l), and this inequality is strict whenever cl
′

(Z)

is not dominant. (This can be compared with the discussion from Example 4.1.7(3).)

Note that Corollary 4.1.5 reads as:

(4.1.11) codim Im(cl
′

(Z)) = max
0≤Z1≤Z

{ h1(OZ1
)− (l′, Z1) }.

4.1.12. Before we state the next theorem let us emphasise the obvious fact that for any 0 ≤ Z1 ≤ Z

the natural restriction (linear projection) r : H1(OZ) → H1(OZ1
) is surjective, hence for any

irreducible constructible subset C1 ⊂ H1(OZ1
) one has dim r−1(C1)− dimC1 = h1(OZ)− h1(OZ1

).

However, though the restriction of r to Im(cl
′

(Z)) → Im(cl
′

(Z1)) is dominant, in general dim Im(cl
′

(Z))

can be smaller than dim r−1(Im(cl
′

(Z1))).

4.1.13. It is instructive to see that certain extremal geometric phenomenons (indexed by effective

cycles) are realized by the very same set of cycles.

Lemma 4.1.14. The following three sets of cycles coincide (for fixed Z ≥ E and l′ ∈ −S ′ as above):

(I) the set of cycles Z1 with 0 ≤ Z1 ≤ Z realizing the minimality in (4.1.6), that is: dZ(l
′) =

(l′, Z1) + h1(OZ)− h1(OZ1
).

(II) the set of cycles Z1 with 0 ≤ Z1 ≤ Z such that (i) the map ECal
′

(Z) → H1(Z1) is birational

onto its image, and (ii) the generic fibres of the restriction of r, rim : Im(cl
′

(Z)) → Im(cl
′

(Z1)),

have dimension h1(OZ)− h1(OZ1
). (That is, the fibers of rim have maximal possible dimension.)
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(III) the set of cycles Z1 with 0 ≤ Z1 ≤ Z such that for the generic element Lim
gen ∈ Im(cl

′

(Z))

and arbitrary section s ∈ H0(Z1,Lim
gen)reg with divisor D (i) in the (analogue of the Mittag-Lefler

sequence associated with the exact sequence 0 → OZ1

×s
−→ Lim

gen → OD → 0, cf. [NN18a, 3.2]),

0 → H0(OZ1
)

×s
−→ H0(Z1,L

im
gen) → C(Z1,l

′) δ
−→ H1(OZ1

) → h1(Z1,L
im
gen) → 0

δ is injective, and (ii) h1(Z,Lim
gen) = h1(Z1,Lim

gen).

Proof. For (I)⇒(II) use the following. First recall that dimECal
′

(Z ′) = (l′, Z ′) for any effective

cycle Z ′. Next, from (4.1.6), there exists an effective cycle Z1 ≤ Z, such that dim Im(cl
′

(Z)) =

(l′, Z1) + h1(OZ) − h1(OZ1
). But dim(Im(cl

′

(Z1))) ≤ dimECal
′

(Z1) = (l′, Z1) (cf. 2.2) and

dim(Im(cl
′

(Z))) − dim(Im(cl
′

(Z1))) ≤ h1(OZ) − h1(OZ1
). Hence, necessarily we have equalities

in both these inequalities. (I)⇐(II) is similar.

For (II)(i)⇔(III)(i) use the fact that δ is the tangent application TDImcl
′

(Z1) at D, cf. [NN18a,

3.2], and for (II)(ii)⇔(III)(ii) use Remark 4.1.10(3)(a). �

4.2. Structure theorem for the Abel map. The geometric interpretation from Lemma 4.1.14(II)

has the following consequence.

Theorem 4.2.1. (Structure theorem) Fix a resolution X̃, a cycle Z ≥ E and a Chern class

l′ ∈ −S ′ as above.

(a) There exists an effective cycle Z1 ≤ Z, such that: (i) the map ECal
′

(Z) → H1(Z1) is birational

onto its image, and (ii) the generic fibres of the restriction of r, rim : Im(cl
′

(Z)) → Im(cl
′

(Z1)),

have dimension h1(OZ)− h1(OZ1
). (Cf. Lemma 4.1.14(II).)

(b) In particular, for any such Z1, the space Im(cl
′

(Z)) is birationally equivalent with an affine

fibration with affine fibers of dimension h1(OZ)− h1(OZ1
) over ECal

′

(Z1).

(c) The set of effective cycles Z1 with property as in (a) has a unique minimal and a unique

maximal element denoted by Cmin(Z, l
′) and Cmax(Z, l

′). Furthermore, Cmin(Z, l
′) coincides with

the cohomology cycle of the pair (Z,Lim
gen) (the unique minimal element of the set {0 ≤ Z1 ≤ Z :

h1(Z,Lim
gen) = h1(Z1,Lim

gen)) for the generic Lim
gen ∈ Im(cl

′

(Z)).

Proof. (a) Use Lemma 4.1.14.

(c) Assume that two cycles Z1 and Z2 satisfy (a). We claim that Z ′ := max{Z1, Z2} satisfies too.

First, for any cycle Z ′′ with Z1 ≤ Z ′′ ≤ Z, if Z1 satisfies (a)(ii) then Z ′′ satisfies too. This

applies for Z ′ too. To prove (a)(i) for Z ′, let us denote by ECal
′

(Z ′′)0 ⊂ ECal
′

(Z ′′) the set of

divisors whose support is disjoint from the singular points of E. If l′ =
∑

v avE
∗
v then ECal

′

(Z)0 =∏
v ECa

avE
∗
v (Z)0. Using this fact one shows that the product ECal

′

(Z ′) → ECal
′

(Z1) × ECal
′

(Z2)

of the two restrictions ECal
′

(Z ′) → ECal
′

(Zj) (j = 1, 2) is birational onto its image (BioIm). This

composed with the product of the maps ECal
′

(Z1) → H1(Z1) and ECal
′

(Z2) → H1(Z2) (both

BioIm) guarantees that ECal
′

(Z ′) → H1(Z1) × H1(Z2) is BioIm too. This map writes as the

composition ECal
′

(Z ′) → H1(Z ′) → H1(Z1) × H1(Z2), hence the first term ECal
′

(Z ′) → H1(Z ′)

should be BioIm. Hence the claim and the existence of Cmax(Z, l
′) follows.

In order to prove the existence of Cmin(Z, l
′), first we claim that the set of cycles Zii, which

satisfy (a)(ii) has a unique minimal element Zii
min. This fact via Remark 4.1.10(3)(a) is equivalent

with the existence of the (unique) cohomological cycle for the pair (Z,Lim
gen). This was proved in

[NN18a, 5.5], see also [Re97, 4.8]. Next, we claim that the map ECal
′

(Zii
min) → H1(Zii

min) is BioIm

as well. From the existence of the cycle Cmax(·, l′) (already proved above), applied for Zii
min, there

exists a cycle Cmax(Z
ii
min, l

′) ≤ Zii
min, which satisfies (a). In particular, (a)(ii) is valid for the pair
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Cmax(Z
ii
min, l

′) ≤ Zii
min. By the definition of Zii

min the condition (a)(ii) is valid for the pair Zii
min ≤ Z

too. Hence, (a)(ii) is valid for the pair Cmax(Z
ii
min, l

′) ≤ Z as well. Therefore, by the definition of

Zii
min necessarily Cmax(Z

ii
min, l

′) = Zii
min, hence Zii

min satisfies (a). �

5. Example. The case of generic analytic structure

5.1. Let us fix the topological type of a good resolution of a normal surface singularity, and we

assume that the analytic type on X̃ is generic (in the sense of [NN18b], see [La73] as well). Recall

that in such a situation, if Z ′ =
∑

nvEv is a non–zero effective cycle, whose support |Z ′| = ∪nv 6=0Ev

is connected, then by [NN18b, Corollary 6.1.7] one has

h1(OZ′) = 1− min
|Z′|≤l≤Z′, l∈L

{χ(l)}.

Corollary 5.1.1. Assume that X̃ has a generic analytic type, Z ≥ E an integral cycle and l′ ∈ −S′.

For any 0 ≤ Z1 ≤ Z write E|Z1| for
∑

Ev⊂|Z1|
Ev. Then

(5.1.2) dZ(l
′) = 1− min

E≤l≤Z
{χ(l)}+ min

0≤Z1≤Z

{
(l′, Z1) + min

E|Z1|≤l≤Z1

{χ(l)} − χ(E|Z1|)
}
.

In particular, dZ(l
′) = dim(Imcl

′

(Z)) is topological.

Let us concentrate again on the codimension h1(OZ)− dZ(l
′) of Im(cl

′

(Z)) ⊂ Picl
′

(Z) instead of

the dimension. Then, (5.1.2) reads as

(5.1.3) codim Im(cl
′

(Z)) = max
0≤Z1≤Z

{
− (l′, Z1)− min

E|Z1|≤l≤Z1

{χ(l)}+ χ(E|Z1|)
}
.

This is a rather complicated combinatorial expression in terms of the intersection lattice L. The

next lemma aims to simplify it.

Proposition 5.1.4. Consider the assumptions of Corollary 5.1.1. Let Z1 be minimal such that the

maximum in (5.1.3) is realized for it. Then minE|Z1|≤l≤Z1
{χ(l)} = χ(Z1). In particular,

(5.1.5) codim Im(cl
′

(Z)) = max
0≤Z1≤Z

{
− (l′, Z1)− χ(Z1) + χ(E|Z1|)

}
.

The maximum at the right hand side is realized e.g. for the cohomology cycle of Lim
gen ∈ Im(cl

′

(Z)) ⊂

Picl
′

(Z). Furthermore,

(5.1.6) h1(Z,L) ≥ max
0≤Z1≤Z

{
− (l′, Z1)− χ(Z1) + χ(E|Z1|)

}

for any L ∈ Im(cl
′

(Z)) and equality holds for generic Lim
gen ∈ Im(cl

′

(Z)).

Proof. Assume that the minimum minE|Z1|≤l≤Z1
{χ(l)} = χ(Z1) is realized by some l1. Then

(l′, Z1) ≥ (l′, l1) (since l
′ ∈ −S ′), minE|Z1|≤l≤Z1

{χ(l)} = minE|l1|≤l≤l1{χ(l)} and χ(E|Z1|) = χ(E|l1|)

hence −(l′, Z1)−minE|Z1|≤l≤Z1
{χ(l)}+χ(E|Z1|) ≤ −(l′, l1)−minE|l1|≤l≤l1 {χ(l)}+χ(E|l1|). Since

the maximality in (5.1.3) is realized by Z1, which is minimal with this property, necessarily Z1 = l1.

Next,

max
0≤Z1≤Z

{
− (l′, Z1)− min

E|Z1|≤l≤Z1

{χ(l)}+ χ(E|Z1|)} ≥ max
0≤Z1≤Z

{
− (l′, Z1)− χ(Z1) + χ(E|Z1|)}.

But the maximum at the left hand side is realized by a term from the right.

For the last statement use again Remark 4.1.10(3)(a). �
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5.2. The identity (5.1.5), valid for a generic analytic structure of X̃, extends to an optimal inequality

valid for any analytic structure.

Theorem 5.2.1. Consider an arbitrary normal surface singularity (X, o), its resolution X̃, Z ≥ E

and l′ ∈ −S ′. Then codim Im(cl
′

(Z)) = h1(Z,Lim
gen) (cf. Remark 4.1.10(3)(a)) satisfies

(5.2.2) codim Im(cl
′

(Z)) ≥ max
0≤Z1≤Z

{
− (l′, Z1)− χ(Z1) + χ(E|Z1|)

}
.

In particular, for any L ∈ Im(cl
′

(Z)) one also has (everything computed in X̃)

(5.2.3) h1(Z,L) ≥ h1(Z,Lim
gen) = codim Im(cl

′

(Z)) ≥ max
0≤Z1≤Z

{
− (l′, Z1)− χ(Z1) + χ(E|Z1|)

}
.

Note that the right hand side of (5.2.2) is a sharp topological lower bound for codim Im(cl
′

(Z)).

The inequality (5.2.2) can also be interpreted as the semi-continuity statement

codim Im(cl
′

(Z))(arbitrary analytic structure) ≥ codim Im(cl
′

(Z))(generic analytic structure).

Proof. Consider the identity (4.1.11) applied for an arbitrary X̃ and for the generic X̃ , denoted by

X̃gen. Then, by semi-continuity of h1(OZ1
) with respect to the analytic structure as parameter space

(see e.g. [NN18b, 3.6]), for any fixed effective cycle Z1 > 0, h1(OZ1
) computed in X̃ is greater than

or equal to h1(OZ1
) computed in X̃gen. Therefore, by (4.1.11) one has codim Im(cl

′

(Z))(in X̃) ≥

codim Im(cl
′

(Z))(in X̃gen). Then for X̃gen apply (5.1.5). �

Remark 5.2.4. Certain upper bounds for {h1(Z,L)}L∈Picl
′
(Z), valid for any analytic structure,

were established in [NN18a, Prop. 5.7.1] (see alo Remark 5.3.3). However, an optimal upper bound

is not known (see [NO17] for a particular case). Large h1–values are realized by special strata, whose

existence and study is extremely hard.

5.3. The cohomology of Lim
gen(l). Assume that Z ≥ E, l′ ∈ −S ′ and let Lim

gen be a generic

element of Im(cl
′

(Z)). If the analytic structure of (X, o) is generic, then by Proposition 5.1.4

h1(Z,Lim
gen) = tZ(l

′), where tZ(l
′) is the topological expression from the right hand side of (5.1.5).

Our goal is to give a topological lower bound for h1(Z,L), where L := Lim
gen(l) = Lim

gen ⊗ O(l) ∈

Picl
′+l(Z) whenever l ∈ L>0. In this way we will control the generic element of the ‘new’ strata

O(l)⊗ (Im(cl
′

(Z))) of Picl
′+l(Z), unreachable directly by the previous result. Our hidden goal is to

construct in this way line bundles with ‘high’ h1.

For simplicity we will assume that all the coefficients of Z are sufficiently large (even compared

with l, hence the coefficients of Z − l are large as well). The monomorphism of sheaves Lim
gen|Z−l →֒

Lim
gen(l) gives h

0(Z − l,Lim
gen) ≤ h0(Z,Lim

gen(l)), hence

h1(Z − l,Lim
gen) + χ(Z − l,Lim

gen) ≤ h1(Z,Lim
gen(l)) + χ(Z,Lim

gen(l)).

By a computation regarding χ this transforms into

h1(Z,Lim
gen(l)) ≥ h1(Z − l,Lim

gen) + χ(−l′ − l)− χ(−l′).

If X̃ is generic and Z,Z − l ≫ 0 then h1(Z − l,Lim
gen) = tZ−l(l

′) = tZ(l
′), hence

(5.3.1) h1(Z,Lim
gen(l)) ≥ tZ(l

′)− χ(−l′) + χ(−l′ − l).

E.g., with the choice l = −l′ ∈ S ′ ∩ L>0 we get that Lim
gen(−l′) ∈ Pic0(Z) and

(5.3.2) h1(Z,Lim
gen(−l′)) ≥ tZ(l

′)− χ(−l′).
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Remark 5.3.3. By [NN18a, Prop. 5.7.1] for Z ≫ 0, L ∈ Pic(Z) with c1(L) ∈ −S ′ one has

h1(Z,L) ≤ pg whenever either H0(Z,L) = 0 or L ∈ Im(cl
′

(Z)). For other line bundles a weaker

bound is established (see [loc. cit.]), which does not guarantee h1(L) ≤ pg. However, it is not so

easy to find singularities and bundles with h1(L) > pg in order to show that such cases indeed might

appear. In the next 5.3.4 we provide such an examples (with a recipe to find many others as well)

based partly on (5.3.2).

Example 5.3.4. Assume that we can construct a nonrational resolution graph which satisfies the

following (combinatorial) properties, valid for certain Z ≫ 0 and l′ ∈ −S ′ ∩ L:

(a) tZ(l
′) ≥ χ(−l′)−min

l≥0
χ(−l′ + l) + 2, and

(b) − l′ ≤ maxM, where M := {l ∈ L>0 : χ(l) = minχ}.
(5.3.5)

Now, if we consider the generic analytic structure supported on this topological type, then minl≥0 χ(−l′+

l)
(b)
= minχ = 1 − pg (for the second identity use [NN18b, Cor. 5.2.1]), hence tZ(l

′) − χ(−l′)
(a)

≥

−1 + pg + 2 = pg + 1. This combined with (5.3.2) gives h1(Z,Lim
gen(−l′)) > pg.

Next we show that (5.3.5) can be realized. Consider two copies Γ1 and Γ2 of the following graph

s s s s s

s s

−3 −1 −13 −1 −3

−2 −2

The wished graph Γ consists of Γ1, Γ2 and a new vertex v, which has two adjacent edges connecting

v to the (−13)-vertices of Γ1 and Γ2. Let the decoration of v be −bv where bv ≫ 0. One verifies

that the minimal cycle is Zmin = (bv − 2)E∗
v , whose Ev–multiplicity is 1. We set −l′ := Zmin. Since

maxM ∈ San ⊂ S ′ ∩ L (cf. [NN18b, 5.7]) we get that −l′ = Zmin ≤ maxM. One verifies that

χ(Zmin) = −3 (e.g. by Laufer’s criterion), and also that minχ = −5 (realized e.g. for 2Zmin −Ev).

Therefore χ(−l′)−minl≥0 χ(−l′+ l)+2 = −3+5+2 = 4. On the other hand, the expression (under

max) in (5.1.5) for Z1 = Zmin(Γ1) + Zmin(Γ2) supported on Γ \ v is 4, hence tZ(l
′) ≥ 4.

6. Appendix. Geometrical aspects behind the lower bound Theorem 5.2.1

6.1. Let us discuss with more details the geometry behind the inequality (5.2.2). Along the discus-

sion we will provide a second independent proof of it and we also provide several examples, which

show its sharpness/weakness in several situations. Similar construction (with similar philosophy)

will appear in forthcoming manuscripts on the subject as well. The construction of the present

section shows also in a conceptual way how one can produce different sharp lower bounds for sheaf

cohomologies (for another case see e.g. subsection 7.2).

We provide the new proof in several steps. First, we define a topological lower bound for

codim Im(cl
′

(Z)), which (a priori) will have a more elaborated form then the right hand side tZ(l
′)

of (5.2.2). Then via several steps we will simplify it and we show that in fact it is exactly tZ(l
′).

Definition 6.1.1. For any Z > 0 with |Z| connected we define D(Z, l′) as 0 if cl
′

(Z) is dominant

and 1 otherwise. (For a criterion see 2.3.) Furthermore, set

(6.1.2) T (Z, l′) := χ(−l′)− min
0≤l≤Z,l∈L

χ(−l′ + l) +D(Z, l′).

By [NN18a, Theorem 5.3.1] for any singularity (X, o), any resolution X̃, any Z > 0 and l′ ∈ L′,

and for Lgen generic in Picl
′

(Z) one has

(6.1.3) h1(Z,Lgen) = χ(−l′)− min
0≤l≤Z,l∈L

χ(−l′ + l).
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By [NN18a, Prop. 5.6.1], see also 4.1.10(3), for any Z ≥ E and for any l′ ∈ −S ′, if Lim
gen is a

generic element of Im(cl
′

(Z)), then h1(Z,Lim
gen) = codim Im(cl

′

(Z)) satisfies (the semicontinuity)

(6.1.4) h1(Z,Lim
gen) ≥ χ(−l′)− min

0≤l≤Z,l∈L
χ(−l′ + l) +D(Z, l′) = h1(Z,Lgen) +D(Z, l′) = T (Z, l′).

Remark 6.1.5. Assume that Z > 0 is a nonzero cycle with connected support |Z|, but with Z 6≥ E.

Then the statements from (6.1.4) remain valid for such Z once we replace l′ by its restriction R(l′),

where R : L′ → L′(|Z|) is the natural cohomological operator dual to the natural homological

inclusion L(|Z|) →֒ L. (For this apply the statement for the singularity supported on |Z|.) On

the other hand, for l ∈ L(|Z|) one has χ(−R(l′)) − χ(−R(l′) + l) = −χ(l) − (R(l′), l)L(|Z|) =

−χ(l)− (l′, l) = χ(−l′)−χ(−l′ + l). Hence, in fact, (6.1.4) remains valid in its original form for any

such Z > 0 with |Z| connected.

Example 6.1.6. The difference h1(Z,Lim
gen) − h1(Z,Lgen) can be arbitrary large. Indeed, let us

start with a singularity with an arbitrary analytic structure, we fix a resolution X̃ with dual graph

Γ, and we distinguish a vertex, say v0, associated with the irreducible divisor E0. Let k (k > 0) be

the number of connected components of Γ \ v0, and we assume that each of them is non–rational.

Furthermore, we choose Z ≫ 0, hence h1(OZ) = pg. Let X̃|V\v0 be a small neighbourhood of

∪v 6=v0Ev, let {X̃i}ki=1 be its connected components, and set pg,i = h1(O
X̃i

) for the geometric genus

of the singularities obtained from X̃i by collapsing its exceptional curves. Write also Γ \ v0 = ∪iΓi.

We also assume that −l′ = nE∗
0 with n ≫ 0.

Since n is large, Im(c̃l
′

(Z)) = AZ(l
′), hence dZ(l

′) = eZ(l
′) = pg −

∑
i pg,i, cf. [NN18a, Th. 6.1.9]

or Theorem 2.2.5 here. Hence, cf. (6.1.4), codim(Imc̃l
′

(Z)) = h1(OZ) − dZ(l
′) = h1(Z,Lim

gen) =∑
i pg,i (in particular, c̃l

′

is not dominant).

Next we compute h1(Z,Lgen) = χ(nE∗
0 ) − minl≥0 χ(nE

∗
0 + l). Write l as l0E0 + l̃, where l̃ is

supported on ∪v 6=v0Ev. Then χ(nE∗
0 )−χ(nE∗

0 + l) = −χ(l)−nl0. If l0 = 0 then −χ(l) = −χ(l̃), and

its maximal value is M :=
∑

i(−minχ(Γi)). On the other hand, if l0 > 0 then for n > −M −minχ

one has −χ(l)− l0n < M . Hence h1(Z,Lgen) = χ(nE∗
0 )−minl≥0 χ(nE

∗
0 + l) =

∑
i(−minχ(Γi)).

Now, pg,i ≥ 1−minχ(Γi) (cf. [Wa70] or [NN18b]), hence h1(Z,Lim
gen)− h1(Z,Lgen) ≥ k.

6.1.7. We wish to estimate h1(Z,Lim
gen). Note that the estimate given by (6.1.4), that is, h1(Z,Lim

gen) ≥

T (Z, l′), sometimes is week, see the previous example. However, surprisingly, if we replace Z

by a smaller cycle Z ′ ≤ Z, then we might get a better bound. More precisely, first note that

if Lim
gen is a generic element of Im(cl

′

(Z)), and 0 < Z ′ ≤ Z, then its restriction r(Lim
gen) (via

r : Picl
′

(Z) → PicR(l′)(Z ′)) is a generic element of Im(cl
′

(Z ′)). If Z ′ has more connected com-

ponents, Z ′ =
∑

i Z
′
i (where each |Z ′

i| is connected and |Z ′
i| ∩ |Z ′

j | = ∅ for i 6= j), then for each Z ′
i

we can apply (6.1.4). Therefore, we get

(6.1.8) h1(Z,Lim
gen) ≥ h1(Z ′, r(Lim

gen)) =
∑

i

h1(Z ′
i, r(L

im
gen)) ≥

∑

i

T (Z ′
i, l

′).

Define

(6.1.9) t(Z, l′) := max
0<Z′≤Z

∑

i

T (Z ′
i, l

′) = max
0<Z′≤Z

( ∑

i

(χ(−l′)− min
0≤li≤Z′

i

χ(−l′ + li) +D(Z ′
i, l

′))
)
.

(Here there is no need to restrict l′, cf. Remark 6.1.5.) Hence (6.1.8) reads as

(6.1.10) h1(Z,Lim
gen) ≥ t(Z, l′).
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In this estimate the point is the following: though
∑

i(χ(−l′) − min0≤li≤Z′
i
χ(−l′ + li) = χ(−l′) −

min0≤l≤Z′ χ(−l′ + l) is definitely not larger than χ(−l′)−min0≤l≤Z χ(−l′ + l), the number of com-

ponents of Z ′ might be large, and the sum of the ‘non-dominant’ contribution terms
∑

i D(Z ′
i, l

′)

might increase the right hand side of (6.1.10) — compared with T (Z, l′) — drastically.

Example 6.1.11. (Continuation of Examle 6.1.6) The last computation of Example 6.1.6

shows that the maximum of χ(nE∗
0 ) − minl≥0 χ(nE

∗
0 + l) is obtained for l0 = 0 and T (Z, l′) =

1 +
∑

i(−minχ(Γi)). Hence, taking Z ′ =
∑

i Z
′
i, each Z ′

i supported on Γi and large, we get that

the restriction of l′ is zero and
∑

i T (Z
′
i, l

′) =
∑

i(1−minχ(Γi)) = T (Z, l′) + k − 1.

Summarized (also from Example 6.1.6), for any analytic type one has
∑

i pg,i = h1(Z,Lim
gen) ≥

t(Z, l′) ≥
∑

i T (Z
′
i, l

′) =
∑

i(1 −minχ(Γi)). However, if X̃ is generic then pg,i = 1 −minχ(Γi) (cf.

[NN18b]), hence, all the inequalities transform into equalities. Hence, for generic analytic structure

h1(Z,Lim
gen) = t(Z, l′), that is, (6.1.10) provides the optimal sharp topological lower bound.

Note also that both t(Z, l′) and
∑

i(1 − minχ(Γi)) are topological, hence if they agree for X̃

generic, then they are in fact equal. Since pg,i − 1 + minχ(Γi) for arbitrary analytic type can be

considerably large, for arbitrary analytic types the inequality (6.1.10) can be rather week.

6.2. Our goal is to simplify the expression (6.1.9) of t(Z, l′).

First we analyse the set of cycles Z ′ for which the maximum in the right hand side of (6.1.9) can

be realized. E.g., if cl
′

(Z) is dominant (equivalently, t(Z, l′) = 0, cf. 2.3) then any 0 ≤ Z ′ ≤ Z

realizes the maximum 0 (with all li = 0). (Indeed, use the fact that D(Z2, l
′) ≥ D(Z1, l

′) for Z2 ≥ Z1

and |Zi| connected.)

In the next Lemmas 6.2.1 and 6.2.4 we will assume that cl
′

(Z) is not dominant.

Lemma 6.2.1. (a) Assume that Z ′ is a minimal cycle (or a cycle with minimal number of connected

components) among those cycles which realize the maximum in the right hand side of (6.1.9). Then

D(Z ′
i, l

′) = 1 for all i.

(b) If D(Z ′
i, l

′) = 1 then the minimal value min0≤li≤Z′
i
χ(−l′ + li) can be realized by li > 0.

Proof. (a) Otherwise, cl
′

(Z ′
i) is dominant, and by 2.3 χ(−l′) −min0≤li≤Z′

i
χ(−l′ + li) = 0 (realized

for li = 0). Hence T (Z ′
i, l

′) = 0, that is, the right hand side of (6.1.9) is realized by Z ′ − Z ′
i too,

contradicting the minimality of Z ′. (b) If the wished minimum is realized by li = 0, and only by

li = 0, then by 2.3 cl
′

(Z ′
i) is dominant, contradicting D(Z ′

i, l
′) = 1. �

Example 6.2.2. Though in Example 6.1.6 we have shown that h1(Z,Lim
gen) = t(Z, l′) can be much

larger than T (Z, l′) (that is, the maximizing Z ′ usually should be necessarily strict smaller than Z),

in some cases Z ′ = Z still works. Indeed, we claim that

if the E∗–support I of l′ is included in the set of end vertices of Γ, then t(Z, l′) = T (Z, l′).

Let Z ′ be a cycle for minimal number n of connected components {Z ′
i}

n
i=1 for which the right hand

side of (6.1.9) is realized. We claim that n = 1. Indeed, by Lemma 6.2.1, each D(Z ′
i, l

′) = 1. Let li

be a cycle which realizes χ(−l′)−min0≤l≤Z′
i
χ(−l′ + l). By Lemma 6.2.1 we can assume li 6= 0.

If n > 1 then let Z1 and Z2 be two adjacent component, which means, that there is a vertex

u ∈ |Z ′
1| and v ∈ |Z ′

2| and a (minimal) path u1 = u, u2, · · · , ut = v, such that u2, · · · , ut−1 /∈ |Z ′|

and uk and uk+1 are neighbours in the resolution graph. Moreover, define a new cycle by Z ′
1,new =

Z ′
1 + Z ′

2 +
∑

2≤k≤t−1 Euk
and Z ′

new = Z ′
1,new +

∑
3≤i≤n Z ′

i. Similarly, let us have a minimal path

between |l1| and |l2|: vertices w1, · · · , wl, such that w1 ∈ |l1| and wl ∈ |l2|, w2, · · · , wl−1 /∈ |l1| ∪ |l2|
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and wk, wk+1 are neighbours in the resolution graph. Then define l1,new = l1 + l2 +
∑

2≤k≤l−1 Ewk
.

The point is that the vertices w2, · · · , wl−1 are not end vertices, in particular (l′,
∑

2≤k≤l−1 Ewk
) = 0.

Note also that D(Z ′
1,new, l

′) = 1. Then a computation gives that

(6.2.3) χ(−l′)− χ(−l′ + l1,new) +D(Z ′
1,new, l

′) ≥ T (Z1, l
′) + T (Z2, l

′),

or, T (Z1,new, l
′) ≥ T (Z1, l

′)+T (Z2, l
′), contradicting the minimality of Z ′. Hence necessarily n = 1.

On the other hand, if Z ′ is connected, then T (Z ′, l′) ≤ T (Z, l′), hence the maximal value in the

right hand side of (6.1.10) is realized for Z as well (and maybe by several other smaller cycles too;

here we minimalized #|Z ′| by increasing Z ′).

The present example together with Examples 6.1.6 and 6.1.11 show that the structure of possible

cycles Z ′ for which the maximality in (6.1.9) realizes can be rather subtle.

Lemma 6.2.4. Assume that Z ′ is a minimal cycle among those cycle which realizes the maximum

in the right hand side of (6.1.9). Then the following facts hold:

(a) min0≤li≤Z′
i
χ(−l′ + li) is realized by li = Z ′

i.

(b) min0≤li≤Z′
i
χ(l) is realized by li = Z ′

i.

(c) t(Z ′, l′) = t(Z, l′) =
∑

i

(
− (Z ′

i, l
′)− χ(Z ′

i) + 1
)
.

Proof. (a) For each Z ′
i let li be minimal non–zero cycle (cf. Lemma 6.2.1) such that Mi := χ(−l′)−

min0≤l≤Z′
i
χ(−l′ + l) is realized by li. Let li = ∪kli,k be its decomposition into cycles with |li,k|

connected and disjoint. Since Mi = −χ(li) − (l′, li) ≥ 0, there exists k such that χ(−l′) − χ(−l′ +

li,k) = −χ(li,k) − (l′, li,k) ≥ 0, hence by the criterion from 2.3 the Abel map cl
′

(li,k) must be

non–dominant. Thus (using also D(Z ′
i, l

′) = 1 from Lemma 6.2.1(a))

(6.2.5)
∑

k

T (li,k, l
′) ≥ χ(−l′)− χ(−l′ + li) + 1 = T (Z ′

i, l
′).

In particular, by the minimality of Z ′
i, Z

′
i = li.

(b) By part (a) χ(Z ′
i) + (Z ′

i, l
′) ≤ χ(li) + (li, l

′) for any 0 ≤ li ≤ Z ′
i. But, since l′ ∈ −S ′,

(Z ′
i, l

′) ≥ (li, l
′), hence χ(Z ′

i) ≤ χ(li) for any 0 ≤ li ≤ Z ′
i. Part (c) follows from (6.1.9) and (a). �

Recall that in 5.3 we defined tZ(l
′) := max0≤Z′≤Z

{
− (l′, Z ′)− χ(Z ′) + χ(E|Z′|)

}
.

Corollary 6.2.6. t(Z, l′) = tZ(l
′).

Proof. If cl
′

(Z) is dominant then both sides are zero. Otherwise, by Lemma 6.2.4(c) (with its

notations) t(Z, l′) =
∑

i

(
−(Z ′

i, l
′)−χ(Z ′

i)+1
)
≤ tZ(l

′). On the other hand, let us fix some Z ′ = ∪iZ
′
i

for which the maximum in tZ(l
′) is realized. Then we can assume that each cl

′

(Z ′
i) is not dominant.

Then −(Z ′
i, l

′)− χ(Z ′
i) + 1 = χ(−l′)− χ(−l′ +Z ′

i) + 1 ≤ χ(−l′)−min0≤li≤Z′
i
χ(−l′ + li) +D(Z ′

i, l
′).

Hence tZ(l
′) ≤ t(Z, l′) too. �

Remark 6.2.7. The second proof of Theorem 5.2.1 follows from (6.1.10) and Corolary 6.2.6.

7. The L0–projected Abel map

In this section we introduce a new object, a modification of the Picard group Pic(Z), which will

play a key role in the cohomology computation of the shifted line bundles of type {L0⊗L}L∈Im(cl′ (Z)).
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7.1. The L0–projected Picard group. Let (X, o) be a normal surface singularity. For simplicity

we assume (as always in this manuscript) that the link is a rational homology sphere. Let X̃ be one of

its good resolutions and Z ≥ E an effective cycle. Fix also L0 ∈ Pic(Z) such that H0(Z,L0)reg 6= ∅

(cf. 2.2). Choose s0 ∈ H0(Z,L0)reg arbitrarily, and write div(s0) = D0 ∈ ECal
′
0(Z), where l′0 =

c1(L0) ∈ −S ′. Motivated by the exponential exact sequence of sheaves 0 → ZZ
i
→ OZ → O∗

Z → 0,

we define L∗
0 := coker(ZZ

i
→ OZ

s0−→ L0), where the second morphism is the multiplication by

(restrictions of) s0. Then we have the following commutative diagram of sheaves:

0 0

↓ ↓

0 −→ ZZ
i

−→ OZ −→ O∗
Z −→ 0

↓ = ↓ s0 ↓ s∗0

0 −→ ZZ −→ L0 −→ L∗
0 −→ 0

↓ ↓

OD0
= OD0

↓ ↓

0 0

where s∗0 is induced by s0. At cohomological level we get the (identical/renamed) diagrams

H0(OD0
) = H0(OD0

) H0(OD0
) = H0(OD0

)

↓ δ0 ↓ δ ↓ δ0 ↓ δ

0 → H1(OZ) → H1(O∗
Z)

c1→ L′ → 0 0 → Pic0(Z) → Pic(Z)
c1→ L′ → 0

↓ s0 ↓ s ↓ = ↓ s0 ↓ s ↓ =

0 → H1(L0) → H1(L∗
0)

c1→ L′ → 0 0 → Pic0L0
(Z) → PicL0

(Z)
c1→ L′ → 0

↓ ↓ ↓ ↓

0 0 0 0

where we use the notation PicL0
(Z) := H1(Z,L∗

0) — and call it the L0–projected Picard group—, and

(its linearization) Pic0L0
(Z) := H1(Z,L0). Note that the classical first Chern class map c1 factorizes

to a well–defined map c1 : PicL0
(Z) → L′. Set also Picl

′

L0
(Z) := c−1

1 (l′) for any l′ ∈ L′; it is an

affine space isomorphic to Picl
′

(Z)/Im(δ) associated with the vector space Pic0L0
(Z) = H1(Z,L0) =

H1(OZ)/Im(δ0).

The corresponding vector spaces appear in the following exact sequences as well. Let us take

another line bundle L ∈ Picl
′

(Z) without fixed components, s ∈ H0(Z,L)reg and D := div(s). Then

one can take the exact sequences 0 → OZ
s
→ L → OD → 0 and 0 → L0

s
→ L0 ⊗L → OD → 0. They

induce (at cohomology, or ‘tangent’ vector space level) the following commutative diagram

H0(OD0
) = H0(OD0

)

↓ δ0 ↓

H0(OD)
δ0L→ H1(OZ)

s
→ H1(L) → 0y=

ys0L0

y

H0(OD)
δ̄0L→ H1(L0)

s
→ H1(L0 ⊗ L) → 0

↓ ↓

0 0

This is related with the Abel map cl
′

(Z) : ECal
′

(Z) → Picl
′

(Z) as follows. Recall from [NN18a,

3.2.2] that the tangent linear map TD cl
′

(Z) : TD ECal
′

(Z) → TL Picl
′

(Z) can be identified with δ0L :
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H0(OD) → H1(OZ). Therefore, if L = Lim
gen is a generic element of Im(cl

′

(Z)) then codim Im(cl
′

(Z)) =

dim H1(OZ)/Im(δ0L) = h1(Z,L). Similarly, consider the composition

cl
′

L0
(Z) : ECal

′

(Z)
cl

′
(Z)

−→ Picl
′

(Z)
s0L0−→ Picl

′

L0
(Z).

We call it the L0–projection of the Abel map cl
′

(Z). Using the previous paragraph we obtain that the

tangent linear map TD cl
′

L0
(Z) : TD ECal

′

(Z) → TL Picl
′

L0
(Z) can be identified with δ̄0L = s0L0

◦ δ0L :

H0(OD) → H1(L0). Therefore, if L is a generic element of Im(cl
′

L0
(Z)) (or, it is the image by sL0

of

a generic element Lim
gen of Im(cl

′

(Z))) then

(7.1.1) codim Im(cl
′

L0
(Z)) = dim H1(L0)/Im(δ̄0L) = h1(Z,L0 ⊗ L).

This fact fully motivates the next point of view: if one wishes to study h1(Z,L0 ⊗L) with L0 fixed

and L ∈ Picl
′

(Z) then — as a tool — the right Abel map is the L0–projected cl
′

L0
(Z).

7.2. The cohomology h1(Z,L0⊗L). Using the exact sequenceH0(OD) → H1(OZ)
s
→ H1(Z,L) →

0 and h0(OD) = (l′, Z) we obtain the inequality h1(Z,L) ≥ h1(OZ)− (l′, Z). Usually it is not sharp,

since δ0L might not be injective. However, as in the prototype construction from section 6 (and even

in its preceding sections), if we consider any Z1 ≤ Z then we also have h1(Z,L) ≥ h1(Z1,L) ≥

h1(OZ1
) − (l′, Z1), hence h1(Z,L) ≥ maxZ1≤Z{h

1(OZ1
) − (l′, Z1)}, and, remarkably, this for the

generic Lim
gen ∈ Im(cl

′

(Z)) is an equality (cf. (4.1.11)).

Similarly, using the exact sequence H0(OD) → H1(Z,L0)
s
→ H1(Z,L0 ⊗ L) → 0 we obtain

h1(Z,L0 ⊗L) ≥ h1(L0)− (l′, Z). Again, this usually is not sharp. However, by the same procedure,

(7.2.1) h1(Z,L0 ⊗ L) ≥ max
0≤Z1≤Z

{h1(Z1,L0)− (l′, Z1)}.

In the next section (cf. Corollary 8.2.4) we will prove that this is again an equality for the generic

L = Lim
gen ∈ Im(cl

′

L0
(Z)). (The above inequality (7.2.1) can be compared with (5.3.1) as well.)

7.3. Compatibility with Laufer duality and differential forms. Consider the perfect pairing

〈 , 〉 : H1(OZ) ⊗H0(Ω2
X̃
(Z))/H0(Ω2

X̃
) → C from 2.4.2, see alo [NN18a]. Once we fix D0 = div(s0)

of certain s0 ∈ H0(Z,L0)reg, we can define ΩZ(D0) := (Im(δ0L0
))⊥ ⊂ H0(Ω2

X̃
(Z))/H0(Ω2

X̃
). It is

generated by forms which vanish on the image of the tangent map TD0
cl

′
0(Z), identified with δ0L0

,

cf. 2.4.7 and (2.4.9). The pairing 〈 , 〉 induces a perfect pairing 〈 , 〉L0
: H1(Z,L0) ⊗ ΩZ(D0) → C,

see also Theorem 2.4.8.

7.4. The G–filtration of ΩZ(D0) = H1(L0)
∗. Consider the situation and notations of Definition

2.4.12; in particular, Gl = H0(Ω2
X̃
(l))/H0(Ω2

X̃
) for any 0 < l ≤ Z. In the presence of L0 =

OZ(D0) as above, we have the subspace ΩZ(D0) = (Imδ0)⊥ ⊂ H0(Ω2
X̃
(Z))/H0(Ω2

X̃
), and the

induced perfect pairing 〈 , 〉L0
: H1(Z,L0) ⊗ ΩZ(D0) → C. Similarly, for any 0 < l ≤ Z, we have

the analogues data Ωl(D0) = (Im(δ0|l))⊥ ⊂ H0(Ω2
X̃
(l))/H0(Ω2

X̃
), and the induced perfect pairing

〈 , 〉L0|l : H
1(l,L0)⊗ Ωl(D0) → C. One has the following inclusions inside H0(Ω2

X̃
(Z))/H0(Ω2

X̃
)

Ωl(D0) −→ ΩZ(D0)

↓ ↓

Gl −→ H0(Ω2
X̃
(Z))/H0(Ω2

X̃
)

and, in fact, Ωl(D0) = ΩZ(D0) ∩ Gl. Hence {Ωl(D0)}l = {ΩZ(D0) ∩ Gl}l filters ΩZ(D0). Moreover,

by 〈 , 〉L0|l , one has dim ΩZ(D0) ∩ Gl = dim Ωl(D0) = h1(l,L0).
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7.5. Dimensions/Notations. The dimension of Im(cl
′

L0
(Z)) is denoted by dL0,Z(l

′).

If AZ(l
′) is the smallest affine space which contains Im(cl

′

(Z)) in Picl
′

(Z), then sL0
(AZ(l

′)) is

the smallest affine space which contains Im(cl
′

L0
(Z)). We denote it by AL0,Z(l

′) and its dimension

by eL0,Z(l
′). From definitions dL0,Z(l

′) ≤ eL0,Z(l
′).

In the next section we provide two algorithms for the computation of dL0,Z(l
′), the analogues of

the algorithms from Theorems 3.2.2 and 4.1.2.

8. L0–projected versions of the algorithms

8.1. The setup. Let us fix (X, o), a good resolution X̃, Z ≥ E and l′ ∈ −S ′. We also fix a line

bundle L0 as in section 7, whose notations we will adopt. In order to estimate dL0,Z(l
′) we proceed

as in sections 3 and 4. In particular, we perform the modificatiosn πs : X̃s → X̃, and we adopt the

notations of 3.2 as well. By the generic choice of the centers of blow ups we can assume that they differ

from the support of D0. Notice that we have a natural identification between H1(OZ) and H1(OZs
),

and also between H1(O∗
Z) and H1(O∗

Zs

). Furthermore, we denote the divisor π−1
s

(D0) on X̃s still by

D0 (basically unmodified), and the line bundle OZs
(D0) still by L0. Then we have the identification

of H0(Z,OD) with H0(Zs,OD), and also H1(Z,L0) ≃ H1(Zs,L0) and H1(Z,L∗
0) ≃ H1(Zs,L∗

0)

(hence identifications of the corresponding commutative diagrams from 7.1 as well). The subspace

ΩZs
(D0) in H1(OZs

)∗ = H1(OZ)
∗ is also ‘stable’ of dimension h1(Z,L0).

Write dL0,s and eL0,s the corresponding dimensions associated with X̃s defined as in 7.5. Then

dL0,s ≤ eL0,s. If s = 0 then dL0,0 = dL0,Z(l
′) and eL0,0 = eL0,Z(l

′).

Theorem 8.1.1. (1) dL0,s−dL0,sv,k ∈ {0, 1}. Moreover, dL0,s = dL0,sv,k if and only if for a generic

point L̄ ∈ Im(c
l′
s

L0
(Zs)) the set of divisors in (c

l′
s

L0
(Zs))

−1(L̄) do not have a base point on Fv,k,sv,k .

(2) If for some fixed s the numbers {dL0,sv,k}v,k are not the same, then dL0,s = maxv,k{ dL0,sv,k}.

In the case when all the numbers {dL0,sv,k}v,k are the same, then if this common value dL0,sv,k equals

eL0,s, then dL0,s = eL0,s = dL0,sv,k ; otherwise dL0,s = dL0,sv,k + 1.

Proof. (1) Assume first that either sv,k ≥ 1 or av = 1. Then divisors from ECal
′
s(Zs) intersect

Fv,k,sv,k by multiplicity one, hence the intersection (supporting) point gives a map q : ECal
′
s(Zs) →

Fv,k,sv,k , which is dominant. Moreover, ECal
′

s
v,k (Zsv,k) is birational with a generic fiber of q (the fiber

over the point which was blown up), hence the first statement follows. Note also that dL0,s = dL0,sv,k

if and only if the generic fiber of the L0–projected Abel map c
l′
s

L0
is not included in a q–fiber. This

implies the second part of (1).

If sv,k = 0 and av > 1 then write l′− := l′
s
−E∗

v and consider the ‘addition map’ s : ECaE
∗
v (Zs)×

ECal
′
−(Zs) → ECal

′
s(Zs), which is dominant and quasifinite (cf. [NN18a, Lemma 6.1.1]). Let

q : ECaE
∗
v (Zs) → Ev be given by the supporting point as before. Then if q−1(gen) is a generic fiber

of q (above the point which was blown up), then the restriction of s to q−1(gen)× ECal
′
−(Zs) with

target ECal
′

s
v,k (Zsv,k) is dominant and quasifinite. Hence the arguments can be repeated.

(2) First notice that if the numbers {dL0,sv,k} are not the same then from (1) we have dL0,s ≤

minv,k dL0,sv,k + 1 ≤ maxv,k dL0,sv,k ≤ dL0,s, hence dL0,s = maxv,k dL0,sv,k .

Next, assume that the numbers {dL0,sv,k} are the same, say d.

If dL0,s = d then part (1) reads as follows: dL0,s = dL0,sv,k for all v and k if and only if for a

generic L̄ ∈ Im(c
l′
s

L0
(Zs)) the set of divisors in (c

l′
s

L0
(Zs))

−1(L̄) do not have a base point on any of

the curves {Fv,k,sv,k}v,k.

Let us choose a generic element L̄ ∈ Im(c
l′
s

L0
(Zs)), which is in particular a regular value of c

l′
s

L0
(Zs)

and the generic divisors in ECal
′
s(Zs) mapped to L̄ are in fact generic divisors of ECal

′
s(Zs) itself.
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Next, take an element in ΩZs
(D0) (for details see 7.3) represented by a form ω, such that the

class of ω vanish on TL̄Im(c
l′
s

L0
(Zs)).

Then choose a generic D from ECal
′
s(Zs), which is mapped to L̄ and which has no common points

with the support of ω (we can even assume additionally that it is transversal and reduced). Then

we apply the previous statements for L̄ := c
l′
s

L0
(Zs)(D).

In particular, the class of ω vanish on Im(TDc
l′
s

L0
(Zs)) so ω cannot have pole along any of the

curves {Fv,k,sv,k}v,k, that is, it belongs to ΩZs
(Is), cf. Theorem 2.4.8 and Lemma 2.4.10. Hence

dL0,s = eL0,s, cf. Lemma 3.1.3, and also d = eL0,s too.

On the other hand if d = eL0,s, then from dL0,sv,k ≤ dL0,s ≤ eL0,s we get d = dL0,s. Hence

dL0,s = d if and only if d = eL0,s. Otherwise dL0,s should be d+ 1 by (1). �

8.2. Notations for the second algorithm. Consider the setup of 4.1 and combine it with the one

from 8.1, where L0 enters in the picture. Accordingly, we have the following subspaces (inclusions):

ΩZs
(D0) ∩ Gls → ΩZs

(D0) ∩ ΩZs
(Is)

j
−→ ΩZs

(D0) = H1(Z,L0)
∗

↓ ↓ ↓

Gls → ΩZs
(Is)

i
−→ H0(Ω2

X̃s

(Zs))/H
0(Ω2

X̃s

) = H1(OZ)
∗

The codimension of the inclusion i is es and the dimension of Gs is gs providing the inequality

es ≤ h1(OZ) − gs. Similarly, the codimension of j is eL0,s and the dimension of ΩZs
(D0) ∩ Gls will

be denoted by gL0,s providing the inequality eL0,s ≤ h1(Z,L0)− gL0,s. Hence

(8.2.1) dL0,s ≤ eL0,s ≤ h1(Z,L0)− gL0,s.

It is conveninent to lift the s–independent subspace ΩZs
(D0) = ΩZ(D0) of H

0(Ω2
X̃
(Z))/H0(Ω2

X̃
) as

Ω
X̃
(D0) := π−1(ΩZ(D0)) by the projection π : H0(Ω2

X̃
(Z)) → H0(Ω2

X̃
(Z))/H0(Ω2

X̃
).

Theorem 8.2.2. (1) dL0,s − dL0,sv,k ∈ {0, 1}.

(2) If for some fixed s the numbers {dL0,sv,k}v,k are not the same, then dL0,s = maxv,k{ dL0,sv,k}.

In the case when all the numbers {dL0,sv,k}v,k are the same, then if this common value dL0,sv,k equals

h1(Z,L0)− gL0,s, then dL0,s = h1(Z,L0)− gL0,s = dL0,sv,k ; otherwise dL0,s = dL0,sv,k + 1.

Proof. Part (1) was already proved in Theorem 8.1.1. Regarding part (2), if the numbers {dL0,sv,k}

are not the same then we argue again as in the proof of Theorem 8.1.1.

Next, assume that the numbers {dL0,sv,k} are the same, say d. Via (8.2.1) and the first algorithm

Theorem 8.1.1 we need to show that if d = eL0,s then necessarily d = h1(Z,L0) − gL0,s as well.

However, if d = eL0,s then we have eL0,s = dL0,sv,k for all (v, k), hence by (8.2.1) we get eL0,s = d =

dL0,sv,k ≤ eL0,sv,k . But eL0,s ≥ eL0,sv,k by the combination of the argument from (3.2.1) and the

diagram from 8.2. Hence, dL0,sv,k = eL0,s for all k and v implies eL0,sv,k = eL0,s for all v and k.

In particular, it is enough to verify the (stronger statement):

(8.2.3) if eL0,sv,k = eL0,s for all v and k then eL0,s = h1(Z,L0)− gL0,s as well.

Assume that (8.2.3) is not true, that is, eL0,sv,k = eL0,s for all v and k, but eL0,s < h1(Z,L0)−

gL0,s. The last inequality via the diagram from 8.2 says that the inclusion ΩZs
(D0)∩Gls ⊂ ΩZs

(D0)∩

ΩZs
(Is) is strict. This means, that there is a differential form ω ∈ Ω

X̃
(D0), with class [ω] in

H0(Ω2
X̃
(Z))/H0(Ω2

X̃
) ⊂ H0(X̃ \ E,Ω2

X̃
)/H0(X̃,Ω2

X̃
), such that ω does not have a pole along the

exceptional divisor Fv,k,sv,k , however [ω] /∈ Gs. In particular, there exists a vertex v ∈ |l′|, such that

the pole order of ω along Ev is larger than (ls)v. Notice that this also means (ls)v = min1≤i≤av
sv,i <

Zv.
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Let 1 ≤ i ≤ av be an integer such that sv,i = (ls)v (abridged in the sequel by t) and we denote

the order of vanishing of ω on an arbitrary exceptional divisor Eu by bu, where u is an arbitrary

vertex along the blowing up procedure. Next we focus on the string between v and wv,i,sv,i and we

denote them by v0 = v, . . . , vt = wv,i,sv,i . Set r := min{0 ≤ s ≤ t : bvs + t − s ≥ 0}. Since for

s = t one has bvt ≥ 0 (since ω has no pole along Fv,i,sv,i ) r is well–defined. On the other hand we

have r ≥ 1. Indeed, bv0 + t < 0, since pole order of ω along Ev is higher than (ls)v = t. Note that

bvr−1
+ t− r + 1 < 0 and bvr + t− r ≥ 0 imply bvr − bvr−1

≥ 2 (†).

Let X̃ ′ be that resolution obtained from X̃, as an intermediate step of the tower between X̃ and

X̃s, when in the (v, i) sequence of blow ups we do not proceed all sv,i of them, but we create only

the divisors {Fv,i,k}k≤r−1. Let V ′ be its vertex set and {Eu}u∈V′ its exceptional divisors. On X̃ ′

consider the line bundle L := Ω2
X̃′

(−
∑

u∈V′ buEu). Since Fv,i,vr was created by blowing up a generic

point p of Evr−1
= Fv,i,vr−1

, the existence of ω guarantees the existence of a section s ∈ H0(X̃ ′,L),

which does not vanish along Evr−1
and it has multiplicity m := bvr − bvr−1

− 1 at the generic point

p ∈ Evr1 . By (†) m ≥ 1. By construction, ω (or s) belongs also to the subvectorspace Ω
X̃
(D0) after

certain identifications.

Now by the technical Lemma 9.1.1 (valid for general line bundles, and separated in section 9) for

any 0 ≤ k < m and a generic point p ∈ Evr−1
there exists a section s′ ∈ H0(X̃ ′,L), which does

not vanish along the exceptional divisor Evr−1
, and the divisor of s′ has multiplicity k at p. We

apply for k = −(bvr−1
+ t − r + 1) − 1. (Note that 0 ≤ k < m.) The section s′ gives a differential

form ω′ ∈ Ω
X̃
(D0), such that if we blow up Evr−1

in the generic point p and we denote the new

exceptional divisor by Evr,new
, then ω′ has wanishing order −(t − r + 1) on Evr,new

. This means,

that if we blow up it in generic points t− r+1 times, then ω′ has a pole on Evt,new
, but has no pole

on Evt+1,new
. This means that eL0,sv,i 6= eL0,s, which is a contradiction. �

The analogues of Corollaries 4.1.3 and 4.1.5 (with similar proofs) are:

Corollary 8.2.4. For any l′ ∈ −S ′, Z ≥ E and L0 with H0(Z,L0)reg 6= ∅ one has

dL0,Z(l
′) = min

s

{ |s|+ h1(Z,L0)− gL0,s } = min
0≤Z1≤Z

{ (l′, Z1) + h1(Z,L0)− h1(Z1,L0)}.

This combined with (7.1.1) gives for a generic Lim
gen ∈ Im(cl

′

(Z)):

h1(Z,L0 ⊗ Lim
gen) = max

0≤Z1≤Z
{ h1(Z1,L0)− (l′, Z1)}.

Example 8.2.5. This is a continuation of Example 4.1.8 (based on [NN18a, §11]), whose notations

and statements we will use. Assume that Z ≫ 0 and l′ = −kE∗
0 as in 4.1.8. Additionally we

take a generic line bundle L0 with c1(L0) = l′0 = −k0E
∗
0 , k0 ≥ 0, (hence D̃0 consists of k0 generic

irreducible cuts of E0). Recall that H0(Ω2
X̃
(Z))/H0(Ω2

X̃
) admits a basis consisting of elements

of type xmω, where ω is the Gorenstein form and 0 ≤ |m| ≤ d − 3. Each ‘block’ {|m| = j}

(0 ≤ j ≤ d − 3) (which can be identified with H0(P2,O(j))) contributes with
(
j+2
2

)
monomials.

The k0 generic divisors impose min{k0,
(
j+2
2

)
} independent conditions (see [NN18a, 11.2] for the

explication), hence the block {|m| = j} (0 ≤ j ≤ d− 3) contributes into dimΩZ(D0) = h1(L0) with(
j+2
2

)
−min{k0,

(
j+2
2

)
} = max{0,

(
j+2
2

)
− k0}. In particular, h1(L0) =

∑d−3
j=0 max{0,

(
j+2
2

)
− k0} and

h1(L0)− gL0,s =
∑d−3−s

j=0 max{0,
(
j+2
2

)
− k0} (0 ≤ s ≤ d− 2). Therefore,

dL0,Z(−kE∗
0 ) = min

0≤s≤d−2

{
ks+

d−3−s∑

j=0

max
{
0,
(
j+2
2

)
− k0

}}
.
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However, if L0 = OZ(D0) is not generic, then the points D0 might fail to impose independent

conditions on the corresponding linear systems, and the determination of the dimsnion of ΩZ(D0)

can be harder. See [NN18a, 11.3] for discussion, examples and connection with the Cayley–Bacharach

type theorems (cf. [EGH96]). Those discussions with combined with the present section produces

further examples for dL0,Z(l
′) whenever D0 is special (and (X, o) is superisolated).

9. Appendix 2. A technical lemma

9.1. The next lemma is used in the body of the article, however, it might have also an independent

general interest.

Lemma 9.1.1. Let X̃ be an arbitrary resolution of a normal surface singularity (X, 0). Let us fix

an arbitrary line bundle L ∈ Pic(X̃) with c1(L) = l′ ∈ −S′, an irreducible exceptional curve Ev, and

an integer m > 0.

Assume that there exists a sub-vectorspace V ⊂ H0(X̃,L) with the following property: for a

generic point p ∈ Ev there exists a section s ∈ V such that s does not vanish along Ev and the

multiplicity of the divisor of s at p ∈ Ev is m. Then for any number 0 ≤ k ≤ m and a generic point

p ∈ Ev there exists a section s ∈ V such that s does not vanish along Ev and the multiplicity of the

divisor of s at p ∈ Ev is k.

Proof. By induction we need to prove the statement only for k = m− 1.

First we fix a very large integer N ≫ m, and consider the restriction r : H0(X̃,L) → H0(NEv,L).

Then r induces a map from H0(X̃,L)reg := H0(X̃,L) \ H0(X̃,L(−Ev)) to H0(NEv,L)reg :=

H0(NEv,L) \H0((N − 1)Ev,L(−Ev)). Denote its restriction H0(X̃,L)reg ∩ V → H0(NEv,L)reg ∩

r(V ) by rV . Consider also the natural map div : H0(NEv,L)reg → ECal
′

(NEv), and the com-

position map div ◦ rV = g : H0(X̃,L)reg ∩ V → ECal
′

(NEv), which sends a section to its divisor

restricted to the cycle NEv.

Next, for any p ∈ E0
v := Ev \∪u6=vEu set Dm,p ⊂ ECal

′

(NEv), the set of divisors with multiplicity

m at p. (Since N ≫ m this notion is well–defined). Set also Dm := ∪pDm,p.

By the assumption, the image of g intersects Dm,p for any generic p. Since Dm is constructible

subvariety of ECal
′

(NEv), g
−1(Dm) is a nonempty constructible subset of H0(X̃,L)reg ∩ V . Define

an analytic curve h0 : (−ǫ, ǫ) → g−1(Dm) such that its image is not a subset of some g−1(Dm,p).

Let us denote the zeros of the section h0(0) along E0
v by {p1, . . . , pr}. Then there exists a small

neighborhood U of one of the points pi and a restriction of h0 to some smaller (−ǫ′, ǫ′), such that

for any t ∈ (−ǫ′, ǫ′) the restriction of h0(t) to U has a unique zero, say p(t), and its multiplicity is

m. Furthermore, t 7→ p(t), (−ǫ′, ǫ′) → U ∩ E0
v is not constant, hence taking further restrictions to

some interval we can assume that t 7→ p(t) is locally invertible. Reparametrising h0 by the inverse of

this map, we obtain an analytic map U ∩ E0
v → g−1(Dm), t 7→ h(t) such that the restriction of the

section h(t) to some local chart U has only one zero, namely t, and the multiplicity of the section

at t is m. In some local coordinates (x, y) of U (with U ∩ Ev = {y = 0}) the equation of h(t) has

the form (modulo yN )

(9.1.2) h(t) =
∑

j≥0,i≥0

(x− t)jyicj,i(t),

where by the multiplicity condition cj,i ≡ 0, if j+i < m and, there is a pair (j, i), such that j+i = m

and cj,i(t) 6≡ 0. Moreover, by the non–vanishing condition y 6 |h(t), or, cj,0(t) 6≡ 0 for some j.

We claim that there is a generic choice of t1, . . . , tr (for some large r) of t–values, and a convenient

choice of the coefficients {αl}rl=1 such that s :=
∑r

l=1 αlh(tl) satisfies the requirements. Indeed, first
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we consider the Taylor expansion of h(t) in variables (x, y) at a point (x, y) = (q, 0) with q generic

(and modulo yN as usual):

∑

j,i

(x− q + q − t)jyicj,i(t) =
∑

j,i

j∑

k=0

(x− q)kyi
(
j

k

)
(q − t)j−kcj,i(t).

The fact that s at (q, 0) has multiplicity ≥ m− 1 transforms into a linear system

r∑

l=1

αl

( ∑

j≥k

(
j

k

)
(q − tl)

j−kcj,i(tl)
)
= 0

for any (k, i) with k, i ≥ 0 and k + i ≤ m − 2. This linear system LS(r,m − 2) with unknowns

{αl}rl=1 has matrix M(r,m − 2) of size r ×m(m − 1)/2. If r ≫ m(m − 1)/2 then the system has

a nontrivial solution. We need to show that for a generic choice of the solutions {αl}l the section

s has multiplicity m − 1 at q. Assume that this is not the case. Then the generic solution of the

system LS(r,m − 2) is automatically solution of LS(r,m − 1) too (the last one defined similarly).

This means that rankM(r,m− 2) = rankM(r,m− 1) (†) for generic {tl}l.

The matrix M(r,m− 1) has m additional rows corresponding to the indexes (k, i) with k, i ≥ 0

and k + i = m− 1. Let us fix one of them, corresponding to the following choice.

Now let d be the minimal number, such that there exists j, i such that i ≤ m− 1, j + i = d and

cj,i(t) is not identically 0. Since by assumption (by non–vanishing of h(t) along Ev) there exists

certain j ≥ m with cj,0 6≡ 0, such a d exists. Fix i0 such that i0 ≤ m−1, j0+ i0 = d and cj0,i0(t) 6≡ 0.

Then, from the additional rows of M(r,m− 1) we chose the one indexed by (m− 1− i0, i0).

Consider the minor of M(r,m−1) of size m(m−1)/2+1, whose last row is the row corresponding

to (m − 1 − i0, i0), and the other rows belong to M(r,m − 2), while the last column corresponds

to the generic tr = t. Then its determinant should be zero by (†). Expanded it by the last column

gives

∑

j≥m−1−i0

(
j

m− 1− i0

)
(q − t)j−m+1+i0cj,i0(t) =

∑

k,i≥0;k+i≤m−2

βk,i(q) ·
∑

j≥k

(
j

k

)
(q − t)j−kcj,i(t)

for some holomorphic functions βk,i(q). But such an identity cannot exist. Indeed, since cj0,i0 6≡ 0,

but cj,i0 ≡ 0 for any j < j0, the vanishing order of q − t at the left hand side is exactly d −m+ 1,

while on the right hand side — since j ≥ d − i (otherwise cj,i ≡ 0) and k ≤ m − 2 − i implies

j − k ≥ d−m+ 2 — we get vanishing order ≥ d−m+ 2.

Finally we need to show that this generic s does not vanish along Ev. This follows from a similar

argument as above, or one can proceed as follows. For any generic q consider a section s which has

multiplicity m − 1 at (q, 0). If it vanishes along Ev then s + h(q) does not vanish along Ev and it

has multiplicity m− 1 at (q, 0). �

Remark 9.1.3. We claim that under the assumptions of Lemma 9.1.1 the following property also

holds: For any finite set F ⊂ Ev there exists a section s ∈ V such that s does not vanish along Ev,

div(s) ∩ F = ∅, and at each each p ∈ div(s) ∩ Ev the intersection is transversal. Indeed, we can

use first Lemma 9.1.1 for k = 1 and then show that a generic combination of ‘moving’ sections of

multiplicity one works.
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