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THE DIMENSION OF THE IMAGE OF THE ABEL MAP
ASSOCIATED WITH NORMAL SURFACE SINGULARITIES

JANOS NAGY AND ANDRAS NEMETHI

ABSTRACT. Let (X, 0) be a complex normal surface singularity with rational homology sphere link
and let X be one of its good resolutions. Fix an effective cycle Z supported on the exceptional
curve and also a possible Chern class I/ € H2(X,Z). Define Ecal/(Z) as the space of effective
Cartier divisors on Z and ¢!’ (2): Ecal!' (Z2) — Pic!’ (Z), the corresponding Abel map. In this note
we provide two algorithms, which provide the dimension of the image of the Abel map.

Usually, dim Picl/(Z) = pg, dim Im(cl,(Z)) and codim Im(cl/(Z)) are not topological, they are
in subtle relationship with cohomologies of certain line bundles. However, we provide combinatorial
formulae for them whenever the analytic structure on X is generic.

The codim Im(cl/(Z)) is related with {h!(X, L)
family {h!(X, Lo ®L)} etme (2))
of the Abel map. The above algorithms are also generalized.

}L',Elm(cl,(Z)); in order to treat the ‘twisted’

we need to elaborate a generalization of the Picard group and

1. INTRODUCTION

1.1. Fix a complex normal surface singularity (X,0) and let X be one of its good resolutions.
We assume that the link of (X, 0) is a rational homology sphere. Denote by L the lattice Hs ()? ,Z)
(endowed with its negative definite intersection form), by L’ its dual lattice H2(X,Z) and by &' C L'
the Lipman cone of antinef cycles. The irreducible exceptional curves are denoted by {E, },cy, their
duals in L' by {E}}vev, E := U, E,. (For details see section [2]).

In [NN18a] for any effective cycle Z > E and Chern class I’ € —8’ the authors introduced
(based on [Gro62, K10, [KIT13]) and investigated the set of effective Cartier divisors ECa! (Z) and
the corresponding Abel maps ¢ (Z) : ECal,(Z) — Picl/(Z), where Picl,(Z) is the affine subspace of
the Picard group of line bundles over Z with Chern class I’. The image of the Abel map consists
of line bundles without fixed components. [NN18a] and follow-up articles contain several properties
of the Abel map, e.g. characterisation when it is dominant, or its relationship with cohomological
properties of line bundles. See [NN18D] and [NN19a] for the study in the case of generic and elliptic
singularities. In all these treatments the investigation of the image Im(c! (Z)) was extremely useful.
The main goal of the present article is the computation of dim Im(c! (Z)) and the deduction of
several new consequences. We consider these as necessary steps towards a long—term final goal: the
development of the Brill-Noether theory of normal surface singularities.

Though the dimension (I',Z) (and the homotopy type) of the connected complex manifold
ECa (Z) is topological (i.e. it depends only on the link, or on the lattice L), the dimension h!(Oy) of
the target affine space Pic!’ (Z) depends essentially on the analytic structure: if we fix the topological
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type (and Z), the cohomology group H'(Oy) usually depends on the chosen analytic structure sup-
ported by the fixed topological type. The same is true for both dim Im(c!' (Z)) and codim Im(c! (2)):
though (surprisingly) there is a topological characterisation of those cases when ¢! (Z)) is dominant,
oppositely, the cases e.g. when cl/(Z )) is a point or it is a hypersurface have no such topological
characterisations. In particular, both integers dim Im(c" (Z)) and codimIm(¢' (Z)) are subtle an-
alytical invariants. In fact, it turns out that codimIm(c' (Z)) equals h'(Z, L"), where £I% is a

generic line bundle from Im(c! (Z)). For more about such general facts regarding the Abel maps
(and also about several concrete examples) see [NN18al [NNT8D, [NNT9a].

Maybe it is worth to emphasize that in the case of the Abel map associated with a smooth pro-
jective curve the dimension of the image is immediate (for this classical case consult e.g. [ACGHS5]
[FT10]). This (and almost any other comparison) shows the huge technical differences between the
classical smooth curve cases and our situation (which, basically, is the Brill-Noether theory of a

non-reduced exceptional curve supported by the exceptional set of a surface singularity resolution).

1.2. The algorithms. In the body of the article we present two inductive algorithm for the com-
putation of dz(I') := dim Im(¢" (Z)). The induction follows a sequential blow up procedure starting
from the resolution X. Write —I/ = Y vey @B} € 8"\ {0} (hence each a, € Z>¢). Then, for every
v € V with a, > 0 we fix a, generic points on E,, say py,, 1 < k, < a,. Starting from each
Dok, We consider a sequence of blowing ups: first we blow up p, 1, and we create the exceptional
curve Fj, 1, .1, then we blow up a generic point of F,, i, 1 and we create F, , 2, and we do this, say,
Su.k, times (an exact bound is given in B2). We proceed in this way with all points p, 1, , hence
we get ZU a, chains of modifications. Hence, a set of integers s = {S, 1, }vev, 1<k, <a, Provides a
modification 7y : )W(s 5 X. In )?S we find the exceptional curves U,epEy U Uy i, Ut<t<s, p, Foko.t-

At each level s we set Zs :=7J(Z) and —lg:=3_, , Fy, o (in L'(Xs), where Iy i, 0 = E,). We
also write dg := dimIm(c’s(Zs)). Note that do = dz(I'), and it turns out that ds = 0 whenever the
entries of s are large enough. (Sometimes we abridge the pair (v, k,) by (v, k).)
In order to run an induction, for any s and (v, k) let s”* denote that tuple which is obtained
from s by increasing s, by one. The inductive algorithm compares ds with all possible dgo.x.
Using the fact (cf. the proof of Theorem BIT]) that ECale (Zgv.r) is birational with a codimen-

sion one subspace of ECalé(Zs), we obtain
(1.2.1) ds — dgu € {0,1}.

A very subtle part of the theory is to identify all those pairs (s,s"*), where the gaps/jumps occur
(that is, when the difference in (L2) is 0 or 1). The identification of such places carries a deep
analytic content (and even if in some cases it can be characterised topologically — e.g., in the case

of a generic analytic structure —, it might be guided by rather complicated combinatorial patterns).

Example 1.2.2. To create a good intuition for such a phenomenon, let us recall the classical case
of Weierstrass points. Let C' be a smooth projective complex curve of genus g and let us fix a point
p € C. For any s € Z>q consider £(s) := h(C,O¢(sp)). Then £(0) =1 and £(2g — 1+ k) =g+ k
for k > 0. Moreover, ¢(s) — (s — 1) € {0,1} for any s > 0. Those s values when this difference is 0
are called the gaps, there are g of them. For a generic point the gaps are {1,2,...,g}, otherwise p
is called a Weierstrass point. For Weierstrass point the set of gaps might depend on the choice of p

and on the analytic structure of C. The characterization of all possible gap—sets is still unsettled.

In order to characterize completely our gaps/jump places, we will use test functions. For such a

test function, say 7, we will require the following properties. Firstly, it is a function s — 75 € Z>o,
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such that ds < 75 for any s. Usually, 75 is defined by a weaker (more robust) geometric construction,
which approximates/bounds Im(cl/(Z)), and which hopefully is easier to compute. Secondly, tg

satisfies the following remarkable testing property formulated by the next pattern theorem.

Pattern Theorem. The sequence of integers ds are determined inductively as follows:

(1) dy — dyer € {0,1} (¢f. (@ZT)),

(2) if for some fized s the numbers {dgo.r }v i are not the same, then ds = max, p{dgv.x}. In the
case when all the numbers {dgv.r }y 1 are the same, then if this common value dgv,r equals Ts, then
ds = Ts = dgv.k; otherwise ds = dgv,x + 1.

More precisely, we wish to determine from the collection {dgu.x }, 1 the term ds (as a decreasing
induction). Using (1) this is ambiguous only if all this numbers are the same, say d. In this case dg
can be d or d + 1. Well, if the inequality (f) ds < 75 is not obstructed by the choice of ds = d + 1,
then this value is taken. Otherwise it is d. That is, dg is as large as it can be, modulo (1) and (}).

This can be an interesting procedure even if s is a l-entry parameter. E.g., in the case of
classical Weierstrass points, the inequality £(s) < 1+ [s/2] (valid for s < 2g — 1), given by Clifford’s
theorem, by this ‘maximal-testing procedure’ gives the sequence {1,1,2,2,...} for s > 0, with gaps
{1,3,...,2¢9 — 1}. In fact, in the case of hyperelliptic curves the Weierstrass points are the branch
points of the hyperelliptic projection and their gap—set is uniformly {1,3,5,...,2¢9 — 1}. (However,
for non—hyperelliptic curves we are not aware of the existence of a non-trivial test function.)

If the Pattern Theorem from above holds, then it turns out (see e.g. Corollary B2.4) that

ds = ming<z{[s — s| + 75} for any s. (Here [s| = 3", sy,.) In particular,
(1.2.3) dz(l') = do = min{|s| + 7s}.
0<s

Such type of formulas already appeared in the computation of dz(I’) for weighted homogeneous
singularities (and specific I') in [NNI8a|, case which lead us to the present general case. (The type
of formula, and also the conceptual approach behind, can also be compared e.g. with Pflueger’s
formula regarding the dimension of the Brill-Noether varieties of a generic smooth projective curve
C with fixed gonality, cf. [P16, [TR17].) Nevertheless, the approach of the testing function (and the
corresponding min-type close formulae) is the novelty of the present manuscript.

1.3. The testing functions for ds. Obviously, the above theorem is valuable only if 75 is essentially
different than dg and also if it is computable from other different geometrical behaviours. It is also
clear that not any upper bound ds < 75 satisfies the testing property (2): this is satisfied only for
bounds 7(s) with very structural relationship, symbiosis with the original ds. Hence it is not easy to
find testing functions, they must ‘testify’ about some deep geometric property: even the existence
of computable testing function(s) is really remarkable.

Our first test function is defined as follows. Consider again Z > E, I’ € -8’ associated with
a resolution X , as above. Then, besides the Abel map ' (Z) one can consider its ‘multiples’
{c"(Z)}n>1. Tt turns out that n — dimIm(c™ (Z)) is a non-decreasing sequence, Im(c™ (Z))
is an affine subspace for n > 1, whose dimension ez(l') is independent of n > 0, and essentially
it depends only on the E*-support of I (i.e., on I C V, where —I' =} _;a,E}; with all {a,}ver
nonzero). From construction dz(I’) < ez ('), however they usually are not the same. Furthermore,
ez(I') = ez(I) plays a crucial role in different analytic properties of X (surgery formula, h'(L)-
computations, base point freeness properties). For details see [NN18a] or subsections and [2.4]
here, especially definition B.I.T] and Theorem (and also the proof of Theorem B22)). Now, at
any step of the tower Xg one can consider this invariant ez, (L)), an integer denoted by es.
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Theorem B.27] (the ‘first algorithm’) guarantees that es is a testing function for ds.

The invariants {eg}s are still hard to compute (cf. ELT]). However, the first algorithm is a necessary
intermediate step for the second algorithm, valid for another testing function.

The advantage of the second testing function is that it is defined at the level of X only. It is
based on Laufer’s perfect pairing H 1((9 7z)®Gz — C, where Gz denoted the space of classes of forms
H(X, Q%(Z))/Ho(f(, Q%). Gz has a natural divisorial filtration {G;}o<i<z, where g is generated
by forms with pole < . Its dimension (via Laufer duality) is h'(O;). (For more see [NN18a] and 2.4
here.) Next, for any s define the cycle I € L of X by

lg == min{ Z min {s,x, } Ev, Z} e L.

1<k, <a
vey T

Set also gs := dim G;_ as well. It turns out (seeT]) that ds < es < h'(Oz)— gs. Usually, the equality
es = h'(Oz) — gs rarely happens, however, it happens whenever the testing property requires it!
Theorem EET.2 (the ‘second algorithm’) says that h'(Oz) — gs is a testing function for ds indeed.
The cases of superisolated singularities is exemplified.
The second algorithm has several consequences. E.g., a ‘numerical’ one, cf. (£1.0):
dz (') = OSHZliII%Z{ (', Z1)+h (Oz)—h' (Oz,) }, or, codimIm(c" (Z)) = OSI%{;DS(Z{ Y (Oz,)— (', Z1) }.
The cycles Z; for which the above minimum is realized have several additional geometric properties

(cf. Lemma [LTT4 and [42). In particular, such a Z; imposes the following conceptual consequence:

Structure Theorem for the image of the Abel map. Fizr a resolution )~(, a cycle Z > E and
a Chern class I € =8’ as above. Then there exists an effective cycle Zy < Z, such that: (i) the
map ECa’ (Z) — H(Zy) is birational onto its image, and (ii) the generic fibres of the restriction of
r, ™ I (Z)) — Im(d (Z1)), have dimension h*(Oz) — h*(Og,). In particular, for any such
71, the space Im(c"' (Z)) is birationally equivalent with an affine fibration over ECal,(Zl) with affine
fibers of dimension h*(Oz) — h*(Og,).

1.4. The case of generic analytic structure. In section B we prove that if X has a generic
analytic structure (in the sense of [[a73,[NNI8b]), and Z > F and I’ € —8’ then both dim Im(c! (Z))
and codimIm(¢!’ (Z2)) are topological. E.g., we have (where y is the usual Riemann-Roch expression):

(1.4.1) codimIm(c (2)) = OSH%Z{ —(,2Z1) = xX(Z1) + X(E|z,)) }.

The maximum at the right hand side is realized e.g. for the cohomology cycle of LI € Im(c" (2)) ©
pPic" (Z). Furthermore,

W(Z L) > max { — (', 2Z1)—x(Z1) +x(Ez)) }

T 0<Z1<Z

for any £ € Im(¢!' (Z)) and equality holds for generic Lim e Im(¢' (2)).

The identity (LZI), valid for a generic analytic structure of X, extends to an optimal inequality

valid for any analytic structure.

Theorem 1.4.2. Consider an arbitrary normal surface singularity (X, o), its resolution )?, Z>F
and ' € =8'. Then codimIm(c (Z)) = hY(Z, L)) satisfies

gen

(1.4.3) codimIm(¢ (2)) > Ogn%?%(z{ —(,Z) = x(Z1) + x(Ez,)) }

In particular, for any £ € Tm(c" (Z)) one also has

BN(Z,£) 2 N7, £im,) = codimTm(c" (7)) = max { = (', 71) = X(Z1) + X(Biz,) }
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The right hand side of (LZ3) is a sharp topological lower bound for codimIm(c! (Z)). The

inequality (LZ3) can also be interpreted as the semi-continuity statement
codim Im(c" (Z))(arbitrary analytic structure) > codimIm(c (Z))(generic analytic structure).

L.5. Generalization. Sections[[landBtarget generalizations of the previous parts, valid for {2'(Z, £)} setme ()5
to the shifted case, valid for {h!(Z, Lo®L)} petmer’ (z)» Where Lo € Picl (Z) is a fixed bundle without
fixed components. In order to run a parallel theory based on Abel maps, we have to create the new
Abel map c%O(Z) : ECal,(Z) — Pic%0 (Z), where Pic%0 (Z) is an affine space associated with the
vector space Pic%o(Z ) ~ HY(Z, Lo). (Pic%o(Z ) appears also as an affine quotient of the classical
Pic’ (Z) as well.) Section [ contains the definitions and the needed exact sequences. Section Bl

contains the extension of the two algorithms to this situation.

2. PRELIMINARIES

2.1. Notations regarding a good resolution. [N99b, [NO7| [N12, [NN1Ra] Let (X, 0) be the germ
of a complex analytic normal surface singularity, and let us fix a good resolution ¢ : X — X of

(X,0). Let E be the exceptional curve ¢~1(0) and U,y E, be its irreducible decomposition. Define
Er = ZUGI E, for any subset I C V.

We will assume that each F, is rational, and the dual graph is a tree. This happens exactly when
the link M of (X, 0) is a rational homology sphere.

L := H, ()? ,Z), endowed with a negative definite intersection form (, ), is a lattice. It is freely
generated by the classes of {E,},cp. The dual lattice is L' = Homy(L,Z) ={l' e L Q : (I',)L) €
Z}. Tt is generated by the (anti)dual classes {E*},cy defined by (E¥, Ey) = —dyw (Where 04, stays
for the Kronecker symbol). L is also identified with H2(X,Z), where the first Chern classes live.

All the E,—coordinates of any E are strict positive. We define the Lipman cone as &’ := {l’ €
L' : (I',E,) <0 for all v}. As a monoid it is generated over Z>q by {E}},.

L embeds into L’ with L'/L ~ H;(M,Z), abridged by H. Each class h € H = L’ /L has a unique
representative 75, € L’ in the semi-open cube {}° r,E, € L’ : r, € QN [0,1)}, such that its class
[Th] is h.

There is a natural (partial) ordering of L" and L: we write I] > 15 if I} — 15 =" r,FE, with all
ry > 0. Weset Lyg={l€ L :1>0}and Lyo = L>¢ \ {0}.

The support of a cycle | =Y n, E, is defined as |I| = Uy, 20 F,.

The (anti)canonical cycle Zx € L' is defined by the adjunction formulae (Zx, Ey) = (Ey, E,) +2
for all v € V. We write x : L’ — Q for the (Riemann-Roch) expression x(I') := —(I',l' — Zk)/2.

2.1.1. Natural line bundles. Let ¢ : (X,E) — (X,0) be as above. Consider the ‘exponen-
tial’ cohomology exact sequence (with H 1()~( , O}) = Pic(f( ), the group of isomorphic classes of
holomorphic line bundles on X, and Hl()z, Oz) = Pico()z))

(2.1.2) 0 — Pic®(X) — Pic(X) -5 H(X,Z) — 0.

Here ¢1(£) € H2(X,Z) = L is the first Chern class of £ € Pic(X). Since H!(M, Q) = 0, Pic’(X) ~
HY(X, O%) ~ CPs, where p, is the geometric genus. Write also Picl/()?) = ¢;*(I'). Furthermore,
see e.g. [O04, INO7], there exists a unique homomorphism (split) s; : L' — Pic(X) of ¢, that is
c1 051 = id, such that s; restricted to L is [ = Ox(l). The line bundles s;(I") are called natural line
bundles of X. For several definitions of them see [NO7]. E.g., £ is natural if and only if one of its
power has the form O () for some integral cycle | € L supported on E. In order to have a uniform

notation we write O (1’) for s1(I') for any I’ € L'.
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For any Z > E let Oz(l') be the restriction of the natural line bundle O (I’) to Z. In fact, Oz (')
can be defined in an identical way as O (l’) starting from the exponential cohomological sequence
0 — Pic’(Z) — Pic(Z) — H2(X,Z) — 0 as well. Set also Picl/(Z) = cilz(l').

2.2. The Abel map [NNI8a]. For any Z > FE let ECa(Z) be the space of (analytic) effective Cartier
divisors on Z. Their supports are zero—dimensional in E. Taking the line bundle of a Cartier divisor
provides the Abel map ¢ = ¢(Z) : ECa(Z) — Pic(Z). Let ECal,(Z) be the set of effective Cartier
divisors with Chern class I’ € L', i.e. ECal,(Z) = cil(Picl/(Z)). The restriction of ¢ is denoted by
' ECa (2) - Pic (2).

A line bundle £ € Pic" (Z) is in the image im(c!") if and only if it has a section without fixed
components, that is, if H(Z, £),eq # 0, where HY(Z, L),y := H°(Z, L)\U,H*(Z—E,, L(—E,)). By
this definition (see (3.1.5) of [NN1Ra]) ECa! (Z) # 0 if and only if —I' € &'\ {0}. It is advantageous
to have a similar statement for I’ = 0 too, hence we redefine ECa’(Z) as {0}, a set/space with one
element (the empty divisor), and ¢ : ECa®(Z) — Pic’(Z) by *(#) = O. In particular,

(2.2.1) HYZ, L)y #0 < L =0z < Lcim(c”) whenever ¢;(£) = 0.
Hence, the extended statement valid for any [’ is:
(2.2.2) ECa (2)£0 « —I'eS.

Sometimes even for £ € Pic" (X) we write £ € Im(¢!") whenever L] € Im(c!' (Z)) for some Z > 0.
This happens if and only if £ € Pic()? ) has no fixed components.
It turns out that ECa’ (Z) (=’ € &) is a smooth complex algebraic variety of dimension (I’, Z)

and the Abel map is an algebraic regular map. For more properties and applications see [NN18al,
INN18D).

2.2.3. The modified Abel map. Multiplication by Oz(—I’) gives an isomorphism of the affine
spaces Picl/(Z ) = Pic’(Z). Furthermore, we identify (via the exponential exact sequence) Pic’(Z)
with the vector space H'(Z,0y).

It is convenient to replace the Abel map " with the composition
! ! ! A = . ~
& ECa' (2) < Pid (2) O25) pic(2) = HY(Oy).

The advantage of this new set of maps is that all the images sit in the same vector space H'(Oz).

Consider the natural additive structure s'+2(Z) : ECal1(Z) x ECal2(Z) — ECal1*2(2) (I},1, €
—&’) provided by the sum of the divisors. One verifies (see e.g. [NN18a, Lemma 6.1.1]) that s'1'2(2)
is dominant and quasi-finite. There is a parallel multiplication Pic't (Z) x Piclé(Z) — Piclitt (2),
(Ly,L2) = L1 ® Lo, which satisfies it o gl = i @ e in Pichiti, This, in the modified case,
using Oz (I} +15) = Oz(1}) @ Oz(1y), reads as 1tz o shiole = &1 4 &2 in H(Oy).

Definition 2.2.4. For any I’ € =8’ let Az(I’) be the smallest dimensional affine subspace of H'(Oz)
which contains Im(¢"). Let Vz(I'), be the parallel vector subspace of H(Oy), the translation of
Az (") to the origin.

Forany I C V, I # 0, let (X7,07) be the multigerm X/Uyeny at its singular points, obtained by
contracting the connected components of UyecrE, in X. If I = () then by convention (X7, 07) is a

smooth germ.

Theorem 2.2.5. [NNI8al Prop. 5.6.1, Lemma 6.1.6 and Th. 6.1.9] Assume that Z > E.
(a) For any =" = 3" a,E}; € S let the E*—support of I be I(I") := {v : a, # 0}. Then Vz(I")
depends only on I(I"). (This motivates to write Vz(I") as Vz(I) where I = I(l’).)
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(b) Vz(Il U 12) = Vz(ll) + Vz(lg) and Az(lll + 112) = Az(lll) + Az(lé)
(¢) dimVz(I) = h'(Oz) — h'(Og,.,)-
(d) If L7 is a generic bundle of Tm(c") then h*(Z,Li7) = h'(Oz) — dim(Im(c")).

(¢) For n>> 1 one has Im(¢™') = Az (nl'), and h*(Z,L) = h(Oz) — dim V(1) = hl(OZ|V\I) for
any £ € Im(c™).

For different geometric reinterpretations of dim Vz(I) see also [NN18al §9].

2.3. Theorem 4.1.1 of [NN18a] says that ¢ (Z) is dominant if and only if y(—I') < x(—I' 4 1) for
any 0 < | < Z. In particular, the dominance of ¢! (Z) is a topological property. If ' (Z) is dominant
then ¢’ (Z’) is dominant for any 0 < Z' < Z.

2.4. Review of Laufer Duality [La72], [La77, p. 1281]. Following Laufer, we identify the dual
space H 1()? ,O5)* with the space of global holomorphic 2-forms on X \ E up to the subspace of
those forms which can be extended holomorphically over X.

For this, use first Serre duality H'(X,0¢)* ~ HY(X, Q% ). Then, in the exact sequence

0/v 02 0/v 02 0/ v 2 /v 02 1iv 02
0— HJ)(X,Q%) —» H'(X,Q%) - H'(X \ E,Q%) - H, (X, Q%) - H (X, Q%)

HS()?,Q%) = HQ()?,O);)* = 0 by dimension argument, while Hl()N(,Q?() = 0 by the Grauert—

Riemenschneider vanishing. Hence,
(2.4.1) HYX,0%)" ~ H(X,0%) ~ H*(X \ E,0%)/H°(X,0%).

2.4.2. Above HO(X \ E,Q%) can be replaced by HO()?,Q}(Z)) for a large cycle Z (e.g. for
Z > | Zk]). Indeed, for any cycle Z > 0 from the exacts sequence of sheaves 0 — Q% — Q% (Z) —
0z(Z + Kg) — 0 and from the vanishing hl(Q}) = 0 and Serre duality one has

(2.4.3) H(Q%(2))/H°(9%) = H(Oz(Z + Kg)) ~ H' (Oz)".
Since H'(Oz) ~ HY(O) for Z > | Zk ], the natural inclusion
(2.4.4) H(Q%(2))/H"(9%) — H(X \ E,Q%)/H(Q%)

is an isomorphism.

This pairing reduces to a perfect pairing at the level of an arbitrary Z > 0, cf. [NNIRa, 7.4].
Indeed, consider the above perfect pairing (-, ) : I{l()?, Oz)® HY(X \ E, Q%)/HO(QQXN) — C given
via integration of class representatives. In H'(X,Oz) let A be the image of H*(X,03(—2)),
hence H'(X,05)/A = H'(Oz). On the other hand, in HO(X \ E,Q%)/H°(Q%) consider the
subspace B := H%(Q%(Z))/H"(Q%) of dimension h'(Oz) (cf. @Z3)). Since (4, B) = 0, the
pairing factorizes to a perfect pairing H'(Oz) ® HO(Qi?(Z))/HO(Q}) — C. Tt can be described by

the very same integral form of the corresponding class representatives.

2.4.5. The linear subspace arrangement {V;(I)}; C H'(Oz) and differential forms. The
arrangement {Vz(I)}s transforms into a linear subspace arrangement of H°(Q%(2))/H°(Q%) via
the (Laufer) non—degenerate pairing H*(Oz) ® HO(Q} (Z))/HO(Qi?) — C as follows. Let Qz(I) be
the subspace HO(Q} (Z|V\1))/HO(Q§?) in HO(Q2X(Z))/HO(Q}), that is, the subspace generated by

those forms which have no poles along generic points of any E,, v € I.

Proposition 2.4.6. [NNI8al 8.3] Via Laufer duality Vz(I) = Qz(I)* = {z : (x,Qz(I)) = 0} for
Z > k.
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2.4.7. Furthermore, for any I’ € —&' \ {0} consider a divisor D € ECa! (Z ), which is a union of
(I', F) disjoint divisors { D; }Z, cach of them Oz-reduction of reduced divisors {D;}; of X intersecting
E transversally. Set D = U; D; and £ := ¢ (D) € H'(Oy). Write also Z = Y vy T

We introduce a subsheaf Q}( )regResD of Q}(Z) consisting of those forms w Wthh have the
property that the residue Res o (w) has no poles along D; for all <. This means that the restrictions
of Q% (Z)™#"*p and Q%(Z) on the complement of the support of D coincide, however along D
one has the following local picture. Introduce near p = EN D; = E,, N D, local coordinates
(u,v) such that {u = 0} = E and D; has local equation v. Then a local section of Q%(Z) in this
system has the form w = Zszrui,jzo ay ju*vidu A dv. Then, by definition, the residue Resp (w)
is (w/dv)y=0 = Y, ay,oufdu, hence the pole—vanishing reads as ay,o = 0 for all k < 0. Note that
Q% (Z — D) and the sheaf of regular forms Q% are subsheaves of Q% (Z)r#"*p.

Set Qz(D) := HO(X, Q% (Z)"#"*p) /H(X, Q% ). This can be regarded as a subspace of H'(O0z)* =
HO(X,0%(2))/H(X, 0%).

Theorem 2.4.8. [NNI8al Th. 10.1.1] In the above situation one has the following facts.

(a) The sheaves Q%(Z)regReSB /Q} and Oz(K g + Z — D) are isomorphic.

(b) H'(Z,L)* ~ Q,(D).

(¢) The image (TDa(TDECal,(Z)) of the tangent map at D of ¢ : ECal,(Z) — HY(Ogz) is the
intersection of kernels of linear maps Trw : TeHY(O4) — C, where w € HO(X, Q?{ (Z)resResp)

If I is the E*—support of I (that is, D intersects E exactly along Uye 7 E, ), then Qz(I) CQz(D) C
H'(Oz)*. Dually, via Proposition and Theorem ZZ8(c) (and up to a linear translation of

m(Tp?))
(2.4.9) (Tpe)(TpECa (2)) = Qz (D) € Qz(I)*" =V (I) Cc H'(Oy).

Let us fix a point p € E and a local coordinate system (u,v) around p such that E = {u = 0},
of. B4 Fix also some w € HO(X, Q} (Z)) which has pole of order o > 0 at the exceptional divisor
in E containing p. We say that (the divisor of) w has no support point at p if it can be represented

locally as (o(u, v)/u®)du A dv with ¢ holomorphic and ¢(0,0) # 0. The other points are the support
points denoted by supp(w).

Lemma 2.4.10. Fiz w € HO()?,Qiz(Z)) such that there exists a point p € E,, a local divisor
151 in X with the following properties: (a) 151 is part of certain D = 151 + 152, such that 151 N
E=DNE, =p¢ DyUsupp(w), and (b) D is a lift of D € ECal/(Z), and the class of w in
HY(X, Q%(Z))/HO()?, 0% ) restricted on ImTpd (Z) is zero. Then w has no pole along E,,.

Proof. Assume that w has a pole of order o > 0 along E,. Fix some local coordinated (u,v) at
p := D1 N E, such that w locally is du A dv/u® and Dy is {g(u,v) = 0}. A deformation g;(u,v) of

g produces a tangent vector in TDECal/(Z ) and the action of w on it is given by (for details see

[NN18al 7.2])
(u,v)  du A dv

d g
2.4.11 —’ / log :
( ) dt lt=0 [ul=e, [v]|=e g(u,v) u?

Hence if we realize a deformation g; for which the expression from (ZZTI) is non—zero, we get a

contradiction. Note that g necessarily has the form cv* + Y onsr CaV" Fuh(u,v) = cvk 4+ h' for some
k>1,¢,eC and c € C*. Then set g; = c(v — tu®~1)* 4 ', Then the t-—coefficient of the integrant
is kdundv () _ wk + (cuk)Q —+++), hence ([24I]) is non-zero. a

uv
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Definition 2.4.12. Additionally to the linear subspace arrangement {Qz(I)}r C H°(Q%(2))/H°(Q%) ~
HY(Oz)* we consider a more subtle object, a filtration indexed by I € L, 0 < | < Z as well,
called the multivariable divisorial filtration of forms. Indeed, for any such [ we define G; :=
HO(Q%(1)/HO(Q%) € H*(Q%(2))/H°(Q%), equivalent to H'(O;)* — H'(Oz)*, dual to the nat-
ural epimorphisms H*(Oz) — H'(QO;). In particular, G; ~ H'(0;)*. G, is generated by forms with
pole < [. In particular, Go = 0, Gz is the total vector space, G, C G, whenever [; < [y, and

G, NG1, = Gmin{iy 12} -

Note that if [ = ngl ro B2, and all v, > 0 then Ging,z) = Qz(1).

3. THE FIRST ALGORITHM FOR THE COMPUTATION OF dimIm(¢ (Z))
3.1. Wefix Z> F and I’ € =8’ as above.

Definition 3.1.1. For any I’ € —S§’ with E*—support I ( C I C V) we set the following notations:
ez(l') = ez(I) := dim Vz(I') = dim V(1) and dz(I') := dim Im(¢" (Z)).

From definitions and Propositions and (see also (Z4.9))
dz (') < ez(I)

(3.1.2) N L ) )
62([) =h (Oz) —h (Oz‘v\j) =h (Oz) — dlmﬂz(l)

Usually dz(I') # ez (l'). Next statement provides a criterion for the validity of the equality.

Lemma 3.1.3. Let ! € =S’ with E*-support I and Z > E. Assume that L is a reqular value
of & in Tm(") such that for any w € HO()?,Q%(Z)) there exists a section s € HO(L)yey such
that div(s) Nsupp(w) = 0. (This is guaranteed e.g. if the bundle L has no base points.) Then
Tr(Ime) = Az ("), hence dz(I') = ez(l').

Proof. Since L is a regular value, £ is a smooth point of Im(@") and TIm(&") = Im(Tpc") for any
D e (&)"Y(L) (cf. [NNIRal 3.3.2]). We have to prove that T Im(¢") = Az(I'); we prove the dual
identity in the space of forms, namely, (TzIm(¢ )+ = Qz(I) (see ZZT)).

Assume the contrary, that is, (TIm(¢" )+ # Qz(I). Since Qz(I) C (TeIm(¢" )+ (the duality
integral on Qz(I) x TeIm(&") is zero, cf. [NNISa, 7.2] or (ZZJ)) we get, that there is a form
w e (TeIm(@ )1\ Qz(I).

Next choose D € (¢/')~1(£) such that its lift D satisfies DNsupp(w) = 0. But w € (TeIm(& )+ =
(Im(Tpd )+ and w & Qz(I) contradict Lemma 210 O

In this section we provide an algorithm, valid for any analytic structure, which determines dz(1’) in
terms of a finite collection of invariants of type ez(I’), associated with a finite sequence of resolutions

obtained via certain extra blowing ups from X.

3.2. Preparation for the algorithm. Fix some resolution X of (X,0) and —I' = Y ovey W By €
S\ {0} (hence each a, € Z>(). In the next construction we will consider a finite sequence of blowing
ups starting from X. In order to find a bound for the number of blowing ups recall that for any
representative w in HO(X \ E, Q%)/Ho(f(, Q%) the order of pole of w along some E, is less than
or equal to the E,—multiplicity m, of max{0,|Zk]|} (see e.g. [NNI8al 7.1.3] or 24 here). Then,
for every v € V with a, > 0 we fix a, generic points on FE,, say py,, 1 < k, < a,. Starting
from each p, ;, we consider a sequence of blowing ups of length m,: first we blow up p, x, and
we create the exceptional curve F 1, 1, then we blow up a generic point of Fy , 1 and we create
F, 1, .2, and we do this all together m, times. We proceed in this way with all points p, 1, , hence we

get ZU a, chains of modifications. If a,m, = 0 we do no modification along FE,. A set of integers
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s = {Syk, JveV, 1<ky,<a, With 0 < s, < m, provides an intermediate step of the tower: in the
(v, ky) tower we do exactly s, , blowing ups; s, r, = 0 means that we do not blow up p, x, at all.
(In the sequel, in order to avoid aggregatmn of indices, we simplify k, into k.) Let us denote this
modification by 7y : X S5 X. In X we find the exceptional curves U,cp Ey, U Uy i Ut<t<s, , Fok.t;
we index the set of vertices as Vs := VU U, i U1<t<su . {wy kit At each level s we set the next
objects: Zs := 7i(Z), Is := Upp{Wo ks, .} —l5 ka o ks, . (in L., where Fy 0 = Ey),
ds := dimImc's(Zs) and e := ez, (Is) (both considered in X).

By similar argument as in (8.1.2)) one has again ds < e for any s.

From definitions, for s = 0 one has Ip = |I'|, eg = ez (') and do = dz(l).

There is a natural partial ordering on the set of s—tuples. Some of the above invariants are
constant with respect to s, some of them are only monotonous. E.g., by Leray spectral sequence one
has h'(Oz,) = h'(Oz) for all s. One the other hand,

(3.2.1) if s; <'sp then eg, = h'(Oz, ) —dimQyz, (Is,) > h'(Oz,,) — dimQz, (IL,) = es,

because Qz, (Is,) C Qz,, (Is,). In fact, for any w, the pole-order along F, j s, ,+1 of its pullback
is one less than the pole-order of w along F ks, .. Hence, for s = m (that is, when s, = m,, for
all v and k, hence all the possible pole-orders along I, automatically vanish) one has Qz_ (I;n) =
HY (X, Q%m (Zm))/HO(Q}m). Hence ey, = 0. In particular, necessarily dm = 0 too.

More generally, for any s and (v, k) let sV** denote that tuple which is obtained from s by increasing
Sy, by one. By the above discussion if no form has pole along F, 1, s then Qz_ (Is) = Qz_, (Igo.k ),
hence es = egu.x. Furthermore, by Laufer duality (or, integral presentation of the Abel map as in
[NNT8al §7]), under such condition ds = dgv.x as well.

Therefore, we can redefine es and ds for tuples s = {s, x}v 1 even for arbitrary s, > 0: es =
€min{s,m} and ds = din{sm} (and these values agree with the ones which might be obtained by the
first original construction applied for larger chains of blow ups).

The next theorem relates the invariants {ds}s and {es}s.

Theorem 3.2.2. (First algorithm) With the above notations the following facts hold.

(1) ds — dgox € {0,1}.

(2) If for some fized s the numbers {dgv.x }o 1 are not the same, then ds = max, i{ dgo.x }. In the
case when all the numbers {dgv.x }v 1 are the same, then if this common value dgvr equals es, then
ds = es = dgv.x; otherwise ds = dgv,i + 1.

The proof of Theorem together with the proof of Theorem (the ‘Second algorithm’)

from the next section will be given in a more general context in section

3.2.3. Theorem [3.2.2] is suitable to run a decreasing induction over the entries of s in order to

determine {ds}s from {es}s. In fact we can obtain even a closed—form expression.

Corollary 3.2.4. With the notations of Theorem [3Z2 one has ds = ming<z<m{[s — s| + ez} for
any 0 <s <m. (Here|s| =), , Sok,.) In particular,

N o o .
da(l) = do = min {l] + ca).

(By the end ofl3 A one also has ming<g<m{[S—s|+es} = ming<s{[s—s|+es} and ming<g<m{|s|+es} =

mingc{ls| + es}.)

Proof. By Theorem B.2.2)(1) for any S > s one has ds — dz < [s — s|, and by BI2)) ds < ez. These

two imply ds < [s — s| + e, hence ds < ming<z<m{[s — s| + eg}. Next we show that ds in fact
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equals [S — s| + eg for some S. The wished § is the last term of the sequence {s;}!_, constructed as
follows. Set sg :=s. Then, assume that s; is already constructed, and that there exists (v, k) such
that ds, = d(s,)».» + 1. Then set 8,11 := (s;)""* (for one of the choices of such possible (v, k)). This
inductive construction will stop after finitely many steps (since each ds > 0). But if ds, = d(s, ).k
for all (v, k), then by B2:2(2) ds, = es,. Hence es, = ds, = ds — |s¢ — s|. O

4. THE SECOND ALGORITHM FOR THE COMPUTATION OF dimIm(¢ (Z))

4.1. Preparation. The algorithm from the previous section determines the dimensions of the Abel
maps dz(I') in terms of a finite collection of invariants of type ez (1) associated with a finite sequence
of resolutions obtained via certain extra blowing ups from X. Though, in principle, ez (') is much
simpler than dz(I") (it is the ‘stabilizer’ of dz(l’)), the algorithm is still slightly cumbersome, it is
more theoretical, it is not easy to apply in concrete examples: one needs to know all the integers
{es}s, that is, cf. Proposition 2225 all the integers {hl(OZslvs\zs }s associated with the tower of
blowing ups. (However, it is a necessary intermediate step in the proof of the new algorithm).

The new algorithm is considerably simpler, e.g. it can be formulated in terms of the resolution
X (see also the comments below). It provides dz(I') in terms of the filtration {G;}; of 2—forms.

As a starting point, consider the construction from [32] For any s define the cycle Is € L of X by

lg :== min{ Z min  {s,x, } Ev, Z} e L.
VeV

1<ky<ay

Set Gs := G, and gs := dim Gs as well. Note that (via pullback) there is an inclusion G C Qz_(Is).
Indeed, if the pole order of certain w along F, is < s, j, then its pullback along F, j
pole. Hence gs < dimQz_(Is) = h'(Oz) — es too (cf. L2)). In particular,

has no

v5Sv,ky

(4.1.1) ds < es < hH(Oz) — gs.

However, in principle it can happen that for a certain w with even higher pole than I its pullback
is in Qz, (Is). E.g., if w in some local coordinates (u,v) of an open set U is vdu A dv/u® (and
UNE = {u = 0}) then its pullback via blowing up (once) at u = v = 0 has pole order o — 2. This
phenomenon can happen even if we blow up a generic point: imagine a family of forms w; with
‘moving divisor’, parametrized by t given by (v — t)du A dv/u°. Then, even if we blow up F at
a generic point u = v — ¢y = 0, in the family {w;}; there is a form w;, whose pole along F, is o
while its pullback has pole o — 2. Hence the equality of subspaces Gs C Qz_(Is), or of the equality
es = h1(Oz) — gs in principle is subtle and it is hard to test.

Note also that the invariant h'(Oz) — gs conceptually (and technically) is much simpler than es.
E.g., it depends only on v — ming, <4, {Suk, }, and it can be described via a cycle of X (namely
ls) instead of the geometry of the tower )~(5~ Nevertheless, via the next theorem, it still contains
sufficient information to determine dg, in particular dz(l’). In order to emphasize the parallelism
between the two algorithms we formulate them in a completely symmetric way (in particular, the

first parts are completely identical).

Theorem 4.1.2. (Second algorithm) With the above notations the following facts hold.

(1) ds — dgo,o € {0,1}.

(2) If for some fized s the numbers {dgv.r}o 1 are not the same, then ds = max, y{ dgv.x}. In the
case when all the numbers {dgv.x }, i are the same, then if this common value dgo,x equals h*(Oz)—gs,
then ds = h*(Oz) — gs = dgv.x; otherwise ds = dgur + 1.

For the proof see section 8
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Corollary 4.1.3. With the notations of [{-1] and of Theorem[{.1.3, for ' € —=S" and Z > E one has
(4.1.4) dz (") = min{ |s| + Y (Oz) — gs }-

The proof runs similarly as the proof of Corollary B.2.41
The formula [II7) can be rewritten in a different flavour.

Corollary 4.1.5. Forl' € =S’ and Z > E one has

A : l 1 _pl
(4.1.6) dz(l ) _OgnZlir%Z{ (l ,Zl)+h (Oz) h (Ozl)}
Proof. From 2412 gs = dim Gs = h'(O,,) and also |s| > > a,(ls)s = (I',1s), and 0 < I < Z, hence
ming{ [s| + A1 (Oz) — gs } > ming<z, <z{ (', Z1) + h*(Oz) — h'(Oz,) }. The opposite inequality is
also true since any such Z; can be represented as a certain ls with |s| = (I, ls). O

Example 4.1.7. (1) (cl/(Z) constant) For any 0 < Z; < Z one has (I, Z1) > 0 and h'(Oyz) >
h'(Oz,), hence dz(I") = 0 happens exactly when there exists Z; with (I, Z1)+h'(Oz)—h'(Oz,) = 0,
or, (I',Z1) = 0 and h'(Oz) = h'(Oz,). This means that Z; < Z|y\;, where I is the E*-support
of I, a fact which (together with h*(Oz) = h'(Og,)) implies h'(Oyz) = hl(OZ|V\I) too. Hence,
dz(I') = 0 if and only if h'(Oz) = h'(Og|,,,,). This is exactly the statement of [NN18al 6.3(v)].

(2) ¢ (Z) is dominant if and only if dz(I') = h'(Oy), hence, via @ILG), if and only if K (Oz,) <
(I, Zy) for any 0 < Z; < Z. This can be seen in a different way as follows. First, if ¢!’ (Z) is
dominant, then, for any 0 < 7; < Z, & (Zy) is dominant too, hence (', Z;) = dim(ECal/ (Z1)) >
dim(H(Og,)). Conversely, if (I',Z1) > h*(Oz,) and Z; > 0 then (I',Z1) — h(Oz,) > —h°(Oz,),
that is, x(—1I') < x(=I' + Z1), hence ¢!’ (Z) is dominant by [NNI8a, Thm. 4.1.1], cf. 23 here. Note
that the characterization 23] for dominant property is topological.

(3) By @LD) Im(c"' (Z)) is a hypersurface if and only if ming<z,<z{(l’, Z1) — h*(Oz,)} = —1.
Since h%(Oy,) > 1, this implies that y(—{’) = ming<;<z x(=I' +1).

The converse statement is not true: take e.g. a Gorenstein elliptic singularity with length of elliptic
sequence m + 1. (For elliptic singularities consult [N99, NNT9al [NNT9b]. For more on the Abel map
of elliptic singularities see [NN19a].) Set Z > 0 and —I’ = Z,,;n, the fundamental (minimal) cycle.
Then Im(cl/(Z)) =1 and h'(Z) = p, = m + 1. However, x(Zmin) = ming<i<z X(Zmin +1) = 0.
Therefore, if m = 1 then Im(c") is a hypersurface, but for m > 2 it is not. It is instructive to
consider with the same topological data (elliptic numerically Gorenstein singularity with m > 1,
Z >0, —I' = Zyin) the generic analytic structure. Then p, = 1 (cf. [Ca77, [NNI8B]) but Im(d (2))
is a point (this follows from part (1) too). Hence Im(c! (Z)) is a hypersurface for any m > 1. In
particular, the property that Im(¢' (Z)) is a hypersurface is not a topological property.

Example 4.1.8. (Superisolated singularities) Assume that (X,0) is a hypersurface superiso-
lated singularity whose link is a rational homology sphere. More precisely, (X, 0) = {F(z1, 22, 23) =
0}, where the homogeneous terms F; of F are as follows: {F; = 0} defines an irreducible ratio-
nal cuspidal curve in CP? and {F;;1 = 0} N Sing{F; = 0} is empty in CP2. (For details see
[Lu87, [LMNO5, [NN18a].) Consider the minimal good resolution and let Ey be the irreducible ex-
ceptional curve corresponding to C (the exceptional curve of the first blow up of the maximal
ideal). Assume that I’ = —kE{ for some k > 1 and Z > Zg. For any m = (mq,ma,m3) € Z?;O
write |[m| = 3 .m;. Then by the discussion from [NNI8al 11.2] one has the following facts:
pg = d(d—1)(d—2)/6 = #{m : |m| < d—3}, this is exactly the cardinality of the set of forms of type

x™w, where w is the Gorenstein form. The pole order of w along Ej is d — 2, and the vanishing order
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of x™ along Ey is |m|. {x™w}m constitute a basis in HO(Q}(Z))/HO(Q}). Hence, for 0 < s < d—2
one has g, = dimGyp, = #{m:d -2 — s < |m| < d — 3} and h'(Oz) — g, = (*3°). In particular,
* . d—s
dz(—kEj) = o {ks+ (“3°)}.
In [NN1IRa, 11.2] dz(—kE}) was computed in a different way as Z‘j;g min{k, ("1?)}. The identifi-

cation of the two numerical answers is left to the reader. (Use Z;:o (5 = (%%

Example 4.1.9. For weighted homogeneous germs (and I’ = —kEj, where Ej is the central
vertex of the star shaped graph) dz(l") was computed by a similar method in [NN18al, §12].

Remark 4.1.10. (1) In Theorems and (and Corollaries B2Z4] and as well) the
functions s — eg and s — h'(Oz) — gs serve as ‘test—functions’ “if this common value dgv.» equals
the test value, then dg = dgv.x, otherwise ds = dgv.x +17. Via this fact in mind, the second algorithm
is rather surprising: the test function for each fixed v depends only on s — ming<g,<a, Sv.k, = (Is)v,
hence does not depend on the number of integers {s, i, o<k, <a,, O, on a,. However, the final
output, namely ds (and the right hand side of (I.I4)) and the algorithm itself) do depend on I’. We
encourage the reader to work out the algorithm for an example when a, > 2 (say, for —I' = 2E%).

(2) Notice that the formulas ming(|s| + h'(Z) — gs) and mins(|s| + es) can be defined without any
restriction on the numbers g5 and es, however in our case these numbers are restricted. For example
we have mingss, (|s| — [s1] + h'(Z2) — gs) — min52511),k(|s > sV 4 11 (Z) — go) € {0,1} for all v, k, 5.
Or, gs < |s| for all s if and only if x(—1") < x(=U' +1) for all Z > 1 > 0 (cf. Example [.T.7(2)).

(3) (Bounds for codimImé (Z)) In some expression the codimension of Im(c!' (Z)) appears
more naturally. E.g., we have the following two general statements from [NN18al Prop. 5.6.1] (under
the conditions of Corollary T0):

(a) h'(Z, L) > codimIm(c" (Z)) for any £ € Im(¢" (Z)). Equality holds whenever £ is generic in
Im(c!' (2)).

(b) codimIm ¢’ (Z) > x(—I') — ming<;<z x(—I' + 1), and this inequality is strict whenever ¢! (Z)
is not dominant. (This can be compared with the discussion from Example [L1.7(3).)

Note that Corollary FET.0] reads as:

(4.1.11) codimIm(c (2)) = e, {hY0z) -, Z1)}.

4.1.12. Before we state the next theorem let us emphasise the obvious fact that for any 0 < Z; < Z
the natural restriction (linear projection) r : HY(Oz) — H(Og,) is surjective, hence for any
irreducible constructible subset C; C H'(Oyg,) one has dimr~1(Cy) — dim Cy = h'(Oz) — h'(Oz,).

However, though the restriction of 7 to Im(c!' (Z)) — Im(c" (Z,)) is dominant, in general dim Im(c"' (Z))
can be smaller than dim 7~ (Im(¢ (Z1))).

4.1.13. It is instructive to see that certain extremal geometric phenomenons (indexed by effective

cycles) are realized by the very same set of cycles.

Lemma 4.1.14. The following three sets of cycles coincide (for fited Z > E andl" € =8’ as above):
(I) the set of cycles Zy with 0 < Zy < Z realizing the minimality in {{.1.06), that is: dz(l') =
(', Z1) + h1(Oz) — h1(Og,).
(I1) the set of cycles Zy with 0 < Zy < Z such that (i) the map ECal,(Z) — HY(Z1) is birational
onto its image, and (ii) the generic fibres of the restriction of v, ™ : Im(c" (Z)) — Im(c! (Z1)),
have dimension h*(Oz) — h'(Ogz,). (That is, the fibers of r'™ have mazximal possible dimension.)
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(II1) the set of cycles Zy with 0 < Zy < Z such that for the generic element Lim ¢ Im(cll(Z))

gen

and arbitrary section s € H(Z1, L)) yeq with divisor D (i) in the (analogue of the Mittag-Lefler

gen

sequence associated with the exact sequence 0 — Oz, X5 Lim 5 Op 0, of. [NN18al 3.2]),

gen

0= H(Oz,) 2% HO(Zy, L) — @) 2y HYOy,) — hY (21, £57) = 0

gen gen

§ is injective, and (ii) h'(Z, L1 ) = hY(Z1, Lm).

gen gen

Proof. For (I)=(II) use the following. First recall that dim ECal/(Z') = (I',Z") for any effective
cycle Z'. Next, from ELG), there exists an effective cycle Z; < Z, such that dimIm(c! (2)) =
(I, Z1) + hM(Oz) — h1(Oz,). But dim(Im(c"'(Z1))) < dimECa (Z1) = (I',Z1) (cf. EZ) and
dim(Im (¢ (2))) — dim(Im(c (Z1))) < hY(Oz) — h'(Ogz,). Hence, necessarily we have equalities
in both these inequalities. (I)<=(II) is similar.

For (I1)(i)<(TIT)(i) use the fact that § is the tangent application TpIme! (Z1) at D, cf. [NNI8al
3.2], and for (IT)(ii)<(IIT)(ii) use Remark LTI0(3)(a). O

4.2. Structure theorem for the Abel map. The geometric interpretation from Lemma ELT.T4(1T)

has the following consequence.

Theorem 4.2.1. (Structure theorem) Fiz a resolution X, a cycle Z > E and a Chern class
I'e =8 as above.

(a) There exists an effective cycle Zy < Z, such that: (i) the map ECal/(Z) — HY(Zy) is birational
onto its image, and (ii) the generic fibres of the restriction of v, ™ : Im(c" (Z)) — Im(c' (Z1)),
have dimension h'(Oz) — h'(Oz,). (Cf. Lemma [ 1.1J)(I1).)

(b) In particular, for any such Zy, the space Im(c' (Z)) is birationally equivalent with an affine
fibration with affine fibers of dimension h*(Oz) — h'(Oz,) over ECa" (Zy).

(c) The set of effective cycles Zy with property as in (a) has a unique minimal and a unique
mazimal element denoted by Cpin(Z,1") and Cpax(Z,1"). Furthermore, Cpin(Z,1') coincides with
the cohomology cycle of the pair (Z, L) (the unique minimal element of the set {0 < Z; < Z :

gen

RN(Z, Lim ) = hY(Zy, Lim ) for the generic LI, € Tm(c! (Z)).

gen gen gen

Proof. (a) Use Lemma [£1.14

(¢) Assume that two cycles Z; and Zs satisfy (a). We claim that Z’ := max{Z;, Z>} satisfies too.

First, for any cycle Z” with Z; < Z" < Z, if Z; satisfies (a)(ii) then Z" satisfies too. This
applies for Z' too. To prove (a)(i) for Z', let us denote by ECa’ (Z"), C ECa! (Z") the set of
divisors whose support is disjoint from the singular points of E. If I’ = " a,E} then ECal/(Z)o =
IL, ECa®®:(Z),. Using this fact one shows that the product ECal/(Z’) — ECal’ (Z1) x ECa" (Z3)
of the two restrictions ECa’ (2) — ECal/(Zj) (j = 1,2) is birational onto its image (Biolm). This
composed with the product of the maps ECa! (Z1) — HY(Z;) and ECa" (Z3) — H'Y(Z3) (both
Biolm) guarantees that ECal (Z') — H'(Z1) x H'(Z,) is Biolm too. This map writes as the
composition ECa’ (Z') — H'(Z') — H'(Z1) x H'(Z,), hence the first term ECa’ (Z') — H'(Z')
should be Biolm. Hence the claim and the existence of Cyyq.(Z, 1) follows.

In order to prove the existence of Cy,in(Z,1'), first we claim that the set of cycles Z%, which
This fact via Remark LTI0(3)(a) is equivalent
o). This was proved in
) — HY(Z!. ) is Biolm

there

which satisfies (a). In particular, (a)(ii) is valid for the pair

satisfy (a)(ii) has a unique minimal element Z

with the existence of the (unique) cohomological cycle for the pair (Z, £
[NN18al 5.5], see also [Re97, 4.8]. Next, we claim that the map ECa! (Z7

as well. From the existence of the cycle Cyuaz(+,1") (already proved above), applied for Z%.
exists a cycle Cpaq(Z2, 1) < Z1

min? in’
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Cmal(Zjéin’ l/) S Zii

min’
too. Hence, (a)(ii) is valid for the pair Cyaz(Z2,,
zi . necessarily Chaq (22, 1) = Z%.  hence Z

min>? min

By the definition of Z% . the condition (a)(ii) is valid for the pair Z%, < Z
"y < Z as well. Therefore, by the definition of

satisfies (a). O

5. EXAMPLE. THE CASE OF GENERIC ANALYTIC STRUCTURE

5.1. Let us fix the topological type of a good resolution of a normal surface singularity, and we
assume that the analytic type on X is generic (in the sense of [NNI8H], see [La73] as well). Recall
that in such a situation, if Z’ = )" n, E, is a non-—zero effective cycle, whose support |Z’| = U, 20E,
is connected, then by [NNI8B, Corollary 6.1.7] one has

W (Oz)=1— min {x()}.

|2|<1<Z', 1L

Corollary 5.1.1. Assume that X has a generic analytic type, Z > E an integral cycle and " € —5’.
For any 0 < Zy < Z write E|z,| for ZEvC‘Zﬂ E,. Then

(5.1.2) dz(I'y=1— min_ {x(1)} + minZ{ (', Z)+  min__ {x(D} = x(Eiz)) }-

B<i<Z 0<Z,< B2y SISZ
In particular, dz(I') = dim(Imc!’ (Z)) is topological.

Let us concentrate again on the codimension h'(Oz) — dz(I') of Im(¢ (2)) C Pic" (Z) instead of
the dimension. Then, (E1.2) reads as
(5.1.3) codimIm(c”(2)) = max { —(',Z1)—  min__ {x()} + x(Ejz,)) }-

0<7,<2 Bz, <I<Z:

This is a rather complicated combinatorial expression in terms of the intersection lattice L. The

next lemma aims to simplify it.

Proposition 5.1.4. Consider the assumptions of Corollary 511l Let Z1 be minimal such that the
mazimum in (21.3) is realized for it. Then ming, , <<z {x(1)} = x(Z1). In particular,

(5.1.5) codimIm(d (2)) = OSH%Z{ —(,2Z1) = xX(Z1) + X(E|z,)) }.

The maximum at the right hand side is realized e.q. for the cohomology cycle of E;’;fn € Im(cl,(Z)) C
Pic” (Z). Furthermore,

(5.1.6) WNZ,0) > max { = (%) = x(Z1) + X(Ejz) }

for any £ € Tm(c"' (Z)) and equality holds for generic £ € Im(c* (Z)).

gen

Proof. Assume that the minimum ming, , <<z {x(l)} = x(Z1) is realized by some /1. Then
(', Z1) = (I, 1) (since I € =&'), ming,, | <i<z, {x(1)} = ming,, <<, {x(1)} and x(E|z,|) = x(Ej1,|)
hence —(I', Z1) —ming,, | <i<z, {X(D} +x(E|z,) < —(',lh) —ming, <<, {x()}+x(E),). Since
the maximality in (B13)) is realized by Z;, which is minimal with this property, necessarily Z; = [;.
Next,

J— / J— ] J— / J—
ogné?’éz{ (', Z1) g, {x(l)}+x(E|z1|)}ZOSHg§Z{ (I, Z1) = x(Z1) + x(E\z,))}-

But the maximum at the left hand side is realized by a term from the right.
For the last statement use again Remark LT.I0(3)(a). O
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5.2. The identity (51), valid for a generic analytic structure of X, extends to an optimal inequality

valid for any analytic structure.

Theorem 5.2.1. Consider an arbitrary normal surface singularity (X, o), its resolution )?, Z>F
and I’ € —8'. Then codimIm(c" (Z)) = h*(Z, L)) (¢f. RemarkFT.10(3)(a)) satisfies

gen

(5.2.2) codimIm(c (7)) > max { — (', Z1) = x(Z1) + x(Ez)) }

In particular, for any £ € Im(¢' (Z)) one also has (everything computed in )?)

1 1 im : I
(5.2.3)  h'(Z,L) > h' (2, L)) = codimIm(c’ (Z)) > og”é?)éz{ — (', 2Z1) = x(Z1) + X(E|z,)) }-

Note that the right hand side of (5.2.2) is a sharp topological lower bound for codim Im(c! (Z)).
The inequality (5.2-2)) can also be interpreted as the semi-continuity statement

codim Im(c" (Z))(arbitrary analytic structure) > codim Im(c (Z))(generic analytic structure).

Proof. Consider the identity (£ZII1]) applied for an arbitrary X and for the generic X , denoted by
X gen- Then, by semi-continuity of h! (O, ) with respect to the analytic structure as parameter space
(see e.g. [NNIRE, 3.6]), for any fixed effective cycle Z; > 0, h'(Oy,) computed in X is greater than
or equal to h'(Ogz,) computed in )?gen. Therefore, by LI one has codimIm(c! (Z))(in X) >
codim Im (¢ (Z))(in )?gen). Then for )?gen apply (.13). O

Remark 5.2.4. Certain upper bounds for {h!(Z, ‘C)}ﬁePicl/(Z)’ valid for any analytic structure,
were established in [NN18al Prop. 5.7.1] (see alo Remark [(.3.3)). However, an optimal upper bound
is not known (see [NOT7T] for a particular case). Large h'-values are realized by special strata, whose

existence and study is extremely hard.

5.3. The cohomology of L™ (I). Assume that Z > E, I’ € -8’ and let £ be a generic

element of Im(c!' (Z)). If theg analytic structure of (X, o) is generic, then by Ig’roposition B4
W' (Z, Ly7,) = tz(I'), where tz(I') is the topological expression from the right hand side of (G.IT).

Our goal is to give a topological lower bound for h'(Z, L), where £ := LI (1) = LI @ O(1) €
Picl/"’l(Z ) whenever [ € L. In this way we will control the generic element of the ‘new’ strata
o) ® (Im(¢' (2))) of Picl/H(Z), unreachable directly by the previous result. Our hidden goal is to
construct in this way line bundles with ‘high’ h'.

For simplicity we will assume that all the coefficients of Z are sufficiently large (even compared
with [, hence the coefficients of Z — [ are large as well). The monomorphism of sheaves E;’Qn| Z—1
L£im (1) gives hO(Z — 1, L)) < h%(Z, £ (1)), hence

gen gen gen

WY Z = 1,L™ )+ x(Z =1, L) < hY(Z, L (1) 4+ x(Z, L™ (1)).

gen gen gen gen

By a computation regarding x this transforms into

BN(Z, L5, (1) = W2 = 1L + X (=1 = 1) = X(=T).

gen gen

If X is generic and Z, Z — 1> 0 then h'(Z — 1, £i™ ) =t,_,(I') = tz(I'), hence

gen

(5.3.1) RNZ, L0 (1) >tz (1) — x (=) 4+ x(=1' = 1).

gen

E.g., with the choice | = —I’ € 8’ N L~ we get that £ (—1') € Pic’(Z) and

gen

(5.3.2) BA(Z, £0m (1) = () — x(=T).
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Remark 5.3.3. By [NNi8a, Prop. 5.7.1] for Z > 0, L € Pic(Z) with ¢1(£) € —8’ one has
h'(Z,L) < p, whenever cither H(Z,£) = 0 or £ € Tm(c" (Z)). For other line bundles a weaker
bound is established (see [loc. cit.]), which does not guarantee h'(L£) < p,. However, it is not so
easy to find singularities and bundles with h'(£) > p, in order to show that such cases indeed might

appear. In the next .34 we provide such an examples (with a recipe to find many others as well)
based partly on (.3.2]).

Example 5.3.4. Assume that we can construct a nonrational resolution graph which satisfies the

following (combinatorial) properties, valid for certain Z > 0 and I’ € —S§' N L:

(@) tz(") = x(=) —minx(—I"+1) +2, and

(5.3.5) 120
(b) —1 <maxM, where M :={l € L~ : x(I) = min x}.

Now, if we consider the generic analytic structure supported on this topological type, then min;>o x(—'+

(a)
1) © minxy = 1 — p, (for the second identity use [NNI8D, Cor. 5.2.1]), hence tz(I") — x(=1I') >

—1+py +2=p,+ 1. This combined with (3.2 gives h'(Z, LI (=1")) > p,.

gen

Next we show that (E3.5]) can be realized. Consider two copies I'y and I'y of the following graph
-3 -1 —-13 -1 -3

L L

The wished graph I' consists of I'1, 'y and a new vertex v, which has two adjacent edges connecting
v to the (—13)-vertices of I'; and T's. Let the decoration of v be —b, where b, > 0. One verifies
that the minimal cycle is Z,:n = (by — 2)E}, whose E,—multiplicity is 1. We set —I" := Z,,,;,. Since
max M € Sy, € 8’ N L (cf. [NNISH, 5.7]) we get that —I' = Z, < max M. One verifies that
X(Zmin) = —3 (e.g. by Laufer’s criterion), and also that min y = —5 (realized e.g. for 27, — E,).
Therefore x(—1') —min;>o x(—'+1)+2 = =34+ 5+2 = 4. On the other hand, the expression (under
max) in (BLH) for Z1 = Zpin(T1) + Zimin(I'2) supported on IT'\ v is 4, hence t4(I’) > 4.

6. APPENDIX. GEOMETRICAL ASPECTS BEHIND THE LOWER BOUND THEOREM [£.2.1]

6.1. Let us discuss with more details the geometry behind the inequality (5:2:2). Along the discus-
sion we will provide a second independent proof of it and we also provide several examples, which
show its sharpness/weakness in several situations. Similar construction (with similar philosophy)
will appear in forthcoming manuscripts on the subject as well. The construction of the present
section shows also in a conceptual way how one can produce different sharp lower bounds for sheaf
cohomologies (for another case see e.g. subsection [[2).

We provide the new proof in several steps. First, we define a topological lower bound for
codim Im(¢¥' (Z)), which (a priori) will have a more elaborated form then the right hand side ¢z (I’)
of (5:22). Then via several steps we will simplify it and we show that in fact it is exactly ¢z (1').

Definition 6.1.1. For any Z > 0 with |Z| connected we define D(Z,1') as 0 if ¢ (Z) is dominant

and 1 otherwise. (For a criterion see 23) Furthermore, set

(6.1.2) T(Z,U):=x(=l')— min x(=I'"+1)+ D(Z,1).

0<I<Z,leL
By [NN18al Theorem 5.3.1] for any singularity (X, o), any resolution X,any Z>0and l' € I,

and for Ly, generic in Picl/(Z ) one has

(6.1.3) WY Z, Lyen) = x(=I') —  min (=" +1).

0<I<Z,IEL
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By |[NN18al Prop. 5.6.1], see also EETI0(3), for any Z > E and for any I’ € —&', if L™

gen

generic element of Tm (¢ (Z)), then hl(Z L£im ) = codim Im(c! (Z)) satisfies (the semicontlnmty)

gen

(6.1.4) h'(Z,L77) > x(=1') — OggideLx(—l’ +1)+ D(Z,1') = h"(Z, Lyen) + D(Z,1') =T(Z,1').
Remark 6.1.5. Assume that Z > 0 is a nonzero cycle with connected support | Z], but with Z 2 E.
Then the statements from (6.1.4]) remain valid for such Z once we replace I’ by its restriction R(I’),
where R : L' — L/(]Z|) is the natural cohomological operator dual to the natural homological
inclusion L(|Z|) < L. (For this apply the statement for the singularity supported on |Z|.)

the other hand, for I € L(|Z]) one has x(—R(I')) — x(=R(I') +1) = —x() — (R(I'),D)rz) =
—x () = (U',1) = x(=1") = x(=U"+1). Hence, in fact, (6.1.4) remains valid in its original form for any
such Z > 0 with |Z| connected.

Example 6.1.6. The difference h'(Z, L)) — h'(Z, Lyen) can be arbitrary large. Indeed, let us
start with a singularity with an arbitrary analytic structure, we fix a resolution X with dual graph
T, and we distinguish a vertex, say vy, associated with the irreducible divisor Ey. Let k (k > 0) be
the number of connected components of T \ vy, and we assume that each of them is non-rational.
Furthermore, we choose Z > 0, hence h'(Oz) = p,. Let )~(|V\UO be a small neighbourhood of
Upvo B, let {)N(i}le be its connected components, and set p,; = h' (Og,) for the geometric genus
of the singularities obtained from )N(l by collapsing its exceptional curves. Write also I" \ vo = U, T;.
We also assume that —I" = nE§ with n > 0.

Since n is large, Im(& (Z)) = Az(I'), hence dz(I') = ez(I') = pg — 3., Pg.i» cf. [NNI8al Th. 6.1.9]

or Theorem Z2H here. Hence, cf. @Id), codim(Imé (2)) = h'(Oz) — dz(I') = h}(Z,LI2,) =
S, Pg.i (in particular, @ is not dominant).

Next we compute h'(Z, Lyen) = x(nE§) — ming>o x(nE§ + 1). Write [ as loEp + 1, where [ is
supported on U,y Ey,. Then x(nEg) — x(nE§+1) = —x (1) —nlop. If lp = 0 then —x(I) = —x(1), and
its maximal value is M := " (—min x(I';)). On the other hand, if Iy > 0 then for n > —M — min x
one has —x(I) — lon < M. Hence h'(Z, Lgen) = x(nEg) — ming>o x(nEG + 1) = >_,(— min x(T)).

Now, pg; > 1 —min x(I';) (cf. [WaZ0] or [NNI8b]), hence h'(Z, LS2) — h'(Z, Lgen) > k.

6.1.7. We wish to estimate h'(Z, L7 ). Note that the estimate given by [E.14), that is, h'(Z, L7,) >

T(Z,l'), sometimes is week, see the previous example. However, surprisingly, if we replace Z
by a smaller cycle Z' < Z, then we might get a better bound. More precisely, first note that
if E;’:n is a generic element of Tm(¢!' (Z)), and 0 < Z’ < Z, then its restriction r(Lo%,) (via
r: Pic (Z2) — Pic™)(2")) is a generic element of Im(c! (Z')). If Z’ has more connected com-
ponents, Z' = 7, Z; (where each |Z]| is connected and |Z| N |Z}| = () for i # j), then for each Z]

we can apply (G.I4). Therefore, we get

gen gen gen

(6.1.8) RY(Z, LIy > RN Z (L) Zhl r(Lim) =Y T(Z]0).

Define

N oL AT o / ) 1o
(6.09) (Z.0):= max S T(Z.1)= masx (Z(X( V) -, min, x(- l+lz)+D(ZZ,l))).

(Here there is no need to restrict I’, cf. Remark [6.1.51) Hence (6.18) reads as

(6.1.10) WN(Z, L™ > ¢(Z,1).

gen
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In this estimate the point is the following: though >, (x (=) — ming<;, <z x(=I" + 1i) = x(=1') —
ming<;<z x(—I" +1) is definitely not larger than x(—1") — ming<;<z x(—1' 4+ 1), the number of com-
ponents of Z' might be large, and the sum of the ‘non-dominant’ contribution terms ), D(Z;,1’)
might increase the right hand side of (G.I.I0) — compared with T'(Z,1’) — drastically.

Example 6.1.11. (Continuation of Examle [6.1.6]) The last computation of Example
shows that the maximum of x(nE§) — min>o x(nEj§ + 1) is obtained for Iy = 0 and T(Z,l') =
143, (—minx(I';)). Hence, taking Z" = >, Z!, each Z] supported on I'; and large, we get that
the restriction of I’ is zero and ), T'(Z;,I') = >, (1 —min x(I;)) = T(Z,I') + k — 1.

Summarized (also from Example BT8), for any analytic type one has Y, pyi = h'(Z, L") >
t(Z,0) >, T(Z,l')=>,(1 —min x(I';)). However, if X is generic then Pgi = 1 — minx(T;) (cf.
[INNT8b]), hence, all the inequalities transform into equalities. Hence, for generic analytic structure
h'(Z, L) = t(Z,1'), that is, [ELI0) provides the optimal sharp topological lower bound.

Note also that both ¢(Z,1') and },(1 — min x(I';)) are topological, hence if they agree for X
generic, then they are in fact equal. Since p,,; — 1 4+ min x(I';) for arbitrary analytic type can be

considerably large, for arbitrary analytic types the inequality (GII0) can be rather week.

6.2. Our goal is to simplify the expression ([G.I9) of t(Z,1').

First we analyse the set of cycles Z’ for which the maximum in the right hand side of ([G.I.9) can
be realized. B.g., if ¢! (Z) is dominant (equivalently, t(Z,1’) = 0, ¢f. Z3) then any 0 < Z’ < Z
realizes the maximum 0 (with all /; = 0). (Indeed, use the fact that D(Z5,1") > D(Zy,1") for Zy > Z3
and |Z;| connected.)

In the next Lemmas and we will assume that ¢ (Z) is not dominant.

Lemma 6.2.1. (a) Assume that Z' is a minimal cycle (or a cycle with minimal number of connected
components) among those cycles which realize the mazimum in the right hand side of (G 1.9). Then
D(Z[,l') =1 for all .

(b) If D(Z},I') =1 then the minimal value ming<;,<z; x(—1I' +1;) can be realized by l; > 0.

Proof. (a) Otherwise, ¢ (Z!) is dominant, and by 23 x(—1') — ming<;, <z X(—1' +1;) = 0 (realized
for I; = 0). Hence T(Z],l") = 0, that is, the right hand side of (G.I.9) is realized by Z’ — Z/ too,
contradicting the minimality of Z’. (b) If the wished minimum is realized by I; = 0, and only by
I; = 0, then by 23 ¢ (Z}) is dominant, contradicting D(Z},1') = 1. O
Example 6.2.2. Though in Example B.1.G we have shown that h'(Z, L7,) = ¢(Z,1’) can be much
larger than T'(Z,1’) (that is, the maximizing Z’ usually should be necessarily strict smaller than 7),

in some cases Z' = Z still works. Indeed, we claim that
if the E*—support I of I is included in the set of end vertices of ', then ¢(Z,1") = T(Z,l).

Let Z' be a cycle for minimal number n of connected components {Z/}?; for which the right hand
side of (6L9) is realized. We claim that n = 1. Indeed, by Lemma [E2ZT] each D(Z!,1') = 1. Let I;
be a cycle which realizes x(—!") — ming<;<z: x(~!" +1). By Lemma[6.2.]l we can assume /; # 0.

If n > 1 then let Z; and Z3 be two adjacent component, which means, that there is a vertex
u € |Z1] and v € |Z}| and a (minimal) path u; = w,ug, -+ ,us = v, such that ug, -+ ,us—1 ¢ |7'|
and uy, and ug4q are neighbours in the resolution graph. Moreover, define a new cycle by Z{,new =
Zy+ Zy+ Y gcner1 Buy, and Z), ., = 71 0 + D 5<ic, 21 Similarly, let us have a minimal path

between |l1] and |lo|: vertices wq, -+ ,w;, such that wy € |l1] and w; € |la], wa, -+ ,wi—1 & |l1| U |l2]
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and wy, wi41 are neighbours in the resolution graph. Then define [y e = 11 + 12 + 22<k<171 Ey,.
The point is that the vertices wy, - - - ,w;—1 are not end vertices, in particular (I, Y o ;1 Euw,) = 0.
Note also that D(Z] ,,c,,1") = 1. Then a computation gives that

(6.2.3) 1) = X1 D) + DUZ s 1') = T(Z0, V) + T(Za, 1),

or, T'(Z1 new, ') > T(Z1,1')+T(Z5,1"), contradicting the minimality of Z’. Hence necessarily n = 1.
On the other hand, if Z’ is connected, then T'(Z',1") < T(Z,l’), hence the maximal value in the
right hand side of (G.I.I0) is realized for Z as well (and maybe by several other smaller cycles too;
here we minimalized #|Z’| by increasing Z’).
The present example together with Examples and show that the structure of possible
cycles Z' for which the maximality in (G.I.9]) realizes can be rather subtle.

Lemma 6.2.4. Assume that Z' is a minimal cycle among those cycle which realizes the mazimum
in the right hand side of (E1.9). Then the following facts hold:

(a) ming<;, <z x(=1U' + 1) is realized by l; = Z;.

(b) ming<y, <z x(1) is realized by l; = Z;.

(c) Uz 1) =t(2,1') =3, (— (Z},I') = x(Z]) +1).

Proof. (a) For each Z! let I; be minimal non-zero cycle (cf. Lemma[62.1]) such that M; := x(=1") —
ming<;<z/ x (=" +1) is realized by l;. Let l; = Ugl; be its decomposition into cycles with |I; x|
connected and disjoint. Since M; = —x(l;) — (I,1;) > 0, there exists k such that x(—1I") — x(—=I' +
lir) = —x(lix) — (U',1;x) > 0, hence by the criterion from the Abel map cl/(liyk) must be
non-dominant. Thus (using also D(Z/,l’) =1 from Lemma [6.2.1](a))

(6.2.5) S T, 1) = x (=) = x(=I' + 1) + 1 =T(Z},1').
k

In particular, by the minimality of Z!, Z! = I;.
(b) By part (a) x(Z]) + (Z[,I') < x(l;) + (L;,1") for any 0 < I; < Z!. But, since I' € -&,
(ZI,U') > (1;,1), hence x(Z]) < x(I;) for any 0 <l; < Z!. Part (c) follows from (G.L9) and (a). O

Recall that in 53 we defined tz(I') := maxo<z<z { — (', Z") = x(Z') + x(E|z)) }.
Corollary 6.2.6. t(Z,l') =tz(l').

Proof. 1f ¢'(Z) is dominant then both sides are zero. Otherwise, by Lemma B2Z4(c) (with its
notations) t(Z,1') = Y, (—(Z[,I')=x(Z])+1) < tz(I'). On the other hand, let us fix some Z’' = U; Z]
for which the maximum in ¢z (') is realized. Then we can assume that each ¢’ (Z}) is not dominant.
Then —(Z},1') = x(Z]) +1 = x(=1") = x(=U'+ Z}) + 1 < x(=1') = ming<s, <z X (=" + 1;) + D(Z], 1").
Hence tz(I') < t(Z,1') too. O

Remark 6.2.7. The second proof of Theorem [5.2.1] follows from (G.I.I0) and Corolary [6.2.6

7. THE Lo—PROJECTED ABEL MAP

In this section we introduce a new object, a modification of the Picard group Pic(Z), which will

play a key role in the cohomology computation of the shifted line bundles of type {Lo® L} lm(c’ (2))-
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7.1. The Ly—projected Picard group. Let (X, 0) be a normal surface singularity. For simplicity
we assume (as always in this manuscript) that the link is a rational homology sphere. Let X be one of
its good resolutions and Z > E an effective cycle. Fix also Ly € Pic(Z) such that H(Z, Lo)eq # 0
(cf. Z2). Choose sg € H(Z, Lg)e, arbitrarily, and write div(sg) = Do € ECal/“(Z), where [ =
c1(Ly) € —8’. Motivated by the exponential exact sequence of sheaves 0 — Zy N Oz — 03 =0,
we define L = coker(Zz 5N Oz 2% Ly), where the second morphism is the multiplication by

(restrictions of) sp. Then we have the following commutative diagram of sheaves:

0 0
. { I
0 — ZZ L) OZ — O} — 0
= d s0 488
0 — Zzy — Ly — L; — 0
{ {
Op, = O0Op,
{ I
0 0

where s§ is induced by sg. At cohomological level we get the (identical/renamed) diagrams

HO(ODU) = HO(ODU) HO(OD()) = HO(OD())
b 60 U U )
0— HY Oz — HY Oy 3 L' -0 0— Pi°%Z) — PicZz) 3 L' =0
10 1s = 350 1s =
0— HYLy) — HYLEH) S L' -0 0— Pic) (Z) — Picg,(Z2) S L' =0
1 1 1 \
0 0 0 0

= HY(Z,Ly) — and call it the Lo—projected Picard group —, and
Lp). Note that the classical first Chern class map ¢y factorizes

where we use the notation PngO( )=
(its linearization) P1c£ (Z):= HY(Z,
to a well-defined map ¢; PchO(Z) — L'. Set also Plcﬁo(Z) = ¢ }(I") for any I’ € L'; it is an
affine space isomorphic to Pic! ( )/Im(¢) associated with the vector space PicOL0 (Z)=HY(Z,Ly) =
HY(Oz)/Im(5°).

The corresponding vector spaces appear in the following exact sequences as well. Let us take
another line bundle £ € Picl,(Z) without fixed components, s € H*(Z, L), ¢, and D := div(s). Then
one can take the exact sequences 0 = Oz > L — Op — 0and 0 — Lo > Lo L — Op — 0. They
induce (at cohomology, or ‘tangent’ vector space level) the following commutative diagram

HO(ODO) = HO(ODO)
160 {
HOp) % HY (O, =%  HYL) 0

I [t l

HOOb) 5 HYLY) 5 HY(Lo®L) —0
{ {
0 0

This is related with the Abel map ¢ (Z) : ECal (Z) — Pic’ (Z) as follows. Recall from [NNI8al

3.2.2] that the tangent linear map Tp '’ (Z) : Tp ECa' (Z) — T¢ Pic' (Z) can be identified with 62 :
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H°(Op) — HY(Oy). Therefore, if £L = L™ is a generic element of Im(c!’ (Z)) then codim Im(¢! (Z)) =

gen

dim H'(Oz)/Im(6%) = h'(Z, £). Similarly, consider the composition

’ ’ CLI ’ SU ’
b (2) 1 BCa’ (z) “B) pict (2) 28 pick (2).
We call it the Lo—projection of the Abel map ' (Z). Using the previous paragraph we obtain that the
tangent linear map Tp ¢k (Z) : Tp ECa' (Z) — T, Piclll:o(Z) can be identified with 6% = s% o 49 :
H°(Op) — H'(Ly). Therefore, if £ is a generic element of Im(cléo(Z)) (or, it is the image by sz, of

a generic element E;Zln of Im(¢" (Z))) then

(7.1.1) codimIm(c, (2)) = dim H(Ly)/Im(8%) = h'(Z, Lo @ L).

This fact fully motivates the next point of view: if one wishes to study h'(Z, Lo ® L) with Lg fixed
and L € Picl/(Z) then — as a tool — the right Abel map is the Lo—projected c%o (2).

7.2. The cohomology h'(Z, Lo®L). Using the exact sequence H*(Op) — H (Oz) > H'(Z, L) —
0 and h°(Op) = (I', Z) we obtain the inequality h'(Z, £) > h'(Oz) — (I, Z). Usually it is not sharp,
since 62 might not be injective. However, as in the prototype construction from section [d (and even
in its preceding sections), if we consider any Z; < Z then we also have h'(Z, L) > h'(Z1,L) >
h'(Ogz,) — (', Zy1), hence h'(Z, L) > maxz, <z{h*(Oz,) — (I, Z1)}, and, remarkably, this for the
generic L7 € Im(c!' (Z)) is an equality (cf. @III).

Similarly, using the exact sequence H°(Op) — HY(Z,Ly) > HY(Z,Ly ® L) — 0 we obtain
hY(Z,Lo® L) > h'(Ly) — (I, Z). Again, this usually is not sharp. However, by the same procedure,

(7.2.1) hNZ, Lo @ L) > OSH%?)S(Z{hl(Zl,EO) — (', Z1)}.

In the next section (cf. Corollary B24)) we will prove that this is again an equality for the generic
L=Lm e Im(c%0 (Z)). (The above inequality (ZZZ1)) can be compared with (B.31]) as well.)

gen

7.3. Compatibility with Laufer duality and differential forms. Consider the perfect pairing
(,): H (Oz) ® HO(Q}(Z))/HO(Qiz) — C from 242 see alo [NNIR8a]. Once we fix Dy = div(sp)
of certain so € H(Z, Lo)req, we can define Qz (Do) := (Im(67,))" € HY(Q%(2))/H(Q%). Tt is
generated by forms which vanish on the image of the tangent map T, cla(Z ), identified with 5?:0,
cf. B4 and [ZZ9). The pairing (, ) induces a perfect pairing (, )z, : H*(Z, Lo) @ Qz (Do) — C,
see also Theorem Z4.8

7.4. The G-filtration of Qz(Dy) = H'(Ly)*. Consider the situation and notations of Definition
in particular, G = HO(Q%(1))/H°(Q%) for any 0 < | < Z. In the presence of Lo =
Oz(Dy) as above, we have the subspace Qz(Dy) = (Imé®)*+ C HO(Q}(Z))/HO(Q}), and the
induced perfect pairing (, )z, : HY(Z, Lo) @ Qz(Do) — C. Similarly, for any 0 < [ < Z, we have
the analogues data Q;(Dg) = (Im(8°),))* C HO(Q}(Z))/HO(Q%), and the induced perfect pairing
(s )l + H'(1,Lo) ® Qu(Do) — C. One has the following inclusions inside H(2%(2))/H°(Q%)

Ql(Do) — QZ(l)O)
1 1
G HOQ2(2)/HOO2)

and, in fact, (Do) = Qz(Do) N G;. Hence {;(Do)}i = {Qz (Do) NG} filters Qz(Dy). Moreover,
by <, >£0‘l, one has dim Qz(Do) NG = dim Ql(Do) = hl(l,ﬁo).
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7.5. Dimensions/Notations. The dimension of Im(cl[;U(Z)) is denoted by dz, z(1').

If Az(I') is the smallest affine space which contains Im(¢! (Z)) in Picl/(Z), then sz, (Az(l')) is
the smallest affine space which contains Im(c%o(Z )). We denote it by Az, z(I’) and its dimension
by er,.z(l"). From definitions dz, z(I") < ery. z(l').

In the next section we provide two algorithms for the computation of d, z(l'), the analogues of
the algorithms from Theorems and

8. Lo—PROJECTED VERSIONS OF THE ALGORITHMS

8.1. The setup. Let us fix (X,0), a good resolution X, Z > E and I' € —&’. We also fix a line
bundle £y as in section [7l whose notations we will adopt. In order to estimate d., z(l") we proceed
as in sections Bl and @l In particular, we perform the modificatiosn g : )W(s - X , and we adopt the
notations ofB.2las well. By the generic choice of the centers of blow ups we can assume that they differ
from the support of Dy. Notice that we have a natural identification between H'(Oz) and H*(Og,),
and also between H' (0% ) and H'(O% ). Furthermore, we denote the divisor 75 (D) on X, still by
Dy (basically unmodified), and the line bundle O_ (D) still by Ly. Then we have the identification
of H'(Z,0p) with H(Zs,Op), and also H(Z,Ly) ~ HY(Zs,Lo) and HY(Z,Ly) ~ H(Zs, L})
(hence identifications of the corresponding commutative diagrams from [[.]] as well). The subspace
Qz. (Do) in HY(Oz,)* = H(Oz)* is also ‘stable’ of dimension h'(Z, Lo).

Write dg,.s and ez, s the corresponding dimensions associated with )N(s defined as in Then
dros <erys lfs=0then dgyo=dz, z(I') and ez, 0 = ey, z(1).

Theorem 8.1.1. (1) dg, s —dg, sk € {0,1}. Moreover, dg,.s = dz, so.r if and only if for a generic

point L € Im(clEU(Zs)) the set of divisors in (clz0 (Zs))"Y (L) do not have a base point on Fy s, , -
(2) If for some fized s the numbers {dz, so.x }v .k are not the same, then dr,s = max, x{ dg, gor}-

In the case when all the numbers {d., so.x }o x are the same, then if this common value dp v equals

€Los, then dey s = ey s = dg, gvr; otherwise dey s = dpy gon + 1.

Proof. (1) Assume first that either s, > 1 or a, = 1. Then divisors from ECal;(Zs) intersect
Fy ks, , by multiplicity one, hence the intersection (supporting) point gives a map ¢ : ECal;(Zs) —
Fy ks, ., which is dominant. Moreover, ECale (Zgv.r) is birational with a generic fiber of ¢ (the fiber
over the point which was blown up), hence the first statement follows. Note also that dz, s = dz, go.x
if and only if the generic fiber of the Lo—projected Abel map cléo is not included in a g—fiber. This
implies the second part of (1).

If sy x = 0 and a, > 1 then write I’ :=1, — E and consider the ‘addition map’ s : ECaf (Zs) x
ECal- (Zs) — ECal/S(ZS), which is dominant and quasifinite (cf. [NNI8al Lemma 6.1.1]). Let
q: ECa’ (Zs) — E, be given by the supporting point as before. Then if ¢~*(gen) is a generic fiber
of ¢ (above the point which was blown up), then the restriction of s to ¢~!(gen) x ECal- (Zs) with
target ECale (Zgv.x) is dominant and quasifinite. Hence the arguments can be repeated.

(2) First notice that if the numbers {d,, so.x} are not the same then from (1) we have dr,s <
ming g dey gor + 1 <maxy g de, sox < dry,s, hence dey s = maxy, , dp gvn-

Next, assume that the numbers {d, sv.x } are the same, say d.

If dzy,s = d then part (1) reads as follows: dg, s = dg, g for all v and k if and only if for a
generic L € Im(c%0 (Zs)) the set of divisors in (c%0 (Zs))~(L) do not have a base point on any of
the curves {Fy r.s, , Jo,k-

Let us choose a generic element £ € Im(c%U (Zs)), which is in particular a regular value of C%O (Zs)

and the generic divisors in ECal/S(ZS) mapped to £ are in fact generic divisors of ECal/S(ZS) itself.
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Next, take an element in Qz,(Dy) (for details see [[3)) represented by a form w, such that the
class of w vanish on TEIID(C%O (Zs)).

Then choose a generic D from ECals (Zs), which is mapped to £ and which has no common points
with the support of w (we can even assume additionally that it is transversal and reduced). Then
we apply the previous statements for £ := C%O(Zs)(D).

In particular, the class of w vanish on Im(TDC%U(ZS)) so w cannot have pole along any of the
curves {Fy ks, , Jo.k, that is, it belongs to Qz_(Is), cf. Theorem and Lemma Hence
drys = €ry.s, cf. Lemma[3T3] and also d = ez, s to0.

On the other hand if d = eg, s, then from d; o < dgys < erys We get d = dg,s. Hence
de,s = dif and only if d = eg, s. Otherwise dz, s should be d + 1 by (1). |

8.2. Notations for the second algorithm. Consider the setup of f.Iland combine it with the one

from Bl where Ly enters in the picture. Accordingly, we have the following subspaces (inclusions):

Qz.(Do) NG, — Qz.(Do)N Qs (L) Q2. (Do) = H\(Z, L)
{ + , {
G = Qz.(1) s HOOR (2))/HY(9%) = HY(O2)"

The codimension of the inclusion i is eg and the dimension of Gg is gs providing the inequality
es < h'(Oz) — gs. Similarly, the codimension of j is ez, s and the dimension of Qz (Dp) NG, will
be denoted by gr, s providing the inequality ez, s < h'(Z, Lo) — gr,,s- Hence

(8.2.1) deos < eros <h'(Z,Lo) = gros

It is conveninent to lift the s-independent subspace Qz, (Do) = Qz(Do) of H*(Q%(2))/H°(Q%) as
Q5 (Do) := 71 (Qz(Dy)) by the projection 7 : HO(Q%(Z)) — HO(Qi?(Z))/HO(Q%).
Theorem 8.2.2. (1) dg,s—dg, sox € {0,1}.

(2) If for some fized s the numbers {dz, so.x }v i are not the same, then dr, s = max, x{ dg, sor}-
In the case when all the numbers {d ., sv.x }o r are the same, then if this common value dg | gv.r equals
WY Z,Lo) — gro,s, then drys = B (Z, Lo) — gros = dpy o ; otherwise dgy s = dpy gor + 1.

Proof. Part (1) was already proved in Theorem BTl Regarding part (2), if the numbers {d gv.x }
are not the same then we argue again as in the proof of Theorem Bl

Next, assume that the numbers {d., sv.» } are the same, say d. Via (821 and the first algorithm
Theorem BTl we need to show that if d = e, s then necessarily d = h'(Z,Lo) — gr,.s as well.
However, if d = er, s then we have ez, s = dz, gv.r for all (v, k), hence by BZI) we get e, s =d =
deysor < epy sk But egys > ep) sor by the combination of the argument from ([B.2Z1]) and the
diagram from B2 Hence, d;, v = ez, s for all k£ and v implies e gv.v = e, s for all v and k.

In particular, it is enough to verify the (stronger statement):

(8.2.3) if e, sor = €r,,s for all v and k then ez, s = h'(Z, Lo) — gry.s as well.

Assume that [23) is not true, that is, ez, o = ez, for all v and k, but ez, s < h'(Z, Lo) —
gro.s- The last inequality via the diagram from B2 says that the inclusion Qz, (Do)NG;, C Qz, (Do)N
Oz, (Is) is strict. This means, that there is a differential form w € Qg(Dy), with class [w] in
HO(Q%(2))/H°(9%) C HO(X \ E,Q})/HO()?,Q%), such that w does not have a pole along the
exceptional divisor F ks, ,, however [w] ¢ Gs. In particular, there exists a vertex v € |I’|, such that
the pole order of w along E, is larger than (ls),. Notice that this also means (Is), = minj<i<q, Sy, <
Ly
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Let 1 <4 < a, be an integer such that s, ; = (Is), (abridged in the sequel by ¢) and we denote
the order of vanishing of w on an arbitrary exceptional divisor F, by b,, where u is an arbitrary
vertex along the blowing up procedure. Next we focus on the string between v and w, s, , and we
denote them by vo = v,..., v = Wys,,. Set r:=min{0 < s <t : b, +t—s > 0}. Since for
s =t one has b,, > 0 (since w has no pole along F, s, ,) 7 is well-defined. On the other hand we
have r > 1. Indeed, b,, + t < 0, since pole order of w along E, is higher than (ls), = t. Note that
by, , +t—r+1<0andb, +t—r>0imply b, — by, >2 ().

Let X’ be that resolution obtained from X , as an intermediate step of the tower between X and
)?S, when in the (v,7) sequence of blow ups we do not proceed all s, ; of them, but we create only
the divisors {Fy ik }k<r—1. Let V' be its vertex set and {E,},ey its exceptional divisors. On X/
consider the line bundle £ := Q% (= 37, ¢y

point p of B, | = Fy; ., _,, the existence of w guarantees the existence of a section s € HO()N(', L),

by, E,). Since F, ; ., was created by blowing up a generic

which does not vanish along F

Ur—1

p € E,,,. By (f) m > 1. By construction, w (or s) belongs also to the subvectorspace Q¢ (Dy) after

and it has multiplicity m :=b,, — b,,_, — 1 at the generic point
certain identifications.

Now by the technical Lemma [0.T.T] (valid for general line bundles, and separated in section @) for
any 0 < k < m and a generic point p € E, _, there exists a section s’ € HO(X’,K), which does
., and the divisor of s’ has multiplicity k at p. We
apply for k = —(by,_, +t —r+1) — 1. (Note that 0 < k < m.) The section s’ gives a differential

form w" € Q5(Dy), such that if we blow up E,, _, in the generic point p and we denote the new

not vanish along the exceptional divisor E,

then w’ has wanishing order —(t —r + 1) on E

Vr new *

but has no pole

exceptional divisor by FE, This means,

r,new’

that if we blow up it in generic points ¢t — r 4+ 1 times, then w’ has a pole on E,
on E

Vt+1l,new*

t,new?

This means that e;, gv.i # €,,s, Which is a contradiction. 0
The analogues of Corollaries and (with similar proofs) are:
Corollary 8.2.4. For anyl' € —=S', Z > E and Lo with H*(Z, L)req # 0 one has

deoz(l') = msin{ |s|+ K" (Z,L0) — gros } = min Z{ (', Z1) + W' (Z, Lo) — W' (Z1, Lo)}

0<z, <
This combined with (71.1) gives for a generic LI € Im(¢' (2)):

gen

W2 Lo @ Lyi) = max {BY(Z1,Lo) = (I, Z1)}-

Example 8.2.5. This is a continuation of Example EET.8] (based on [NN18al §11]), whose notations

and statements we will use. Assume that Z > 0 and I' = —kE{ as in Additionally we
take a generic line bundle £y with ¢1(Lo) = Iy = —koE(, ko > 0, (hence 150 consists of kg generic

irreducible cuts of Ep). Recall that H O(Q§z (Z))/H O(Q}) admits a basis consisting of elements
of type x™w, where w is the Gorenstein form and 0 < |m| < d — 3. Each ‘block’ {|m| = j}
(0 < j < d—3) (which can be identified with H°(P2, O(4))) contributes with (*1?) monomials.
The ko generic divisors impose min{ko, ("1?)} independent conditions (see [NNI8al 11.2] for the
explication), hence the block {|m| = j} (0 < j < d — 3) contributes into dim Qz(Dg) = h'(Ly) with
(75?) = min{ko, (*1?)} = max{0, (/}?) — ko}. In particular, h!(Lo) = Z;j;g max{0, ("1?) — ko} and
hY(Lo) = gros = Yoy max{0, ("}?) — ko} (0 < s < d—2). Therefore,
d—3—s

deg.o(-hE7) = iy L+ 32 max {0, () — o} }

0<s<d—2 ‘
j=0
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However, if Lo = Oz(Dy) is not generic, then the points Dy might fail to impose independent
conditions on the corresponding linear systems, and the determination of the dimsnion of Qy(Dy)
can be harder. See [NNT18al 11.3] for discussion, examples and connection with the Cayley—Bacharach
type theorems (cf. [EGH96]). Those discussions with combined with the present section produces
further examples for dg, z(I') whenever Dy is special (and (X, o) is superisolated).

9. APPENDIX 2. A TECHNICAL LEMMA

9.1. The next lemma is used in the body of the article, however, it might have also an independent

general interest.

Lemma 9.1.1. Let X be an arbitrary resolution of a normal surface singularity (X,0). Let us fix
an arbitrary line bundle £ € Pic(X) with ¢1(L) =1’ € —S', an irreducible exceptional curve E,, and
an integer m > 0.

Assume that there exists a sub-vectorspace V. C HO()E,E) with the following property: for a
generic point p € E,, there exists a section s € V such that s does not vanish along E, and the
multiplicity of the divisor of s at p € E, is m. Then for any number 0 < k < m and a generic point
p € E, there exists a section s € V such that s does not vanish along E, and the multiplicity of the

divisor of s at p € E, is k.

Proof. By induction we need to prove the statement only for k = m — 1.

First we fix a very large integer N >> m, and consider the restriction r : H(X, £) — H(NE,, L).
Then r induces a map from HO(X,L),e, := HO(X, L)\ H(X,L(=E,)) to HY(NEy, L)pey =
HOY(NE,, L)\ H((N —1)E,, L(—E,)). Denote its restriction H(X, L)yeq NV — HO(NEy, L)peq N
r(V) by ry. Consider also the natural map div : HO(NE,, £),eq — ECa" (NE,), and the com-
position map divory = g : HO()N(, L)reg NV — ECa! (NE,), which sends a section to its divisor
restricted to the cycle NE,.

Next, for any p € EY := E,\UyzvEy set Dy, , C ECal’ (NE,), the set of divisors with multiplicity
m at p. (Since N > m this notion is well-defined). Set also D,, := UpDyy, .

By the assumption, the image of g intersects D,, , for any generic p. Since D,, is constructible
subvariety of ECa (NE,), g~'(D,,) is a nonempty constructible subset of H%(X, L), V. Define
an analytic curve hg : (—¢,€) — g~ '(D;,) such that its image is not a subset of some g~ (D,, ;).
Let us denote the zeros of the section ho(0) along EY by {p1,...,p,}. Then there exists a small
neighborhood U of one of the points p; and a restriction of kg to some smaller (—¢',€’), such that
for any ¢ € (—€’,€') the restriction of ho(t) to U has a unique zero, say p(t), and its multiplicity is
m. Furthermore, t — p(t), (—€',¢’) — U N EY is not constant, hence taking further restrictions to
some interval we can assume that ¢ — p(t) is locally invertible. Reparametrising hy by the inverse of
this map, we obtain an analytic map U N EY — ¢=Y(D,,), t — h(t) such that the restriction of the
section h(t) to some local chart U has only one zero, namely ¢, and the multiplicity of the section
at ¢t is m. In some local coordinates (z,y) of U (with U N E, = {y = 0}) the equation of h(t) has
the form (modulo y™)

(9.1.2) h(t)= > (&=t y'ci(t),
Jj=20,:20
where by the multiplicity condition ¢;; = 0, if j+¢ < m and, there is a pair (j, ), such that j+i =m
and ¢;;(t) # 0. Moreover, by the non—vanishing condition y fh(t), or, ¢jo(t) # 0 for some j.
We claim that there is a generic choice of t1, ..., ¢, (for some large r) of t—values, and a convenient

choice of the coefficients {ay}]_; such that s := >7;_| a;h(t;) satisfies the requirements. Indeed, first
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we consider the Taylor expansion of h(t) in variables (z,y) at a point (x,y) = (¢,0) with g generic

(and modulo yV as usual):

Sr—qtag—t)yicit)=> > (x—gry (2) (=t Feja(t).

Jrt 7yt k=0

The fact that s at (¢,0) has multiplicity > m — 1 transforms into a linear system

J j—k
;al ( sz </<;> (a =ty Fega(t) ) =0
for any (k,i) with k,4 > 0 and k + 4 < m — 2. This linear system LS(r,m — 2) with unknowns
{aq}]_, has matrix M (r,m — 2) of size r x m(m — 1)/2. If r > m(m — 1)/2 then the system has
a nontrivial solution. We need to show that for a generic choice of the solutions {«;}; the section
s has multiplicity m — 1 at g. Assume that this is not the case. Then the generic solution of the
system LS(r,m — 2) is automatically solution of LS(r,m — 1) too (the last one defined similarly).
This means that rankM (r, m — 2) = rankM (r,m — 1) (1) for generic {¢;},.

The matrix M (r,m — 1) has m additional rows corresponding to the indexes (k,) with k,i > 0
and k +i=m — 1. Let us fix one of them, corresponding to the following choice.

Now let d be the minimal number, such that there exists j,7 such that t <m — 1, j+i=d and
¢;,i(t) is not identically 0. Since by assumption (by non-vanishing of h(t) along E,) there exists
certain j > m with ¢; ¢ # 0, such a d exists. Fix ig such that ic <m—1, jo+io = d and ¢, 4, (t) Z 0.

Then, from the additional rows of M (r,m — 1) we chose the one indexed by (m — 1 — g, ip).

Consider the minor of M (r,m—1) of size m(m—1)/2+ 1, whose last row is the row corresponding
to (m — 1 —ip,ip), and the other rows belong to M (r,m — 2), while the last column corresponds
to the generic ¢, = t. Then its determinant should be zero by (}). Expanded it by the last column

gives

J _pymmtltio . (g (a) - TN (g — 1yi—Fe. .
iy (1ot )= P o0 IS » (1) or*esit0
for some holomorphic functions Sk ;(¢g). But such an identity cannot exist. Indeed, since ¢;, ;, # 0,
but ¢;;, = 0 for any j < jo, the vanishing order of ¢ — ¢ at the left hand side is exactly d — m + 1,
while on the right hand side — since j > d — ¢ (otherwise ¢;; = 0) and k& < m — 2 — ¢ implies

j—k>d—m+ 2 — we get vanishing order > d —m + 2.

Finally we need to show that this generic s does not vanish along F,. This follows from a similar
argument as above, or one can proceed as follows. For any generic ¢ consider a section s which has
multiplicity m — 1 at (g,0). If it vanishes along E, then s + h(q) does not vanish along E, and it
has multiplicity m — 1 at (g, 0). O

Remark 9.1.3. We claim that under the assumptions of Lemma [0.1.T] the following property also
holds: For any finite set F' C E, there exists a section s € V' such that s does not vanish along E,,
div(s) N F = 0, and at each each p € div(s) N E, the intersection is transversal. Indeed, we can
use first Lemma for £ = 1 and then show that a generic combination of ‘moving’ sections of

multiplicity one works.
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