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MONODROMY CONJECTURE FOR LOG GENERIC POLYNOMIALS

NERO BUDUR AND ROBIN VAN DER VEER

Abstract. A log generic hypersurface in Pn with respect to a birational modification of
Pn is by definition the image of a generic element of a high power of an ample linear series
on the modification. A log very-generic hypersurface is defined similarly but restricting
to line bundles satisfying a non-resonance condition. Fixing a log resolution of a product
f = f1 . . . fp of polynomials, we show that the monodromy conjecture, relating the motivic
zeta function with the complex monodromy, holds for the tuple (f1, . . . , fp, g) and for the
product fg, if g is log generic. We also show that the stronger version of the monodromy
conjecture, relating the motivic zeta function with the Bernstein-Sato ideal, holds for the
tuple (f1, . . . , fp, g) and for the product fg, if g is log very-generic. Even the case f = 1 is
intricate, the proof depending on nontrivial properties of Bernstein-Sato ideals, and it singles
out the class of log (very-) generic hypersurfaces as an interesting class of singularities on
its own.

1. Introduction

Let F = (f1, . . . , fp) be a tuple of polynomials fi ∈ C[x1, . . . , xn]. Let f =
∏p

i=1 fi. The
topological zeta function of F

Ztop
F (s1, . . . , sp)

is a rational function, cf. Definition 3.1. We denote the polar locus of this rational function,
that is, the support of the divisor of poles, by P(Ztop

F ).
On the other hand, one has the monodromy support of F

SF ⊂ (C∗)p,

cf. Definition 3.2. If p = 1, this is the set of all eigenvalues of the monodromy on the
cohomology of the Milnor fibers of f . Let Exp : Cp → (C∗)p be the map α 7→ exp(2πiα)
coordinate-wise.

Conjecture 1.1 (Monodromy Conjecture). Let F be a tuple of polynomials in C[x1, . . . , xn].
Then

Exp(P(Ztop
F )) ⊂ SF .

A stronger conjecture involves the Bernstein-Sato ideal BF , the ideal of generated by
b ∈ C[s1, . . . , sp] satisfying

b

p
∏

i=1

f si
i = P

p
∏

i=1

f si+1
i
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for some P ∈ D [s1, . . . , sp], where D is the ring of linear algebraic differential operators on
Cn. When p = 1, the monic generator of this ideal is the b-function of f . Let Z(BF ) denote
the zero locus of BF in Cp. It was recently proven in [8] that

Exp(Z(BF )) = SF ,

extending the case p = 1 due to Malgrange, Kashiwara.

Conjecture 1.2 (Strong Monodromy Conjecture). Let F be a tuple of polynomials in
C[x1, . . . , xn]. Then

P(Ztop
F ) ⊂ Z(BF ).

For p = 1, the conjectures are the analog due to Denef-Loeser [11] of a classical conjecture
for p-adic local zeta functions of Igusa [18].

Among the known cases with p = 1 of the stronger conjecture are: plane curves [23],
tame hyperplane arrangements [31]. Among the known cases with p = 1 of the weaker
version are: hyperplane arrangements [7], non-degenerate surfaces [21] and non-degenerate
threefolds [14]. See the survey [27] for more cases.

For p > 1, the Monodromy Conjecture was posed by Loeser, cf. [28], see also [24]. It is
known for tuples of plane curves [28], and of hyperplane arrangements [5].

For p > 1, the Strong Monodromy Conjecture was posed in [5]. It is known for tuples
factorizing a tame hyperplane arrangement [2], and for tuples of linear polynomials [32].

In this note we address both conjectures in presence of two notions of genericity with
respect to birational modifications.

Setup 1.3. We fix a non-zero polynomial f ∈ C[x1, . . . , xn] and maps

Y

µ

��

�

�

// Ȳ

µ̄
��

Cn � � // Pn

such that:

• the bottom map is the inclusion of the complement of the hyperplane at infinity,
Y = µ̄−1(Cn), and µ = µ̄|Y ;

• µ̄ is a composition of blowing ups of smooth closed subvarieties;
• µ̄ is a log resolution of the divisor div(f) in Pn of the rational function f , that is, the
union of the exceptional locus of µ̄ with div(f) is a simple normal crossings divisor
in Ȳ .

Starting with f , one can always reach such a setup. Having fixed this set-up, we make
two definitions. The first one is:

Definition 1.4. We say that a statement holds for log generic polynomials in C[x1, . . . , xn]
if:

- for every ample line bundle L on Ȳ , and
- for all k ≫ 0,

the statement holds for g ∈ C[x1, . . . , xn], where g is a defining polynomial for the image
under µ of the restriction to Y of a generic member of the finite dimensional space |L⊗k|.
Here k ≫ 0 means k ≥ k0 for some k0 depending on L, µ̄, and f .
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For the second definition we will restrict to very general line bundles, that is, elements of
a certain non-empty subcone Avg of the integral ample cone of Ȳ as in Definition 5.2.

Definition 1.5. We say that a statement holds for log very-generic polynomials in C[x1, . . . , xn]
if:

- for every ample line bundle L on Ȳ such that L ∈ Avg, and
- for all k ≫ 0,

the statement holds for g ∈ C[x1, . . . , xn], where g is a defining polynomial for the image
under µ of the restriction to Y of a generic member of the finite dimensional space |L⊗k|.
As above, k ≫ 0 means k ≥ k0 for some k0 depending on L, µ̄, and f .

Remark 1.6.

(i) If a statement holds log generically then it holds log very-generically.
(ii) The morphism µ is also a log resolution of fg for any log generic polynomial g, by

Bertini Theorem. Moreover µ is a minimal log resolution for g, in the sense that if µ factors
through another log resolution µ′ of f , then µ′ is not a log resolution of g.

(iii) Even if f = 1, log generic polynomials can be highly singular depending on the log
resolutions chosen.

(iv) Log generic polynomials g can be obtained from generic elements of symbolic powers
of ideals as follows. If

L ≃ µ̄∗(OPn(d))⊗OȲ
OȲ (−A)

for some positive integer d and some effective divisor A supported on the exceptional locus
of µ̄ such that −A is relatively ample, then

µ̄∗(L
⊗k) ≃ J (k)(kd)

where J is the ideal subsheaf µ∗(OȲ (−A)) of OPn , and J (k) = µ∗(OȲ (−kA)) is the k-th
symbolic power of J . Then g are generic elements for k ≫ 0 of the image of the restriction
map

(1) Γ(Pn,J (k)(kd)) → Γ(Cn,J (k)(kd)).

(v) Log generic polynomials are not necessarily non-degenerate polynomials even in the
case f = 1, although there is an analogy. Non-degenerate polynomials are generic elements in
finite-dimensional vector spaces, generated by monomials, of polynomials with fixed Newton
polytope, see 6.7. However, by taking log resolutions of non-monomial ideals, one can
generate examples for which the image of the map (1) cannot be generated by monomials.

(vi) The condition imposed on log genericity to obtain log very-genericity is an analog of
the non-resonance condition for non-degenerate polynomials of [25].

We expand on these remarks in Remark 1.9 below in the context of the (Strong) Mon-
odromy Conjecture.

To state the results, we keep Setup 1.3 fixed.

Theorem 1.7. Let F = (f1, . . . , fp) be a tuple of non-zero polynomials in C[x1, . . . , xn], and
f =

∏p
i=1 fi. Then:

(a) the Monodromy Conjecture for F̃ = (f1, . . . , fp, g) is true, for log generic polynomials
g;

(b) the Strong Monodromy Conjecture for F̃ = (f1, . . . , fp, g) is true, for log very-generic
polynomials g.
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The same holds after taking products:

Theorem 1.8. With the same setup:

(a) the Monodromy Conjecture for the product fg is true, for log generic polynomials g;
(b) the Strong Monodromy Conjecture for the product fg is true, for log very-generic

polynomials g.

Remark 1.9. Consider log (very-)generic polynomials in the sense of both theorems.
(i) The numbers k0 and the genericity condition in the definition of log (very-)generic

polynomials can be described geometrically. In 6.4 we provide a bound for k0 if n = 2. In
general, see (3) and (4) (resp. (9) and (10)) for a few, but not all, geometric conditions.
Equivalently, the set of log (very-)generic polynomials can be defined as the largest set of
polynomials for which the proofs of the theorems work. This leads to the next example.

(ii) If g(x1, . . . , xn) is a homogeneous polynomial with an isolated singularity at the origin,
then g is log generic for the setup: f = 1, µ is the blowup at the origin O ∈ Cn, and µ̄ is the
blowup of Pn at O. Here L = µ̄∗OPn(d)⊗OȲ (−dW ), where W is the exceptional divisor and
d is the degree of g, k0 = 1, and g arises from an irreducible element of |L| whose union with
W has simple normal crossing singularities. Also, d > n iff g is log very-generic, due to the
nef and big condition (9) used in the proofs. Theorem 1.8 for this case has been extended
more generally to semi-quasihomogeneous hypersurfaces in [3].

(iii) The polynomial (x1+ x2)
2+ x1x3+ x2

3 is degenerate (cf. [19, 1.21]), log generic in the
setup of (ii) since it is homogeneous with an isolated singularity, but not log very-generic
since d = 2 ≤ n = 3 by (ii). Another simple example of Setup 1.3 providing log generic
polynomials which are not log very-generic is given in Remark 6.2 (i).

(iv) A general procedure for constructing log (very-)generic polynomials that are degen-
erate is as follows. Take n(n − 1) + 1 lines through the origin in Cn with n ≥ 3 such that
no collection of n of the lines is contained in a hyperplane. This means in particular that
there do not exist local coordinates around the origin in which all of the lines are contained
in the coordinate hyperplanes. Let µ : Y → Cn be the composition of the blowup of the
(strict transforms) of the lines, and let f = 1. Then any log (very-)generic polynomial g
in this setup will have singular locus equal to the union of the lines, and hence its singular
locus cannot be contained in a union of coordinate axis. In particular, such g cannot be
non-degenerate.

(v) Log (very-)generic polynomials are irreducible, whereas there exist reducible non-
degenerate polynomials (e.g. xy). Non-degeneracy depends on the choice of coordinates, log
(very-)genericity does not. Log (very-)genericity depends on the choice of the log resolution
map µ, and µ becomes a minimal log resolution for log (very-)generic polynomials g, in the
sense of Remark 1.6 (ii) for f = 1. A non-degenerate polynomial g gives canonically a toric
modification of Cn, corresponding to the normal fan to the Newton polyhedron of g. This
is usually not a log resolution of g, but any regular subdivision of the normal fan provides
a log resolution µ of g. For such µ, the strict transform of div(g) might not be ample, and
this is an obstruction to log genericity even if g is irreducible. Thus our theorems do not
immediately imply the next result, suggested by the referee. However, our method adapts
to the canonical toric modification and can be translated in terms of combinatorics.

Theorem 1.10. Let Γ be a fixed Newton polyhedron such that all faces of Γ not contained
in coordinate hyperplanes are compact. Then the Monodromy Conjecture holds for all germs
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g : (Cn, 0) → (C, 0) of non-degenerate polynomials g with Newton polyhedron kΓ for all
integers k ≫ 0.

Remark 1.11. (i) For complex analytic germs, the Monodromy Conjecture means that the
poles of the local topological zeta function at the origin, see Definition 3.1, give eigenvalues
of the monodromy at points close to the origin. The Newton polyhedron and non-degeneracy
are taken at the origin, see 6.7.

(ii) A Newton polyhedron Γ has the property that all faces not contained in coordinate
hyperplanes are compact if and only if kΓ has the same property for all k ∈ Z>0. If g has an
isolated singularity at the origin, we can assume that its Newton polyhedron satisfies this
property, since by finite determinacy we can add high-degree monomials xd

i in each variable
xi to g without changing the analytic type of the germ g.

(iii) The Strong Monodromy Conjecture was proven in [25] for non-degenerate polynomials
with Newton polyhedron Γ satisfying that all faces not contained in coordinate hyperplanes
are compact, and such that every compact facet (i.e. codimension-one face) satisfies a non-
resonance condition. If a facet τ of Γ is resonant, the dilated facet kτ is also resonant for kΓ
for any k ∈ Z>0. However, resonance is allowed in Theorem 1.10.

The proof of Theorem 1.7 (a) relies on a formula for the monodromy zeta function associ-
ated to a tuple of polynomials due to Sabbah [29], generalizing a classical result of A’Campo
for p = 1. The monodromy zeta functions recover the monodromy support of a tuple of
polynomials by [6], cf. Theorem 3.4. The case p = 1 of this fact was pointed out by Denef
as a consequence of the perversity of the nearby cycles complex. Using this we show that
all the candidates for polar hyperplanes of Ztop

F̃
arising from µ give components of the mon-

odromy support of F̃ . This also shows that the results in this note hold more generally for
motivic zeta functions instead of topological zeta functions. Theorem 1.8 (a) is a corollary
of Theorem 1.7 (a).

To address the parts (b) of the theorems, we show in Proposition 5.5 that every candidate
polar hyperplane of the relevant zeta functions is an actual polar hyperplane of order one.
We prove then firstly Theorem 1.8 (b) by adapting Loeser’s proof from [25] that non-resonant
compact codimension 1 faces of the Newton polytope of the germ of a non-degenerate hyper-
surface singularity give roots of the b-function. This method had also appeared in [22, 23]
in the 1-dimensional case. The main differences with [25] stem from the fact that we do
not assume compactness of exceptional divisors. We use a criterion to produce roots of b-
functions due to Hamm [17] slightly improving a result of Malgrange [26] used in [25]. Like
[25], we use a non-vanishing theorem for local systems of Esnault-Viehweg [13]. Theorem
1.7 (b) follows from Theorem 1.8 (b) by using results for generalized Bernstein-Sato ideals of
Gyoja [16] and Budur [5].

Even the case f = 1 is intricate. This singles out the class of log (very-) generic hyper-
surfaces as an interesting class of singularities on its own. To stress that log very-generic
polynomials have complicated singularities, we show in 6.1 that the roots of the b-functions
produced here are not necessarily negatives of jumping numbers.

In Section 2 we fix notation. In Section 3 we recall some facts about the objects of study.
In Section 4 we prove parts (a) of Theorems 1.7 and 1.8. In Section 5 we prove parts (b) of
Theorems 1.7 and 1.8. Section 6 contains further remarks and the proof of Theorem 1.10.
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Acknowledgement. We thank M. Mustaţă, L. Wu, P. Zhao, and the referee for useful
comments. We are especially grateful to the referee for formulating Theorem 1.10. The
first author would like to thank MPI Bonn for hospitality during the writing of this arti-
cle. The first author was partly supported by the grants STRT/13/005 and Methusalem
METH/15/026 from KU Leuven, G097819N and G0F4216N from FWO (Research Founda-
tion - Flanders). The second author is supported by a PhD Fellowship from FWO.

2. Notation.

For the proofs of the main results, we have to introduce some notation. With fix Setup
1.3. We let f =

∏p
i=1 fi with fi ∈ C[x1, . . . , xn].

2.1. We set the following:

• J̄exc is the set of irreducible components of the exceptional locus of µ̄;
• Jexc = {W ∈ J̄exc | W ∩ Y 6= ∅};

• F = (f1, . . . , fp);

• f̃ = f · fp+1 with fp+1 ∈ C[x1, . . . , xn] such that µ is a log resolution for f̃ and is an

isomorphism over Cn \ f̃−1(0);
• F̃ = (f1, . . . , fp, fp+1) ;

• J̄ is the union of J̄exc and the set of irreducible components of support of the divisor
µ̄∗(div(f̃)) on Ȳ ;

• J = {W ∈ J̄ | W ∩ Y 6= ∅};

• W ◦ = W \ ∪W ′∈J̄\{W}W
′ for W ∈ J̄ ;

• W ◦
J ′ = (∩W∈J ′W ) \ (∪W∈J̄\J ′W ) for J ′ ⊂ J̄ .

• For every W ∈ J̄ :
◦ nW = ordW (Kµ̄) + 1, where Kµ̄ is the relative canonical divisor of µ̄;
◦ ai,W = ordW (fi);
◦ aW = ordW (f) =

∑p
i=1 ai,W ;

◦ NW = ordW (f̃) =
∑p+1

i=1 ai,W .

2.2. In addition, we will consider the conditions:

• L is a very ample line bundle on Ȳ ;
• H ∈ |L⊗k| is a general element and k > 0 is an integer;
• fp+1 = g is a defining polynomial for µ(H ∩ Y ) in Cn;

This conditions are compatible with the assumption from 2.1 that µ is a log resolution of
f̃ which is an isomorphism above Cn \ f̃−1(0). We draw the attention that in this case some
of the notions from 2.1 depend on the integer k > 0, although we suppress this from the
notation.
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3. Invariants of singularities

We introduce the objects that form the subject of our results. We use the setup and no-
tation from 2.1, but not yet the conditions from 2.2. The following invariant was introduced
by Denef-Loeser [10]:

Definition 3.1. The topological zeta function of F̃ is

Ztop

F̃
(s1, . . . , sp+1) =

∑

∅6=J ′⊂J

χ(W ◦
J ′)

∏

W∈J ′

1

a1,W s1 + · · ·+ ap+1,Wsp+1 + nW
,

where χ( ) denotes the topological Euler characteristic. By replacing W ◦
J ′ with W ◦

J ′ ∩µ−1(x)

one obtains the local topological zeta function Ztop

F̃ ,x
at a point x ∈ f̃−1(0).

It is known that the topological zeta function Ztop

F̃
can also be computed from any other

log resolution of f̃ . If in addition the conditions from 2.2 hold, Ztop

F̃
does depend on the log

resolution µ of f = f1 · . . . · fp, since fp+1 = g does; see also Remark 1.6 (ii).
The support in Cp+1 of the divisor of poles of the rational function Ztop

F̃
, the polar locus,

is a hyperplane arrangement and will be denoted by P(Ztop

F̃
). The hyperplane

{a1,Ws1 + · · ·+ ap+1,Wsp+1 + nW = 0}

is called the candidate polar hyperplane from the component W .

Definition 3.2. The monodromy support of F̃ is the subset

SF̃ ⊂ (C∗)p+1

defined as follows. For each α ∈ (C∗)p+1 one has a rank one local system on (C∗)p+1 with
monodromy αi around the i-th missing coordinate hyperplane. The pullback of this local
system via F̃ |Cn\f̃−1(0) : Cn \ f̃−1(0) → (C∗)p+1 will be denoted Lα. For x ∈ f̃−1(0), let

Ux be the complement of f̃−1(0) in a small open ball around x in Cn. Then SF̃ consists of

α ∈ (C∗)p+1 for which there exist a point x ∈ f̃−1(0) with

H∗(Ux,Lα) 6= 0.

An equivalent definition of SF̃ is that this the support of the generalized monodromy
action on the generalization of the nearby cycles complex [29], by [5, 6]. The monodromy
support SF̃ is a finite union of torsion-translated codimension-one affine algebraic subtori of
(C∗)p+1, by [6].

To a point x ∈ f̃−1(0) one associates the monodromy zeta function Zmon
F̃ ,x

of the stalk at

x of the generalized nearby cycles complex of F̃ . We can take as definition the following
formula from [29, Proposition 2.6.2], [15, Théoréme 4.4.1], which recovers a classical formula
due to A’Campo in the case p = 1:

Theorem 3.3.

Zmon
F̃ ,x

(t1, . . . , tp+1) =
∏

W∈J

(t
a1,W
1 · · · t

ap+1,W

p+1 − 1)−χ(W ◦∩µ−1(x)).
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Denote by
PZ(Zmon

F̃ ,x
)

the support of the divisor on (C∗)p+1 associated to Zmon
F̃ ,x

, the union of the zero and the polar

locus, each being a finite union of torsion-translated codimension-one algebraic subtori.
Let Ω ⊂ f̃−1(0) be a finite set consisting of general points of each stratum of a Whitney

stratification of f̃−1(0). By [6] we have:

Theorem 3.4.

SF̃ =
⋃

x∈Ω

PZ(Zmon
F̃ ,x

).

4. Log generic polynomials

In this section we address log generic polynomials. For the proof of Theorem 1.7 (a), we
use the following estimate on asymptotic topological Euler characteristics:

Lemma 4.1. Let Ȳ be a smooth projective variety, L a very ample line bundle on Ȳ , and
V ⊂ Ȳ a non-empty Zariski locally closed subset. Let H ∈ |L⊗k| be a generic element for
k > 0. Then, for k ≫ 0,

χ(V \H) = (−1)dimV degL(V̄top) · k
dimV + lower order terms in k,

where V̄top is the union of the top-dimensional irreducible components of the closure of V . (If
dimV = 0, there are no “lower order terms in k”, by convention.) In particular, for k ≫ 0,
(−1)dimV χ(V \H) > 0.

Moreover,

χ(V ∩H) = (−1)dimV−1 degL(V̄top) · k
dimV + lower order terms in k

if dimV > 0, and in general

χ(H \ V ) = (−1)dim Ȳ−1 degL(Ȳ ) · kdim Ȳ + lower order terms in k.

Proof. If dim V = 0, then V ∩ H is empty, and the claims of the lemma are easily checked
in this case. We assume from now that dim V > 0.

Assume first V is closed and irreducible. In this case, V ∩ H is also irreducible and
complete, hence

χ(V ∩H) =

∫

cSM(V ∩H)

where cSM denote the Chern-Schwartz-MacPherson class, and the integral denotes the degree
of a class in the Chow group, equal to the degree of the top-dimensional component of that
class, see for example [1, 2.2]. By [1, Proposition 2.6],

cSM(V ∩H) =
H

1 +H
· cSM(V ).

Since dimV > 0, the right-hand side can be expanded to yield the equality

χ(V ∩H) = (−1)dimV−1kdimV

∫

c1(L)
dimV · cSM(V )dimV + lower order terms in k

(if dimV would be 0, this is not true since the right-hand side is not zero whereas the class
(H/(1 +H))cSM(V ) is zero by convention).

8



By [1, Theorem 1.1],
∫

c1(L)
dimV cSM(V )dimV = degL(V ) > 0.

Thus

χ(V ∩H) = (−1)dimV−1 degL(V ) · kdimV + lower order terms in k.

We will extend this result now to the case when V is closed but not necessarily irreducible.
Let Vi with i ∈ I be the irreducible components of V . Using inclusion-exclusion, we can
write

χ(V ∩H) =
∑

i∈I

χ(Vi ∩H) +
∑

W

mW · χ(W ∩H)

where W are irreducible components of intersections of at least two distinct irreducible
components of V , and mW are suitable multiplicities independent of k since H is generic. It
follows by the first part of this proof that

χ(V ∩H) = (−1)dimV−1
∑

i∈I
dimVi=dimV

degL(Vi) · k
dimV + lower order terms in k

= (−1)dimV−1 degL(Vtop) · k
dimV + lower order terms in k

where Vtop is the union of the top-dimensional irreducible components of V .
Now let V be locally closed and denote by V̄ the closure of V in Ȳ . Let Z = V̄ \ V , so

that Z is closed in Ȳ . Then

χ(V \H) = χ(V̄ \H)− χ(Z \H)

= χ(V̄ )− χ(V̄ ∩H)− χ(Z) + χ(Z ∩H)

= (−1)dimV degL(V̄top) · k
dimV + lower order terms in k,

where the last equality follows from the case handled above. This proves the first assertion.
Writing

χ(V ∩H) = χ(V̄ ∩H)− χ(Z ∩H),

we obtain the second assertion, since dim(Z ∩H) < dimV if dimV > 1, and if dim V = 1
then Z = ∅ by the genericity of H .

Next,

χ(H \ V ) = χ(H)− χ(V̄ ∩H) + χ(Z ∩H)

= (−1)dim Ȳ−1 degL(Ȳ ) · kdim Ȳ + lower order terms in k,

as claimed. �

4.2. Proof of Theorem 1.7 (a). We use the notation from 2.1 together with the conditions
from 2.2, and take k ≫ 0. We show that the Monodromy Conjecture holds for the tuple
F̃ = (f1, . . . , fp+1).

It is enough to show that every candidate polar hyperplane for Ztop

F̃
arising from µ is

mapped via the exponential map into the monodromy support of F̃ . That is, that

Exp({a1,W s1 + . . .+ ap+1,Wsp+1 + nW = 0}) ⊂ SF̃

for every W ∈ J .
9



By Theorem 3.4, it is thus enough to show that for every W ∈ J , the locus
{

p+1
∏

i=1

t
ai,W
i = 1

}

⊂ (C∗)p+1

is contained in PZ(Zmon
F̃ ,x

) for some x ∈ Ω.

For W ∈ J and x ∈ Ω, let

W ◦
x = W ◦ ∩ µ−1(x),

Jx = {W ∈ J | W ◦
x 6= ∅}.

Then

(2) Zmon
F̃ ,x

(t1, . . . , tp+1) =
∏

W∈Jx

(t
a1,W
1 · · · t

ap+1,W

p+1 − 1)−χ(W ◦

x )

by Theorem 3.3.
If W = H and x ∈ Ω is a general point on µ(H ∩ Y ), the vector a•,W in Zp+1 is equal to

(0, . . . , 0, 1) and

χ(W ◦ ∩ µ−1(x)) = χ({x}) = 1.

Moreover, Jx = {H} in this case. Thus Zmon
F̃ ,x

= (tp+1 − 1)−1 and so {
∏p+1

i=1 t
ai,W
i = 1} =

PZ(Zmon
F̃ ,x

), which proves the claim in this case.

For the remaining cases fix x ∈ Ω a general point of a stratum, different from above, of
a Whitney stratification of f̃−1(0). It is enough to show that the locus {

∏p+1
i=1 t

ai,W
i = 1} is

contained in PZ(Zmon
F̃ ,x

) for every W in Jx \ {H}. For such W , let

Wx = (W \ ∪W ′∈J̄\{W,H}W
′) ∩ µ−1(x),

so that

W ◦
x = Wx \H.

Then

χ(W ◦
x ) = (−1)dimW ◦

x degL((Wx)top) · k
dimWx + lower order terms in k,

by Lemma 4.1, where (Wx)top is the union of the top-dimensional irreducible components
of the Zariski closure of Wx, and there are no “lower order terms in k” if dimWx = 0. In
particular,

(3) χ(W ◦
x ) 6= 0 for k ≫ 0,

and hence every W ∈ Jx \ {H} contributes to the right-hand side of (2) with a non-trivial
factor before cancellations.

Suppose that a non-trivial irreducible factor P (t) of
∏p+1

i=1 t
ai,W
i −1 for some W ∈ Jx \{H}

cancels out from (2) and the zero locus of P (t) does not lie in PZ(Zmon
F̃ ,x

). Let J ′ ⊂ Jx \ {H}

be the set of all W ∈ Jx \ {H} with strictly positive multiplicity of P (t) as a factor of
∏p+1

i=1 t
ai,W
i − 1. Since the latter polynomial is reduced, this multiplicity has to equal 1. The

cancellation then implies
∑

W∈J ′

χ(W ◦
x ) = 0.

Let
r = max{dimW ◦

x | W ∈ J ′}.
10



Then

0 =
∑

W∈J ′, dimW ◦

x=r

(−1)r degL((Wx)top) · k
r + lower order terms in k,

where for r = 0 there are no “lower order terms in k”. Since the degree of a non-empty set
is > 0, and hence the coefficient of kr is non-zero, this implies that

(4)
∑

W∈J ′

χ(W ◦
x ) 6= 0 for k ≫ 0,

which is a contradiction. 2

4.3. Proof of Theorem 1.8 (a). We let fp+1 = g and f̃ = f · fp+1 as in the proof of

Theorem 1.7 (a), for k ≫ 0. Since Ztop

f̃
(s) = Ztop

F̃
(s, . . . , s), the restriction of the polar locus

of Ztop

F̃
to the line s1 = . . . = sp+1 = s contains the polar locus of Ztop

f̃
. The conclusion then

follows from Theorem 1.7 (a) and the fact that the restriction of the monodromy support SF̃

of F̃ to s1 = . . . = sp+1 = s equals the monodromy support Sf̃ of f̃ , by [6, Theorem 2.11]. 2

5. Log very-generic polynomials

In this section we address log very-generic polynomials. We fix Setup 1.3.

5.1. The log very-genericity condition. Since µ̄ is a composition of blowing ups of
smooth closed subvarieties,

Z⊕
⊕

W∈J̄exc

Z[W ]
∼
−→ Pic(Ȳ ), (d, bW ) 7→ µ̄∗OPn(d)⊗OȲ



−
∑

W∈J̄exc

bWW





is an isomorphism of finitely generated abelian groups. We let A ⊂ Pic(Ȳ ) be the subset of
ample isomorphism classes. Then the above isomorphism identifies A with a subcone

A ⊂ R+ ⊕
⊕

W∈J̄exc

R+[W ],

that is, if L ∈ A then every integral point in the ray R+L belongs to A, where R+ denote
the strictly positive real numbers.

We introduce the subcone Avg of A used in Definition 1.5 of log very-general polynomials:

Definition 5.2. Let Avg ⊂ A be the set of isomorphism classes of ample line bundles on Ȳ
such that for each W ∈ Jexc,

nW

bW
bW ′ 6∈ Z

for all W ′ ∈ J̄exc \ {W} with W ∩W ′ 6= ∅.

Note that the condition defining Avg in A is actually a condition on the µ̄-ample cone,
which coincides with the image of the projection of A to the space indexed by J̄exc.

Lemma 5.3. The subset Avg of A is a non-empty subcone.
11



Proof. By definition Avg is a subcone if non-empty. We show that it is non-empty. Fix
L ∈ A ample with associated coordinates bW for W ∈ J̄exc.

Choose integers pW ≫ 0 for each W ∈ J̄exc such that nWpW/pW ′ 6∈ Z for all pairs (W,W ′)
of different elements in J̄exc. This is possible since J̄exc is finite. Moreover,

L−
∑

W∈J̄exc

1

pW
W

is an ample Q-divisor class by [20, Example 1.3.14]. Let p =
∏

W∈J̄exc
pW . Thus

p(L−
∑

W∈J̄exc

1

pW
W )

is an ample integral divisor class. Replacing L by this new divisor class, one replaces bW by
p(bW + 1/pW ) for each W ∈ J̄exc. Moreover,

nW

p(bW + 1/pW )
p(bW ′ + 1/pW ′) =

pWnW

pW bW + 1
·
pW ′bW ′ + 1

pW ′

is not an integer since pW ′ does not divide the numerator. This proves the claim. �

5.4. Candidate vs. actual poles. We keep the notation from 2.1 together with the
conditions from 2.2, and let k ≫ 0. In particular, F̃ = (f1, . . . , fp+1), with f =

∏p
i=1,

f̃ = ffp+1, and fp+1 = g is log generic.

Proposition 5.5. If fp+1 = g is log very-generic, then:

(i) Every candidate polar hyperplane of Ztop

F̃
(s1, . . . , sp+1) arising from the exceptional

locus of µ is a polar hyperplane of order one.
(ii) Every candidate pole of Ztop

f̃
(s) arising from the exceptional locus of µ is a pole of

order one.

Proof. We prove (ii) first. We have

(5) Ztop

f̃
(s) =

∑

∅6=J ′⊂J

χ(W ◦
J ′)
∏

W∈J ′

1

NWs+ nW

.

Moreover,

NW = aW + ap+1,W

where

ap+1,W = ordW (µ∗(µ(H ∩ Y ))).

On the other hand,

H ∩ Y = µ∗(µ(H ∩ Y ))−
∑

W∈Jexc

ap+1,W (W ∩ Y )

as a divisor on Y , and OY (H ∩ Y ) ≃ L⊗k|Y by definition of H . Let

L ≃ µ̄∗OPn(d)⊗OȲ



−
∑

W∈J̄exc

bWW





12



be the unique representation of the isomorphism class of L in the cone A. Then

(6) ap+1,W =







kbW for W ∈ Jexc,
1 for W = H, in which case aW = 0,
0 for W ∈ J \ (Jexc ∪ {H}).

From now on we will now restrict to those L in Avg as in Definition 5.2, this being the
reason why we prove the proposition only log very-generically and not log generically.

We show that the candidate pole from W ∈ Jexc,

−
nW

NW
= −

nW

aW + kbW
,

is a pole of order one of Ztop

f̃
(s) for k ≫ 0.

Firstly, the pole order is at most 1. If the order would be > 1, then from formula (5) we
see that there must exist W ′ ∈ J \ {W} with W ∩W ′ 6= ∅ such that

nW

NW
=

nW

aW + kbW
=

nW ′

NW ′

.

This is impossible for W ′ 6∈ Jexc for large k. If this equality happens for W ′ ∈ Jexc for
infinitely many k ∈ N, by taking limit as k goes to infinity we obtain that

nW

bW
bW ′ = nW ′

which is excluded by the condition that L is in Avg.
Since the pole order is at most 1, to show that the order is equal to 1 it is enough to show

that the evaluation at s = −nW/NW of

(NWs+ nW )Ztop

f̃
(s)

is a non-zero number for k ≫ 0. By (5), this number is

∑

∅6=J ′⊂J\{W}

χ(W ◦
J ′∪{W})

∏

W ′∈J ′

NW

NWnW ′ −NW ′nW

.

The denominators are all different than zero if W ◦
J ′∩{W} 6= ∅, as we have seen already. For

k ≫ 0, using (6) and the asymptotic behaviour from Lemma 4.1 for the Euler characteristics,
the dominant term corresponds to J ′ = {H} and it is equal to (−1)n−1 degL(W )kn−1. Since
this term is non-zero, this proves (ii).

Now we show (i). Let W ∈ Jexc. The candidate polar hyperplane for Ztop

F̃
from W is

{
∑p+1

i=1 ai,W si + nW = 0}. Note that NW =
∑p+1

i=1 ai,W . Since Ztop

f̃
(s) = Ztop

F̃
(s, . . . , s), the

restriction of the polar locus of Ztop

F̃
to the line s1 = . . . = sp+1 = s contains the polar locus

of Ztop

f̃
(s). By part (ii), W contributes with the pole

−
nW

NW
=

{

nW +

p+1
∑

i=1

ai,W si = 0

}∣

∣

∣

∣

∣

s1=...=sp+1=s

to Ztop

f̃
(s), and we have seen that our assumptions imply that nW

NW
6= nW ′

NW ′

for every W ′ ∈

J \ {W} for k ≫ 0. Thus the polar locus of Ztop

F̃
must contain the candidate from W . �
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5.6. Strong Monodromy Conjecture. We fix, as always in this section, the setup and
notation from 2.1 together with the conditions from 2.2, and take k ≫ 0. We will show:

Proposition 5.7. If fp+1 = g is log very-generic:

(i) Every polar hyperplane of Ztop

F̃
(s1, . . . , sp+1) arising from the exceptional locus of µ is

an irreducible component of Z(BF̃ ).
(ii) Every pole of Ztop

f̃
(s) arising from the exceptional locus of µ is a root of the b-function

of f̃ .

Granted this proposition, we can complete:

Proof of parts (b) of Theorems 1.7 and 1.8. The non-exceptional components contribute triv-
ially with irreducible components of the zero locus of the Bernstein-Sato ideal (resp. with
roots of the b-function), by localizing around general point, hence smooth, on such a com-
ponent. Thus the claim follows from the previous proposition. �

The rest of the section is dedicated to the proof of the proposition.

Proof of Proposition 5.7 (ii). Let W ∈ Jexc. We prove that −nW/NW is a root of the b-

function of f̃ for k ≫ 0.
If W ∩ Y is compact, one can apply [25, 6.6] directly. However, W ∩ Y is typically not

compact, so we have to adapt the proof of [25, 6.6].
We will use [17, III] as a bridge from the geometric data to roots of the b-function. Thus

the essential task is to construct a horizontal multi-valued family of cycles

γ(t) ∈ Hn−1(f̃
−1(t),C)

for small t 6= 0, such that

lim
t→0

t
1−

nW
NW

∫

γ(t)

dx1 ∧ . . . ∧ dxn

df̃

exists and is a non-zero constant.
The proof takes a few steps:

- Step 1: In general, a multi-valued form f̃αdx1∧. . .∧dxn pulls back to a twisted logarithmic
form ω on Ȳ . We use the numerical data on the log resolution to identify twisting line bundles
for ω and for its associated residue form η.

- Step 2: We specialize to α = − nW

NW
. We show that the twisting bundles are non-resonant

and positive enough to apply the main theorem of [13] and obtain that the form η determines
a non-zero homology class γ of an associated (dual) local system. By construction

∫

γ
η 6= 0.

- Step 3: As in the proof of [25, 6.6], using a trivializing finite cover for the associated
local system, we construct the multi-valued family of cycles γ(t) as above.

- Step 4: Apply [17, III].

We now give the details of the proof.

Step 1. Let α ∈ R. The multi-valued form

f̃αdx1 ∧ . . . ∧ dxn

14



gives a global section in Γ(U,Ωn
U⊗CLU) where U = Cn\f̃−1(0), Ωn

U is the sheaf of holomorphic

n-forms, and LU is the rank one local system on U defined as the pullback via f̃ of the rank
one local system on C∗ with monodromy multiplication by exp(−2πiα) around the origin.

By construction of f̃ , µ is an isomorphism over U ,

V := Y \ (f̃ ◦ µ)−1(0)
∼
−→ U.

We have
ω = µ∗(f̃αdx1 ∧ . . . ∧ dxn) ∈ Γ(V,Ωn

V ⊗C LV )

where LV = µ−1LU . For every W ′ ∈ J̄ , the order of vanishing of ω along W ′ is well-defined
and

(7) ordW ′(ω) = nW ′ − 1 + αNW ′.

The monodromy of LV around W ′ is

exp(−2πi · ordW ′(ω)) = exp(−2πiαNW ′).

Moreover, ω has a meromorphic extension to Ȳ across the simple normal crossings divisor

A = Ȳ \ V =
∑

W ′∈J̄

W ′.

More precisely,
ω ∈ Γ(Ȳ ,Ωn

Ȳ (logA)⊗OȲ
M) ⊂ Γ(V,Ωn

V ⊗C LV )

where

M = OȲ

(

−
∑

W ′∈J̄

(ordW ′(ω) + 1) ·W ′

)

is defined (a definition is necessary since the coefficients are in R) as

M = Lcan
Y ⊗OȲ

OȲ

(

−
∑

W ′∈J̄

⌊ordW ′(ω) + 1⌋ ·W ′

)

,

with Lcan
V the canonical Deligne extension of LV , and ⌊ ⌋ denoting the round-down. Recall

that Lcan
V is a line bundle on Ȳ extending OV ⊗C LV and is defined as follows. Around a

general point of W ′, let z be a local holomorphic function on Ȳ defining W ′, and let u be a
local multi-valued frame for LV . Then

Lcan
V = OȲ

(

−
∑

W ′∈J̄

{ordW ′(ω) + 1} ·W ′

)

is defined by declaring z{ordW ′ (ω)+1}u to be a local holomorphic frame, that is, locally

Lcan
V ≃ OȲ · z{ordW ′ (ω)+1}u,

where { } denotes the fractional part.
By definition of M, the M-valued log differential form ω has no poles nor zeros on V .

Therefore ω induces an isomorphism of invertible sheaves

OȲ
∼
−→ Ωn

Ȳ (logA)⊗OȲ
M,

and hence an isomorphism
M−1 ∼

−→ Ωn
Ȳ (logA).
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Let us denote the residue of ω along W by

η ∈ Γ(W,Ωn−1
W (logAW )⊗OȲ

M)

where
AW = (A−W )|W

so that W ◦ = W \ AW . By definition, η is locally (zω/dz)|W ◦ where z is a holomorphic
function on Ȳ defining W .

Step 2. We take from now

α = −
nW

NW
.

The effect of this choice is that
ordW (ω) + 1 = 0.

This implies that η 6= 0 and

(8) c1(L
can
V |W ) = −

∑

W ′∈J̄W

{ordW ′(ω) + 1} · [W ′|W ] ∈ H2(W,R)

where
J̄W := {W ′ ∈ J̄ | W 6= W ′ and W ∩W ′ 6= ∅}.

Equation (8) guarantees that there exists a rank one local system L on W ◦ with monodromy
around W ′|W with W ′ ∈ J̄W precisely

− exp(2πi{ordW ′(ω) + 1}),

by applying for example [4, Theorem 1.2 and §3]. Then the canonical Deligne extension of
L to W is

Lcan = Lcan
V |W .

Thus
η ∈ Γ(W,Ωn−1

W (logAW )⊗OW
M) ⊂ Γ(W ◦,Ωn−1

W ◦ ⊗C L).

That is, η is a meromorphic L-twisted differential form with no poles nor zeros on W ◦, and
M|W is the smallest invertible sheaf on W with this property. This is the first ingredient
needed to apply [13].

Since H ∩W is an irreducible component of AW and is a very ample divisor class on W
for k ≫ 0, one has that

(9) Ωn−1
W (logAW ) ≃ OW (KW + AW ) ≃ OW (B)⊗OW

L⊗k

is nef and big for k ≫ 0 by [20, Example 1.2.10], where B = KW + AW − (H ∩W ). This is
the second ingredient needed to apply [13].

We now assume further that L ∈ Avg as in Definition 5.2, this being the reason why we
prove the proposition only log very-generically and not log generically. This and (6) imply
for k ≫ 0 that for all W ′ ∈ J̄W ,

(10)
nW

NW

NW ′ 6∈ Z,

or, equivalently by (7),
ordW ′(ω) 6∈ Z.

Thus none of the monodromies of L is 1. This is the third and last ingredient needed to
apply [13].
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We can now apply the main theorem of [13] and obtain that the form η determines a
non-zero class in Hn−1(W ◦,L). Since W \ (H ∩W ) is affine, its subset W ◦ is also affine. It
follows by [12, (1.5)] and its proof that Hn−1(W ◦,L) = Hn−1

c (W ◦,L). Therefore there exists
a cycle

γ ∈ Hn−1(W
◦,L∨)

with coefficients in the dual local system of L, such that
∫

γ

η 6= 0.

Step 3. For this step the arguments are as in the proof of [25, 6.6]. Consider a Gelfand-
Leray form

f̃
1−

nW
NW dx1 ∧ . . . ∧ dxn

df̃
on U . A local computation shows that the pullback by µ∗ extends over W ◦ and

µ∗

(

f̃
1−

nW
NW dx1 ∧ . . . ∧ dxn

df̃

)∣

∣

∣

∣

∣

W ◦

= η

up to multiplication by a non-zero constant.
Let N be the lowest common multiple of all NW ′ for W ′ ∈ J̄ . Let Ỹ → C be the

normalization of the base change of f̃ ◦ µ : Y → C by the morphism C → C, t 7→ tN . Let
W̃ ◦ be the inverse image of W ◦ in Ỹ . Then the natural map

ν : W̃ ◦ → W ◦

is étale and ν∗L is the constant sheaf. Thus ν∗(η) ∈ Hn−1(W̃ ◦,C) and one has a cycle

γ̃ ∈ Hn−1(W̃
◦,C) such that

∫

γ̃

ν∗η 6= 0.

Since W̃ ◦ is smooth, f̃ lifts to a trivial fibration on a small tubular neighborhood T of W̃ ◦

in Ỹ . Let Tt be the fibers for small t. By parallel transport, γ̃ = γ̃(0) for a horizontal family

γ̃(t) ∈ Hn−1(Tt,C)

for small t. Pushing forward to Cn, we obtain a horizontal multi-valued family of cycles

γ(t) ∈ Hn−1(f̃
−1(t),C)

for small t 6= 0, such that

lim
t→0

t
1−

nW
NW

∫

γ(t)

dx1 ∧ . . . ∧ dxn

df̃

exists and is a non-zero constant.
Step 4. As already mentioned, the last statement implies directly that −nW/NW is a root

of the b-function of f̃ by applying [17, III]. This finishes the proof of Proposition 5.7 (ii). �

Proof of Proposition 5.7 (i). Let W ∈ Jexc. Since k ≫ 0, we have aW,p+1 > nW . Denote by

L the set of all l = (l1, . . . , lp+1) ∈ Z
p+1
>0 such that

nW

l1aW,1 + · · ·+ lp+1aW,p+1

(l1aW ′,1 + · · ·+ lp+1aW ′,p+1) 6∈ Z
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for all W ′ ∈ J̄ \{W} with W ′∩W 6= ∅. Then for all (l1, . . . , lp) ∈ Z
p
>0 and for lp+1 ≫ 0 large

enough relative to (l1, . . . , lp),

(l1, . . . , lp+1) ∈ L.

To see this, one can use (6), the constraint from Definition 5.2, and take limits as lp+1 → ∞.
It follows from the proof of Proposition 5.7 (ii) that for l ∈ L,

rW,l := −
nW

l1aW,1 + · · ·+ lp+1aW,p+1

is a root of the b-function of f l1
1 . . . f

lp+1

p+1 . This easily implies that for all b(s1, . . . , sp+1) ∈ B l

F̃
,

b(l1rW,l, . . . , lp+1rW,l) = 0,

cf. [5, Lemma 4.20]. Here B l

F̃
is the generalized Bernstein-Sato ideal consisting of b ∈

C[s1, . . . , sp+1] such that

b

p
∏

i=1

f si
i = P

p+1
∏

i=1

f si+li
i

for some P ∈ D [s1, . . . , sp+1].
Denote

qW,l := (l1rW,l, . . . , lp+1rW,l) ∈ Cp+1,

so that we can write

Q := {qW,l | l ∈ L} ⊂
⋃

l∈L

Z(B l

F̃
) =: Z.

Notice that all qW,l lie on the polar hyperplane of Ztop

F̃
(s1, . . . , sp+1) contributed by W ,

L := {aW,1s1 + · · ·+ aW,p+1sp+1 + nW = 0}.

Denote by ti : C
p+1 → Cp+1 with i = 1, . . . , p+ 1, the maps

ti(c1, . . . , cp+1) = (c1, . . . , ci−1, ci − 1, ci+1, . . . , cp+1).

Then we recall from [5, Proposition 4.10] that we can write the zero locus of B l

F̃
as

Z(B l

F̃
) =

p+1
⋃

i=1

li−1
⋃

j=0

t
lp+1

p+1 . . . t
li+1

i+1 t
j
iZ(B

ei

F̃
)

where ei is the i-th standard basis vector.
Now take a small ball B around (0, . . . , 0,−nW/aW,p+1) ∈ Cp+1. It follows from the

description of Z(B l

F̃
) above and the definition of Z that only finitely many irreducible com-

ponents of Z intersect B. Denote the reducible variety obtained by taking the union of these
components by Q. Then Q is an algebraic Zariski closed subset of Cp+1. Since Q∩B ⊂ Q, by
taking Zariski closure in Cp+1 we also have Q ∩B ⊂ Q. Lemma 5.8 shows that Q ∩B = L.
We thus conclude that

L ⊂ Q ⊂ Z.

We can then find a vector d ∈ L such that

L ⊂ Z(B d

F̃
) =

p+1
⋃

i=1

di−1
⋃

j=0

t
dp+1

p+1 . . . t
di+1

i+1 t
j
iZ(B

ei

F̃
).(11)
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Suppose that in (11), the hyperplane L is contained in tjp+1Z(B
ep+1

F̃
) for some j > 0. Apply

t−j
p+1 to the inclusion L ⊂ tjp+1Z(B

ep+1

F̃
) to find that

{aW,1s1 + · · ·+ aW,p+1sp+1 + nW − jaW,p+1 = 0} ∈ Z(B
ep+1

F̃
).

But then nW − jaW,p+1 < 0, which contradicts the main result of [16]. Similarly we find that
for all i = 1, . . . , p and j ≥ 0,

L 6⊂ t
dp+1

p+1 . . . t
di+1

i+1 t
j
iZ(B

ei

F̃
).

We thus conclude that

L ⊂ Z(B
ep+1

F̃
)

However, from the definition of generalized Bernstein-Sato ideals we have Z(B
ep+1

F̃
) ⊂ Z(BF̃ ),

so this finishes the proof. �

Lemma 5.8. With the notation of the proof of Proposition 5.7 (i), Q ∩ B = L.

Proof. Fix an arbitrary l′ = (l1, . . . , lp) ∈ Z
p
>0. We already remarked that for lp+1 ≫ 0,

l = (l1, . . . , lp+1) ∈ L. For such sufficiently large lp+1 we have moreover that qW,l ∈ Q ∩ B.
Keeping l′ fixed, but letting lp+1 get larger, all the points qW,l lie on the same line Tl′, which
has parametric representation

Tl′ =

{(

0, . . . , 0,−
nW

aW,p+1

)

+ t

(

l1, . . . , lp,−
aW,1l1 + · · ·+ aW,plp

aW,p+1

)

| t ∈ C

}

.

We conclude that all lines of this form are contained in Q ∩B. It follows that

L ∩ (Qp
>0 ×Q) ⊂ Q ∩ B.

Since the left hand side is clearly Zariski dense inside L, we conclude that L ⊂ Q ∩B. The
other inclusion is immediate since Q ∩ B ⊂ L. �

6. Further remarks

6.1. Jumping numbers. Even in the simplest situations, the roots of the b-function of
the log very-generic polynomials that we produced in this note are not necessarily jumping
numbers [20, Definition 9.3.22], although small jumping numbers give roots of the b-function
[20, 9.3.25].

Let µ : Y → C2 be the composition of the blow up at the origin, followed by the blow up of
point on the exceptional divisor. Let g a log very-generic polynomial on C2, as in Definition
1.5, where we fit µ into the Setup 1.3 by taking f = 1 and extending µ to µ̄ : Ȳ → P2

trivially. Let W1 and W2 be the exceptional irreducible divisors of µ, which in this case are
the same as those of µ̄. Let

αi =
nWi

NWi

=
ordWi

(Kµ̄) + 1

ordWi
g

(i = 1, 2).

Then both −α1 and −α2 are roots of the b-function of g by Proposition 5.7 (ii). However,
either α1 or α2 is a jumping number of g, but not both at the same time.

More precisely, let

Arel = {(b1, b2) ∈ Z2 | −(b1W1 + b2W2) is µ-ample}
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be the integral relatively-ample cone (up to a minus sign). Then Arel is the image of the
projection of the ample cone A of Ȳ to the space with coordinates indexed by W1 and W2,
cf. 5.1. One has

Arel = {(b1, b2) ∈ N2 | 0 < b1 < b2 < 2b1}

by applying the numerical relative-ampleness criterion. Let Avg
rel be the projection to Arel of

the subcone Avg of Definition 5.2. Then

Avg
rel = Arel \ {(b1, b2) ∈ Arel | 3b1 = 2b2} .

To a log very-generic polynomial g one attaches a largely-scaled point (b1, b2) in Avg
rel, the

coordinates corresponding to the power L⊗k from which g was generated. Then αi =
i+1
bi
.

Thus one can define for i = 1, 2, a subcone Ai of A
vg
rel corresponding to the log very-generic

polynomials g having αi as jumping number. A short computation reveals that

A1 = {(b1, b2) ∈ Avg
rel | 2b2 < 3b1} = Avg

rel \ A2,

as claimed.

Remark 6.2. (i) The above explicit description of Avg
rel as an open subcone of Arel also illus-

trates that in this example “most” log generic polynomials are log very-generic polynomials,
but the log generic polynomials arising from the integral points of the smaller-dimensional
subcone {3b1 = 2b2} of Arel are not log very-generic polynomials.

(ii) The numbers k0, from the definition of log generic polynomials in the sense of the
theorems from the introduction, are not always 1 in this setup. Take A = 2W1 + 3W2 and
L = µ̄∗OP2(d)(−A). Then L is µ̄-ample. The intersection W1 ∩H is a set of simple points,
away from the point W1 ∩ W2, of cardinality −W1 · A = 1. Hence χ(W1 \ H ∪ W2) = 0
since W1 = P1. In other words, the condition (3) fails for (W1)

◦
x with x the origin in C2

(and k = 1). Thus one must consider L⊗k with k > 1 in this case to obtain log generic
polynomials.

6.3. Generalizations. The same proofs give the following generalizations:
(i) Theorem 1.7 and Theorem 1.8 hold if g is replaced by a power gl for any integer l > 0.

(ii) Theorem 1.7 (a) and Theorem 1.8 (a) hold simultaneously for all (f l1
1 , . . . , f

lp
p , g) with

li ∈ N, respectively f lg with l ∈ N. That is, the lower bound on k ≫ 0 in the definition of g
does not depend on li, respectively on l.

(iii) Theorem 1.7 (a), Theorem 1.8 (a), and Proposition 5.5 hold also with the assumption
that µ̄ is a log resolution of the divisor of the rational function f in Pn replaced by the weaker
assumption that µ is a log resolution of the polynomial f .

6.4. Effective log genericity. We illustrate the complexity of bounds k0 for the integers
k ≥ k0 involved in the definition of log (very-)generic polynomials from Theorems 1.7 and
1.8. Consider the setup and notation as in 2.1 with the additional conditions from 2.2. We
assume n = 2. Define C(µ) to be maximum number of irreducible components of connected
components of the µ-exceptional locus ∪W∈JexcW . Next, let I = J \ {H}, the union of Jexc

with the set of irreducible components of f−1(0). Let L be a very ample line bundle on Ȳ .
Write L ≃ µ̄∗(OP2(d))⊗OȲ (−

∑

W ′∈J̄exc
bW ′W ′) for some integers bW ′, d > 0. Define

C(µ, f, L) =max{2, nW + aW , nWaW ′′ + aW , nWaW ′ + nWaW
bW ′

bW
+ aW |

W,W ′ ∈ Jexc,W
′′ ∈ I \ Jexc,W 6= W ′,W ∩W ′ 6= ∅ 6= W ∩W ′′}.

20



One can show that C(µ, f, L) ≥ C(µ).

Proposition 6.5. With the above assumptions, let k > 0 be an integer, let H ∈ |L⊗k| be
generic, and let g be an equation for the curve µ(H ∩ Y ) in C2.

(a) If k > C(µ) then g is log generic in the sense of Theorems 1.7 and 1.8, hence the

Monodromy Conjecture holds for F̃ = (f1, . . . , fp, g) and f̃ = f1 . . . fpg.
(b) If k > C(µ, f, L) and L ∈ Avg (see Definition 5.2), then g is log very-generic in

the sense of Theorems 1.7 and 1.8, hence the Strong Monodromy Conjecture holds for F̃ =
(f1, . . . , fp, g) and f̃ = f1 . . . fpg.

Proof. (a) We run the proofs from 4.2 and 4.3. We check that all claims still hold with the
assumption that k > C(µ) instead of k ≫ 0. We use the notation from that proof.

Let x be a point not in the image of any µ-exceptional divisor, but lying on an irreducible
component of f̃−1(0), say corresponding to the strict transform W ∈ J . Then the germ of

f̃i at x is isomorphic to zai,W , nW = 1, and it is easy to see that the locus {
∏p+1

i=1 t
ai,W
i = 1}

is contained in PZ(Zmon
F̃ ,x

). Hence the candidate poles from the strict transforms of the

irreducible components of f̃−1(0) give monodromy eigenvalues.
The remaining candidate poles come from W ∈ Jexc. Note that W ≃ P1 in this case. We

assume that Jexc is not empty, otherwise there is nothing to prove.
Using the numerical criterion for ampleness of L|Y relative to µ : Y → C2, we have that

the vector b = (bW ′)W ′∈Jexc satisfies the condition

(12) −
∑

W ′∈Jexc

bW ′W ·W ′ > 0 for all W ∈ Jexc.

Take now x a point in the image of some exceptional divisor. Then Jx = {W ∈ Jexc |
W ⊂ µ−1(x)} is non-empty and ∪W∈JxW a connected component of ∪W∈JexcW . Let W ∈ Jx.
Then, since H is generic,

(13) χ(W ◦
x ) = χ(W )− χ(W ∩H)− χ(W ∩ (∪W ′∈I\{W}W

′))

= 2 + k ·
∑

W ′∈Jexc

bW ′W ·W ′ −
∑

W ′∈I\{W}

W ·W ′.

Thus χ(W ◦
x ) 6= 0 if

k 6=
2−

∑

W ′∈I\{W}W ·W ′

−
∑

W ′∈Jexc
bW ′W ·W ′

.

The numerator on the right-hand side is ≤ 1 since there the terms W ·W ′ are 0 or 1, and at
least one such term is 1. The denominator is ≥ 1 by (12). Thus the right-hand side is ≤ 1.
Since k > C(µ) ≥ 1 we have that χ(W ◦

x ) 6= 0. Thus (3) holds for k > C(µ).
As in 4.2, this guarantees that all the candidate polar hyperplanes from Jexc of the topo-

logical zeta function of F̃ appear in the formula (2) for Zmon
F̃ ,x

before cancellations, for some x

as above. Further, we need to guarantee that these candidates do not cancel out of Zmon
F̃ ,x

. As

in 4.2, we need to guarantee that
∑

W∈J ′ χ(W ◦
x ) 6= 0 for certain subsets J ′ of Jx. Repeating

the computation from above, it is enough to show that

k 6=

∑

W∈J ′

(

2−
∑

W ′∈I\{W}W ·W ′
)

−
∑

W∈J ′

∑

W ′∈Jexc
bW ′W ·W ′
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for all non-empty J ′ ⊂ Jx. The numerator on the right-hand side is ≤ |J ′| ≤ |Jx| ≤ C(µ),
the last inequality due to ∪W∈JxW being connected. The denominator is ≥ 1. Thus the
right-hand side is ≤ C(µ) < k, so

∑

W∈J ′ χ(W ◦
x ) 6= 0. Thus (4) holds for k > C(µ). This

finishes the proof of part (a).
(b) We run the proofs from 5.6. We check that all claims still hold with the assumption

that k > C(µ, f, L) instead of k ≫ 0. The condition that the divisor in (9) is nef and big
is satisfied easily using the bound C(µ, f, L) ≥ 2 since OW (KW ) = OP1(−2). Now we only
need to show that (10) holds for k > C(µ, f, L). So, let W ∈ Jexc. Since n = 2, there are
only three types of elements of J̄W :

J̄W = (JW ∩ Jexc) ∪ (JW ∩ (I \ Jexc)) ∪ {H}.

We show first that (10) holds for W ′ ∈ JW ∩ Jexc, that is, for W
′ ∈ Jexc with W 6= W ′ and

W ∩W ′ 6= ∅. Using (6), we see that we must show that

k 6=
nWaW ′ − taW
bW t− nW bW ′

for all t ∈ Z.

Note that the denominator is not zero since L is in Avg. If the right hand side is the constant
function 0 or 1 in t, the claim holds since k > C(µ, f, L) > 1. If aW = 0 but aW ′ 6= 0 the
claim also holds, since then the right-hand side is still ≤ C(µ, f, L). In the remaining cases,
the right-hand side represents the values on Z of a real function h(t) = (A− Bt)/(Ct−D)
with A,B,C,D ∈ Z≥0, B,C,D 6= 0, and D/C 6∈ Z. This set of values is maximized by the
value at the integer closest to D/C in the direction of A/B, that is by ⌊D/C⌋ or ⌈D/C⌉
depending on the sign of AC − BD. In any case, h(t) ≤ A + Bt for positive t, hence the
maximal value for t ∈ Z of the right-hand side is

≤ A+ (D/C + 1)B = nWaW ′ + nWaW
bW ′

bW
+ aW ≤ C(µ, f, L) < k.

This settles this case.
For the other two cases for W ′, the claim is easier to prove. If W ′ = H then one uses

the bound C(µ, f, L) ≥ nW + aW . If W ′ ∈ JW ∩ (I \ Jexc), one uses the bound C(µ, f, L) ≥
nWaW ′ + aW . �

Remark 6.6. (i) Note that C(µ) does not depend on L nor on the orders of vanishing of f
along components in J . The same is true for C(µ, 1, L), but for general f we do not know
how to find a lower bound for k independent of L guaranteeing log very-genericity for g as
in Proposition 6.5.

(ii) If n ≥ 3, we do not know how to provide a lower bound for k independent of L
guaranteeing log genericity. The problem arises already with the analog of (13); if n = 3 this
becomes a quadratic polynomial and the natural upper bounds on its roots depend on L.

6.7. Non-degenerate polynomials. We recall the definitions of Newton polyhedron and
non-degeneracy. Let g ∈ C[x1, . . . , xn] with g(0) = 0, and let g =

∑

m∈Nn cmx
m with cm ∈ C

be the unique monomial decomposition of g. The Newton polyhedron of g (at the origin) is
the convex hull Γ(g) in Rn

≥0 of ∪m∈supp(g)(m + Rn
≥0), where supp(g) = {m ∈ Nn | cm 6= 0}.

The polynomial g is non-degenerate (at the origin) if for any compact face τ of Γ(g), the
polynomials ∂fτ/∂xi, 1 ≤ i ≤ n, do not have a common zero in (C∗)n = {x1x2 . . . xn 6= 0},
where fτ =

∑

m∈τ∩Nn cmx
m.
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Let τ be a face of a Newton polyhedron Γ. Let RS be the minimal coordinate subspace
of Rn containing τ . Let aff(τ) be the affine span of τ in RS. Let sτ = |S| and assume
dim τ = sτ − 1. Then aff(τ) is given by an equation a1e1 + . . . + ases = N with ei forming
the standard basis of RS, ai, N ∈ N, and gcd(a1, . . . , as, N) = 1. Set N(τ) = N and
ν(τ) = a1 + . . .+ as.

Proof of Theorem 1.10. We can assume g is a singular germ. Since g is non-degenerate, all
the poles different than −1 of the local topological zeta function Ztop

g,0 (s) of g at the origin
are included in the set

{

−
ν(τ)

N(τ)
| τ is a a facet of Γ(g) not lying in a coordinate hyperplane

}

,

by a result of Denef [9] for the p-adic local zeta function, but the statement for the local
topological zeta function follows similarly, see [10, Théorème 5.3 (ii)]. Our assumption on Γ
implies that all the facets of Γ(g) = kΓ not lying in a coordinate hyperplane are compact.

It is enough to show that every candidate pole as above gives a zero or a pole of the
monodromy zeta function Zmon

g,x (t) of g at some point x close to the origin in Cn.
Fix τ0 a compact facet of Γ(g) not lying in a coordinate hyperplane. Since g is non-

degenerate, by Varchenko [30] we have

Zmon
g,0 (t) =

∏

τ

(tN(τ) − 1)(−1)dim τ ·(dim τ)!·VolZ(τ)

where the product runs over compact faces τ of Γ(g) with dim τ = sτ −1. Here, if dim τ = 0,
one sets VolZ(τ) = 1. For the other compact faces τ , the latticial volume VolZ(τ) of τ is
computed by declaring that on aff(τ) the cube spanned by the lattice basis of Zn ∩ aff(τ)
has volume 1.

Since τ0 is compact, λ = e−2πiν(τ0)/N(τ0) is a root or a pole of the term in Zmon
g,0 (t) corre-

sponding to τ0. We show that λ is a root or a pole of Zmon
g,0 (t).

Since Γ(g) = kΓ, the faces τ of Γ(g) are into 1-1 correspondence with the faces τ ′ of Γ.
Under this correspondence τ = kτ ′. Moreover,

(−1)dim τ (dim τ)!VolZ(τ) = (−1)dim τ ′(dim τ ′)!VolZ(τ
′)kdim τ ′

for k > 0. If λ is not a root or a pole of Zmon
g,0 (t), then

0 = (−1)n−1(n− 1)!kn−1
∑

τ ′

VolZ(τ
′) + (lower order terms in k)

for k ≫ 0, where the sum runs over all compact facets τ ′ of Γ such that λN(kτ ′) = 1. We have
that

∑

τ ′ VolZ(τ
′) > 0 since τ ′0 contributes non-trivially to the sum. This is a contradiction

for k ≫ 0, hence λ is a root or a pole of Zmon
g,0 (t). �

References

[1] P. Aluffi, Euler characteristics of general linear sections and polynomial Chern classes. Rend. Circ. Mat.
Palermo 62 (2013), no. 1, 3-26. 8, 9

[2] D. Bath, Bernstein-Sato varieties and annihilation of powers. Trans. Amer. Math. Soc. 373 (2020),
8543-8582. 2

[3] G. Blanco, N. Budur, R. van der Veer, Monodromy conjecture for semi-quasihomogeneous hypersurfaces.

arXiv: 2106.11015. To appear in Math. Nachr. 4
23



[4] N. Budur, Unitary local systems, multiplier ideals, and polynomial periodicity of Hodge numbers. Adv.
Math. 221 (2009), 217-250. 16

[5] N. Budur, Bernstein-Sato ideals and local systems. Ann. Inst. Fourier 65 (2015), 549-603. 2, 5, 7, 18
[6] N. Budur, Y. Liu, L. Saumell, B. Wang, Cohomology support loci of local systems. Michigan Math. J.

66 (2017), 295-307. 5, 7, 8, 11
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J. Amer. Math. Soc. 5 (1992), 705-720. 7, 23
[11] J. Denef, F. Loeser, Motivic Igusa zeta functions. J. Algebraic Geom. 7 (1998), 505-537. 2
[12] H. Esnault, E. Viehweg, Logarithmic de Rham complexes and vanishing theorems. Invent. Math. 86

(1986), 161-194. 17
[13] H. Esnault, E. Viehweg, A remark on a nonvanishing theorem of P. Deligne and G. D. Mostow. J. Reine

Angew. Math. 381 (1987), 211-213. 5, 14, 16, 17
[14] A. Esterov, A. Lemahieu, K. Takeuchi, On the monodromy conjecture for non-degenerate hypersurfaces.

arXiv:1309.0630. 2
[15] G. Guibert, Espaces d’arcs et invariants d’Alexander. Comment. Math. Helv. 77 (2002), 783-820. 7
[16] A. Gyoja, Bernstein-Sato’s polynomial for several analytic functions. J. Math. Kyoto Univ. 33 (1993),

399-411. 5, 19
[17] H. Hamm, Remarks on asymptotic integrals, the polynomial of I. N. Bernstein and the Picard-Lefschetz

monodromy. Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 1, Williams Coll.,
Williamstown, Mass., 1975), pp. 31-35. Amer. Math. Soc., Providence, R.I., 1977. 5, 14, 17

[18] J.-i. Igusa, An introduction to the theory of local zeta functions. Amer. Math. Soc., Providence, RI;
International Press, Cambridge, MA, 2000. xii+232 pp. 2
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