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Abstract
The Hardy-Littlewood maximal operator M satisfies the classical Sawyer-type esti-
mate

∥
∥
∥
∥

M f

v

∥
∥
∥
∥
L1,∞(uv)

≤ Cu,v‖ f ‖L1(u),

where u ∈ A1 and uv ∈ A∞. We prove a novel extension of this result to the general
restricted weak type case. That is, for p > 1, u ∈ AR

p , and uv p ∈ A∞,

∥
∥
∥
∥

M f

v

∥
∥
∥
∥
L p,∞(uv p)

≤ Cu,v‖ f ‖L p,1(u).

From these estimates, we deduce new weighted restricted weak type bounds and
Sawyer-type inequalities for the m-fold product of Hardy-Littlewood maximal oper-
ators. We also present an innovative technique that allows us to transfer such
estimates to a large class of multi-variable operators, including m-linear Calderón-
Zygmund operators, avoiding the A∞ extrapolation theorem and producing many
estimates that have not appeared in the literature before. In particular, we obtain
a new characterization of AR

p . Furthermore, we introduce the class of weights
that characterizes the restricted weak type bounds for the multi(sub)linear maximal
operator M, denoted by AR

P , establish analogous bounds for sparse operators and
m-linear Calderón-Zygmund operators, and study the corresponding multi-variable

Communicated by Loukas Grafakos.

B Eduard Roure-Perdices
eduardroure@protonmail.ch

Carlos Pérez
cperez@bcamath.org

1 Department of Mathematics, University of the Basque Country, Ikerbasque and BCAM, Bilbao,
Spain

2 Departament de Matemàtiques i Informàtica, Universitat de Barcelona, 08007 Barcelona, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00208-021-02240-4&domain=pdf
http://orcid.org/0000-0002-4774-8871


494 C. Pérez, E. Roure-Perdices

Sawyer-type inequalities for such operators and weights. Our results combine mixed
restricted weak type norm inequalities, AR

p and AR
P weights, and Lorentz spaces.

Mathematics Subject Classification 42B25 · 46E30

1 Introduction

“Sawyer-type inequalities” is a terminology coined in the paper [19], where the authors
prove that if u ∈ A1, and v ∈ A1 or uv ∈ A∞, then

uv

({

x ∈ R
n : |T ( f v)(x)|

v(x)
> t

})

≤ C

t

ˆ
Rn

| f (x)|u(x)v(x)dx, t > 0, (1.1)

where T is either the Hardy-Littlewood maximal operator or a linear Calderón-
Zygmund operator. This result extends some questions previously considered by B.
Muckenhoupt and R. Wheeden in [48], and solves in the affirmative a conjecture
formulated by E. Sawyer in [54] concerning the Hilbert transform. These problems
were advertised by B. Muckenhoupt in [47], where the terminology “mixed type norm
inequalities” was introduced and was also used since then in other papers like [2]
or [44]. In general, this terminology refers to certain weighted estimates for some
classical operators T , where a weight v is included in their level sets; that is,

{

x ∈ R
n : |T f (x)|

v(x)
> t

}

, t > 0. (1.2)

The structure of such sets makes it impossible, or very difficult, to use classical tools
to measure them, such as Vitali’s covering lemma or interpolation theorems.

In this paper, we consider mixed restricted weak type norm inequalities, or Sawyer-
type inequalities for Lorentz spaces; that is, we study estimates of the form

w

({

x ∈ R
n : |T f (x)|

v(x)
> t

})1/p

≤ C

t
‖ f ‖L p,1(u), t > 0, (1.3)

where p ≥ 1, T is a classical operator, and u, v, w are weights. We also consider
extensions of such inequalities to the multi-variable setting. Our goal is to prove
estimates like (1.3) for sub-linear and multi-sub-linear maximal operators, and multi-
linear Calderón-Zygmund operators. Observe that in the classical situation, namely
when u = w, v ≈ 1, and T is either the Hardy-Littlewoodmaximal operator or a linear
Calderón-Zygmund operator, the inequality (1.3) holds if w ∈ AR

p (some authors use
the notation Ap,1 for this class of weights, as in [16]). The case when v �≈ 1 is much
more difficult, and in what follows, we will study it in great detail.

The starting point of this paper and our primary motivation to consider Sawyer-
type inequalities for Lorentz spaces comes from the study of the m-fold product of
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Sawyer-type inequalities for Lorentz spaces 495

Hardy-Littlewood maximal operators,

M⊗(f)(x) :=
m

∏

i=1

M fi (x), x ∈ R
n .

M. J. Carro and E. R. P. proved in [14] that for 1 ≤ p1, . . . , pm < ∞ and 1
p =

1
p1

+· · ·+ 1
pm

, andweightsw1, . . . , wm ∈ A∞ and νw := w
p/p1
1 . . . w

p/pm
m , a necessary

condition to have

M⊗ : L p1,1(w1) × · · · × L pm ,1(wm) −→ L p,∞(νw) (1.4)

is that wi ∈ AR
pi , for i = 1, . . . ,m. They left as an open question to prove that this

last condition is also sufficient for (1.4) to hold. It is reasonable to think that this
may indeed be true since the endpoint case was proved in [36]. That is, for weights
w1, . . . , wm ∈ A1, we have that

M⊗ : L1(w1) × · · · × L1(wm) −→ L1/m,∞(w
1/m
1 . . . w

1/m
m ). (1.5)

To prove this result, one has to control the following quantity for t > 0, which is
related to the level sets (1.2):

νw
({

M⊗(f) > t
}) = νw

({

x ∈ R
n : M fi (x) >

t
∏

j �=i M f j (x)

})

,

where νw = w
1/m
1 . . . w

1/m
m . This is achieved by applying the classical Sawyer-type

inequality (1.1) for theHardy-Littlewoodmaximal operatorM in combinationwith the
observation that for locally integrable functions h1, . . . , hk ,

∏k
j=1(Mh j )

−1 ∈ RH∞,
with constant depending only on k and the dimension n.

As we will show in Theorem 3, it turns out that the bound (1.4) holds if wi ∈ AR
pi ,

for i = 1, . . . ,m, solving in the affirmative the open question in [14] and completing
the characterization of the restricted weak type bounds of M⊗ for A∞ weights. The
strategy that we follow is similar to the one in [36] for the endpoint case (1.5), but we
have to replace the classical Sawyer-type inequality (1.1) by the estimate obtained in
Theorem 2, which is a new restricted weak Sawyer-type inequality involving the class
of weights AR

p . That is,

∥
∥
∥
∥

M f

v

∥
∥
∥
∥
L p,∞(uv p)

≤ Cu,v‖ f ‖L p,1(u), (1.6)

for p > 1, u ∈ AR
p , and uv p ∈ A∞. The AR

p condition on the weight u is a natural
assumption since it is necessary when v ≈ 1. In Lemma 3 we also manage to track
the dependence of the constant Cu,v on the weights u and uv p, even in the endpoint
case p = 1, refining the bound (1.1) in [19].
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496 C. Pérez, E. Roure-Perdices

There is no reason to restrict ourselves to the study of one-variable Sawyer-type
inequalities. Quite recently, the bound (1.1) has been extended to the multi-variable
setting in [40]. More precisely, for weights w1, . . . , wm ∈ A1, and v ∈ A∞,

∥
∥
∥
∥

M(f)
v

∥
∥
∥
∥
L1/m,∞(νwv1/m )

≤
∥
∥
∥
∥

∏m
i=1 M fi

v

∥
∥
∥
∥
L1/m,∞(νwv1/m )

�
m

∏

i=1

‖ fi‖L1(wi )
. (1.7)

Inspired by this result, we follow a similar approach to extend our Sawyer-type inequal-
ity (1.6) to the multi-variable setting, obtaining a generalization of (1.7) in Theorem 4.
That is, for weights w1, . . . , wm and v such that for i = 1, . . . ,m, wi ∈ AR

pi and
wiv

pi ∈ A∞,

∥
∥
∥
∥

M(f)
v

∥
∥
∥
∥
L p,∞(νwv p)

≤
∥
∥
∥
∥

∏m
i=1 M fi

v

∥
∥
∥
∥
L p,∞(νwv p)

�
m

∏

i=1

‖ fi‖L pi ,1(wi )
. (1.8)

Observe that this result is an extension of (1.4). To our knowledge, this multi-variable
mixed restricted weak type inequalities for maximal operators involving the AR

p con-
dition on the weights have not been previously studied, and we found no record of
them being conjectured in the literature.

Motivated by the conjecture of E. Sawyer in [54], we can ask ourselves if it is
possible to obtain bounds like (1.8) for multi-linear Calderón-Zygmund operators T .
Once again, the endpoint case p1 = · · · = pm = 1 has already been considered and
extensively investigated in [40]. There, it was shown that for weights w1, . . . , wm ∈
A1, and νwv1/m ∈ A∞,

∥
∥
∥
∥

T (f)
v

∥
∥
∥
∥
L1/m,∞(νwv1/m )

�
m

∏

i=1

‖ fi‖L1(wi )
, (1.9)

as a corollary of (1.7), combined with a result in [49], that allows replacing M by T
using an extrapolation type argument based on the A∞ extrapolation theorem obtained
in [18,22].We succeed in our goal andmanage to get an extension of (1.9) to the general
restricted weak setting. In Theorem 6 we prove, among other things, that for weights
w1, . . . , wm and v such that for i = 1, . . . ,m, wi ∈ AR

pi and wiv
pi ∈ A∞, and some

other technical hypotheses on the weights,

∥
∥
∥
∥

T (f)
v

∥
∥
∥
∥
L p,∞(νwv p)

�
m

∏

i=1

‖ fi‖L pi ,1(wi )
. (1.10)

To achieve this, we build upon (1.8), but unlike in [40], we manage to avoid the use
of extrapolation arguments like the ones in [49]. Instead, we present in Theorem 5 a
novel technique that allows us to replace M by T exploiting the fine structure of the
Lorentz space L p,∞, the AR

p condition, and the recent advances in sparse domination.
One can even go further and consider inequalities like (1.10) assuming multi-

variable conditions on the weights involved, as it was done in [40] with the endpoint
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Sawyer-type inequalities for Lorentz spaces 497

case p1 = · · · = pm = 1 and weights in A1. In Sect. 5, we discuss our find-
ings on this matter. There, we introduce the class of weights that characterizes the
restricted weak type bounds of M, denoted by AR

P , study some of its properties,
deduce the corresponding restricted weak type bounds for sparse operators and multi-
linear Calderón-Zygmund operators, and conjecture the main results on Sawyer-type
inequalities with weights in AR

P . It is worth mentioning that we couldn’t find in the lit-
erature any trace of results like (1.10) involvingM ormulti-linear Calderón-Zygmund
operators, AR

p or AR
P weights, and mixed restricted weak type inequalities.

Curiously, we didn’t find much about Sawyer-type inequalities for Lorentz spaces
apart from the endpoint results studied in [2,19,24,39,40,44,47–49,54], and some
endpoint estimates for multi-variable fractional operators (see [52]), multi-linear
pseudo-differential operators (see [12]), and the Hardy averaging operator (see
[41,43]). As we have seen before, these inequalities are fundamental to understand
the behavior of the operator M⊗, but they appear naturally in the study of other
classical operators, even in the one-variable case. Consider, for example, the case
of the Hilbert transform H . Indeed, if p > 1 and w ∈ AR

p , it is well-known that
H : L p,1(w) −→ L p,∞(w). Hence, duality, linearity, and self-adjointness of H
yield

∥
∥
∥
∥

H( f w)

w

∥
∥
∥
∥
L p′,∞(w)

≤ Cw ‖ f ‖L p′,1(w)
.

This is an example of an estimate like (1.3) involving the AR
p condition on the

weights and obtained almost without effort. The same inequality holds for the Hardy-
Littlewood maximal operator M , but we cannot use the same argument, as shown in
[15]. In Theorem 7 we will generalize such a result for M , obtaining as a particular
case, a new characterization of AR

p and an alternative proof of the result in [15]. In
[29,35], one can find similar endpoint estimates for Calderón-Zygmund operators,
with p′ = 1 and w ∈ A1 (see also [11,50,51,55,56]).

Sawyer-type inequalities also arise in the broadly studied topic involving commuta-
tors of linear operators T with a BMO function b, although wewill not deal with them
in this paper. The crucial initial observation is that we can write [b, T ] as a complex
integral operator using Cauchy’s integral theorem, obtaining that for ε > 0,

[b, T ] f = 1

2π i

ˆ
{z∈C: |z|=ε}

Tz( f )

z2
dz,

where

Tz( f ) := ezbT

(
f

ezb

)

, z ∈ C.

This approach was introduced in the celebrated paper [17] and was further developed
in [1]. In the context of Lorentz spaces, for p > 1 and a weight w, and in virtue of
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498 C. Pérez, E. Roure-Perdices

Minkowski’s inequality, we get that for any ε > 0,

‖[b, T ] f ‖L p,∞(w) ≤ 1

ε
sup

z∈C: |z|=ε

‖Tz( f )‖L p,∞(w) .

Sinceb ∈ BMO , as a consequence of the John-Nirenberg inequality, there is a constant
s0 > 0 such that for |z| ≤ s0, v−1 := |ezb| = e�(z)b ∈ Ap, and hence, it is possible to
deduce weighted inequalities for commutators from estimates of the form

∥
∥
∥
∥

T ( f v)

v

∥
∥
∥
∥
L p,∞(w)

� ‖ f ‖X ,

for a norm or a quasi-norm ‖ · ‖X , and v−1 ∈ Ap. Further results for commutators
involving Sawyer-type inequalities can be found in [6,7] (see also [8,9]).

Recently, E. R. P. has shown in [53] that Sawyer-type inequalities for Lorentz
spaces play a fundamental role in the extension to the multi-variable setting of
the restricted weak type Rubio de Francia’s extrapolation presented in [13,15]. His
approach suggests that Conjecture 1 will be crucial for proving multi-variable extrap-
olation theorems involving weights in AR

P .

2 Preliminaries

2.1 Lorentz spaces and classical weights

Let us recall the definition of the Lebesgue and Lorentz spaces (see [4]). For p > 0
and an arbitrary measure space (X , ν), L p,1(ν) is the Lorentz space of ν-measurable
functions such that

‖ f ‖L p,1(ν) := p
ˆ ∞

0
λν
f (y)

1/pdy =
ˆ ∞

0
f ∗
ν (t)t1/p

dt

t
< ∞,

L p(ν) is the Lebesgue space of ν-measurable functions such that

‖ f ‖L p(ν) :=
(ˆ

X
| f |pν

)1/p

< ∞ (or ν − ess sup
X

| f | < ∞ if p = ∞),

and L p,∞(ν) is the Lorentz space of ν-measurable functions such that

‖ f ‖L p,∞(ν) := sup
y>0

yλν
f (y)

1/p = sup
t>0

t1/p f ∗
ν (t) < ∞,

where f ∗
ν is the decreasing rearrangement of f with respect to ν, defined by

f ∗
ν (t) := inf{y > 0 : λν

f (y) ≤ t}, λν
f (t) := ν({x ∈ X : | f (x)| > t}).
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Sawyer-type inequalities for Lorentz spaces 499

If p ≥ 1, then L p,1(ν) ↪→ L p(ν) ↪→ L p,∞(ν). Given a σ -finite measure space
(X , ν), and parameters 0 < r < p < ∞, the quantity

||| f |||L p,∞(ν) := sup
0<ν(E)<∞

ν(E)
1
p − 1

r

(ˆ
E

| f |r dν

)1/r

satisfies that

‖ f ‖L p,∞(ν) ≤ ||| f |||L p,∞(ν) ≤
(

p

p − r

)1/r

‖ f ‖L p,∞(ν).

This result is classical (see [27, Exercise 1.1.12]), and throughout this paper, we will
refer to these inequalities as Kolmogorov’s inequalities.

Given f ∈ L1
loc(R

n), the Hardy-Littlewood maximal operator M is defined by

M f (x) := sup
Q�x

1

|Q|
ˆ
Q

| f (y)|dy, x ∈ R
n,

where the supremum is taken over all cubes Q ⊆ R
n containing x . Muckenhoupt

studied the boundedness of M on Lebesgue spaces L p(w) (see [45]). Given a positive
and locally integrable function w, called weight, and 1 < p < ∞,

M : L p(w) −→ L p(w)

if, and only if w ∈ Ap; that is, if

[w]Ap := sup
Q

( 
Q

w

) ( 
Q

w1−p′
)p−1

< ∞,

where we use the notation
ffl
Q w = 1

|Q|
´
Q w(x)dx . Moreover, if 1 ≤ p < ∞,

M : L p(w) −→ L p,∞(w)

if, and only if w ∈ Ap, where a weight w ∈ A1 if

[w]A1 := sup
Q

( 
Q

w

)

‖χQw−1‖L∞(w) = sup
Q

( 
Q

w

)

(ess inf
x∈Q w(x))−1 < ∞.

Buckley proved in [10] that for 1 ≤ p < ∞,

‖M‖L p(w)→L p,∞(w) � [w]1/pAp
,

and if p > 1, then

‖M‖L p(w)→L p(w) � [w]
1

p−1
Ap

.
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500 C. Pérez, E. Roure-Perdices

The restricted weak type bounds of M were studied in [16,31]. For 1 ≤ p < ∞,

M : L p,1(w) −→ L p,∞(w)

if, and only if w ∈ AR
p , where a weight w is in AR

p (also denoted by Ap,1) if

[w]AR
p

:= sup
Q

w(Q)1/p
‖χQw−1‖L p′,∞(w)

|Q| < ∞,

or equivalently, if

‖w‖AR
p

:= sup
Q

sup
E⊆Q

|E |
|Q|

(
w(Q)

w(E)

)1/p

< ∞.

Given a measurable set E , we write w(E) = ´
E w(x)dx . If w = 1, we simply write

|E |. We have that [w]AR
p

≤ ‖w‖AR
p

≤ p[w]AR
p
. Moreover,

‖M‖L p,1(w)→L p,∞(w) ≈ [w]AR
p

.

As usual, we write A � B if there exists a positive constant C > 0, independent of A
and B, such that A ≤ CB. If the implicit constant C depends on some parameter α,
we may write �α at our discretion. If A � B and B � A, then we write A ≈ B.

We now give the definitions of some other classes of weights that will appear later.
For more information about them, see [19,21,23,26]. Define the class of weights

A∞ :=
⋃

p≥1

Ap =
⋃

p≥1

AR
p .

A weight w ∈ A∞ if, and only if

[w]A∞ := sup
Q

1

w(Q)

ˆ
Q
M(wχQ) < ∞.

This quantity is usually referred to as the Fujii-Wilson A∞ constant (see [25]). More
generally, given a weight u, and p > 1, we say that w ∈ Ap(u) if

[w]Ap(u) := sup
Q

(
1

u(Q)

ˆ
Q

wu

)(
1

u(Q)

ˆ
Q

w1−p′
u

)p−1

< ∞,

and w ∈ A1(u) if

[w]A1(u) := sup
Q

(
1

u(Q)

ˆ
Q

wu

)

‖χQw−1‖L∞(wu)
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= sup
Q

(
1

u(Q)

ˆ
Q

wu

)

(ess inf
x∈Q w(x))−1 < ∞,

and as before, we define

A∞(u) :=
⋃

p≥1

Ap(u).

If u is a doubling weight for cubes in Rn , and w ∈ A∞(u), then

[w]A∞(u) := sup
Q

1

wu(Q)

ˆ
Q
Mu(wχQ)u < ∞,

where

Mu f (x) := sup
Q�x

1

u(Q)

ˆ
Q

| f (y)|u(y)dy

is the weighted Hardy-Littlewood maximal operator. If p > 1, then Mu is bounded
on L p(wu) if, and only if w ∈ Ap(u), provided that u is doubling. Given s > 1, we
say that a weight w ∈ RHs if

[w]RHs := sup
Q

|Q|
w(Q)

( 
Q

ws
)1/s

< ∞,

and w ∈ RH∞ if

[w]RH∞ := sup
Q

|Q|
w(Q)

‖χQw‖L∞(Rn) = sup
Q

|Q|
w(Q)

ess sup
x∈Q

w(x) < ∞.

We have that

A∞ =
⋃

1<s≤∞
RHs .

In [36], the following multi-variable extension of the Hardy-Littlewood maximal
operator was introduced in connection with the theory of multi-linear Calderón-
Zygmund operators:

M(f) := sup
Q

m
∏

i=1

( 
Q

| fi |
)

χQ,

for f = ( f1, . . . , fm), with fi ∈ L1
loc(R

n), i = 1, . . . ,m. Commonly, this operator
is referred to as the curly operator. For exponents 1 ≤ p1, . . . , pm < ∞, P =

123



502 C. Pérez, E. Roure-Perdices

(p1, . . . , pm), 1
p = 1

p1
+· · ·+ 1

pm
, and weightsw1, . . . , wm , withw = (w1, . . . , wm),

and νw := w
p/p1
1 . . . w

p/pm
m ,

M : L p1(w1) × · · · × L pm (wm) −→ L p,∞(νw)

if, and only if w ∈ AP; that is, if

[w]AP := sup
Q

( 
Q

νw

)1/p m
∏

i=1

( 
Q

w
1−p′

i
i

)1/p′
i

< ∞,

where
(ffl

Q w
1−p′

i
i

)1/p′
i
is replaced by (ess infx∈Q wi (x))−1 if pi = 1. Moreover, if

1 < p1, . . . , pm < ∞, then

M : L p1(w1) × · · · × L pm (wm) −→ L p(νw)

if, and only if w ∈ AP.
We are using throughout the paper the standard notation T : X1×· · ·×Xm −→ X0

to denote that T is a bounded operator from X1 × · · · × Xm to X0, where Xi is an
appropriate function space.

2.2 Dyadic grids and sparse collections of cubes

A general dyadic grid D is a collection of cubes in Rn with the following properties:

(a) For any Q ∈ D , its side length lQ is of the form 2k , for some k ∈ Z.
(b) For all Q, R ∈ D , Q ∩ R ∈ {∅, Q, R}.
(c) The cubes of a fixed side length 2k form a partition of Rn .

The standard dyadic grid inRn consists of the cubes 2−k([0, 1)n + j), with k ∈ Z and
j ∈ Z

n . It is well-known (see [29]) that if one considers the perturbed dyadic grids

Dα := {2−k([0, 1)n + j + (−1)kα) : k ∈ Z, j ∈ Z
n},

with α ∈ {0, 1
3 }n , then for any cube Q ⊆ R

n , there exist α and a cube Qα ∈ Dα such
that Q ⊆ Qα and lQα ≤ 6lQ .

A collection of cubes S is said to be η-sparse if there exists 0 < η < 1 such that
for every cube Q ∈ S, there exists a set EQ ⊆ Q with η|Q| ≤ |EQ |, and for every
Q �= R ∈ S, ER ∩ EQ = ∅.

For more information about these topics, see [34].

2.3 Calderón-Zygmund operators

We say that a function ω : [0,∞) → [0,∞) is a modulus of continuity if it is
continuous, increasing, sub-additive and such that ω(0) = 0. We say that ω satisfies
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Sawyer-type inequalities for Lorentz spaces 503

the Dini condition if

‖ω‖Dini :=
ˆ 1

0

ω(t)

t
dt < ∞.

We give the definition of the multi-linear ω-Calderón-Zygmund operators. We
denote by S (Rn) the space of all Schwartz functions on R

n and by S ′(Rn) its
dual space, the set of all tempered distributions on R

n .

Definition 1 An m-linear ω-Calderón-Zygmund operator is an m-linear and contin-
uous operator T : S (Rn) × · · · × S (Rn) −→ S ′(Rn) for which there exists
a locally integrable function K (y0, y1, . . . , ym), defined away from the diagonal
y0 = y1 = · · · = ym in (Rn)m+1, satisfying, for some constant CK > 0, the size
estimate

|K (y0, y1, . . . , ym)| ≤ CK

(|y0 − y1| + · · · + |y0 − ym |)nm ,

for all (y0, y1, . . . , ym) ∈ (Rn)m+1 with y0 �= y j for some j ∈ {1, . . . ,m}, and the
smoothness estimate

|K (y0, y1, . . . , yi , . . . , ym) − K (y0, y1, . . . , y
′
i , . . . , ym)|

≤ CK

(|y0 − y1| + · · · + |y0 − ym |)nm ω

( |yi − y′
i |

(|y0 − y1| + · · · + |y0 − ym |)nm
)

,

for i = 0, . . . ,m and whenever |yi − y′
i | ≤ 1

2 max0≤ j≤m |yi − y j |, and such that

T ( f1, . . . , fm)(x) =
ˆ
Rn

. . .

ˆ
Rn

K (x, y1, . . . , ym) f1(y1) . . . fm(ym)dy1 . . . dym,

whenever f1, . . . , fm ∈ C∞
c (Rn) and x /∈ ⋂m

j=1 supp f j , and for some exponents
1 ≤ q1, . . . , qm < ∞, T extends to a bounded m-linear operator from Lq1(Rn) ×
· · · × Lqm (Rn) to Lq(Rn), with 1

q = 1
q1

+ · · · + 1
qm

.

If we takeω(t) = tε for some ε > 0,we recover the classicalmulti-linear Calderón-
Zygmund operators. In general, an m-linear ω-Calderón-Zygmund operator with ω

satisfying the Dini condition can be extended to a bounded operator from L1(Rn) ×
· · · × L1(Rn) to L1/m,∞(Rn). The multi-linear Calderón-Zygmund theory has been
investigated by many authors. For more information on this matter, see [28,36,42] and
the publications cited there.

3 Sawyer-type inequalities for maximal operators

We devote this section to the study of a novel restricted weak type inequality that
extends the classical Sawyer-type inequality (1.1) for the Hardy-Littlewood maximal
operator. To this end, we will need some previous results.
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504 C. Pérez, E. Roure-Perdices

The following lemma contains well-known results on weights (see [19,21,26,40]),
but we will give most of their proofs since we need to keep track of the constants of
the weights involved.

Lemma 1 Let u and w be weights.

(a) If u ∈ A1, then u−1 ∈ RH∞, and [u−1]RH∞ ≤ [u]A1 .
(b) If u ∈ RH∞, and q > 0, then uq ∈ RH∞. If q ≥ 1, then [uq ]RH∞ ≤ [u]qRH∞ .
(c) If u ∈ RH∞, and [u]RH∞ ≤ β, then there exists r > 1, depending only on n, β,

such that u ∈ Ar and [u]Ar ≤ cn,β . In particular, RH∞ ⊆ A∞.
(d) If u ∈ A∞, and w ∈ RH∞, then uw ∈ A∞.
(e) If u ∈ A1 ∩ RH∞, then u ≈ 1.

Fix p ≥ 1, and f1, . . . , fm ∈ L1
loc(R

n), and let v = ∏m
i=1(M fi )−1.

( f ) v p ∈ RH∞, and 1 ≤ [v p]RH∞ ≤ cm,n,p.
(g) If u ∈ A∞, then uv p ∈ A∞, with constant independent of f = ( f1, . . . , fm).

Proof To prove (a), fix a cube Q ⊆ R
n . By Hölder’s inequality, we have that

|Q| =
ˆ
Q
u−1/2u1/2 ≤

(ˆ
Q
u−1

)1/2 (ˆ
Q
u

)1/2

,

and hence,

ess sup
x∈Q

u(x)−1 = (ess inf
x∈Q u(x))−1 ≤ [u]A1

|Q|
u(Q)

≤ [u]A1

 
Q
u−1,

and the desired result follows taking the supremum over all cubes Q.
The property (b) follows from [21, Theorem4.2]. Let q ≥ 1, and fix a cube Q ⊆ R

n .
Then,

ess sup
x∈Q

u(x) ≤ [u]RH∞

 
Q
u ≤ [u]RH∞

( 
Q
uq

)1/q

,

from which the desired result follows, as before.
To prove (c), fix a cube Q ⊆ R

n , and a measurable set E ⊆ Q. Then,

u(E)

u(Q)
= 1

u(Q)

ˆ
Q

χEu ≤ |E |
u(Q)

ess sup
x∈Q

u(x) ≤ [u]RH∞
|E |
|Q| ≤ β

|E |
|Q| .

In particular, for every ε > 0, and δ := ε
β
, if |E | < δ|Q|, then u(E) < εu(Q), and

the desired result follows from this fact applying the last theorem in [46].
To prove (d), take q, r > 1 such that u ∈ Aq and w ∈ Ar . We will show that

uw ∈ As , for s := q + r − 1. Fix a cube Q ⊆ R
n . Then,

 
Q
uw ≤ [w]RH∞

( 
Q
u

) ( 
Q

w

)

,
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and in virtue of Hölder’s inequality with exponent α := 1 + r−1
q−1 ,

( 
Q
(uw)1−s′

)s−1

≤
( 

Q
u(1−s′)α

)(s−1)/α ( 
Q

w(1−s′)α′
)(s−1)/α′

=
( 

Q
u1−q ′

)q−1 ( 
Q

w1−r ′
)r−1

,

so [uw]As ≤ [w]RH∞[u]Aq [w]Ar < ∞.
The property (e) follows immediately from Corollary 4.6 in [21].
To prove (f), observe that in virtue of [27, Theorem 7.2.7], we have that for 0 <

δ < 1, (M fi )δ ∈ A1, and [(M fi )δ]A1 ≤ cn
1−δ

, i = 1, . . . ,m. In particular, w :=
∏m

i=1(M fi )δ/m ∈ A1, and [w]A1 ≤ ∏m
i=1[(M fi )δ]1/mA1

≤ cn
1−δ

. Since v p = w−mp/δ , it
follows from (a) and (b) that

[v p]RH∞ ≤ [w−1]mp/δ
RH∞ ≤ [w]mp/δ

A1
≤

(
cn

1 − δ

)mp/δ

,

so

1 ≤ [v p]RH∞ ≤ cm,n,p := inf
0<δ<1

(
cn

1 − δ

)mp/δ

.

To prove (g), we already know by (f) that v p ∈ RH∞, with constant bounded by
cm,n,p, so by (c), there exists r > 1, depending only on m, n, p, such that [v p]Ar ≤
Cm,n,p. By (d), for q > 1 such that u ∈ Aq , and s = s(m, n, p, q) = q + r − 1,
[uv p]As ≤ C̃m,n,p[u]Aq < ∞. ��

The next lemma gives a result on weights that will be handy later on.

Lemma 2 Let u and v be weights, and suppose that u ∈ A∞. Then, uv ∈ A∞ if, and
only if v ∈ A∞(u).

Proof Let us first assume that uv ∈ A∞. Since u ∈ A∞, there exists s > 1 such
that u ∈ RHs , and since uv ∈ A∞, there exists r > 1 such that uv ∈ Ar . Take
q := rs

s−1 > 1. We will show that v ∈ Aq(u). Fix a cube Q. Then,

IQ :=
(

1

u(Q)

ˆ
Q

vu

) (
1

u(Q)

ˆ
Q

v1−q ′
u

)q−1

=
( |Q|
u(Q)

)q (
1

|Q|
ˆ
Q

vu

) (
1

|Q|
ˆ
Q
(vu)1−q ′

uq
′
)q−1

.
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Take α := q−1
r−1 = 1+ r

(r−1)(s−1) > 1 and observe that (1−q ′)α = 1−r ′, q−1
α

= r−1,

q ′α′ = s, and q−1
α′ = q

s . Using Hölder’s inequality with exponent α, we get that

(
1

|Q|
ˆ
Q
(vu)1−q ′

uq
′
)q−1

≤
(

1

|Q|
ˆ
Q
(vu)(1−q ′)α

) q−1
α

(
1

|Q|
ˆ
Q
uq

′α′
) q−1

α′

=
(

1

|Q|
ˆ
Q
(vu)1−r ′

)r−1 (
1

|Q|
ˆ
Q
us

)q/s

≤ [u]qRHs

(
1

|Q|
ˆ
Q
(vu)1−r ′

)r−1 (
u(Q)

|Q|
)q

.

Hence,

IQ ≤ [u]qRHs

(
1

|Q|
ˆ
Q

vu

) (
1

|Q|
ˆ
Q
(vu)1−r ′

)r−1

≤ [u]qRHs
[uv]Ar ,

and [v]Aq (u) = supQ IQ ≤ [u]qRHs
[uv]Ar < ∞.

For the converse, let us assume that v ∈ A∞(u). It follows from Theorem 3.1 in
[23] that there exist δ,C > 0 such that for every cube Q ⊆ R

n and every measurable
set E ⊆ Q,

u(E)

u(Q)
≤ C

(
uv(E)

uv(Q)

)δ

.

Similarly, since u ∈ A∞, there exist ε, c > 0 such that for every cube Q ⊆ R
n and

every measurable set E ⊆ Q,

|E |
|Q| ≤ c

(
u(E)

u(Q)

)ε

,

so for every cube Q ⊆ R
n and every measurable set E ⊆ Q,

|E |
|Q| ≤ cCε

(
uv(E)

uv(Q)

)εδ

,

and hence, uv ∈ A∞. ��
Remark 1 This result is an extension of Lemma 2.1 in [19], where it is shown that if
u ∈ A1 and v ∈ A∞(u), then uv ∈ A∞.

We introduce aweighted version of the dyadicHardy-Littlewoodmaximal operator.

Definition 2 Let D be a general dyadic grid in R
n , and let u be a weight. For a

measurable function f , we consider the function

MD
u f (x) := sup

D�Q�x
1

u(Q)

ˆ
Q

| f (y)|u(y)dy, x ∈ R
n,
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where the supremum is taken over all cubes Q ∈ D that contain x . If u = 1, we simply
write MD f .

The following bound for the operator MD
u is essential.

Theorem 1 Let D be a general dyadic grid in R
n, and let u and v be weights. If

u ∈ A∞ and uv ∈ A∞, then there exists a constant Cu,v , independent ofD , such that
for every measurable function f ,

∥
∥
∥
∥
∥

MD
u ( f v)

v

∥
∥
∥
∥
∥
L1,∞(uv)

≤ Cu,v

ˆ
Rn

| f (x)|u(x)v(x)dx .

Proof In virtue of Lemma 2, v ∈ A∞(u) and hence, this theorem follows from the
proof of Theorem 1.4 in [19]. ��
Remark 2 If we examine the proof of Theorem 1.4 in [19], and we combine it with
Appendix A in [20], we can take

Cu,v = 2q(2nr [uv]AR
r

)r(q−1) ‖Mu‖qLq (uv1−q )
,

where r , q > 1 are such that uv ∈ AR
r and v ∈ Aq ′(u).

Remark 3 The bound of Theorem 1 also holds for the weighted Hardy-Littlewood
maximal operator Mu , with constant

C := 2n6np pp[u]p
AR
p
Cu,v,

where p ≥ 1 is such that u ∈ AR
p .

We can now state and prove the main result of this section.

Theorem 2 Fix p ≥ 1, and let u and v be weights such that u ∈ AR
p and uv p ∈ A∞.

Then, there exists a constant C > 0 such that for every measurable function f ,

∥
∥
∥
∥

M f

v

∥
∥
∥
∥
L p,∞(uv p)

≤ C‖ f ‖L p,1(u).

Proof It is known (see [29,32]) that there exists a collection {Dα}α of 2n general dyadic
grids in Rn such that

M f ≤ 6n
2n
∑

α=1

MDα f .

Hence,

∥
∥
∥
∥

M f

v

∥
∥
∥
∥
L p,∞(uv p)

≤ 12n
2n
∑

α=1

∥
∥
∥
∥
∥

MDα f

v

∥
∥
∥
∥
∥
L p,∞(uv p)

,
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and it suffices to establish the result for the operator MD , with D a general dyadic
grid in Rn .

We first discuss the case p = 1, which was proved in [19]. We reproduce the proof
here keeping track of the constants. By the definition of the A1 condition,

1

|Q|
ˆ
Q

| f | ≤ [u]A1

1

u(Q)

ˆ
Q

| f |u,

for every cube Q ∈ D , so we get that MD f ≤ [u]A1M
D
u f . This estimate combined

with Theorem 1 gives that

∥
∥
∥
∥
∥

MD f

v

∥
∥
∥
∥
∥
L1,∞(uv)

≤ [u]A1

∥
∥
∥
∥
∥

MD
u (v f /v)

v

∥
∥
∥
∥
∥
L1,∞(uv)

≤ [u]A1Cu,v

ˆ
Rn

| f |u,

and hence, the desired result follows, with C = 24n[u]A1Cu,v .
Now, we discuss the case p > 1. Let us take f = χE , with E a measurable set in

R
n , and fix a cube Q ∈ D . As before, by the definition of the AR

p condition,

1

|Q|
ˆ
Q

f ≤ ‖u‖AR
p

(
u(E ∩ Q)

u(Q)

)1/p

,

so we get that MD (χE ) ≤ p[u]AR
p

(MD
u (χE ))1/p. In particular,

∥
∥
∥
∥
∥

MD (χE )

v

∥
∥
∥
∥
∥
L p,∞(uv p)

≤ p[u]AR
p

∥
∥
∥
∥
∥

MD
u (χE )

v p

∥
∥
∥
∥
∥

1/p

L1,∞(uv p)

.

We can now apply Theorem 1 to conclude that

∥
∥
∥
∥
∥

MD
u (χE )

v p

∥
∥
∥
∥
∥
L1,∞(uv p)

=
∥
∥
∥
∥
∥

MD
u (v pχE/v p)

v p

∥
∥
∥
∥
∥
L1,∞(uv p)

≤ Cu,v pu(E).

Combining all the previous estimates, we have that

∥
∥
∥
∥

M(χE )

v

∥
∥
∥
∥
L p,∞(uv p)

≤ 24n[u]AR
p
C1/p
u,v p‖χE‖L p,1(u).

Since p > 1, L p,∞(uv p) is a Banach space, and by standard arguments (see
[27, Exercise 1.4.7]), we can extend the previous estimate to arbitrary measurable
functions f , gaining a factor of 4p′ in the constant. Hence, the desired result follows,
with C = 4 · 24n p′[u]AR

p
C1/p
u,v p . ��

Remark 4 For p = 1 and u ∈ A1, amore general version of Theorem2was established
in [39], replacing the hypothesis that uv ∈ A∞ by theweaker assumption that v ∈ A∞.
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It is unknown to us whether the hypothesis that uv p ∈ A∞ can be replaced by v ∈ A∞
when p > 1.

In virtue of Lemma 1, if u ∈ A∞ and v ∈ RH∞, then for every p ≥ 1, uv p ∈ A∞,
andwehave awhole class of non-trivial examples ofweights that satisfy the hypotheses
of Theorem 2.

Observe that the conclusion of Theorem 2 is completely elementary if p > 1 and
u ∈ Ap, since

∥
∥
∥
∥

M f

v

∥
∥
∥
∥
L p,∞(uv p)

≤
∥
∥
∥
∥

M f

v

∥
∥
∥
∥
L p(uv p)

= ‖M f ‖L p(u) � [u]
1

p−1
Ap

‖ f ‖L p(u) � [u]
1

p−1
Ap

‖ f ‖L p,1(u).

However, this argument doesn’t work in the general case, because the inequality

∥
∥
∥
∥

h

v

∥
∥
∥
∥
L p,∞(uv p)

� ‖h‖L p,∞(u)

may fail for some measurable functions h on R
n , and arbitrary weights u and v,

as can be seen by choosing h(x) = |x |− n
p χ{y∈Rn : |y|≥1}(x), u = 1, and v(x) =

h(x) + χ{y∈Rn : |y|<1}(x), with 0 < p < ∞.
To provide applications of Theorem 2we need to give amore precise estimate of the

constant C that appears there in terms of the corresponding constants of the weights
involved. We achieve this in the following lemma.

Lemma 3 In Theorem 2, if r ≥ 1 is such that uv p ∈ AR
r , then one can take

C = E n
r ,p([u]AR

p
, [uv p]AR

r
),

where E n
r ,p : [1,∞)2 −→ (0,∞) is a function that increases in each variable, and it

depends only on r, p, and the dimension n.

Proof We first discuss the case when r > 1. We already know that we can take

C =
{

24n[u]A1Cu,v, p = 1,
4 · 24n p′[u]AR

p
C1/p
u,v p , p > 1,

and in virtue of Remark 2,

Cu,v p = 2q(2nr [uv p]AR
r

)r(q−1) ‖Mu‖qLq (uv p(1−q))
,

where r , q > 1 are such that uv p ∈ AR
r and v p ∈ Aq ′(u). For convenience, we write

V := v p. Let us first bound the factor ‖Mu‖qLq (uV 1−q )
. For the space of homogeneous
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type (Rn, d∞, u(x)dx), it follows from the proof of Theorem 1.3 in [30] that

‖Mu‖qLq (uV 1−q )
≤ 2q−1q ′40qDu (1 + 6 · 800Du )[V ]A∞(u)[V ]q−1

Aq′ (u),

where Du := p log2(2
n p[u]AR

p
). Now, given a cube Q ⊆ R

n , and applying Hölder’s
inequality with exponent q, we have that

ˆ
Q
Mu(VχQ)u =

ˆ
Q

Mu(VχQ)

V
uV ≤

∥
∥
∥
∥

Mu(VχQ)

V

∥
∥
∥
∥
Lq (uV )

uV (Q)1/q
′

= ∥
∥Mu(VχQ)

∥
∥
Lq (uV 1−q )

uV (Q)1/q
′

≤ ‖Mu‖Lq (uV 1−q )

∥
∥VχQ

∥
∥
Lq (uV 1−q )

uV (Q)1/q
′

= ‖Mu‖Lq (uV 1−q ) uV (Q),

and taking the supremum over all cubes Q, we get that

[V ]A∞(u) ≤ ‖Mu‖Lq (uV 1−q ) .

Combining the previous estimates, we obtain that

‖Mu‖qLq (uV 1−q )
≤ (2q−1q ′40qDu (1 + 6 · 800Du ))q

′ [V ]qAq′ (u).

Now, we will bound the factor [V ]qAq′ (u). In virtue of [29, Proposition 2.2], and using

the definitions of [u]A2p and [u]AR
p
, and Kolmogorov’s inequalities, we can deduce

that

[u]A∞ ≤ cn[u]A2p ≤ (2p − 1)2p−1cn[u]2p
AR
p

=: cp,n[u]2p
AR
p

,

and applying Theorem 2.3 in [30], u ∈ RHs for s = 1+ 1
2n+1cp,n [u]2p

ARp
−1

, and [u]RHs ≤
2. Since uV ∈ A2r , Lemma 2 tells us that if we choose q ′ = 2rs′, then

[V ]qAq′ (u) ≤ [u]qq ′
RHs

[uV ]qA2r
≤ 2qq

′
(2r − 1)q(2r−1)[uV ]2rq

AR
r

.

Finally, observe that q ′ = 2n+2rcp,n[u]2p
AR
p
, and 1 < q ≤ 2, so

Cu,V ≤ 22(2nr [uV ]AR
r

)r × (2q ′402Du (1 + 6 · 800Du ))q
′

× 22q
′
(2r − 1)4r−2[uV ]4rAR

r

≤ 22+nr (2r − 1)4r−2rr [uv p]5rAR
r

×
(

2n+5rcp,n[u]2p
AR
p
40

5p log2(2
n p[u]

ARp )
)2n+2rcp,n [u]2p

ARp
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=: Cn
r ,p([u]AR

p
, [uv p]AR

r
),

and the desired result follows, with

E n
r ,p([u]AR

p
, [uv p]AR

r
) =

{

24n[u]A1C
n
r ,1([u]A1, [uv]AR

r
), p = 1,

4 · 24n p′[u]AR
p
Cn
r ,p([u]AR

p
, [uv p]AR

r
)1/p, p > 1.

The case when r = 1 follows, for example, from the case when r = 2 and the fact
that if uv p ∈ A1, then [uv p]AR

2
≤ [uv p]1/2A2

≤ [uv p]1/2A1
. ��

Remark 5 It would be interesting to obtain the sharp dependence ofC on the constants
of the weights involved; our results are most certainly far from optimal.

4 Applications

In this section, we will provide several applications of the Sawyer-type inequality
established in Theorem 2, obtaining mixed restricted weak type estimates for multi-
variable maximal operators, sparse operators and Calderón-Zygmund operators.

The first result that we present is the converse of Theorem 3.3 in [14], that was left as
an open question. Combining both theorems, we obtain the complete characterization
of the restricted weak type bounds of the operator M⊗ for A∞ weights.

Theorem 3 Let 1 ≤ p1, . . . , pm < ∞, and let 1
p = 1

p1
+ · · · + 1

pm
. Let w1, . . . , wm

be weights, with wi ∈ AR
pi , i = 1, . . . ,m . Then, there exists a constant C > 0 such

that the inequality

‖M⊗(f)‖L p,∞(νw) ≤ C
m

∏

i=1

‖ fi‖L pi ,1(wi )

holds for every vector of measurable functions f = ( f1, . . . , fm).

Proof The case when p1 = · · · = pm = 1 was proved in [36], and we build upon that
proof to demonstrate the remaining cases.

We can assume, without loss of generality, that fi ∈ L∞
c (Rn), i = 1, . . . ,m. Fix

t > 0 and define

Et := {x ∈ R
n : t < M⊗(f)(x) ≤ 2t}.

For i = 1, . . . ,m, and taking ṽi := ∏

j �=i (M f j )−1, we have that

Et = {x ∈ R
n : t ṽi (x) < M fi (x) ≤ 2t ṽi (x)}.
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Using the fact that ṽi ∈ RH∞, with constant independent of f (see Lemma 1), Hölder’s
inequality, and Theorem 2, we obtain that

λ
νw
M⊗(f)(t) − λ

νw
M⊗(f)(2t) =

ˆ
Et

νw ≤
ˆ
Et

(
M⊗(f)

t

)p

νw

≤ 1

t p

m
∏

i=1

(ˆ
Et

(M fi )
pi wi

)p/pi

≤ 2mpt (m−1)p
m

∏

i=1

(ˆ
{
M fi
ṽi

>t
} ṽ

pi
i wi

)p/pi

≤ 2mpC p
1 . . .C p

m
1

t p

m
∏

i=1

‖ fi‖p
L pi ,1(wi )

.

Iterating this result, we get that for each t > 0 and every natural number N ,

λ
νw
M⊗(f)(t) ≤ 2mpC p

1 . . .C p
m

⎛

⎝

N
∑

j=0

1

2 j p

⎞

⎠
1

t p

m
∏

i=1

‖ fi‖p
L pi ,1(wi )

+ λ
νw
M⊗(f)(2

N+1t),

and letting N tend to infinity, the last term vanishes, and we conclude that

λ
νw
M⊗(f)(t) ≤ 2(m+1)p

2p − 1
C p
1 . . .C p

m
1

t p

m
∏

i=1

‖ fi‖p
L pi ,1(wi )

.

Observe that in virtue of Lemma 1, for i = 1, . . . ,m, we have that wi ṽ
pi
i ∈ Asi ,

where si > 1 depends only on m, n, pi , and

[wi ṽ
pi
i ]si

AR
si

≤ [wi ṽ
pi
i ]Asi

�m,n,pi [wi ]A2pi
�m,n,pi [wi ]2piAR

pi

,

so by Lemma 3, we have that Ci ≤ E n
si ,pi ([wi ]AR

pi
,Cm,n,pi [wi ]2pi /siAR

pi

), and hence, the

desired result follows, with

C = 2m+1

(2p − 1)1/p

m
∏

i=1

E n
si ,pi ([wi ]AR

pi
,Cm,n,pi [wi ]2pi /siAR

pi

),

which depends on the constants of the weights w1, . . . , wm in an increasing way. ��

The next application that we provide is an extension of Theorem 2 to the multi-
variable setting, which in turn, extends Theorem 3. The proof is based on the previous
one, and is similar to that of Theorem 1.4 in [40].
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Sawyer-type inequalities for Lorentz spaces 513

Theorem 4 Let 1 ≤ p1, . . . , pm < ∞, and let 1
p = 1

p1
+· · ·+ 1

pm
. Letw1, . . . , wm be

weights, with wi ∈ AR
pi , i = 1, . . . ,m . Let v be a weight such that νwv p is a weight,

and wiv
pi ∈ A∞, i = 1, . . . ,m. Then, there exists a constant C > 0 such that the

inequalities

∥
∥
∥
∥

M(f)
v

∥
∥
∥
∥
L p,∞(νwv p)

≤
∥
∥
∥
∥

M⊗(f)
v

∥
∥
∥
∥
L p,∞(νwv p)

≤ C
m

∏

i=1

‖ fi‖L pi ,1(wi )

hold for every vector of measurable functions f = ( f1, . . . , fm).

Proof The first inequality follows from the fact that M(f) ≤ M⊗(f). For the second
one, we can assume, without loss of generality, that fi ∈ L∞

c (Rn), i = 1, . . . ,m. Fix
y, R > 0 and define

ER
y := {x ∈ R

n : |x | < R, yv(x) < M⊗(f)(x) ≤ 2yv(x)}.

For i = 1, . . . ,m, and taking ṽi := ∏

j �=i (M f j )−1, and vi := ṽiv, we have that

ER
y = {x ∈ R

n : |x | < R, yvi (x) < M fi (x) ≤ 2yvi (x)}.

Since ṽi ∈ RH∞, and wiv
pi ∈ A∞, we have that wiv

pi
i ∈ A∞, with constant

independent of f (see Lemma 1). In virtue of Hölder’s inequality and Theorem 2, we
get that

νwv p
({

x ∈ R
n : |x | < R,

M⊗(f)(x)
v(x)

> y

})

− νwv p
({

x ∈ R
n : |x | < R,

M⊗(f)(x)
v(x)

> 2y

})

=
ˆ
ER
y

νwv p ≤
ˆ
ER
y

(
M⊗(f)

y

)p

νw ≤ 1

y p

m
∏

i=1

(ˆ
ER
y

(M fi )
pi wi

)p/pi

≤ 2mp y(m−1)p
m

∏

i=1

(ˆ
{
M fi
vi

>y
} v

pi
i wi

)p/pi

≤ 2mpC p
1 . . .C p

m
1

y p

m
∏

i=1

‖ fi‖p
L pi ,1(wi )

.

Iterating this result, we deduce that for each y > 0 and every natural number N ,

νwv p
({

x ∈ R
n : |x | < R,

M⊗(f)(x)
v(x)

> y

})

≤ 2mpC p
1 . . .C p

m

⎛

⎝

N
∑

j=0

1

2 j p

⎞

⎠
1

y p

m
∏

i=1

‖ fi‖p
L pi ,1(wi )

+ νwv p
({

x ∈ R
n : |x | < R,

M⊗(f)(x)
v(x)

> 2N+1y

})

,
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514 C. Pérez, E. Roure-Perdices

and letting first N tend to infinity, and then R, the last term vanishes, and we conclude
that

λ
νwv p

M⊗(f)
v

(y) ≤ 2(m+1)p

2p − 1
C p
1 . . .C p

m
1

y p

m
∏

i=1

‖ fi‖p
L pi ,1(wi )

.

For i = 1, . . . ,m, if we take qi > 1 such that wiv
pi ∈ AR

qi , in virtue of
Lemma 1, we have that wiv

pi
i ∈ Asi , where si > 1 depends only on m, n, pi , qi ,

and [wiv
pi
i ]si

AR
si

�m,n,pi ,qi [wiv
pi ]2qi

AR
qi

, so by Lemma 3, we have that Ci ≤
E n
si ,pi ([wi ]AR

pi
,Cm,n,pi ,qi [wiv

pi ]2qi /si
AR
qi

), and hence, the desired result follows, with

C = 2m+1

(2p − 1)1/p

m
∏

i=1

E n
si ,pi ([wi ]AR

pi
,Cm,n,pi ,qi [wiv

pi ]2qi /si
AR
qi

).

��

Remark 6 In the case when p1 = · · · = pm = 1, the previous result is a corollary of
Theorem 1.4 in [40].

Observe that if we take weights wi ∈ AR
pi , i = 1, . . . ,m, and v ∈ RH∞, then the

hypotheses of Theorem 4 are satisfied.
The next result will be crucial to work with Calderón-Zygmund operators in the

mixed restricted weak setting.

Theorem 5 Let 0 < p < ∞, let S be an η-sparse collection of cubes, and let v,w be
weights. Suppose that there exists 0 < ε ≤ 1 such that ε < p, wv−ε ∈ A∞, and

[v−ε]RH∞(w) := sup
Q

w(Q)

wv−ε(Q)
‖χQv−ε‖L∞(w) < ∞.

Then, there exists a constant C > 0, independent of S, such that the inequality

∥
∥
∥
∥

AS(f)
v

∥
∥
∥
∥
L p,∞(w)

≤ C

∥
∥
∥
∥

M(f)
v

∥
∥
∥
∥
L p,∞(w)

holds for every vector of measurable functions f = ( f1, . . . , fm).

Proof In virtue of Kolmogorov’s inequalities, we obtain that

∥
∥
∥
∥

AS(f)
v

∥
∥
∥
∥
L p,∞(w)

≤ sup
0<w(F)<∞

∥
∥
∥
∥

AS(f)
v

χF

∥
∥
∥
∥
Lε(w)

w(F)
1
p − 1

ε ,
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where the supremum is taken over all measurable sets F with 0 < w(F) < ∞. For
one of such sets F , and W := wv−ε, we have that

∥
∥
∥
∥

AS(f)
v

χF

∥
∥
∥
∥

ε

Lε(w)

≤
ˆ
Rn

∑

Q∈S
χQ

(∏m
i=1

ffl
Q | fi |

v

)ε

χFw

=
∑

Q∈S

(
m

∏

i=1

 
Q

| fi |
)ε (

1

W (3Q)

ˆ
Q

χFW

)

W (3Q) =: I .

Since W ∈ A∞, there exists r ≥ 1 such that W ∈ AR
r . Hence,

sup
Q

sup
E⊆Q

|E |
|Q|

(
W (Q)

W (E)

)1/r

= ‖W‖AR
r

< ∞.

By hypothesis, S is η-sparse, so for each Q ∈ S,

W (3Q) ≤
(
3n

η
‖W‖AR

r

)r

W (EQ).

Using this, we get that

I ≤
(
3n

η
‖W‖AR

r

)r ∑

Q∈S

(
m

∏

i=1

 
Q

| fi |
)ε (

1

W (3Q)

ˆ
Q

χFW

)

W (EQ)

=
(
3n

η
‖W‖AR

r

)r ∑

Q∈S

ˆ
EQ

(
m

∏

i=1

 
Q

| fi |
)ε (

1

W (3Q)

ˆ
Q

χFW

)

W =: I I .

The sides of an n-dimensional cube have Lebesgue measure 0 in R
n , so we can

assume that the cubes inS are open. ForQ ∈ S and z ∈ EQ ,wedefineQz := Q(z, lQ),
the open cube of center z and side length twice the side length of Q. We have that
EQ ⊆ Q ⊆ Qz ⊆ 3Q, so

(
m

∏

i=1

 
Q

| fi |
)

χEQ (z) ≤ M(f)(z),

and

1

W (3Q)

ˆ
Q

χFW ≤ 1

W (Qz)

ˆ
Qz

χFW ≤ Mc
W (χF )(z).
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516 C. Pérez, E. Roure-Perdices

Since the sets {EQ}Q∈S are pairwise disjoint, and using Hölder’s inequality with
exponent p

ε
> 1,

I I ≤
(
3n

η
‖W‖AR

r

)r ˆ
Rn

M(f)εMc
W (χF )W

≤
(
3n

η
‖W‖AR

r

)r ∥
∥
∥
∥

(M(f)
v

)ε∥
∥
∥
∥
L p/ε,∞(w)

∥
∥Mc

W (χF )
∥
∥
L(p/ε)′,1(w)

≤ p

p − ε

(
3n

η
‖W‖AR

r

)r
∥
∥Mc

W

∥
∥
L(p/ε)′,1(w)

w(F)
1− ε

p

∥
∥
∥
∥

M(f)
v

∥
∥
∥
∥

ε

L p,∞(w)

.

Observe that for every measurable function g, ‖Mc
W (g)‖L∞(w) ≤ ‖g‖L∞(w), and

by standard arguments (see [27, Theorem 7.1.9]), it is easy to show that

‖Mc
W (g)‖L1,∞(w) �n [v−ε]RH∞(w)‖g‖L1(w).

In particular, and applying Marcinkiewicz’s interpolation theorem (see [4, Theorem
4.13]), we conclude that

∥
∥Mc

W

∥
∥
L(p/ε)′,1(w)

≤ cn,p,ε[v−ε]1−
ε
p

RH∞(w) < ∞.

Combining the previous estimates, we obtain that

∥
∥
∥
∥

AS(f)
v

χF

∥
∥
∥
∥
Lε(w)

w(F)
1
p − 1

ε

≤
(

p

p − ε

(
3n

η
‖W‖AR

r

)r

cn,p,ε[v−ε]1−
ε
p

RH∞(w)

)1/ε ∥
∥
∥
∥

M(f)
v

∥
∥
∥
∥
L p,∞(w)

,

and the desired result follows, with

C = inf
r≥1:W∈AR

r

(
p

p − ε

(
3n

η
‖W‖AR

r

)r

cn,p,ε[v−ε]1−
ε
p

RH∞(w)

)1/ε

.

��
Remark 7 For 0 < p ≤ 1, if we take v such that vδ ∈ A∞ for some δ > 0, and
w = uv p, with u ∈ A1, then the previous result can be established via an extrapolation
argument (see [49, Theorem 1.1]).

Under the conditions that 0 < p ≤ 1, and w = uv p, we can find weights u and
v that satisfy the hypotheses of Theorem 1.1 in [49] but not the ones of Theorem 5,
and vice versa. If we take a non-constant weight u ∈ A1, and v = u−1/p, then
v ∈ RH∞ ⊆ A∞, and uv p = 1, but for every 0 < ε ≤ 1 such that ε < p, we have
that v−ε = uε/p ∈ A1, and since u is non-constant, v−ε /∈ RH∞. Similarly, if we
take a non-constant weight v ∈ A1, and u = v−p, then uv p = 1, and for every ε > 0,
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Sawyer-type inequalities for Lorentz spaces 517

uv p−ε = v−ε ∈ RH∞ ⊆ A∞, but u ∈ RH∞ and is non-constant, so u /∈ A1 (see
Lemma 1).

The previous examples show that, sometimes, some of the hypotheses of Theorem 5
may be redundant. Let us be more precise on this fact. If w ∈ A∞, and wv−ε is a
weight, then [v−ε]RH∞(w) < ∞ implies that wv−ε ∈ A∞. Indeed, given a cube
Q ⊆ R

n , and a measurable set E ⊆ Q, we have that

wv−ε(E)

wv−ε(Q)
= 1

wv−ε(Q)

ˆ
Q

χEwv−ε

≤ w(E)

wv−ε(Q)
‖χQv−ε‖L∞(w) ≤ [v−ε]RH∞(w)

w(E)

w(Q)
,

and since w ∈ A∞, there exist δ,C > 0 such that

w(E)

w(Q)
≤ C

( |E |
|Q|

)δ

,

so

wv−ε(E)

wv−ε(Q)
≤ C[v−ε]RH∞(w)

( |E |
|Q|

)δ

,

and hence, wv−ε ∈ A∞ (see [23]).
The next application of Theorem2 follows from the combination of Theorems 4 and

5, and gives us mixed restricted weak type bounds for multi-variable sparse operators
that can also be deduced for other operators, such as multi-linear Calderón-Zygmund
operators, using sparse domination techniques (see [37]).

Theorem 6 Let1 ≤ p1, . . . , pm < ∞, and let 1p = 1
p1

+· · ·+ 1
pm

. Also, letw1, . . . , wm

be weights, withwi ∈ AR
pi , i = 1, . . . ,m, and write νw = w

p/p1
1 . . . w

p/pm
m . Let v be a

weight such that νwv p is a weight, andwiv
pi ∈ A∞, i = 1, . . . ,m.Moreover, suppose

that there exists0 < ε ≤ 1 such that ε < p, νwv p−ε ∈ A∞, and [v−ε]RH∞(νwv p) < ∞.
Then, there exists a constant C > 0 such that the inequality

∥
∥
∥
∥

T (f)
v

∥
∥
∥
∥
L p,∞(νwv p)

≤ C
m

∏

i=1

‖ fi‖L pi ,1(wi )

holds for every vector of measurable functions f = ( f1, . . . , fm), where T is either a
sparse operator of the form

AS(f) :=
∑

Q∈S

(
m

∏

i=1

 
Q

fi

)

χQ, (4.1)
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518 C. Pérez, E. Roure-Perdices

where S is an η-sparse collection of dyadic cubes, or any operator that can be con-
veniently dominated by such sparse operators, like m-linear ω-Calderón-Zygmund
operators with ω satisfying the Dini condition.

Remark 8 In the case when p1 = · · · = pm = 1, and T is a multi-linear Calderón-
Zygmund operator, the previous result follows from Theorem 1.9 in [40].

In general, there are examples of weights that satisfy the hypotheses of Theo-
rem 6 apart from the constant weights. For instance, if 1 ≤ p1, . . . , pm ≤ m′, we
can take wi = (Mhi )(1−pi )/m , with hi ∈ L1

loc(R
n), i = 1, . . . ,m, and v = ν

−1/p
w .

Indeed, in virtue of Theorem 2.7 in [13], we have that wi ∈ AR
pi , i = 1, . . . ,m,

and wiv
pi =

(
∏

j �=i (Mh j )
1/p′

j

)pi /m ∈ A1. Observe that νwv p = 1, and v =
(
∏m

i=1(Mhi )1/p
′
i

)1/m ∈ A1, so for every ε > 0, νwv p−ε = v−ε ∈ RH∞ ⊆ A∞.

The last application that we provide of Theorem 2 can be interpreted as a dual
version of it, and generalizes [15, Proposition 2.10].

Theorem 7 Fix p > 1, and let u and v be weights such that u ∈ AR
p , uv p ∈ A∞, and

for some 0 < ε ≤ 1, uv p−ε is a weight and [v−ε]RH∞(uv p) < ∞. Then, there exists a
constant C > 0 such that for every measurable function f ,

∥
∥
∥
∥

M( f uv p−1)

u

∥
∥
∥
∥
L p′,∞(u)

≤ C‖ f ‖L p′,1(uv p)
. (4.2)

Proof It is known (see [32]) that there exist a collection {Dα}α of 2n general dyadic
grids inRn , and a collection {Sα}α of 1

2 -sparse families of cubes, with Sα ⊆ Dα , such
that for every measurable function F ,

MF ≤ 2 · 12n
2n
∑

α=1

ASα
(|F |).

Hence,

∥
∥
∥
∥

M( f uv p−1)

u

∥
∥
∥
∥
L p′,∞(u)

≤ 2 · 24n
2n
∑

α=1

∥
∥
∥
∥

ASα
(| f |uv p−1)

u

∥
∥
∥
∥
L p′,∞(u)

.

By duality, and self-adjointness of ASα
, and in virtue of Hölder’s inequality, we

have that

∥
∥
∥
∥

ASα
(| f |uv p−1)

u

∥
∥
∥
∥
L p′,∞(u)

≤ p sup
‖g‖L p,1(u)

≤1

ˆ
Rn

ASα
(| f |uv p−1)|g|

= p sup
‖g‖L p,1(u)

≤1

ˆ
Rn

| f |uv p−1ASα
(|g|)
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≤ p sup
‖g‖L p,1(u)

≤1

∥
∥
∥
∥

ASα
(|g|)
v

∥
∥
∥
∥
L p,∞(uv p)

‖ f ‖L p′,1(uv p)
,

and the desired result follows from Theorem 5 and Theorem 2. ��
Remark 9 It is clear from the previous proof that Theorem 7 is also true for operators
that can be conveniently dominated by sparse operators ASα

. Even more, for a self-
adjoint operator T , and by duality, an inequality like (4.2) follows immediately from
an inequality like (1.6), with T in place of M .

Note that for p > 1, if u ∈ Ap, and v is a weight, then for every measurable
function f ,

∥
∥
∥
∥

M( f uv p−1)

u

∥
∥
∥
∥
L p′,∞(u)

≤
∥
∥
∥
∥

M( f uv p−1)

u

∥
∥
∥
∥
L p′ (u)

= ‖M( f uv p−1)‖L p′ (u1−p′ )

� [u]Ap‖ f ‖L p′ (uv p)
� [u]Ap‖ f ‖L p′,1(uv p)

.

Hence, we obtain the conclusion of Theorem 7 without assuming that for some 0 <

ε ≤ 1, [v−ε]RH∞(uv p) < ∞. We would like to prove Theorem 7 without this technical
hypothesis, but unfortunately, at the time of writing, we don’t know how to do it.

Observe that if v = 1, then in Theorem 7 we can take ε = 1, and C = Cn,p[u]p+1
AR
p

,

and the dependence on u of the constant C is explicit, although the exponent p + 1
may not be sharp. Also, by testing on characteristic functions and using Kolmogorov’s
inequalities, we see that the condition that u ∈ AR

p is necessary. This argument yields

a new characterization of AR
p weights and refines [15, Proposition 2.10].

Theorem 8 Fix p > 1, and let u be a weight. If u ∈ AR
p , then for every measurable

function f ,

∥
∥
∥
∥

M( f u)

u

∥
∥
∥
∥
L p′,∞(u)

�n,p [u]p+1
AR
p

‖ f ‖L p′,1(u)
.

Moreover, if such an inequality holds for some constant C > 0, then u ∈ AR
p , and

[u]AR
p

≤ p′C.

5 Sawyer-type inequalities andmulti-variable conditions on weights

In [40, Theorem 1.5], Li, Ombrosi, and Picardi obtained an endpoint Sawyer-type
inequality for the operator M involving A1 weights. It is natural to ask if something
similar can be done in the general restricted weak setting, establishing a result forM
like the one in Theorem 4, but assuming a multi-variable condition on the tuple of
weights involved instead of imposing an individual condition on each weight. In this
section we study this question.

123



520 C. Pérez, E. Roure-Perdices

In view of Theorem 4 for v = 1, it is reasonable to begin with the characterization
of the weights for which the operatorM and its centered versionMc are bounded in
the restricted weak setting. This will give us the appropriate multi-variable condition
on the weights. We use ideas from [16, Section 3] and [27, Theorem 7.1.9].

Theorem 9 Let 1 ≤ p1, . . . , pm < ∞, and 1
p = 1

p1
+ · · · + 1

pm
. Let w1, . . . , wm, and

ν be weights. The inequality

‖M(f)‖L p,∞(ν) ≤ C
m

∏

i=1

‖ fi‖L pi ,1(wi )
(5.1)

holds for every vector of measurable functions f if, and only if

[w, ν]AR
P

:= sup
Q

ν(Q)1/p
m

∏

i=1

‖χQw−1
i ‖

L p′i ,∞(wi )

|Q| < ∞. (5.2)

Proof First, recall that by [27, Theorem 1.4.16.(v)] (see also [3, Theorem 4.4]), we
have that

1

pi
‖g‖

L p′i ,∞(wi )
≤ sup

{ˆ
Rn

| f g|wi : ‖ f ‖L pi ,1(wi )
≤ 1

}

≤ ‖g‖
L p′i ,∞(wi )

.

Now, fix a cube Q, and γ > 1, and for i = 1, . . . ,m, choose a non-negative
function fi such that ‖ fi‖L pi ,1(wi )

≤ 1 and

ˆ
Q

fi =
ˆ
Rn

fi (χQw−1
i )wi ≥ 1

γ pi
‖χQw−1

i ‖
L p′i ,∞(wi )

. (5.3)

Since
(

m
∏

i=1

1

|Q|
ˆ
Q

| fi |
)

χQ ≤ M(f),

the hypothesis (5.1) and (5.3) imply that

ν(Q)1/p
m

∏

i=1

‖χQw−1
i ‖

L p′i ,∞(wi )

|Q| ≤ γm p1 . . . pmC,

and hence, [w, ν]AR
P

≤ p1 . . . pmC < ∞.
For the converse, suppose that the quantity [w, ν]AR

P
< ∞. Observe that

Mc(f) ≤ M(f) ≤ 2nmMc(f),

so it suffices to establish the result for the operator Mc.
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If for some i = 1, . . . ,m, ‖ fi‖L pi ,1(wi )
= ∞, then there is nothing to prove, so

we may assume that ‖ fi‖L pi ,1(wi )
< ∞ for every i = 1, . . . ,m. Fix λ > 0, and let

Eλ := {x ∈ R
n : Mc(f)(x) > λ}. We first show that this set is open. If for some

i = 1, . . . ,m, fi /∈ L1
loc(R

n), then Eλ = R
n . Otherwise, observe that for any r > 0,

and x ∈ R
n , the function

x �−→
m

∏

i=1

1

|Q(x, r)|
ˆ
Q(x,r)

| fi |

is continuous. Indeed, if xn → x0, then |Q(xn, r)| → |Q(x0, r)|, and also´
Q(xn ,r)

| fi | → ´
Q(x0,r)

| fi | by Lebesgue’s dominated convergence theorem. Since
|Q(x0, r)| �= 0, the result follows. This implies that Mc(f) is the supremum of con-
tinuous functions and hence, it is lower semi-continuous, and the set Eλ is open.

Given a compact subset K of Eλ, for any x ∈ K , select an open cube Qx centered
at x such that

m
∏

i=1

1

|Qx |
ˆ
Qx

| fi | > λ.

In virtue of [27, Lemma 7.1.10] , we find a subset {Q j }Nj=1 of {Qx : x ∈ K } such
that K ⊆ ⋃N

j=1 Q j , and
∑N

j=1 χQ j ≤ 72n . Then, by Hölder’s inequality for Lorentz
spaces, (5.2), discrete Hölder’s inequality with exponents pi

p , and [16, Lemma 2.5],

ν(K ) ≤
N

∑

j=1

ν(Q j ) ≤ 1

λp

N
∑

j=1

ν(Q j )

(
m

∏

i=1

1

|Q j |
ˆ
Q j

| fi |
)p

≤ 1

λp

N
∑

j=1

ν(Q j )

m
∏

i=1

|Q j |−p‖ fiχQ j ‖p
L pi ,1(wi )

‖χQ j w
−1
i ‖p

L p′i ,∞(wi )

≤
[w, ν]p

AR
P

λp

N
∑

j=1

m
∏

i=1

‖ fiχQ j ‖p
L pi ,1(wi )

≤
[w, ν]p

AR
P

λp

m
∏

i=1

⎛

⎝

N
∑

j=1

‖ fiχQ j ‖pi
L pi ,1(wi )

⎞

⎠

p/pi

≤ 72n
[w, ν]p

AR
P

λp

m
∏

i=1

‖ fi‖p
L pi ,1(wi )

.

Taking the supremum over all compact subsets K of Eλ and using the inner regularity
of ν(x)dx , we obtain (5.1) with constant

C = 2nm72n/p[w, ν]AR
P

.
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��
Remark 10 In fact, we have proved that

2−nm
∏m

i=1 pi
[w, ν]AR

P
≤ ‖Mc‖∏m

i=1 L
pi ,1(wi )→L p,∞(ν) ≤ 72n/p[w, ν]AR

P

and

1
∏m

i=1 pi
[w, ν]AR

P
≤ ‖M‖∏m

i=1 L
pi ,1(wi )→L p,∞(ν) ≤ 2nm72n/p[w, ν]AR

P
.

Remark 11 Observe that if M is bounded as in (5.1), then for every cube Q, if we
choose f1 = · · · = fm = χQ , we get that

( 
Q

ν

)1/p

≤ p1 . . . pmC
m

∏

i=1

( 
Q

wi

)1/pi
,

and Lebesgue’s differentiation theorem implies that ν �
∏m

i=1 w
p/pi
i .

In virtue of Theorem 9, we define the following class of weights.

Definition 3 Let 1 ≤ p1, . . . , pm < ∞, and 1
p = 1

p1
+· · ·+ 1

pm
. Letw1, . . . , wm , and

ν be weights. We say that (w1, . . . , wm, ν) belongs to the class AR
P if [w, ν]AR

P
< ∞.

The condition that defines the class of AR
P weights depends on their behavior on

cubes, and has been obtained following the ideas of Chung, Hunt, and Kurtz (see [16]).
One can ask if it is possible to obtain a different condition, resembling the one obtained
by Kerman and Torchinsky (see [31]). Our next theorem gives a positive answer to
this question, recovering their results in the case when m = 1 and w1 = ν.

Theorem 10 Let 1 ≤ p1, . . . , pm < ∞, and 1
p = 1

p1
+ · · · + 1

pm
. Let w1, . . . , wm,

and ν be weights. The following statements are equivalent:

(a) ‖M(f)‖L p,∞(ν) ≤ C
∏m

i=1 ‖ fi‖L pi ,1(wi )
, for every f .

(b)
∥
∥M(Ø)

∥
∥
L p,∞(ν)

≤ c
∏m

i=1 wi (Ei )
1/pi , for every Ø = (χE1, . . . , χEm ).

(c)

‖w, ν‖AR
P

:= sup
Q

ν(Q)1/p
m

∏

i=1

sup
0<wi (Ei )<∞

|Ei ∩ Q|
|Q| wi (Ei )

−1/pi < ∞.

(d) (w1, . . . , wm, ν) ∈ AR
P .

Moreover, if (w1, . . . , wm, ν) ∈ AR
P , and ν ∈ A∞, then

T : L p1,1(w1) × · · · × L pm ,1(wm) −→ L p,∞(ν), (5.4)
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where T is either a sparse operator as in (4.1), or any operator that can be conveniently
dominated by such sparse operators, like m-linear ω-Calderón-Zygmund operators
with ω satisfying the Dini condition.

Proof It is clear that (a) implies (b), and we have already proved in Theorem 9 that (a)
and (d) are equivalent. Let us show that (b) implies (c). Fix a cube Q and measurable
sets Ei , for i = 1, . . . ,m, with 0 < wi (Ei ) < ∞. Since

(
m

∏

i=1

|Ei ∩ Q|
|Q|

)

χQ ≤ M(Ø),

we apply (b) to conclude that

ν(Q)1/p
m

∏

i=1

|Ei ∩ Q|
|Q| ≤ c

m
∏

i=1

wi (Ei )
1/pi ,

and hence, ‖w, ν‖AR
P

≤ c < ∞.
We nowprove that (c) is equivalent to (d). First, observe that for every i = 1, . . . ,m,

sup
0<wi (Ei )<∞

|Ei ∩ Q|
wi (Ei )1/pi

= sup
Ei⊆Q

|Ei |
wi (Ei )1/pi

,

where the first supremum is taken over all measurable sets Ei such that 0 < wi (Ei ) <

∞, and the second one is taken over all non-empty measurable sets Ei ⊆ Q. Now, in
virtue of [16, Lemma 2.8] and Kolmogorov’s inequalities, we have that

‖χQw−1
i ‖

L p′i ,∞(wi )
≤ sup

Ei⊆Q

|Ei |
wi (Ei )1/pi

≤ pi‖χQw−1
i ‖

L p′i ,∞(wi )
,

and hence, [w, ν]AR
P

≤ ‖w, ν‖AR
P

≤ p1 . . . pm[w, ν]AR
P
.

Note that a similar argument to the one in the proof of Theorem 5 shows that for
0 < ε ≤ 1 such that ε < p, and r ≥ 1 such that ν ∈ AR

r ,

‖MS(f)‖L p,∞(ν) ≤ ‖AS(|f |)‖L p,∞(ν) ≤ Cε,η,n,p,r [ν]r/ε
AR
r

‖MS(f)‖L p,∞(ν), (5.5)

where

MS(f) := sup
Q∈S

(
m

∏

i=1

 
Q

| fi |
)

χQ,

and since S is a countable collection of dyadic cubes, the proof of Theorem 9 can be
rewritten to show that

MS : L p1,1(w1) × · · · × L pm ,1(wm) −→ L p,∞(ν)
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if, and only if

[w, ν]AR
P,S

:= sup
Q∈S

ν(Q)1/p
m

∏

i=1

‖χQw−1
i ‖

L p′i ,∞(wi )

|Q| < ∞,

which is true, since [w, ν]AR
P,S

≤ [w, ν]AR
P

< ∞. Moreover,

1
∏m

i=1 pi
[w, ν]AR

P,S
≤ ‖MS‖∏m

i=1 L
pi ,1(wi )→L p,∞(ν) ≤ [w, ν]AR

P,S
,

so (5.5) implies that

1
∏m

i=1 pi
[w, ν]AR

P,S
≤ ‖AS‖∏m

i=1 L
pi ,1(wi )→L p,∞(ν) ≤ Cε,η,n,p,r [ν]r/ε

AR
r

[w, ν]AR
P,S

.

(5.6)

Finally, in virtue of Theorem 1.2 and Proposition 3.1 in [37] (see also [33, The-
orem 3.1]), if T is an m-linear ω-Calderón-Zygmund operator with ω satisfying the
Dini condition, then there exists a dimensional constant 0 < η < 1 such that given
compactly supported functions fi ∈ L1(Rn), i = 1, . . . ,m, there exists an η-sparse
collection of dyadic cubes S such that

|T ( f1, . . . , fm)| ≤ cnCTAS(|f|).

Hence, (5.4) follows from (5.6) and the standard density argument in [27, Exercise
1.4.17]. Moreover,

‖T ‖∏m
i=1 L

pi ,1(wi )→L p,∞(ν) ≤ cnCTCε,η,n,p,r [ν]r/ε
AR
r

[w, ν]AR
P

.

��
Remark 12 Given weights w1, . . . , wm , and ν = ∏m

i=1 w
p/pi
i , the equivalence

between (b) and (c) in Theorem 10 can be found in [5]. Moreover, if p1 = · · · =
pm = 1, then the equivalence between (a) and (d) can be found in [36]. Observe that
if w ∈ AP, then (w1, . . . , wm, νw) ∈ AR

P . In [36], strong and weak type bounds for
m-linear Calderón-Zygmund operators were established for the first time for tuples of
weights in AP. In [42], these results were extended to m-linear ω-Calderón-Zygmund
operators with ‖ω‖Dini < ∞.

Wecannowstate ourmain conjecture onSawyer-type inequalitieswith AR
P weights,

a complete multi-variable version of Theorem 2 forM.

Conjecture 1 Let 1 ≤ p1, . . . , pm < ∞, and let 1
p = 1

p1
+· · ·+ 1

pm
. Let w1, . . . , wm ,

and ν be weights, and suppose that (w1, . . . , wm, ν) ∈ AR
P . Let v be a weight such

that νv p ∈ A∞. Then, there exists a constant C > 0 such that the inequality
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∥
∥
∥
∥

M(f)
v

∥
∥
∥
∥
L p,∞(νv p)

≤ C
m

∏

i=1

‖ fi‖L pi ,1(wi )
(5.7)

holds for every vector of measurable functions f = ( f1, . . . , fm).

Remark 13 This conjecture is true in the case when p1 = · · · = pm = 1 and ν = νw,
as shown in [40, Theorem 1.5]. We don’t know if the hypothesis that νv p ∈ A∞ can
be replaced by vδ ∈ A∞ for some δ > 0.

In virtue of Hölder’s inequality, if w ∈ ∏m
i=1 A

R
pi , then (w1, . . . , wm, νw) ∈ AR

P ,
so this conjecture extends the result forM presented in Theorem 4. Also, combining
such conjecture with Theorem 5, we would get a generalization of Theorem 6 in the
line of [40, Theorem 1.9].

As it happens in the one-dimensional case, the conclusion of Conjecture 1 is com-
pletely elementary if 1 < p1, . . . , pm < ∞, w ∈ AP, and ν = νw, since

∥
∥
∥
∥

M(f)
v

∥
∥
∥
∥
L p,∞(νwv p)

≤
∥
∥
∥
∥

M(f)
v

∥
∥
∥
∥
L p(νwv p)

= ‖M(f)‖L p(νw)

� [w]max{ p′1
p ,...,

p′m
p }

AP

m
∏

i=1

‖ fi‖L pi (wi ) � [w]max{ p′1
p ,...,

p′m
p }

AP

m
∏

i=1

‖ fi‖L pi ,1(wi )
,

where we have used the sharp estimates for M proved in [38, Theorem 1.2].
In the general case, observe that for every θ > 0,

M(f) ≤ [w, ν]AR
P
sup
Q

χQ

ν(Q)1/p

m
∏

i=1

‖ fiχQ‖L pi ,1(wi )

= [w, ν]AR
P

(

sup
Q

χQ

ν(Q)θ/p

m
∏

i=1

‖ fiχQ‖θ

L pi ,1(wi )

)1/θ

=: [w, ν]AR
P
N θ

w,ν(f)
1/θ ,

and

∥
∥
∥
∥

M(f)
v

∥
∥
∥
∥
L p,∞(νv p)

≤ [w, ν]AR
P

∥
∥
∥
∥
∥

N θ
w,ν(f)

V

∥
∥
∥
∥
∥

1/θ

L p/θ,∞(νV p/θ )

,

with V := vθ . We suspect that a wise choice of θ (maybe θ = p or θ = mp) and the
argument in the proof of Theorem 1.5 in [40] could lead to some advances towards
our conjecture. This idea requires further investigation.
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