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ABSTRACT
Previous works have shown that studying the characteristics of
the Quadratic Assignment Problem (QAP) is a crucial step in gain-
ing knowledge that can be used to design tailored meta-heuristic
algorithms. One way to analyze the characteristics of the QAP is
to decompose its objective function into a linear combination of
orthogonal sub-functions that can be independently studied. In
particular, this work focuses on a decomposition approach that
has attracted considerable attention: the Elementary Landscape
Decomposition (ELD).

The main drawback of the ELD is that it does not allow an un-
derstandable characterization of what is being measured by each
component of the decomposition. Thus, it turns out difficult to
design new efficient meta-heuristic algorithms for the QAP based
on the ELD. To address this issue, in this work, we delve deeper into
the ELD by means of an additional decomposition of its elementary
components. Conducted experiments show that the performed anal-
ysis may be used to explain the behaviour of ELD-based methods,
providing critical information about their potential applications.
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• Mathematics of computing → Combinatorial optimization;
• Theory of computation→ Random search heuristics.

KEYWORDS
Quadratic Assignment Problem, Elementary Landscapes

ACM Reference Format:
Xabier Benavides, Josu Ceberio, Leticia Hernando, and Jose A. Lozano.
2023. New knowledge about the Elementary Landscape Decomposition for
solving the Quadratic Assignment Problem. In Genetic and Evolutionary

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’23, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0119-1/23/07. . . $15.00
https://doi.org/10.1145/3583131.3590369

Computation Conference (GECCO ’23), July 15–19, 2023, Lisbon, Portugal.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3583131.3590369

1 INTRODUCTION
The "no free-lunch" theorem [31] states that there is no single meta-
heuristic algorithm that performs the best for all Combinatorial
Optimization Problems (COPs). Therefore, considering the specific
characteristics of the problem to be solved is crucial when design-
ing the best possible algorithm for a particular context. However,
due to the NP-hard nature of many COPs [1, 27], studying their
characteristics may be a task as complex as optimizing them. A
possible solution for this issue is to decompose the problem into a
set of orthogonal sub-problems that are easier to work with, using
techniques such as Elementary Landscape Decomposition (ELD).

The ELD [12] is a decomposition method that allows us to split a
COP into a linear combination of independent elementary compo-
nents. The ELD has already been used to analyze and improve the
performance of meta-heuristic algorithms. For example, Ceberio et
al. [8] used the ELD as a multi-objectivization method that allowed
them to obtain a diverse set of promising solutions for a series of
COPs. Moreover, Benavides et al. [2] proposed a new algorithm
called the Variable Function Search (VFS) that uses the components
of the ELD to guide a local search. Although these works illus-
trated the benefits of ELD-based meta-heuristics, it is still not clear
why considering information about the decomposition during the
optimization process seems to be a good policy in some cases.

Among all the COPs with a known ELD, we are interested in
the Quadratic Assignment Problem (QAP) [10]. The QAP was origi-
nally introduced as a mathematical model for the location of a set of
indivisible economic activities [22], and has since been extended to
many areas such as facility layout design [17], parallel production
scheduling [18] or backboard wiring [4]. Moreover, some other
relevant COPs can be seen as particular cases of the QAP, as for
example the Linear Ordering Problem (LOP) [9], the Traveling Sales-
man Problem (TSP) [21], or the DNA Fragment Assembly Problem
(DNA-FA) [24]. For these reasons, the QAP has been extensively
studied in the literature about the ELD [2, 7, 10, 11], and thus, will
be the subject of this work.

The ELD of the QAP lacks a straightforward interpretation that
would allow us to design ELD-based meta-heuristics in an informed
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manner. In this paper, we try to further understand the ELD of the
QAP by performing an additional decomposition of its elementary
components (for simplicity, we focus on symmetric instances with
null main diagonals). This decomposition will allow us to charac-
terize each component of the ELD as a linear combination of three
common sub-functions, which in turn will help us to analyze the
effects of including the ELD in the optimization process. Then, we
will use the acquired knowledge to decide how to use this approach
for solving different QAP instances.

This paper is organized as follows. Sections 2 and 3 introduce the
concepts that are needed to understand this work. Section 4 explains
the proposed decomposition of the components of the ELD, which
is analytically studied in Sections 5 and 6 from both theoretical and
experimental perspectives. The results of these analyses are further
discussed in Section 7. Finally, the general conclusions and future
research lines are highlighted in Section 8.

2 QUADRATIC ASSIGNMENT PROBLEM
Given a set of 𝑛 facilities and 𝑛 possible locations, the goal of the
Quadratic Assignment Problem (QAP) [22, 23] is to find the facility-
location assignment that minimizes the costs derived from the
communications between facilities. In order to do that, we need
to consider the distances between locations (stored in a distance
matrix 𝐷𝑛×𝑛 = [𝑑𝑖, 𝑗 ]) and the work flows between facilities (stored
in a flow matrix 𝐻𝑛×𝑛 = [ℎ𝑝,𝑞]). The objective function uses this
information to measure the quality of any given solution 𝜎 :

𝑓 (𝜎) =
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑑𝑖, 𝑗ℎ𝜎 (𝑖 ),𝜎 ( 𝑗 ) (1)

where 𝜎 is a permutation of size 𝑛 that represents the facility-
location assignment and 𝜎 (𝑖) is the facility assigned to the location
𝑖 . Thus, the search space of the problem is the set of all the permu-
tations of size 𝑛, denoted as 𝑆𝑛 . The goal in the QAP is to find the
assignment 𝜎∗ ∈ 𝑆𝑛 that minimizes Equation 1.

3 ELEMENTARY LANDSCAPE
DECOMPOSITION

Given a COP defined by the search space Ω and the objective func-
tion 𝑓 , a neighborhood function is defined as𝑁 : Ω ↦→ P(Ω), where
P(Ω) is the power set of Ω. In other words, the neighborhood func-
tion assigns to each solution 𝑥 ∈ Ω a set of solutions 𝑁 (𝑥) ⊂ Ω,
known as the neighborhood of 𝑥 . This creates a neighborhood struc-
ture that interconnects the solutions in the search space. From now
on, we will only consider symmetric (𝑦 ∈ 𝑁 (𝑥) ⇔ 𝑥 ∈ 𝑁 (𝑦)) and
regular (|𝑁 (𝑥) | = 𝑑 for all 𝑥 ∈ Ω) neighborhood functions.

A landscape of a combinatorial optimization problem [26, 28] is
represented as a triplet (Ω,𝑓 ,𝑁 ), where Ω is the search space of the
problem, 𝑓 is the objective function and 𝑁 is a neighborhood func-
tion. Among all possible landscapes, it has been shown that those
that satisfy the Grover’s wave equation [19], known as elementary
landscapes, have some properties that make them promising candi-
dates for being solved using local search-based algorithms [28, 30].
The Grover’s wave equation is expressed as

𝑎𝑣𝑔{𝑓 (𝑦)}
𝑦∈𝑁 (𝑥 )

= 𝑓 (𝑥) + 𝑘

|𝑁 (𝑥) |
(
𝑓 − 𝑓 (𝑥)

)
(2)

where 𝑘 is a characteristic constant and 𝑓 is the average objective
value of all the solutions in the search space. The objective function
of any landscape that satisfies Equation 2 is denoted as elementary
function [19, 28].

One of the advantages of elementary landscapes is that the
Grover’s wave equation allows computing the average objective
value of the neighborhood of any solution 𝑥 ∈ Ω based on the objec-
tive value of that particular solution 𝑥 . Moreover, the Grover’s wave
equation can also be used to compute the average objective value
of a partial neighborhood𝑀 ⊂ 𝑁 (𝑥) [30]. From a practical perspec-
tive, this can be helpful if we have an algorithm that considers the
neighborhood of multiple solutions at the same time, since we can
use it to decide which neighborhood should be explored at each
step of the search. As the solution evaluation may be costly, this
feature may be used to create efficient local search-based methods.

In addition to the potential efficiency improvements, elementary
landscapes are also interesting due to their common properties. In
particular, this type of landscapes always satisfy the following [13]:

(1) 𝑓 (𝑥) < 𝑓 =⇒ 𝑓 (𝑥) < 𝑎𝑣𝑔{𝑓 (𝑦)}
𝑦∈𝑁 (𝑥 )

< 𝑓

(2) 𝑓 (𝑥) = 𝑓 =⇒ 𝑓 (𝑥) = 𝑎𝑣𝑔{𝑓 (𝑦)}
𝑦∈𝑁 (𝑥 )

= 𝑓

(3) 𝑓 (𝑥) > 𝑓 =⇒ 𝑓 (𝑥) > 𝑎𝑣𝑔{𝑓 (𝑦)}
𝑦∈𝑁 (𝑥 )

> 𝑓

This implies that in an elementary landscape the objective value
of any local minimum is always equal to or lower than the average
objective function value 𝑓 (first condition), while the opposite hap-
pens in the case of the local maxima (third condition). Furthermore,
the properties above also prove that certain types of plateaus cannot
exist in elementary landscapes [30].

All these characteristics are common to every landscape that
follows the Grover’s wave equation. Therefore, we can observe that
elementary landscapes always have a well-known structure, which
is particularly useful for dealing with COPs. However, many of the
most relevant COPs cannot be expressed as a single elementary
landscape based on any known neighborhood. Nevertheless, given
a symmetric neighborhood function, any landscape that is not
elementary can be expressed as a linear combination of a set of
elementary landscapes. This decomposition process is known as
Elementary Landscape Decomposition (ELD) [12].

3.1 Elementary Landscape Decomposition of
the QAP

The ELD for the Quadratic Assignment Problem that was proposed
in [10] is based on the swap neighborhood operator, which has been
widely used in the literature for solving the QAP [25]. Given a per-
mutation 𝜎 = (𝜎 (1)...𝜎 (𝑖) ...𝜎 ( 𝑗) ...𝜎 (𝑛)), this neighborhood opera-
tor consists of exchanging two items𝜎 (𝑖) and𝜎 ( 𝑗) in order to obtain
a new neighbor solution 𝜎′ = (𝜎 (1)...𝜎 ( 𝑗) ...𝜎 (𝑖) ...𝜎 (𝑛)). Hence, the
original landscape used in the decomposition is (𝑆𝑛, 𝑓 , 𝑁𝑠 ), where
𝑆𝑛 is the set of all permutations of size 𝑛, 𝑓 is the objective function
of the QAP, and 𝑁𝑠 is the neighborhood function based on the swap
operator. In what follows, we denote this landscape as 𝐿.

The ELD of 𝐿 consists of finding a set of𝑚 elementary functions
{𝑓 1, 𝑓 2, ..., 𝑓𝑚} that form𝑚 elementary landscapes along with the
original search space and neighborhood function. These elementary
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Table 1: 𝛼𝑚, 𝛽𝑚, 𝛾𝑚, 𝜖𝑚, Z𝑚 parameter values (𝑚 = 1, 2, 3).

𝛼 𝛽 𝛾 𝜖 Z

𝜙1 𝑛 − 3 1 − 𝑛 −2 0 −1
𝜙2 𝑛 − 3 𝑛 − 3 0 0 1
𝜙3 2𝑛 − 3 1 𝑛 − 2 0 −1

functions must satisfy that 𝑓 (𝜎) = 𝑓 1 (𝜎) + 𝑓 2 (𝜎) + ... + 𝑓𝑚 (𝜎) for
every 𝜎 ∈ 𝑆𝑛 , so we can see that the goal of the ELD is to decompose
the objective function of the QAP into a sum of sub-functions. In
order to do that, we first rewrite Equation 1 as follows:

𝑓 (𝜎) =
𝑛∑︁

𝑖, 𝑗=1

𝑛∑︁
𝑝,𝑞=1

𝑑𝑖, 𝑗ℎ𝑝,𝑞𝛿
𝑝

𝜎 (𝑖 )𝛿
𝑞

𝜎 ( 𝑗 ) (3)

where 𝛿𝑏𝑎 represents the Kronocker delta function that returns 1
if 𝑎 = 𝑏, and 0 otherwise. Equation 3 can be easily separated into
two different parts: the instance related part that depends on the
distance and flow matrices (𝜓𝑖, 𝑗,𝑝,𝑞 = 𝑑𝑖, 𝑗ℎ𝑝,𝑞) and the problem
related part that depends on 𝜎 (𝜑 (𝑖, 𝑗 ) (𝑝,𝑞) (𝜎) = 𝛿

𝑝

𝜎 (𝑖 )𝛿
𝑞

𝜎 ( 𝑗 ) ). Hence,

𝑓 (𝜎) =
𝑛∑︁

𝑖, 𝑗=1

𝑛∑︁
𝑝,𝑞=1

𝜓𝑖, 𝑗,𝑝,𝑞𝜑 (𝑖, 𝑗 ) (𝑝,𝑞) (𝜎) (4)

It is important to remark that the value of𝜓𝑖, 𝑗,𝑝,𝑞 does not vary
depending on the input solution, so 𝑓 is just a linear combination
of 𝜑 (𝑖, 𝑗 ) (𝑝,𝑞) (𝜎). Since any linear combination of elementary func-
tions (with the same characteristic constant 𝑘) is also an elementary
function, the work in [10] focuses on decomposing 𝜑 (𝑖, 𝑗 ) (𝑝,𝑞) (𝜎),
that is, the problem related part. Thus, 𝑓 can be decomposed into
three orthogonal functions [10]:

𝑓 1 (𝜎) =
𝑛∑︁

𝑖, 𝑗,𝑝,𝑞=1
𝑖≠𝑗,𝑝≠𝑞

𝜓𝑖, 𝑗,𝑝,𝑞

𝜙1
(𝑖, 𝑗 ) (𝑝,𝑞) (𝜎)

2𝑛
(5)

𝑓 2 (𝜎) =
𝑛∑︁

𝑖, 𝑗,𝑝,𝑞=1
𝑖≠𝑗,𝑝≠𝑞

𝜓𝑖, 𝑗,𝑝,𝑞

𝜙2
(𝑖, 𝑗 ) (𝑝,𝑞) (𝜎)
2(𝑛 − 2) (6)

𝑓 3 (𝜎) =
𝑛∑︁

𝑖,𝑝=1
𝜓𝑖,𝑖,𝑝,𝑝𝜑 (𝑖,𝑖 ) (𝑝,𝑝 ) (𝜎) +

𝑛∑︁
𝑖, 𝑗,𝑝,𝑞=1
𝑖≠𝑗,𝑝≠𝑞

𝜓𝑖, 𝑗,𝑝,𝑞

𝜙3
(𝑖, 𝑗 ) (𝑝,𝑞) (𝜎)

𝑛(𝑛 − 2)

(7)
where 𝑓 (𝜎) = 𝑓 1 (𝜎)+𝑓 2 (𝜎)+𝑓 3 (𝜎) for every𝜎 ∈ 𝑆𝑛 . The𝜙𝑚(𝑖, 𝑗 ) (𝑝,𝑞)
auxiliary functions are defined as:

𝜙𝑚(𝑖, 𝑗 ) (𝑝,𝑞) (𝜎) =



𝛼𝑚 if 𝜎 (𝑖) = 𝑝 ∧ 𝜎 ( 𝑗) = 𝑞

𝛽𝑚 if 𝜎 (𝑖) = 𝑞 ∧ 𝜎 ( 𝑗) = 𝑝

𝛾𝑚 if 𝜎 (𝑖) = 𝑝 ⊕ 𝜎 ( 𝑗) = 𝑞

𝜖𝑚 if 𝜎 (𝑖) = 𝑞 ⊕ 𝜎 ( 𝑗) = 𝑝

Z𝑚 if 𝜎 (𝑖) ≠ 𝑝, 𝑞 ∧ 𝜎 ( 𝑗) ≠ 𝑝, 𝑞

(8)

where 1 ≤ 𝑖, 𝑗, 𝑝, 𝑞 ≤ 𝑛 and 𝛼𝑚, 𝛽𝑚, 𝛾𝑚, 𝜖𝑚, Z𝑚 ∈ R. The parameter
values for each of the functions𝑚 = 1, 2, 3 are shown in Table 1.
The operator ⊕ stands for the exclusive OR operator.

Considering the search space and the neighborhood function
of 𝐿, the functions 𝑓 1, 𝑓 2 and 𝑓 3 are elementary with character-
istic constants 𝑘1 = 2𝑛, 𝑘2 = 2(𝑛 − 1) and 𝑘3 = 𝑛, respectively
(obtained from Equation 2). Thus, they form three independent
elementary landscapes 𝐿1 = (𝑆𝑛, 𝑓 1, 𝑁𝑠 ), 𝐿2 = (𝑆𝑛, 𝑓 2, 𝑁𝑠 ) and
𝐿3 = (𝑆𝑛, 𝑓 3, 𝑁𝑠 ). These elementary landscapes are, precisely, the
components of the ELD of the QAP.

Although the ELD of the problem consists of three components,
this does not mean that all the instances of the QAP are composed of
three non-constant elementary landscapes. For example, [2] proved
that the objective function of 𝐿1 is constant when at least one of the
matrices that form the QAP is symmetric with respect to the main
diagonal. Something similar happens in the case of the Traveling
Salesman Problem (TSP), which is a special case of the QAP. In TSP-
like instances, the objective function of 𝐿3 becomes constant for all
the solutions in the search space [10]. As a result, if a QAP instance
meets certain characteristics, some of the elementary landscapes
may be irrelevant for optimization purposes.

4 DECOMPOSITION OF THE ELEMENTARY
FUNCTIONS

One of the main drawbacks of the ELD is that it is not easy to
interpret the aspects of the solutions that are being evaluated by
each of the individual components. Thus, it is difficult to design new
meta-heuristic algorithms that exploit the advantages of working
with elementary landscapes. In order to address this issue, in this
section we propose an additional decomposition of the components
of the ELD of the QAP that tries to provide an understandable
characterization of each of them.

Before explaining the proposed decomposition, it is important
to remark that this approach focuses on decomposing the objective
functions of the elementary landscapes, that is, the elementary
functions. Thus, for the sake of clarity, in what follows we mainly
talk about the 𝑓 1, 𝑓 2 and 𝑓 3 functions, and not about the landscapes
as a whole (which also include the search space and the neighbor-
hood function). However, the reader should keep in mind that the
landscape concept is always implicitly present.

Let us consider a symmetric QAP instance (𝑑𝑖, 𝑗 = 𝑑 𝑗,𝑖∧ℎ𝑖, 𝑗 = ℎ 𝑗,𝑖
for every 𝑖, 𝑗 = 1, ..., 𝑛) with null main diagonals (𝑑𝑖,𝑖 = 0 ∧ ℎ𝑖,𝑖 = 0
for every 𝑖 = 1, ..., 𝑛). The vast majority of the benchmark instances
in the literature satisfy these two conditions [5, 16], so from now on,
we will focus on this particular case to simplify the decomposition
process. However, it is important to notice that similar analyses can
be conducted for other types of instances. Taking this into account,
let us rewrite the elementary functions of the ELD (Equations 5, 6,
7) as follows.

𝑓 1 (𝜎) =
𝑛−1∑︁
𝑎=1

𝑛∑︁
𝑏=𝑎+1

𝑛−1∑︁
𝑐=1

𝑛∑︁
𝑑=𝑐+1

𝑔1
(𝑎,𝑏 ),(𝑐,𝑑 ) (𝜎)

2𝑛
(9)

𝑓 2 (𝜎) =
𝑛−1∑︁
𝑎=1

𝑛∑︁
𝑏=𝑎+1

𝑛−1∑︁
𝑐=1

𝑛∑︁
𝑑=𝑐+1

𝑔2
(𝑎,𝑏 ),(𝑐,𝑑 ) (𝜎)

2(𝑛 − 2) (10)

𝑓 3 (𝜎) =
𝑛−1∑︁
𝑎=1

𝑛∑︁
𝑏=𝑎+1

𝑛−1∑︁
𝑐=1

𝑛∑︁
𝑑=𝑐+1

𝑔3
(𝑎,𝑏 ),(𝑐,𝑑 ) (𝜎)
𝑛(𝑛 − 2) (11)
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where 𝑓𝑚 is the elementary function that corresponds to the 𝐿𝑚
elementary landscape, and 𝑔𝑚(𝑎,𝑏 ) (𝑐,𝑑 ) (𝜎) = 𝜓𝑎,𝑏,𝑐,𝑑𝜙

𝑚
(𝑎,𝑏 ) (𝑐,𝑑 ) (𝜎) +

𝜓𝑏,𝑎,𝑐,𝑑𝜙
𝑚
(𝑏,𝑎) (𝑐,𝑑 ) (𝜎) +𝜓𝑎,𝑏,𝑑,𝑐𝜙

𝑚
(𝑎,𝑏 ) (𝑑,𝑐 ) (𝜎) +𝜓𝑏,𝑎,𝑑,𝑐𝜙

𝑚
(𝑏,𝑎) (𝑑,𝑐 ) (𝜎).

As can be seen, the
∑𝑛
𝑖,𝑝=1𝜓𝑖,𝑖,𝑝,𝑝𝜑 (𝑖,𝑖 ) (𝑝,𝑝 ) (𝜎) term has been re-

moved from the 𝑓 3 function since its value is 0when all the elements
in the main diagonal of the distance and flow matrices are zero. As
the instance is symmetric,𝜓𝑎,𝑏,𝑐,𝑑 = 𝜓𝑏,𝑎,𝑐,𝑑 = 𝜓𝑎,𝑏,𝑑,𝑐 = 𝜓𝑏,𝑎,𝑑,𝑐 , so
we can simplify the previous auxiliary function as 𝑔𝑚(𝑎,𝑏 ) (𝑐,𝑑 ) (𝜎) =
𝜓𝑎,𝑏,𝑐,𝑑

(
𝜙𝑚(𝑎,𝑏 ) (𝑐,𝑑 ) (𝜎)+𝜙

𝑚
(𝑏,𝑎) (𝑐,𝑑 ) (𝜎)+𝜙

𝑚
(𝑎,𝑏 ) (𝑑,𝑐 ) (𝜎)+𝜙

𝑚
(𝑏,𝑎) (𝑑,𝑐 ) (𝜎)

)
.

Based on Equation 8, 𝑔𝑚(𝑎,𝑏 ) (𝑐,𝑑 ) has three possible outcomes:

• If 𝜎 (𝑎) = 𝑐 ∧ 𝜎 (𝑏) = 𝑑 or 𝜎 (𝑎) = 𝑑 ∧ 𝜎 (𝑏) = 𝑐 , then
𝑔𝑚(𝑎,𝑏 ) (𝑐,𝑑 ) = (2𝛼𝑚 + 2𝛽𝑚)𝜓𝑎,𝑏,𝑐,𝑑 .

• If 𝜎 (𝑎) = 𝑐 ⊕ 𝜎 (𝑏) = 𝑑 or 𝜎 (𝑎) = 𝑑 ⊕ 𝜎 (𝑏) = 𝑐 , then
𝑔𝑚(𝑎,𝑏 ) (𝑐,𝑑 ) = (2𝛾𝑚 + 2𝜖𝑚)𝜓𝑎,𝑏,𝑐,𝑑 .

• If 𝜎 (𝑎) ≠ 𝑐, 𝑑 ∧ 𝜎 (𝑏) ≠ 𝑐, 𝑑 , then 𝑔𝑚(𝑎,𝑏 ) (𝑐,𝑑 ) = 4Z𝑚𝜓𝑎,𝑏,𝑐,𝑑 .

where the parameters 𝛼𝑚 , 𝛽𝑚 , 𝛾𝑚 , 𝜖𝑚 and Z𝑚 depend on the value
of𝑚 (Table 1). Considering the three cases separately, we can de-
compose 𝑔𝑚(𝑎,𝑏 ) (𝑐,𝑑 ) as

𝜒𝑚(𝑎,𝑏 ) (𝑐,𝑑 ) (𝜎) =

(2𝛼𝑚 + 2𝛽𝑚)𝜓𝑎,𝑏,𝑐,𝑑 if 𝜎 (𝑎) = 𝑐 ∧ 𝜎 (𝑏 ) = 𝑑 or

𝜎 (𝑎) = 𝑑 ∧ 𝜎 (𝑏 ) = 𝑐

0 otherwise
(12)

𝜔𝑚
(𝑎,𝑏 ) (𝑐,𝑑 ) (𝜎) =


(2𝛾𝑚 + 2𝜖𝑚)𝜓𝑎,𝑏,𝑐,𝑑 if 𝜎 (𝑎) = 𝑐 ⊕ 𝜎 (𝑏 ) = 𝑑 or

𝜎 (𝑎) = 𝑑 ⊕ 𝜎 (𝑏 ) = 𝑐

0 otherwise
(13)

𝜏𝑚(𝑎,𝑏 ) (𝑐,𝑑 ) (𝜎) =
{

4Z𝑚𝜓𝑎,𝑏,𝑐,𝑑 if 𝜎 (𝑎) ≠ 𝑐,𝑑 ∧ 𝜎 (𝑏 ) ≠ 𝑐,𝑑

0 otherwise
(14)

where𝑔𝑚(𝑎,𝑏 ) (𝑐,𝑑 ) (𝜎) = 𝜒𝑚(𝑎,𝑏 ) (𝑐,𝑑 ) (𝜎)+𝜔
𝑚
(𝑎,𝑏 ) (𝑐,𝑑 ) (𝜎)+𝜏

𝑚
(𝑎,𝑏 ) (𝑐,𝑑 ) (𝜎).

For the sake of simplicity, we define the following three auxiliary
functions that are just Boolean versions of 𝜒𝑚 , 𝜔𝑚 and 𝜏𝑚 :

𝜒 ′(𝑎,𝑏 ) (𝑐,𝑑 ) (𝜎) =


1 if 𝜎 (𝑎) = 𝑐 ∧ 𝜎 (𝑏 ) = 𝑑 or
𝜎 (𝑎) = 𝑑 ∧ 𝜎 (𝑏 ) = 𝑐

0 otherwise
(15)

𝜔 ′
(𝑎,𝑏 ) (𝑐,𝑑 ) (𝜎) =


1 if 𝜎 (𝑎) = 𝑐 ⊕ 𝜎 (𝑏 ) = 𝑑 or

𝜎 (𝑎) = 𝑑 ⊕ 𝜎 (𝑏 ) = 𝑐

0 otherwise
(16)

𝜏 ′(𝑎,𝑏 ) (𝑐,𝑑 ) (𝜎) =
{

1 if 𝜎 (𝑎) ≠ 𝑐,𝑑 ∧ 𝜎 (𝑏 ) ≠ 𝑐,𝑑

0 otherwise
(17)

where we have that
• 𝜒𝑚(𝑎,𝑏 ) (𝑐,𝑑 ) (𝜎) = (2𝛼𝑚 + 2𝛽𝑚)𝜓𝑎,𝑏,𝑐,𝑑 𝜒 ′(𝑎,𝑏 ) (𝑐,𝑑 ) (𝜎)
• 𝜔𝑚

(𝑎,𝑏 ) (𝑐,𝑑 ) (𝜎) = (2𝛾𝑚 + 2𝜖𝑚)𝜓𝑎,𝑏,𝑐,𝑑𝜔 ′
(𝑎,𝑏 ) (𝑐,𝑑 ) (𝜎)

• 𝜏𝑚(𝑎,𝑏 ) (𝑐,𝑑 ) (𝜎) = 4Z𝑚𝜓𝑎,𝑏,𝑐,𝑑𝜏 ′(𝑎,𝑏 ) (𝑐,𝑑 ) (𝜎)
Finally, these auxiliary functions 𝜒 ′, 𝜔 ′ and 𝜏 ′ can be used to

decompose each elementary function 𝑓𝑚 such that𝑚 = 1, 2, 3 into
three (non-elementary) sub-functions:

𝑓𝑚𝜒 (𝜎) = 2𝛼𝑚 + 2𝛽𝑚

𝑟𝑚

𝑛−1∑︁
𝑎=1

𝑛∑︁
𝑏=𝑎+1

𝑛−1∑︁
𝑐=1

𝑛∑︁
𝑑=𝑐+1

𝜓𝑎,𝑏,𝑐,𝑑 𝜒
′
(𝑎,𝑏 ) (𝑐,𝑑 ) (𝜎)

(18)

𝑓𝑚𝜔 (𝜎) = 2𝛾𝑚 + 2𝜖𝑚

𝑟𝑚

𝑛−1∑︁
𝑎=1

𝑛∑︁
𝑏=𝑎+1

𝑛−1∑︁
𝑐=1

𝑛∑︁
𝑑=𝑐+1

𝜓𝑎,𝑏,𝑐,𝑑𝜔
′
(𝑎,𝑏 ) (𝑐,𝑑 ) (𝜎)

(19)

𝑓𝑚𝜏 (𝜎) = 4Z𝑚

𝑟𝑚

𝑛−1∑︁
𝑎=1

𝑛∑︁
𝑏=𝑎+1

𝑛−1∑︁
𝑐=1

𝑛∑︁
𝑑=𝑐+1

𝜓𝑎,𝑏,𝑐,𝑑𝜏
′
(𝑎,𝑏 ) (𝑐,𝑑 ) (𝜎) (20)

where 𝑟1 = 2𝑛, 𝑟2 = 2(𝑛 − 2), 𝑟3 = 𝑛(𝑛 − 2) and 𝑓𝑚 (𝜎) = 𝑓𝑚𝜒 (𝜎) +
𝑓𝑚𝜔 (𝜎) + 𝑓𝑚𝜏 (𝜎) for every 𝜎 ∈ 𝑆𝑛 .

The main advantage of the proposed decomposition is that each
of the sub-functions (𝑓𝑚𝜒 , 𝑓𝑚𝜔 , 𝑓𝑚𝜏 ) evaluates different aspects of a
given solution. For every combination of values 𝑎, 𝑏, 𝑐 and 𝑑 such
that 1 ≤ 𝑎 < 𝑏 ≤ 𝑛 and 1 ≤ 𝑐 < 𝑑 ≤ 𝑛, we have that:

• The only non-null terms in 𝑓𝑚𝜒 are the ones that satisfy
that 𝜎 (𝑎) = 𝑐 ∧ 𝜎 (𝑏) = 𝑑 or 𝜎 (𝑎) = 𝑑 ∧ 𝜎 (𝑏) = 𝑐 . That is,
this function only evaluates the combinations of locations-
facilities in which both current facilities (𝑐 and 𝑑) are in the
current locations (𝑎 and 𝑏) in the solution 𝜎 .

• The only non-null terms in 𝑓𝑚𝜔 are the ones that satisfy
that 𝜎 (𝑎) = 𝑐 ⊕ 𝜎 (𝑏) = 𝑑 or 𝜎 (𝑎) = 𝑑 ⊕ 𝜎 (𝑏) = 𝑐 . That is,
this function only evaluates the combinations of locations-
facilities in which just one of the current facilities (𝑐 or 𝑑) is
in one of the current locations (𝑎 or 𝑏) in the solution 𝜎 .

• The only non-null terms in 𝑓𝑚𝜏 are the ones that satisfy that
𝜎 (𝑎) ≠ 𝑐, 𝑑∧𝜎 (𝑏) ≠ 𝑐, 𝑑 . That is, this function only evaluates
the combinations of locations-facilities in which neither of
the current facilities (𝑐 and 𝑑) is in the current locations (𝑎
and 𝑏) in the solution 𝜎 .

Thus, not only do the elementary functions of the ELD consider
the quality of the current facility-location assignment (𝑓𝑚𝜒 ), but also
the quality of the solutions that could be reached by modifying one
(𝑓𝑚𝜔 ) or both (𝑓𝑚𝜏 ) of the facilities assigned to each pair of locations.
Since the cases 𝛽 , 𝛾 , 𝜖 and Z of Equation 8 cancel each other out
when the elementary landscapes are combined [10], this additional
information is not explicitly present in the original landscape of
the QAP, and only arises when the ELD is computed.

5 THEORETICAL ANALYSIS
Once we have defined the decomposition of the elementary func-
tions, we can now use this new framework to analyze the ELD of
the QAP. First, let us replace the parameters in the proposed sub-
functions (Equations 18, 19, 20) with their actual values according
to Table 1. To avoid unnecessary repetition, we only show the value
of the common coefficients that depend on 𝛼𝑚 , 𝛽𝑚 , 𝛾𝑚 , 𝜖𝑚 , Z𝑚 and
𝑟𝑚 , which is the only part of the equations that varies according to
the elementary function (Table 2).

Based on these coefficient values, we can now study the charac-
teristics of the proposed sub-functions in order to gain knowledge
about the characterization of each component in the ELD. With this
purpose, we first compute the expected values of the sub-functions1

1See supplementary material for further details.
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Table 2: Common coefficients in 𝑓𝑚𝜒 , 𝑓𝑚𝜔 and 𝑓𝑚𝜏 for𝑚 = 1, 2, 3.

𝜒 𝜔 𝜏

𝑓 1 −2
𝑛

−2
𝑛

−2
𝑛

𝑓 2 2(𝑛−3)
𝑛−2 0 2

𝑛−2

𝑓 3 4(𝑛−1)
𝑛 (𝑛−2)

2
𝑛

−4
𝑛 (𝑛−2)

Table 3: Expected value and variance of the sub-functions.𝜓
represents the average value of𝜓𝑎,𝑏,𝑐,𝑑 such that 1 ≤ 𝑎 < 𝑏 ≤ 𝑛

and 1 ≤ 𝑐 < 𝑑 ≤ 𝑛. Moreover, 𝑠2
𝜒 , 𝑠2

𝜔 and 𝑠2
𝜏 represent the

variances of the summations in 𝑓𝑚𝜒 , 𝑓𝑚𝜔 and 𝑓𝑚𝜏 , respectively.

Expected value Variance

𝒇 1
𝝌 −(n − 1)�̄� 4

n2 𝑠
2
𝜒

𝒇 1
𝝎 −2(n − 1) (n − 2)�̄� 4

n2 𝑠
2
𝜔

𝒇 1

𝒇 1
𝝉 − (n−1) (n−2) (n−3)

2 �̄� 4
n2 𝑠

2
𝜏

𝒇 2
𝝌

n(n−1) (n−3)
n−2 �̄� 4(n−3)2

(n−2)2 𝑠
2
𝜒

𝒇 2
𝝎 0 0𝒇 2

𝒇 2
𝝉

n(n−1) (n−3)
2 �̄� 4

(n−2)2 𝑠
2
𝜏

𝒇 3
𝝌

2(n−1)2

n−2 �̄� 16(n−1)2

n2 (n−2)2 𝑠
2
𝜒

𝒇 3
𝝎 2(n − 1) (n − 2)�̄� 4

n2 𝑠
2
𝜔

𝒇 3

𝒇 3
𝝉 −(n − 1) (n − 3)�̄� 16

n2 (n−2)2 𝑠
2
𝜏

as a measure of the average contribution of the 𝛼 , 𝛽 , 𝛾 , 𝜖 and Z cases
to the value of the 𝑓 1, 𝑓 2 and 𝑓 3 elementary functions (Table 3).

As can be seen, the expected values of the 𝑓𝑚𝜒 , 𝑓𝑚𝜔 and 𝑓𝑚𝜏 sub-
functions vary greatly from one elementary function to another. In
order to visualize these differences, Figure 1 shows the magnitude
of the expected values of the sub-functions for different 𝑛 sizes (the
𝜓 factor has been removed since it is common to all sub-functions).

The plots show that, for large enough instances, the 𝑓𝑚𝜏 sub-
function (which measures the Z case) is the one with the highest
average contribution to the value of 𝑓 1 and 𝑓 2. In the case of 𝑓 3,
however, the 𝑓𝑚𝜔 sub-function (which measures the 𝛾 and 𝜖 cases)
has a slightly higher contribution than 𝑓𝑚𝜏 . Moreover, it is also
worth mentioning that 𝑓𝑚𝜒 has a generally small contribution to the
value of all the elementary functions. This may be non-intuitive
since this sub-function includes the 𝛼 and 𝛽 cases, that is, the
information that is taken into account by the original objective
function of the QAP. Nevertheless, it is important to recall that the
𝛾 , 𝜖 and Z cases cancel out when the landscapes are combined, which
means that the sum of the 𝑓𝑚𝜔 and 𝑓𝑚𝜏 sub-functions is always 0.
Thus, we have that 𝐸 [𝑓 1

𝜔 ]+𝐸 [𝑓 2
𝜔 ]+𝐸 [𝑓 3

𝜔 ]+𝐸 [𝑓 1
𝜏 ]+𝐸 [𝑓 2

𝜏 ]+𝐸 [𝑓 3
𝜏 ] = 0,

and hence, 𝐸 [𝑓 1
𝜒 ] + 𝐸 [𝑓 2

𝜒 ] + 𝐸 [𝑓 3
𝜒 ] = 𝐸 [𝑓 ]. This is caused by the

values of the common coefficients in the sub-functions (Table 2),
which have different signs depending on the elementary function.

(a) 𝑓 1. (b) 𝑓 2.

(c) 𝑓 3.

Figure 1: Expected value magnitude (|𝐸 [𝑋 ] |) of the sub-
functions for each elementary function (Table 3). We observe
constant (𝑓 2

𝜔 ), linear (𝑓 1
𝜒 , 𝑓 3

𝜒 ), quadratic (𝑓 1
𝜔 , 𝑓 2

𝜒 , 𝑓 3
𝜔 , 𝑓 3

𝜏 ) and cu-
bic (𝑓 1

𝜏 , 𝑓 2
𝜏 ) behaviours.

Therefore, it is not possible to minimize (or maximize) all the 𝑓𝑚𝜒 ,
𝑓𝑚𝜔 or 𝑓𝑚𝜏 sub-functions at the same time.

Another characteristic that is worth studying is the variance of
the sub-functions. This feature is especially relevant when we work
with meta-heuristic algorithms, since the sub-functions that have
higher variance are those that most influence the search process.
The variances of the sub-functions are shown in Table 3.

If we look at 𝑓 1
𝜒 , 𝑓 2

𝜒 and 𝑓 3
𝜒 in the variance column, we notice that

the only variable part in the variance equations is the coefficient by
which the variance of the summation (𝑠2

𝜒 ) is multiplied. The same
happens in the case of 𝑓𝑚𝜔 and 𝑓𝑚𝜏 (considering that the coefficient
in 𝑓 2

𝜔 is 0), and thus, we can compare the variance of a specific
sub-function for different elementary functions by comparing the
corresponding coefficients. Figure 2 shows the evolution of the
coefficients in the variance equations of the sub-functions according
to the instance size. In general, we have that:

• The variance of the 𝑓𝑚𝜒 sub-function is higher in 𝑓 2 than in
the rest of the elementary functions.

• The variance of 𝑓 2
𝜔 is 0. Therefore, the 𝑓𝑚𝜔 sub-function has

no influence in the optimization of 𝑓 2. Regarding the remain-
ing elementary functions, the variance of 𝑓𝑚𝜔 is exactly the
same in both cases.

• The variance of the 𝑓𝑚𝜏 sub-function is similar in the 𝑓 1 and
𝑓 2 elementary functions, while it is lower in 𝑓 3.

It seems that the variance contribution of the 𝑓𝑚𝜒 sub-function is
particularly relevant in the case of 𝑓 2. That is, from an optimization
point of view, the 𝛼 and 𝛽 cases (the ones already present in 𝑓 ) may
play an important role in 𝑓 2. This is consistent with the experimen-
tal analysis made in [2], where they found that the 𝑓 2 elementary
function under the swap neighborhood shares a significant number
of local optima with the original landscape of the QAP.
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(a) 𝑓𝑚𝜒 . (b) 𝑓𝑚𝜔 .

(c) 𝑓𝑚𝜏 .

Figure 2: Evolution of the coefficients in the variance equa-
tions of 𝑓𝑚𝜒 , 𝑓𝑚𝜔 and 𝑓𝑚𝜏 (Table 3). We observe quadratic (𝑓 1

𝜒 ,
𝑓 1
𝜔 , 𝑓 1

𝜏 , 𝑓 2
𝜏 𝑓 3

𝜒 , 𝑓 3
𝜔 ) and quartic (𝑓 3

𝜏 ) decrements. The remaining
cases have a (nearly) constant behaviour (𝑓 2

𝜒 , 𝑓 2
𝜔 ).

On the other hand, the variance contribution of 𝑓𝑚𝜔 also seems
to be remarkable in the case of 𝑓 3. Thus, not only does 𝑓 3 take into
account the information already present in 𝑓 , but also the extra
information given mainly by the 𝛾 and 𝜖 cases. In conclusion, as 𝑓 2

and 𝑓 provide similar information and 𝑓 1 is constant in symmetric
instances, optimizing 𝑓 3 may be a good diversification policy that
exploits the benefits given by the ELD.

6 EXPERIMENTAL ANALYSIS
With all this information given by the proposed decomposition, we
now use the acquired knowledge to study the impact of the ELD
during the optimization process of the QAP. For this purpose, we
perform an experimental study on some of the most challenging
QAP instances in the literature: the Drezner and Taixxeyy instances
[16]. These benchmarks are composed of 112 instances ranging
from size 15 to 175 that are specifically designed to be difficult
for meta-heuristic algorithms. Moreover, all the instances in the
benchmarks are symmetric and have null main diagonals, so the
proposed additional decomposition can be applied to them.

The experimental analysis consists of applying two different
local search-based algorithms under the swap neighborhood for
solving the previously mentioned QAP instances2: a short-term
memory Tabu Search (TS) [15] and the Variable Function Search
(VFS) algorithm proposed in [2]. The VFS is a modified version of
the TS that takes into account the ELD during the search process.
That is, when the VFS reaches a local optimum of the original
objective function 𝑓 , it only allows non-improving movements that
lead to solutions that have a better objective value in at least one
of the elementary functions of the decomposition. In doing so, it

2Source code available in https://github.com/Av-Repos/GECCO_2023.

(a) Drezner. (b) Taixxeyy.

Figure 3: Results of the statistical analyses. The obtained
expected probabilities are shown in the upper left corner.

ensures that the search always moves to solutions that are better
than the current one in at least one of the sub-problems, which may
help us to avoid exploring poor-quality regions of the search space.

Thus, our goal in this section is to better understand the be-
haviour of the TS and the VFS with the help of the information
gathered in the previous theoretical analysis. With this aim, we
first run each of the algorithms 10 times for each of the Drezner and
Taixxeyy instances. The size of the tabu list in all cases is equal to
the instance size (𝑛). Regarding the stopping criterion, a maximum
number of solution evaluations has been set: 1,000𝑛2.

Based on the obtained results, we conduct an analysis to sta-
tistically assess the difference between the performance of both
algorithms. In particular, we conduct a Bayesian signed rank-test
[3, 6] for each of the considered benchmarks. Given a set of perfor-
mance measures obtained by two meta-heuristic algorithms, this
method estimates the expected probability of each algorithm being
the best for solving the test instances. The data used to compute
the statistical analyses consists of the relative errors with respect
to the best known solutions obtained in the experimentation.

The Bayesian signed-rank test requires defining the interval of
performance difference under which both algorithms are consid-
ered to be equivalent (rope). Due to the differences in the scale of
the relative errors, in this work the rope interval has been set inde-
pendently for each benchmark of instances. In particular, the limits
of the rope interval are calculated as ±1% of the average relative
error obtained by both the TS and the VFS in the corresponding
benchmark. Taking this into account, the results of the statistical
analyses are shown as simplex plots in Figure 3.

Each point in the simplex plots represents a sample of the pos-
terior distribution of the probability of win-lose-tie. The closer a
point is to a vertex, the higher the probability of the corresponding
option. If the points are closer to the TS vertex, for example, it
means that the TS algorithm has a higher probability of being the
best, and the same happens in the case of the VFS and rope vertices.
Moreover, the dispersion of the point clouds gives us information
about the uncertainty of the statistical analysis. If the points are
close together, it means that the results of the analysis have a low
uncertainty. In contrast, if the points are far apart, then the uncer-
tainty of the analysis is higher. Thus, the Bayesian signed-rank test
allows us to distinguish between the uncertainty of the behaviour
of the algorithms and the uncertainty of the statistical analysis
(which is caused by the lack of data).

As can be seen in Figure 3, the performance of the algorithms dif-
fers greatly depending on the benchmark. On the one hand, the TS

https://github.com/Av-Repos/GECCO_2023
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(a1) 𝑓 2. (a2) 𝑓 3.

(a) Dre72.

(b1) 𝑓 2. (b2) 𝑓 3.

(b) Tai75e01.

Figure 4: Evolution of the average 𝑓 2 and 𝑓 3 values during
the 10 runs of the TS and VFS. The shaded areas represent
the corresponding 95% confidence intervals.

seems to be the most promising algorithm for the Drezner instances,
although the dispersion of the point cloud shows that there is some
uncertainty in the obtained results. The opposite happens in the
case of the Taixxeyy instances, where the VFS algorithm seems to
be the best with a 0.77 probability and a very low uncertainty.

Once we have seen that the performance of both algorithms (the
classical approach and the one that considers the ELD) is different,
the next step is to try to understand what is happening during the
optimization process. Just as an example, we focus on studying one
representative instance from each of the benchmarks: the Dre72
(Drezner) and Tai75e01 (Taixxeyy) instances.

First, let us plot the evolution of the elementary function values
during the executions of the TS and VFS algorithms for the Dre72
and Tai75e01 instances (Figure 4). We also plot the evolution of the
corresponding sub-function values to gain a deeper insight into
what is being optimized at each step of the search (Figure 5). The
𝑓 1 elementary function has been left out since its value is constant
in all the considered benchmark instances.

As shown in Figure 4, the behaviour of the algorithms is pretty
different. First, it seems like both methods implicitly optimize the
𝑓 2 component of the problem. As explained in Section 5, this means
that they first focus on the elementary function in which the vari-
ance of the 𝛼 and 𝛽 cases is higher, hence focusing on the informa-
tion already available in the original objective function of the QAP.
This can be noted in Figure 5, where the shapes of the optimization
curves of the 𝑓 2

𝜒 sub-function are nearly identical to those of the 𝑓 2

elementary function (Figure 4). This suggests that the 𝛼 and 𝛽 cases
are the most relevant cases during the optimization of 𝑓 2, while 𝛾 , 𝜖
and Z just add noise that has a low influence on the search process.

When a local optimum of 𝑓 2 is reached, the VFS algorithm tries
to escape from it by optimizing the 𝑓 3 component. Thus, at this

(a1) 𝑓 2
𝜒 . (a2) 𝑓 2

𝜔 . (a3) 𝑓 2
𝜏 .

(a4) 𝑓 3
𝜒 . (a5) 𝑓 3

𝜔 . (a6) 𝑓 3
𝜏 .

(a) Dre72.

(b1) 𝑓 2
𝜒 . (b2) 𝑓 2

𝜔 . (b3) 𝑓 2
𝜏 .

(b4) 𝑓 3
𝜒 . (b5) 𝑓 3

𝜔 . (b6) 𝑓 3
𝜏 .

(b) Tai75e01.

Figure 5: Evolution of the average sub-function values during
the 10 runs of the TS and VFS. The shaded areas represent
the corresponding 95% confidence intervals.

point, the VFS uses the extra information given by the ELD to try to
explore new promising regions of the search space. Once again, this
can be observed in Figure 5, since the shapes of the optimization
curves of 𝑓 3

𝜔 and 𝑓 3
𝜏 are very similar to those of 𝑓 3 (Figure 4). There-

fore, as concluded in Section 5, it seems that the 𝛾 , 𝜖 and (to a lesser
extent) Z cases are the ones that control the optimization process
of 𝑓 3. Since the TS does not incorporate the additional knowledge
given by the ELD, it cannot continue improving the solution once
the optimization of 𝑓 2 converges.

Although the behaviour of each algorithm remains similar across
benchmarks, their performance differs depending on the target in-
stance. In particular, the optimization of the 𝑓 3 elementary function
is much more effective in Tai75e01, while it seems to be unnecessary
inDre72. To better visualize the dissimilarities between benchmarks,
Figure 6 shows the comparison between the 𝑓 2 and 𝑓 3 values of
the solutions visited by the TS and the VFS in both cases.

As shown in the plots, the objective value space of both instances
is different. For example, in the case of Dre72, improving 𝑓 3 seems
to worsen the 𝑓 2 value. Thus, as the variance of 𝑓 2 is generally
higher than the variance of 𝑓 3 in symmetric instances [2], focusing



GECCO ’23, July 15–19, 2023, Lisbon, Portugal Xabier Benavides, Josu Ceberio, Leticia Hernando, and Jose A. Lozano

(a1) TS. (a2) VFS.

(a) Dre72.

(b1) TS. (b2) VFS.

(b) Tai75e01.

Figure 6: Comparison between the 𝑓 2 (𝑥 axis) and 𝑓 3 (𝑦 axis)
values obtained during the 10 runs of the TS and VFS. Differ-
ent colors represent different runs, and the size of the points
is directly proportional to the iteration number.

on optimizing 𝑓 2 (TS) seems to be a better idea than looking for a
trade-off between elementary functions (VFS) in Drezner instances.

On the other hand, if we look at Tai75e01, we do not find any
negative correlation between 𝑓 2 and 𝑓 3. What is more, the solutions
explored by the algorithms seem to be grouped in certain regions
of the objective value space, creating clusters of solutions with
similar 𝑓 2 and 𝑓 3 values. This grouping is particularly evident in
the 𝑓 2 function (𝑥 axis), in which two different clusters can be
easily distinguished. Therefore, it appears that the 𝑓 2 value of the
starting solution determines, to a great extent, the solutions that are
visited during the search. This suggests that there are sub-optimal
regions of the search space that are difficult to escape using local
search processes, similar to the funnels or sinks that arise when
studying Local Optima Networks (LON) [14, 20, 29]. Consequently,
considering just the 𝛼 and 𝛽 cases causes a premature convergence
of the algorithm that may lead to sub-optimal results. This is why
the VFS performs better than the TS in the Taixxeyy benchmark,
since, in this case, the VFS can further improve the solution by
focusing on 𝑓 3 once the optimization of 𝑓 2 stagnates.

7 DISCUSSION
In previous sections, we have used the proposed decomposition
to characterize the components of the ELD of the QAP from both
theoretical and practical points of view. During the analysis, we
have found that the 𝑓 2

𝜒 sub-function (which measures the 𝛼 and
𝛽 cases) is the one that has the most significant influence in the
optimization process of 𝑓 2. In contrast, the 𝑓 3

𝜔 sub-function (which
measures the 𝛾 and 𝜖 cases) is the most relevant sub-function for
the optimization of 𝑓 3.

These findings are particularly important for integrating the ELD
into meta-heuristic algorithms that solve the QAP. They allow us to
make more informed decisions about which elementary landscapes
should be taken into account at each step of the search process,
instead of just trying to jointly optimize all the elementary com-
ponents as done in previous works [2, 8]. For example, a possible
good policy is to first focus on the information already present in
the original objective function of the QAP (𝑓 2), and then use the 𝑓 3

elementary function to try to further improve the solution when
the search converges. Although this strategy may not be suitable
for all possible instances, it may provide good results if 𝑓 2 and 𝑓 3

are not negatively correlated and the search space structure of 𝑓 2

under the swap neighborhood contains sub-optimal funnels.
Finally, the proposed decomposition can also be used to deal

with one of the problems of the ELD of the QAP: the computational
complexity of the elementary functions. As can be observed in
Equations 5, 6 and 7, the complexity of the elementary functions
is 𝑂 (𝑛4), which makes it impractical to use ELD-based methods
for solving large instances. However, as some sub-functions have a
weak impact on the optimization process, we can just ignore the
calculations that correspond to those sub-functions in order to save
time. For example, 𝑓 3

𝜔 can be efficiently calculated in 𝑂 (𝑛3). Thus,
computing 𝑓 3

𝜔 instead of 𝑓 3 would reduce the complexity of the
objective function while maintaining the general behaviour of meta-
heuristic algorithms. Obviously, this approach would not benefit
from the advantages of an elementary landscape, but it may be an
interesting strategy if we have strict computational limitations.

8 CONCLUSIONS AND FUTUREWORK
This work has shown that all the elementary landscapes that form
the decomposition of the QAP under the swap neighborhood are
just linear combinations of a set of smaller non-elementary com-
ponents. By studying these components separately, we have been
able to find interesting patterns that can be used to find general
optimization policies. As some of the most studied COPs in the
literature are just particular cases of the QAP (for example, TSP
and LOP), the results of this work can be extended to other relevant
problems with minor modifications.

It is important to remark that this work has focused on symmet-
ric instances with null main diagonals. For the sake of completeness,
similar studies should be conducted for other types of instances.
However, our goal in this work was not to characterize all possible
QAPs, but to provide useful tools for better understanding the ELD
of the problem and its effects on meta-heuristic methods. Thus,
future research lines could be aimed at designing specific optimiza-
tion algorithms that take advantage of the ELD approach using the
knowledge provided by our analysis.
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