
Highlights

Numerical simulations of thixotropic semi-solid aluminium alloys
in open-rotor and rotor-stator mixers

Imanol Garcia-Beristain1, Michelle Figueroa-Landeta, J. Esteban López-Aguilar,
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Abstract

This research uses the Bautista-Manero-Puig (BMP) model to examine
flow patterns of semi-solid aluminium alloys (Al) in open-rotor and stator-
rotor mixers via numerical solutions. The model captures the distinct thixo-
viscoelastic behavior of the Al-alloys at low temperatures, near melting point.
The analysis involves using 2D structured-meshes for open-rotor and rotor-
stator geometries. Solutions for Newtonian and thixo-viscoelastic model flu-
ids are reported through fields of velocity, strain-rate, stress, fluidity, and
streamlines, revealing distinct features. Findings reveal nonlinear thixo-
viscoelastic vortex patterns that vary with rotational speed, resulting in
different fluidity and stress profiles compared to the invariant response of
Newtonian fluids. At lower rotational speeds, rotor-pallets are dominated by
structured material that gradually becomes unstructured to cover the outer
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vessel walls. When including a stator, the inner stator region resembles the
Newtonian solution, but the outflow through stator gaps is reduced due to
flow-structure levels outside. This information is of interest for industrial
design and optimization of molten Al-alloy processing.

Keywords: Semi-solid Al-alloys, Numerical simulation, BMP model,
OpenFOAM/Rheotool

1. Introduction

In the context of circular economy, effective recycling of metal-based ma-
terials is of crucial importance. Casting and forming processes are used in
most manufactured products and in almost all manufacturing machinery. De-
spite this, to date, primary metals obtained from the direct transformation
of natural resources are almost exclusively used, incorporating very small
amounts of secondary or recycled metals. Optimal recycling of aluminium
would save 95% of the energy used in primary production and an equivalent
reduction in CO2 emissions 2.
In the particular case of aluminium (Al) alloys, the problems when using re-
cycled materials, and thus reducing the use of primary aluminium, are mainly
related to impurities and defects. Iron (Fe) is the most common impurity
in aluminium and its alloys. In particular, it cannot be easily removed and
can cause adverse effects on ductility and processability of the resulting com-
ponent. This is a critical mechanical problem, for example, in alloys used
in casting processes such as Al-Si-based alloys. For these Al-Si-based alloys,
molten primary aluminium typically contains between 0.02 - 0.15% by weight
of iron. There is no known effective way to remove iron from aluminium, in
such a way that these primary Fe values are the typical baseline and all the
additional melting activities will potentially increase its level further.

To date, the alternatives to control the negative effect of iron on the
microstructure of aluminium alloys are: (1) by addition of suitable neu-
tralizers to chemically suppress specific shapes that embrittle alloys, while
promoting instead growth of platelet-like of globular-shape Fe-morphologies
[1, 2, 3, 4, 5]. (2) Try to mechanically modify the geometry of the Fe-inter-
metallic phases, or, in other words, breaking the acicular geometry of the
Fe-phases to reduce them in size and give them a more spheroidal shape [6].

2https://www.european-aluminium.eu
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In the latter case, it is crucial to develop novel technologies and processes that
favour intermetallic phase fragmentation. Agitation and vibration are meth-
ods widely used during solidification for refining grains of aluminum. Various
agitation methods have been employed for this purpose, including agitation
mechanics, electromagnetic agitation and bubble mixing [7, 8]. It has been
observed that material flow has a considerable effect on the microstructure
and it is possible to transform needles-like Fe phases into blocks. During
agitation, these acicular phases break based on a fracture mechanism [9, 10]
caused by shear and viscous forces.

Existing methods for treating liquid metals by stirring include mechanical
agitation by an impeller or propeller, electromagnetic agitation and some
other, such as gas-induced liquid flow. Mechanical stirring using an impeller
is a simple way to treat liquid metals. McRae et al. [11] describe a method of
mechanical stirring of liquid metals to produce alloys. The process introduces
a stirring device primarily to accelerate the dissolution of alloying elements
and slow down slag formation.

Fan et al. [12] proposed a shaped rotor-stator device similar to an open
impeller, but this rotor is closely surrounded by the stator with holes. This
design allows the use of high speed, that is, the rotors rotate at an order-
of-magnitude larger frequency than the open impellers in a stirred tank.
Typically, blade tip (rotor) speed ranges from 10 to 50 m/s [13]. The rotor-
stator gap ranges from 100 to 3000 µm and, since the local volume inside the
gap is extremely small, the local energy dissipation rate can be three orders-
of-magnitude higher than in a conventional shake. For this reason, such
devices are generally known as High Shearing Mixers (HSM) [or, generally,
High Shearing Processing (HSP)], since the highest shear-rates inside the
sample can reach values from 20,000 to 100,000 s−1 [13]. The high shear-
rate achieved inside these mixers effectively breaks up large oxide films of
aluminium and clusters into fine individual particles.

It is therefore relevant to develop efficient and accurate Computational
Fluid Dynamics (CFD) models able to predict the flow of liquid (at high tem-
perature) or semi-solid (at moderate-low temperatures) Al-alloys in complex
mixing geometries to optimize operating conditions and design.

Numerical analysis on this type of operations has been done recently in
the context of liquid metals in Tong et al. [14], where CFD has been applied
to perform HSP simulations in molten aluminium treated as a Newtonian
liquid with constant dynamic viscosity (≈ 0.0027 Pa·s). Such a full HSP-
setup was solved with a SIMPLE scheme and simulated using the FLUENT
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module of ANSYS. Moreover, under typical operating conditions in HSP, the
blades rotate at angular velocities exceeding 1000 rpm, leading to effective
Reynolds numbers larger than 40,000. Consequently, turbulence models are
required to simulate the mixing flow of Al-alloys in the liquid state (i.e. at
very high temperatures).

Despite the apparent simplicity related to the choice of a Newtonian de-
scription, such an assumption cannot generally hold for aluminium alloys. In
fact, below a critical temperature (≈ 590◦C for A380 [15]), alloys undergo
liquid-solid transition and start showing significant temperature effects (i.e.
on viscosity η(T )), as well as highly non-Newtonian properties. In particular,
due to the presence of a coarsening/re-arranging solid phase, the following
responses are observed: a) shear-thinning, i.e. a decrease of the Al-alloy
viscosity with increasing shear-rates and shear-thickening at high shear-rates
[16, 17, 18]; b) thixotropy, observed as a transient response of the viscosity
to an applied stress [19]; and c) viscoelastoplasticity [20]. A recent review on
the rheological characterization of semi-solid metals is given in [21].

Early numerical approaches incorporate non-Newtonian effects by prop-
erly tuning the shear-rate dependence of a variable viscosity function against
rheometrical data. Examples include simple homogeneous power-law viscous
models with temperature-dependent viscosity, which were implemented into
a commercial finite-element software to simulate mould-filling operations dur-
ing the semi-solid processing (thixoforming) of aluminium alloys [22]. Other
shear-thinning/thickening power-law and Carreau-Yasuda models were used
in [23]. However, in present times, it is widely acknowledged that these time-
independent models tuned on steady-state rheological data cannot capture
the complex transient response of aluminium alloys.

It is well known that heterogeneous microstructure formation (e.g. local
solidification, particle coarsening, aggregation, among others) occurs over a
finite timescale during material processing [24]. To establish control over it,
a scalar field describing the heterogeneous microstructure evolution accounts
for the density or state of the dispersed crystalline or solid phase [25, 26, 27,
28]. However, these studies focus on the microstructure kinetics in semi-solid
aluminium alloys, whereas no explicit link is established between the time-
dependent microstructure and the resulting macroscopic rheology of the fluid.
In [29], a proposal of such a micro-macro link is given, but, to the best of our
knowledge, the model has not been applied to realistic flowing conditions,
whereas in [30], time-dependent effects were incorporated in a power-law
shear-thinning model for A319 alloys using viscosity data obtained under
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compressive tests.
A more formal way to incorporate time-dependent viscous effects (i.e.

thixotropy) due to a changing microstructure, is through micro-mechanical-
continuum models, where the constitutive parameters are coupled to the
concurrent evolution of an additional microstructural variable (sometimes
denoted as structure or coherency parameter) [21]. In [31], a minimal mi-
crostructural model was proposed and linked to a viscosity function. In
[32], parameters in a viscoplastic Herschel-Bulkley fluid model were linked
to a kinetic equation for a structure parameter. A similar time-dependent
Herschel-Bulkley model was used in [33] and implemented into a CFD soft-
ware (FLOW 3D) to simulate steel semi-solid metal forming and die injection
process.

Many of these models have been used in the context of cold metal extru-
sion processes using finite elements or meshless discretization of visco-elasto-
plastic equations. For example, Chen et al. [34] have used a rigid-plastic
finite-element DEFORM 3D software to investigate the plastic deformation
behavior of an aluminium billet during its axisymmetric extrusion through a
conical die. Bastani [35] also used a finite-element code to optimize the shape
and mechanical properties in an aluminium extrusion process. In [36], the
application of the Natural Element Method (NEM) for simulating forming
processes involving large displacements was described. Later, the method
was applied to 3D simulations of aluminium extrusion where the material
was modelled as a rigid-plastic material governed by a SellarsTegart-type
law [36]. In the context of the Smoothed Particle Hydrodynamics method
(SPH), applications to liquid metal (initially modelled as Newtonian liquids)
in high-pressure die-casting processes were discussed in [37, 38]. This method
was later modified to incorporate elasto-plastic deformation [39] following the
Jaumann or Maxwell SPH viscoelastic models proposed initially in [40, 41].
More recently, full elasto-viscoplastic SPH models have been used in complex
metal forging processes [42].

These methods have not been applied yet to the specific rotor-based mix-
ers targeted in this paper. Moreover, for semi-solid aluminium alloys at
low/moderate solid volume fractions, elastic effects are considered negligible
and viscoplastic models are still adequate, but thixotropy is essential [43].
To the best of our knowledge, no thixotropic model has been applied so far
to the CFD analysis of semi-solid alloys in a realistic HSP setup, where only
Newtonian computations have been made to date [14].

An approach naturally incorporating thixotropic and viscoelastoplastic
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features into material response has been recently used in the context of
wormlike micellar solutions in [44, 45, 46] under the Bautista-Manero-Puig
(BMP) family of fluids. These BMP constitutive equations incorporate
time-dependent thixotropic features through a structure equation written
for fluidity. Here, a construction-destruction dynamics is modulated by a
structure-construction timescale and an inverse characteristic stress for struc-
ture destruction, which drives non-linearity using the energy dissipated by
the viscoelastic fluid in motion. This fluidity connects with stress via the
non-Newtonian viscosity in an Oldroyd-B-like differential constitutive equa-
tion. These models have been tested in complex flow scenarios, ranging from
rounded and sharp contraction-expansion geometries [45] and flow past a
sphere [46].

In this article, we introduce thixotropy and viscoelasticity in the analysis
using the BMP model and show that non-Newtonian properties of semi-solid
aluminium alloys have a significant impact on the computed stress field and,
in conclusion, on the operating conditions for HSP for these systems. Here,
we use OpenFOAM [47], which is a versatile open-source finite-volume library
supporting arbitrary polyhedral meshes. The source code has been designed
to create solvers from a high-level abstraction code manipulation. Hence, it
is a popular framework to create high-performance solvers for many appli-
cations. A recent extension to the field of non-Newtonian fluid mechanics
is provided by rheoTool [48], which is often used in rheological applications.
RheoTool includes state-of-the-art numerical schemes and fluid models to
improve stability and accuracy to describing highly non-Newtonian complex
flows. Here a version of the BMP model will be considered to effectively mod-
elling matrix thixotropic effects based on a coupled formation/destruction
microstructural dynamics.

The structure of the paper is the following one: In Section 2 the governing
equations are described in terms of the mass-momentum balance doublet
alongside the thixo-viscoelastic BMP constitutive equation. In Section 3
the essential features of the finite-volume-based OpenFOAM algorithm are
described. In Section 4 its discretization is provided alongside the material
functions relevant to the Al-alloy and its characterisation using the BMP
model. In Section 5, numerical Results are provided in terms of deformation-
rate, fluidity, stress and streamline fields, in which evidence of the influence
of viscoelasticity and thixotropy is exposed. Finally, in Section 6 the final
remarks and achievements of this work are provided.
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2. Thixotropic Model: Governing Equations

The governing equations are based on mass and momentum conservation
in a rotational reference frame, as follows (eq 7.9 in [49]):

∇ ·w = 0, (1)

ρ

(
∂u

∂t
+w · ∇u+ Ω× u

)
= −∇p+∇ · τ , (2)

where t represents time, u = w×r and w are absolute and relative velocities
in the rotating frame, Ω is the rotational angular velocity, which for current
2D case is Ω = (0, 0, ω). Finally, p and τ are pressure and total extra-
stress field variables, respectively. The extra-stress τ is decomposed into two
additive parts: the Newtonian (viscous-inelastic) solvent component τ s and
the extra non-Newtonian stress contribution τ p:

τ = τ s + τ p. (3)

Both stress components require further modelling, relating them to field vari-
ables. The solvent stress contribution is modelled as an equivalent Newtonian
formulation:

τ s = ηs
(
∇u+∇uT

)
= 2ηsD, (4)

where the deformation-rate tensor has the property of being equivalent in
inertial and rotational reference frames,

D =
∇u+∇uT

2
=
∇w +∇wT

2
. (5)

The extra stress τ p is modelled using the Bautista-Manero-Puig (BMP) con-
stitutive model [44, 45, 46, 50] in a rotational reference frame, which is based
on a differential viscoelastic model of the Oldroyd-B-type:

ϕG0τ p +
∇
τ p = 2G0D, (6)

with the fluidity being function of the deformation-rate tensor, ϕ(D), and
G0 is the instantaneous elastic modulus measured at vanishing deformation-
rates. The rotating frame upper-convected time derivative of the extra non-
Newtonian stress is defined as:

∇
τ p =

∂τ p
∂t

+w · ∇τ p − τ p · ∇w −∇wT · τ p. (7)
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The fluidity space-time evolution describes thixo-viscoelastoplastic behaviour
by modelling the construction-destruction dynamics of the fluid’s internal
network structure [44, 45, 46]. The present paper uses the following imple-
mentation [50]: the fluidity equation is solved in a relative velocity frame-
work, and after, a conversion of the absolute velocity variable (u in Eq. 2)
into a rotating-frame velocity (w) is performed:

∂ϕ

∂t
+w · ∇ϕ =

ϕ0 − ϕ
λs

+ k (ϕ∞ − ϕ) τ p : D, (8)

where ϕ0 is the fluidity level at vanishing deformation-rates, and ϕ∞ is the
fluidity in the high deformation-rate limit. Note that the following equiva-
lences holds: ηp ≡ 1/ϕ, ηp0 ≡ 1/ϕ0 and ηp∞ ≡ 1/ϕ∞. The terms on the RHS
of Eq. (8) represent the microstructure construction and destruction rates,
respectively. Structure construction is calibrated through a thixotropic time-
scale λs, whereas structure destruction is proportional to both the kinetic
constant for structure breakdown, k, which has units of inverse of stress, and
the dissipation function originating from the non-Newtonian stress tensor,
τ p : D. In the limit of λs → 0, the time for internal-structure construction
reduces to null times; in this case, the fluid recovers its internal structure
very quickly, displaying a large viscosity and needing stronger flows to break
its structure and display non-linear features, e.g. shear-thinning, extension
hardening and softening and normal stresses.

If dimensionless variables are introduced viz.:

p′ =
p

(ηp0 + ηs)ω
, ϕ′ = ϕηp0,

τ ′ =
τ

(ηp0 + ηs)ω
, u′ =

u

ω L
,

r′ =
r

L
, ∇′ = L∇,

t′ = ωt,

(9)

the following dimensionless numbers can be defined: the Reynolds number
Re = ρωL2/(ηs+ηp0), which represents the ratio of inertial to viscous forces at
vanishing deformation-rates; the Weissenberg number Wi = λ1ω, defined as
the product of the characteristic material relaxation-time (λ1 = ηp0/G0) and
the characteristic deformation-rate given by the angular rotational speed ω; a
solvent-fraction number β = ηs/(ηp0 + ηs), which is related to the proportion
of the total stress given by the Newtonian solvent relative to that of the
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non-Newtonian solute at vanishing deformation-rates. Finally, thixotropy is
modulated by a structure construction dimensionless time Ω = λsω and a
dimensionless structure-destruction stress ξ = k(ηp0 + ηs)ω.

Additionally, the following scalar second invariant of the non-Newtonian
stress can be defined and used as a representative measure of its magnitude:

τeq =
√

2τ ′p : τ ′p, (10)

where τ ′p is the dimensionless non-Newtonian stress.

3. Numerical Algorithm: OpenFOAM & the Finite Volume Method

Numerical solution to the momentum-mass conservation equations and
rheological equation-of-state is performed with the open-source software Open-
FOAM in conjunction with rheoTool [50, 48, 51]. Numerical discretization
for convective divergence terms were done using a second-order upwind-based
scheme with velocity-gradient limiters. Time discretization is done with an
implicit Euler scheme. A segregated SIMPLEC with stress-velocity coupling
stabilization in the momentum predictor is used. Stabilization is obtained by
adding a fourth-order velocity derivative to the non-Newtonian extra-stress
divergence discretization:

∫
V

(∇ · τ p)dV =

∫
V

∇ · τ pdV +

∫
V

∇ · (ηp∇u) dV −
∫
V

∇ · (ηp∇u)dV. (11)

The overbar on the first and third terms on the RHS of Eq.(11) indicates a
linear interpolation to the cell faces, whereas the second term is the Laplacian
operator, which is evaluated directly from cell-centered velocities straddling
the face. The difference in the evaluation of the two Laplacian-operator
types generates a coupling effect between stress and velocity when solving
the momentum equation. Using a both-side-diffusion technique, by which
the cell-centered contribution is evaluated implicitly and the rest of the non-
Newtonian contribution is computed explicitly, the momentum balance in
Eq. 2 is rewritten as:

ρ

(
∂u

∂t
+w · ∇u+ Ω× u

)
−∇ · (ηs + ηp)∇u = −∇p+∇ · τ p −∇ · ηp∇u,

(12)
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where all the RHS terms are the explicit components. Such stabilization pro-
cedure is of importance for low values of solvent-fraction β, and in particular
for Upper-Convective Maxwell models (β = 0) [48].

In addition to velocity-stress coupling, a log-conformation stabilization
has been used. Log-conformation is a popular strategy used to avoid the ex-
ponential growth of stress conformation tensor at high Weissenberg numbers.
It uses a reformulation of the constitutive equation in a log-based stress vari-
able, which keeps the conformation tensor positive definite and linearises the
stress field in regions of exponential growth, leading to enhanced numerical
stability [48]. The conformation tensor A is related to the stress-tensor as
follows:

τ =
ηp
λ1

(A− I). (13)

Due to its positive definiteness, A can be decomposed A = RΛRT . The
log-conformation tensor is then defined as:

Θ = ln(A) = R ln(Λ)RT, (14)

which is used to solve a modified viscoelastic formulation by re-casting Eq.
6.

To ensure the capture of the relevant non-linear phenomena in the form
viscoelasticity and thixotropy, solutions were computed using a Courant num-
ber of C = U∆t

∆h
= 0.4 for all meshes, with time-step sizes ranging from

3× 10−3 for M1 at 1 rad/s to 10−5 for M4 at 10 rad/s. Here, U is a charac-
teristic velocity given by relevant angular velocity and the rotor radius, ∆t
is the time-step size and ∆h is a characteristic length of the mesh. Regard-
ing the linearized matrix solvers, the preconditioned bi-conjugate gradient
family of solvers has been used to solve the field variables, with an absolute
convergence criterion of 10−13 error tolerance for each iteration. Results are
converged to residual values of 10−7.

4. Problem Description

In this section, the Newtonian and thixotropic parameters of the fluid
and the computational set-up are presented.

4.1. Thixo-viscoelastic BMP rheology

The current mixer application with highly viscous molten alloys is run un-
der creeping-flow conditions with maximal Reynolds numbers in the order of
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10−2 (see section 4.2), which permits to analyse the predictions with only one
source of non-linearity, i.e. thixo-viscoelasticity. The numerical solutions pre-
sented in this paper are performed using the BMP model mentioned above.
This constitutive model captures the main features of semi-solid aluminium
alloys, i.e. strong shear-thinning accompanied by thixotropy and non-linear
viscoelasticity [15]. As an illustrative example, in Fig. 1, the steady-state and
transient shear viscosity data for an A380 aluminium alloy at T={530,550}
◦C are plotted from [15]. This information helps to identify the common and
defining features of molten Al-alloys, i.e. a steep drop of its steady shear-
viscosity with shear-rate, that may amount to several orders-of-magnitude
(see Fig. 1-top), and a time-dependent response in the form of thixotropy
(see Fig. 1-bottom). The corresponding BMP fitting predictions are pro-
vided in continuous lines under the parameter-settings in Table 1. For this
fitting, a deformation-rate-dependent structure-destruction coefficient k is
considered, particularly specified in a linear relationship, i.e. k = k0(1 + ζγ̇);
here, ζ is the so-called shear-banding intensity parameter [52, 53]. Such lin-
ear deformation-rate functionality of the structure-destruction coefficient has
already been used in the context of shear-banded flows of wormlike micel-
lar solutions [52, 53]. As illustrated in Fig.1, the BMP model can repro-
duce faithfully the rheological response typically reported for Al-alloys [15].
Particularly to the transient tests, revealing thixotropic features in Fig.1b,
structure-destruction parameter-adjustment is required for step-up and step-
down phases. These results reflect the highly complex rheological response
of Al-alloys and justify the use of complex rheological equations-of-state in
their characterisation, such as the BMP model. Being this work a first at-
tempt to model Al-alloy rheology with the BMP model, a simpler parameter
specification is used for computations (related to solution-attainability) and
the solutions illustrated in the Results section, i.e. taking ζ = 0; see on to
Section 5 for further details.

11



Table 1: BMP model parameters fitting experimental data reported by
Solek and Szczepanik [15].

Temperature (C) 530 550
ηp0 (Pa s) 1× 104 1× 103

η∞ (Pa s) 8× 10−2 8× 10−2

ηs (Pa s) 1× 10−2 1× 10−2

λ1 (s) 1 1
λs (s) 50 50

Step-up phase
k0 (Pa−1) 1.66× 10−10 1.60× 10−8

ζ (s) 0.93 0.19
Step-down phase

k0 (Pa−1) 3.08× 10−9 4.73× 10−8

ζ (s) 0.04 0.06

4.2. Mixer-head geometry

In this work we consider a mixer head under two configurations. A first
case for an open rotor without a stator and a second case a coupled rotor-
stator device.

A two-dimensional round-edged rotor is used to generate shearing motion
on the molten aluminium (see Figure 2). Initially, no stator is considered as a
first step to understand the limitations of an open rotor mixer for semi-solid
aluminium applications. The rotor has a 55 mm diameter with 4 blades of
7 mm blade-thickness. The blade edges have been rounded with a 1 mm
inner radius, whereas the joints between the blades have a 5 mm rounding
radius. Therefore, all curves are tangent to the adjacent straight section in
the blades.

Geometry discretization and mesh-convergence verification has been per-
formed on four levels of mesh refinement. discretization properties of each
mesh are given in Table 2. Figure 2 shows mesh M3 alongside zoomed rep-
resentations of the rotor-blade tip and the rotor hub for all meshes M1-M4.

Particular attention has been paid to velocity-gradient calculation given
its mesh-quality sensitivity. Here, structured meshes result in improved-
quality solutions compared to those obtained with unstructured meshes. The
current geometry has been discretized using linear quadrilaterals by a bound-
ary extrusion method. A layer growth-rate of 1.05 has been used until an
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Table 2: Mesh parameters

M1 M2 M3 M4
Number of elements 210,180 338,364 1,044,320 4,676,756

Number of nodal points 421,600 678,656 2,092,544 9,366,000
Number of elements in rotor tip 9 18 80 160

Boundary layer element size 5e-5 2.5e-5 1E-5 5E-6

apparently uniform aspect-ratio is obtained, point from which the growth-
rate is set to zero.

After validation of the open-rotor geometry, the mixing head with an
additional stator is simulated and analyzed. The stator includes 15 squares
with a 3 mm side length. The gap between the stator and the rotor is 1.15
mm. Simulations are run with mesh M2 for which the stator-free case at the
rotor surface has previously shown numerical convergence.

4.3. Boundary and Initial Conditions

Wall conditions are imposed on all boundary surfaces for the rotating
reference frame. The impeller has an absolute velocity value u = Ω×r, and
the stator and the outer boundary conditions are u = 0. Pressure, fluidity
and stress variables do not require boundary value prescription, but being
a collocated-type solver values need to be computed from the cell center
into the boundary face center [54, 50]. Zero-gradient extrapolation is used
for pressure and fluidity, whereas linear extrapolation is used for stress by
first computing the gradient by the Gauss method and then computing the

extrapolation according to the formula: τpij,f = τpij,P +
(
∇τpij

)
P
· dPf , τpij is

the ij component of the viscoelastic stress; f and P represent the boundary
face and the cell center value owning that face, respectively; dPf is the vector
connecting their geometrical centers.

As initial conditions, pressure and velocity fields were set up as zero for
the Newtonian case, and uniform zero and one non-Newtonian stress and
fluidity respectively. The viscoelastic case was initialized from a correspond-
ing Newtonian solution according to the continuation procedure described in
Section 5.
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5. Numerical results of the open-rotor mixer

For Al alloys, taking as a reference the experimental data in [15] and the
BMP model fitting in Fig. 1, with a typical rotational-speed of 60 rad/s (≈
600rpm), the following dimensionless parameters arise: {β,Re,Wi,Ω, ξ} =
{10−5, 4.4× 10−4, 60, 3000, 6× 10−5}. In order to have a simple numerically-
tractable case and given that this problem has not been tackled using a
complex constitutive equation that reflects the thixo-viscoelastic properties
of Al-alloys [15], such as the BMP model, we have chosen a set of param-
eters that captures the essential aluminium-alloy rheological response un-
der conditions that warrant solution stability, i.e. {ηp0, ηs, ηp∞, G0, λ, k} =
{99, 1, 10−4, 99, 0.4, 10−5}. With this parameter-set the following dimension-
less values hold: Re = ρωL2/(ηs + ηp0) ≈ ω × 7.3 × 10−6, where ω is the
rotational speed and L the rotor radius (27.5 mm); the solvent-fraction
is β = 0.01; viscoelasticity is modulated by the rotational frequency, i.e.
Wi = ηp0ω/G0 = λ1ω, as it happens with the thixotropic parameters. [15]
Fig. 1

As given by the definition of the Weissenberg number in the previous
section, there is a direct proportionality between this dimensionless number
and the rotational speed of the rotor. Such relationship becomes a limiting
factor to getting high rotational speed viscoelastic simulations. This em-
bodies the well-known ‘High Weissenberg Number Problem’ ceiling for the
present flow problem. With the present numerical framework, the last sta-
ble solution before locating the critical Weissenberg number Wicrit found for
the M4-geometry and the chosen parameter-set, i.e. {ηp0, ηs, ηp∞, G0, λ, k} =
{99, 1, 10−4, 99, 0.4, 10−5}, is Wistable = 14.

The strategy followed to generate viscoelastic solutions consists of two
steps: (i) a Newtonian solution was obtained at rotational velocity ω = 1 rad/s
with viscosity ηs = 100 (corresponding to the first Newtonian-plateau level
chosen in the BMP model) and density ρ = 1. (ii) A thixo-viscoelastic solu-
tion at ω = 1 rad/s is computed from the Newtonian result in (i) to improve
stability. (iii) Thixo-viscoelastic solutions for higher rotational speeds are ob-
tained by continuation: increasing the rotational velocity by 1 rad/s stepwise
until the last stable solution is obtained and beyond which the simulation
diverges.

In this section, a comparative description is provided for a relatively low
and a near critical Weissenberg values, i.e. Wi = {1, 10}. Figures 4-9 illus-
trate solutions for the whole geometry in terms of the dimensionless velocity,
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fluidity, stress and strain-rate. A common scale has been fixed across Wi-
levels to allow qualitative comparison.

5.1. Flow-field Description

5.1.1. Bulk zone

In Fig. 4(a)-(c), contrasting velocity distributions between Newtonian
and viscoelastic solutions are apparent. Here, the Newtonian solutions dis-
play a more mobile material than that observed for the viscoelastic solution
at both rotational speeds analysed; indeed, no difference is detected across
rotational-speed levels under the Newtonian settings, with shear-rates dif-
ferent to zero occupying half of the flow domain. In contrast, the thixo-
viscoelastic case starts with motion confined to the rotor surrounding area
at Wi=1, whilst rotational speed increase to Wi=10 makes the velocity field
increase in magnitude towards the outer walls of the container. This is re-
flected in the deformation-rate fields in Fig. 4 (h)-(j), for which strain-rate
at Wi=10 appears an order-of-magnitude larger than that for Wi=1 in a
considerable area of the outer region close to the outer non-rotating bound-
ary. Nevertheless, both cases have similar maxima on the rotor tips with a
higher mean in the surrounding area for Wi=1.

The consequences of such deformation-rate fields on flow structure are
observed in Fig. 4(d) and (e) through fluidity field contours. At Wi=1,
the flow domain is filled with a highly-structured material in the outer re-
gion and in the gaps between the rotor blades, zones under which relatively
lower strain-rate values are present. Fluidised material is located only near
the rotor-tip surroundings. In contrast, for the Wi=10 solution, the field
is dominated by a highly-unstructured material. At this Wi-level fluidity
ranges from 10 ≤ ϕ′ = ηp0/ηp ≤ 103, which reflects a change in viscosity
between one and three orders-of-magnitude from ηp0.

Stress follows these fluidity trends holding their inverse relationship, as
illustrated in Fig. 4 (f) and (g). Here, the Wi=1 solution displays a four-
petal flower-like red fringe with relatively larger stress values; this structure
vanishes at Wi=10 with a stress-level decrease of some one-to-two orders-of-
magnitude and a nearly plane field amounting levels of O(10−2).

5.1.2. Inter-blade kinematics

The space between blades near the rotor displays notable features in the
form of recirculation response to the fluid rheology. The flow-field description
in these inter-blade regions can be split into two main areas separated by the
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recirculation zone. Fig. 5 shows, with the help of streamline contours, a
recirculation zone spanning between points III and V, which covers half of
the inter-blade gap. Here, an anti-clockwise vortex is generated within each
pair of blades. The shape of the vortex convexity is influenced by the change
in rheology. This is apparent in the comparison between the Newtonian to
the thixo-viscoelastic solutions.

Comparing the Newtonian fluid with the Wi=1 in Fig.5 (a) and (c) re-
spectively the Newtonian fluid responds with a weaker vortex whose bound-
ary appears flatter than that of the stronger markedly-convex thixo-viscoelastic
vortex. Comparison between thixo-viscoelastic Wi = 1 and Wi = 10 strain-
rates in Fig. 5 (c) and (d), respectively, reveals a weakening of the vortex
with rotational-speed increase, making the higher Wi case concave, which
may be caused by the strong shear-thinning properties of thixo-viscoelastic
Al-alloys (see Fig. 1).

These trends in inter-blade flow-structure and kinematics are intimately
related to and their connection with fluidity (Fig. 6 (a) and (b)). For Wi = 1
in Fig. 6(a), the vortex region in between the blades appears filled with a red
shading corresponding to a fluidity level near to unity; this translates into
large viscosities in the first Newtonian plateau and a fully-structured alloy.
Increase of rotational speed to Wi=10 in Fig. 6(b) leads to fluidity values
in the range from unity to around 100 units in the inter-blade gap, which
maps the viscosity and first normal-stress difference into the shear-thinning
response (recall the shear-thinning steady-state material properties of the
BMP model, i.e. viscosity ηShear = ηs + 1

ϕ
and first normal-stress difference

N1Shear = 2λ1γ̇2

ηp0ϕ2 [55], for which an inverse relationship between fluidity and

shear viscosity-N1shear holds). Correspondingly, stress levels decline with
Wi-rise as it is apparent in Fig. 6(c) and (d).

5.2. Convergence analysis

In this section, results on mesh-convergence are assessed by comparing
rotor torque forces and field values along S1 and S2 trajectories (represented
in Fig. 2) for refinement levels from M1 to M4. Additionally, the influence
of viscoelasticity is discussed in such results.

5.2.1. Integral value convergence: Torque

Dimensionless viscous (T ′η) and pressure (T ′p) induced torque is investi-
gated for Newtonian and viscoelastic fluids. These quantities are defined as
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follows:

T ′η =

∫
blade

r′ × (WSS− n̂ · (WSS · n̂)), (15)

T ′p =

∫
blade

r′ × (p′n̂), (16)

where n̂ is the wall normal vector and WSS is the wall shear stress defined
as,

WSS = n̂ · τ ′. (17)

Recall p′ is the dimensionless pressure defined in Eq. 9. r′ is the dimension-
less relative position to the rotation axis vector also found in Eq. 9. Finally,
τ ′ is the contribution of both dimensionless Newtonian and non-Newtonian
extra-stress according to Eq. 9 and 3.

Solutions are summarized in Tables 3 and 4, in which, for reference, ab-
solute dimensionless values are given between brackets for the Newtonian
M1 case. Torque values are normalized with respect to the corresponding
Newtonian M1 case at each rotational speed.

Viscosity and pressure-induced (dimensionless) torque remain constant
for the Newtonian case at both rotational speeds; i.e. T ′η = 0.00345 units for
the viscous contribution and T ′p = 0.00495 units for the pressure contribution,
evidencing a linear scaling between the torque-measures and the rotational
speed, as expected in a Stokesian regime.

Thixo-viscoelastic results show a strong non-linear torque behaviour with
the rotational speed, measured here through Wi-change. At Wi=1, the vis-
coelastic viscous torque T ′η is 0.0366, and drops some three times to levels
around 0.015 with the frequency increase to Wi=10. This correlates with the
extreme shear-thinning properties of the material (see Fig. 1). The viscoelas-
tic pressure torque T ′p-reduction has a similar behaviour. Here, T ′p-values at
Wi = 1 is 0.0064, whilst at Wi=10, this torque contribution amounts only
0.017 units.

Torque values converge up to the third decimal position when comparing
different refinement levels from M1 to M4, as listed in Tables 3 and 4. Hence,
a mesh density equivalent to M2 (496,692 elements) is used throughout the
stator case, leading to a balance between accuracy and computational effort
in the solution acquisition.
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Table 3: Viscosity induced dimensionless torque normalized with respect to
the Newtonian value for the corresponding rotational velocity. Absolute

dimensionless value is given between braces.

ω T ′η M1 M2 M3 M4

1
Thixotropic 0.0368 0.0368 0.0368 0.0366
Newtonian 1.0 (-0.00345) 1.0074 1.0090 1.0094

10
Thixotropic 0.0150 0.0150 0.0150 0.0149
Newtonian 1.0 (-0.00345) 1.0070 1.0089 1.0092

Table 4: Pressure induced dimensionless torque normalized with respect to
the Newtonian value for the corresponding rotational velocity. Absolute

dimensionless value is given between braces.

ω T ′p M1 M2 M3 M4

1
Thixotropic 0.0654 0.0642 0.0634 0.0634
Newtonian 1.0 (-0.00495) 0.9971 0.9956 0.9955

10
Thixotropic 0.0173 0.0172 0.0170 0.0170
Newtonian 1.0 (-0.00495) 0.99713 0.9959 0.9957

5.2.2. Numerical convergence over S1 and S2 trajectories

Further exploration of mesh-convergence is performed by comparing New-
tonian and thixo-viscoelastic solutions over the S1 (rotor wall) and S2 (arc
between blades) trajectories in Fig. 7 and 8. In the case of S1 (Fig. 7), where
a no-slip boundary condition is enforced and, thus, solutions are basically the
same for all cases, we report solutions for pressure, which are relevant for es-
timating the forces acting on the blades and crucial for calculating their wear.
In the S2 curve analysis (Fig. 8), however, inertial frame velocity is shown
as a direct representation of the viscoelastic thinning response of Al-alloys.
Overall, for pressure, velocity, strain-rate, fluidity, and stress plots over these
trajectories are reported across meshes from M1 to M4.

As illustrated in Fig.7, Newtonian solutions (black lines-symbols) con-
verge for both rotational speeds and appear markedly different when com-
pared to the thixo-viscoelastic response (colored data). For the thixo-viscoelastic
case, Fig. 8 shows a convergent response without perturbations, with over-
lapping features for all meshes. Their relative maximum differences, from
M1 to M4 meshes, are: 0.001 for velocity, 0.05 for fluidity, 0.01 for stress,
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and 0.02 for strain-rate. Solutions on the S1-wall trajectory in Fig. 7 display
oscillations at points II, IV and VI, which correspond to locations near the
rotor tips, for the thixo-viscoelastic case at both Wi-levels examined, being
those at Wi=10 more exaggerated. This may be related to fluctuations hap-
pening in the internal structure of the material due to the relatively high
strain-rate levels expected at those locations and the discrete solution repre-
sentation. Nevertheless, away from those points, thixo-viscoelastic solutions
converge consistently for both rotational speeds.

The oscillations on the S1 trajectory in Fig. 7 along the blade curve
connecting points II, IV and VI for both Wi-levels may be explained as
follows:

1. On one hand, oscillations at points II and VI are caused by local
extrema near the blade tips that are responsive to mesh resolution. The
regions where such extrema appear have been marked with white ellipses in
Fig. 9. The sensitivity to mesh resolution stems from the high-fluidity layer
located at blade tips as a consequence of shear-thinning and the relatively
high strain-rates in those locations. Fluidity decays notably fast with dis-
tance from the blade, and hence non-Newtonian stress maxima are found
next to blade surfaces, which can only be captured with high mesh resolu-
tion. The higher the Wi-value, the thinner the high-fluidity layer and the
finer the mesh required to capture the solution accurately in those regions.

2. On the other hand, oscillations surrounding point IV stem from per-
turbations on velocity magnitude caused by a lower mesh quality of the inner
rotor hub. Such velocity perturbations and the relatively higher fluidity in
this region generate stresses that strongly couple with velocity. Nevertheless,
when increasing mesh resolution, numerical errors reduce and strain-rate re-
covers a smooth distribution, except for two strong spikes at arclengths 0.48
and 0.64, located at the change from the planar blade to the curved hub.
Indeed, even the Newtonian case shows small strain-rate oscillations at these
locations with mesh refinement, as apparent in Fig.7 (b), which appear am-
plified in the viscoelastic case.

6. Numerical results of the stator-rotor mixer

In this section, Newtonian and viscoelastic solutions in a stator-rotor con-
figuration are presented. Simulations were carried out using a single rotating
frame-of-reference, as in the stator-free case, where the stator boundary con-
ditions are u = 0 for the inertial velocity.
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The velocity field is represented in Fig.10. Both Newtonian solutions at
ω = {1, 10} are equal in dimensionless form, as illustrated in Fig.10a. In
contrast to the centered Newtonian vortex, the viscoelastic case at Wi=1
shows an expanded convex vortex, as in the stator-free case, a feature which
appears shifted towards the stator. Conversely, the high Wi=10 case does
not show the convex form of the stator-free case, but a concave shape as
well; although not as pronounced as for Wi=1. The Newtonian solution
is comparable with the high Wi case with imperceptible differences. The
presence of the stator generates a restriction in the fluid circulation between
the outside and the inside of the stator ring. The streamlines generated are
circular-shaped, in contrast with the elliptical shape of the stator-free case.
This mechanism generates the inter-blade vortex size amplification.

Regarding the material interchange between the mixing head and the
outer bulk zone beyond the stator, inflow to the mixing head occurs through
the stator gaps in front of the blade suction side, whereas the fluid is pushed
outwards through the gap in front of the blade pressure side (arrows within
Fig.10 represent such flow direction). Comparing the inflow and outflow
speeds for the different cases, slightly higher peak and mean velocities are
achieved for the Newtonian and high Wi viscoelastic cases compared with
low Wi-flow. Hence, a less effective dispersion of sheared microstructure into
the bulk fluid is achieved in the viscoelastic case at low frequencies.

Strain-rate results are presented in Figure 11. Larger maximum strain-
rate values are achieved in all rotor-stator cases compared with the stator-free
case, caused by the squeezing of the flow between the vortex or rotor and the
stator.

Nevertheless, at Wi=1, low strain-rate values are still observed in the
inter-blade vortex region, which develops strong viscoelastic behaviour as
shown in Figure 12. In this region, Fig.12 (a) appears occupied by fully-
structured material with fluidity approaching φ0. Correspondingly, relatively
large non-Newtonian stress forces are developed in this region, as illustrated
in Fig.12 (c). In the rotor-stator gap zone, high non-Newtonian stress forces
can also be observed despite the high fluidity in the area; this feature is
related to the high strain-rates registered in such regions. It is noteworthy
that the alternating viscoelastic stress patterns in between stator gaps affects
the inflow/outflow velocity behavior, as already described.

The Wi=10 case, on the contrary, generates much milder non-Newtonian
forces in all the domain, with vanishing non-Newtonian stress in the inner-
most vortex region of the inter-blade zone, as shown in Fig.12 (d). High
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fluidity values are generated in all the inner-stator domain. Therefore, the
rotor-stator combination behaves closer to the Newtonian case compared to
the stator-free case, in which the high strain-rate conditions provoke an ex-
treme shear-thinning of the alloy.

Finally, the solution in the rotor-stator gap region is explored in Fig. 13.
Fig. 13a shows the strain-rate value, which is the main variable of interest
to monitor in the metal microstructure shearing context. The Newtonian
and the Wi=10 cases show similar behaviour, whereas Wi=1 is around 75 %
higher in the curve region between two consecutive blades. The difference
rises up to 85 % higher strain-rate near the suction edge of the blade tip.

The viscoelastic fields are represented in Fig. 13 (b) and (c) and display
an order-of-magnitude difference between both Wi solutions for stress and
fluidity.

Both the pressure and viscous torque values are given in Table 5. Com-
paring the Newtonian results for the rotor-stator and stator-free cases, the
first shows 5 times larger torque values than the open-rotor case. Such a
difference is caused by the flow constriction generated by the stator. When
comparing the thixotropic to Newtonian torque ratio for each case, the rotor-
stator results show a thinning of 2 to 3 times larger than the open-rotor case.
Hence, thixotropy becomes relevant in rotor-stator optimization.

Table 5: Viscosity and pressure induced dimensionless torque normalized
with respect to the Newtonian value for the corresponding rotational

velocity. Absolute dimensionless value is given between braces.

ω T ′η T ′p

1
Thixotropic 0.0126 0.0212
Newtonian 1.0 (-0.017) 1.0 (-0.0239)

10
Thixotropic 0.0104 0.0113
Newtonian 1.0 (-0.017) 1.0 (-0.0239)

6.1. Viscoelastic relevance in mixing-head design
The mixing head optimization is essential for shear-rate maximization in

order to fragment deterrent intermetallic phases and achieve effective grain-
refinement. The required strain-rate level to achieve an appropriate mi-
crostructure of the alloy is problem-dependent according to the alloy under
consideration, the required solid state microstructure quality level, and the
possible solidification speed though heat-transfer.
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However, the main benefits of a rotor-stator mixing head are the follow-
ing [56]: (i) high shear-rate values in the mixing head with oxide inclusions
dispersion; (ii) a distributive mixing action that homogenizes temperature,
chemical composition, and nucleation sites; and (iii) a laminar interaction be-
tween macroscopic bulk flow and the solidification front in continuous casting
operations.

Viscoelasticity has revealed itself to confine the strain effects in a smaller
area around the rotor-stator gap, giving rise to a higher strain-rate values
compared to the pure Newtonian case. However, the fluid ejection through
the stator holes is slowed down. Therefore, current viscoelastic laminar shear-
rate mixing is understood to have better capacities than the Newtonian case
to generate high shear-rate values but, probably, less effective distributive
and homogenizing properties depending on the shear-rate in a particular
operation. Since the current application is run under laminar conditions
within the mixing head, the requirement of laminarization for the interaction
with the sump of the caster can be relaxed to improve overall microstructure
homogeneity when studying 3D effects, which might give rise to new rotor-
stator combinations.

7. Conclusions

This research reports on the flow analysis of thixo-viscoelastic aluminium
alloys at low/moderate temperatures near melting point, in open rotor and
rotor-stator mixers using the Bautista-Manero-Puig (BMP) model, and the
open-source rheoTool in OpenFOAM. The BMP-model parameters were tuned
to reflect the alloys’ extreme shear-thinning and time-dependent viscosity re-
sponses.

2D rotor and rotor-stator geometries were studied, and relevant field vari-
ables were reported, including viscoelastic stress and fluidity. When the sta-
tor is not included, a contrasting behaviour is found between the relatively
inert Newtonian solutions and the strongly-varying thixo-viscoelastic case.
This is linked to the change of fluidity of the BMP fluid in such regions,
responding with highly-structured material at relatively smaller rotational
speeds that thin and lose strength with rotation-rate rise. When a stator is
included, the flow behaviour inside the stator region resembles the Newto-
nian case due to the fluidized material occupying most of the flow domain.
However, the flow entering and exiting the stator region, and the overall flow
circulation, are affected by the lower fluidity outside the stator area.
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These contrasting trends could influence real-world aluminium alloy pro-
cessing, particularly as thixo-viscoelastic properties emerge at processing
temperatures near their melting point. In particular, contrasting features
arise in the low-strain regions, as discussed in this paper, providing new
insights on flow structure and thixo-viscoelastic alloy shearing and mixing.
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Figure 1: Top: Steady shear-viscosity against shear-rate; Bottom: Transient shear-
viscosity against time as a function a step shear-rate history (continuous grey lines). Steady
state viscosity values correspond to the plateaux recorded at each shear-rate imposed in
the transient test. Symbols: experiments in [15]; continuous lines: BMP model fitting.
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Figure 2: Schematics of the open rotor geometry and M1, M2, M3 and M4 meshes.
Discretization details are given in Table 2.
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Figure 3: Geometry and mesh details for rotor-stator device.
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(a) Newtonian velocity
solution, identical for 1

and 10 rad/s

(b) velocity at 1 rad/s (c) velocity at 10 rad/s

(d) fluidity at 1 rad/s (e) fluidity at 10 rad/s

(f) τeq at 1 rad/s (g) τeq at 10 rad/s

(h) Newtonian
strain-rate, identical for

1 and 10 rad/s

(i) strain-rate at 1 rad/s (j) strain-rate at 10
rad/s

Figure 4: Dimensionless field variables obtained according to Eq. 9 at 1 and 10 rad/s.
Figures (a) and (h) correspond to identical Newtonian results for both rotational speeds.
Viscoelastic solutions (b)-(g) and (i)-(j) correspond to the viscoelastic cases.
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(a) Newtonian strain-rate at 1 rad/s (b) Newtonian strain-rate at 10 rad/s

(c) viscoelastic strain-rate at 1 rad/s (d) viscoelastic strain-rate at 10 rad/s

Figure 5: Strain-rate at 1 rad/s (a) and (c), and 10 rad/s (b) and (d)
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(a) viscoelastic fluidity at 1 rad/s (b) viscoelastic fluidity at 10 rad/s

(c) viscoelastic τeq at 1 rad/s (d) viscoelastic τeq at 10 rad/s

Figure 6: field variables for Newtonian (a) and (b), and viscoelastic fluids (c) and (d)

36



0.0 0.2 0.4 0.6 0.8 1.0
normalized	arclength

-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5

(a) pressure along S1

0.0 0.2 0.4 0.6 0.8 1.0
normalized	arclength

0.0010

0.010

0.10

1.00

10.00

100.00

(b) strain-rate along S1

0.0 0.2 0.4 0.6 0.8 1.0
normalized	arclength

1.0

10

100

1,000

(c) fluidity along S1

0.0 0.2 0.4 0.6 0.8 1.0
normalized	arclength

0.000

0.017

0.033

0.050

0.067

0.083

0.100

(d) τeq along S1.

Figure 7: Dimensionless field variables along curve S1. Mesh convergence is provided with
discontinuous light discontinouus lines (colors online)
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Figure 8: Dimensionless field variables along curve S2. Mesh convergence is provided with
discontinuous light discontinouus lines (colors online)
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(a) point
II τeq at 1

rad/s

(b) point
II fluidity
at 1 rad/s

(c) point
II

strain-rate
at 1 rad/s

(d) point
VI τeq at 1

rad/s

(e) point
VI fluidity
at 1 rad/s

(f) point
VI

strain-rate
at 1 rad/s

(g) point
II τeq at 10

rad/s

(h) point
II fluidity

at 10 rad/s

(i) point II
strain-rate
at 10 rad/s

(j) point
VI τeq at
10 rad/s

(k) point
VI fluidity
at 10 rad/s

(l) point
VI

strain-rate
at 10 rad/s

Figure 9: Dimensionless τeq, fluidity and strain-rate at blade tips for 1 and 10 rad/s
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(a) Newtonian velocity
solution at 10 rad/s

with stator

(b) Viscoelastic velocity
at 1 rad/s with stator

(c) Viscoelastic velocity
at 10 rad/s with stator

Figure 10: Dimensionless Newtonian and Viscoelastic velocity at 1 and 10 rad/s.
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(a) Newtonian
strain-rate solution at 10

rad/s with stator

(b) Viscoelastic
strain-rate at 1 rad/s

with stator

(c) Viscoelastic
strain-rate at 10 rad/s

with stator

Figure 11: Dimensionless Newtonian and Viscoelastic strain-rate at 1 and 10 rad/s. 9 at
1 and 10 rad/s.
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(a) Viscoelastic fluidity solution at
1 rad/s with stator

(b) Viscoelastic fluidity solution at
10 rad/s with stator

(c) Viscoelastic τeq at 1 rad/s with
stator

(d) Viscoelastic τeq at 10 rad/s
with stator

Figure 12: Dimensionless Newtonian and Viscoelastic strain-rate at 1 and 10 rad/s. 9 at
1 and 10 rad/s.
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Figure 13: Dimensionless field variables along curve S2 for the rotor-stator mixer head.
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