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Abstract

A discrete map for modelling wildfire propagation is derived from a prototyp-

ical reaction-diffusion equation for the temperature field. We show that, for a

constant fuel concentration at the fire-front, the heat transfer coefficient from

fuel to surroundings and as well as an effective heat of reaction are two inde-

pendent mechanisms that can cause the transition to chaos, when they may

depend on temperature as a consequence of the fire-atmosphere coupling and

of the fuel inhomogeneity, respectively. In particular, chaos can enter when the

coefficient for the heat transfer from the fuel to the surrounding depends linearly

on the temperature and when the effective heat of reaction depends quadrat-

ically. Moreover, when the fuel concentration field at the fire-front fluctuates,

this embodies a third mechanism that may cause the transition to chaos even

without any fire-atmosphere coupling or fuel inhomogeneity. Surprisingly, when

the effective heat of reaction depends linearly on the temperature, the chaos

generated by the non-constant fuel concentration is ceased. This suppression is

not observed when the chaos is due to the fire-atmosphere coupling with con-

stant fuel concentration. In all cases, the onset of chaos is related to the logistic

map. The application of this approach for setting an alternative method for
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real-time risk assessment is discussed in the conclusions.

Keywords: Wildland fire, transition to chaos, chaotic map, real-time risk

assessment

1. Introduction

Wildfires are an emergency. Thus, there is no need to stress the high threat

that they are at social, ecological and economic levels. Actually, our commu-

nities cope, year after year, with record-breaking events all over the world and

the Iberian peninsula, Italy and Greece are among those areas that are most5

affected by fatalities in Europe.

Inspired by the success story of weather forecasting in the last years [1],

we wonder if in the future we can follow the same successful path for improv-

ing the prediction of wildfire propagation. Hence, in analogy with that story,

we start this research program from the very beginning of the modern theory10

of predictability of weather, namely by uncovering a chaotic nature through

the derivation of a low-dimensional model in the same spirit of the deriva-

tion of the Lorenz chaotic system [2]. Specific applications of chaos theory to

the predictability of the propagation of wildfires are very seldom. It is here

reported that, while statistical methods have been largely used for fire-risk fore-15

cast [3, 4], no quantitative papers on the chaotic propagation of wildfires have

appeared in literature yet, except addressing the question “Are forest fires pre-

dictable?” with a cellular automata technique that does not include realistic

physical-chemical characteristics of wildfires [5]. There is just one paper dated

back to 1998 on the controllability of wildfire using catastrophe theory [6], and20

there is the abstract (but no paper available to these authors) on chaotic attrac-

tors in wildfire behaviour that has been presented as a poster at the American

Geophysical Union, Fall Meeting 2018 [7].

Wildfire propagation is a nonlinear and chaotic system as the weather sys-

tem is, in part because the wind is one of the main factors for the propagation25

of the fire. Moreover, nonlinearity in wildfires is strengthened by the concurrent
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multi-scale nature of the phenomenon as well as by the fire-atmosphere cou-

pling [8, 9, 10, 11]. In fact, wildfire convection can modify the local meteorology

throughout the atmospheric boundary layer and consequently affect the speed

and the behaviour of the fire propagation [9]. Numerical simulations showed30

how a buoyancy-dominated and roll-dominated atmospheric boundary layer af-

fects fire spread, and how firelines interact with these two different flow types

occurring in the atmospheric boundary layer [8].

The full set of equations involved in wildfire propagation is known, even

if it is quite long [12, 13], but it is impossible to solve them. Because of the35

concurrent multi-scale framework, the system is described by the set of equations

concerning the combustion process and the heat release [12], as well as by the

set of equations concerning the heat transfer mechanisms and the interaction

with the atmosphere [13].

However, in spite of the fact that a system evolves accordingly to entirely40

deterministic equations, when this system is nonlinear (and multi-scale) its de-

terministic prediction is limited. This limitation is due to a breakdown of the

continuous dependence on initial conditions for large enough forecast lead times

[14, 15] and to the sensitive dependence of the system on the initial state [2],

i.e., the system has a chaotic nature [16]. Then, small differences in the initial45

state can lead to large differences in the future evolution - the butterfly effect -

that destroy the deterministic prediction. A further butterfly effect is associated

also to the finite-time predictability of certain multi-scale fluid systems [14, 15].

Here, we specifically focus on the derivation of a discrete-time chaotic map

from a prototypical reaction-diffusion equation for the temperature field which is50

coupled with an equation of the fuel concentration. By performing a preliminary

study, we show that it is possible to predict under which variation in the param-

eters a transition to a chaotic propagation occurs for a wildfire that was initially

predictable. In fact, in spite of uncertainties in the initial state, there are cer-

tain settings of the parameters that give predictable evolution. Notwithstanding55

this, if a change occurs in such setting of the parameters then the process may

become unpredictable. In spite of the fact that the present analysis concerns
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an oversimplified model of wildfire propagation, a systematic analysis of the pa-

rameters - which includes the possible configurations and the possible changes

that they may have - can lead, by using the proposed approach, to the estab-60

lishment of a quantitative ranking-of-risk by estimating the growth of the error

of the forecast. Thus, the long-term practical aim of this study is to improve the

prediction of wildfire propagation by foreseeing the arrival of the unpredictable

regimes. In fact, since this approach can predict for which changes in the sys-

tem a wildfire, with a predictable configuration, switches from a predictable to65

an unpredictable propagation, then, thanks to the physical meaning of the in-

volved parameters, it is possible to predict which “environmental” changes may

turn a predictable wildfire configuration into an unpredictable one. Then, more

specifically, this approach allows for setting in the future an alternative method

for real-time risk assessment.70

In particular, we show that for a constant fuel concentration at the fire-front,

all along the process, the fire-atmosphere coupling and the fuel inhomogeneity

can cause, independently, the transition to chaos. That is when the coefficient

for the heat transfer from the fuel to the surrounding depends on the tempera-

ture through a simple linear law, and when the effective heat of reaction depends75

on the temperature through a quadratic law. Actually, the system does not turn

into any chaotic regime when the effective heat of reaction depends linearly on

the temperature. Thus, the dependence of the heat of reaction on the temper-

ature as a consequence of fuel inhomogeneity less likely may cause the entering

of chaos. Moreover, when the concentration field at the fire-front fluctuates,80

then these fluctuations may cause the transition to chaos even without any fire-

atmosphere coupling or fuel inhomogeneity. However, when the effective heat of

reaction depends linearly on the temperature, the chaos generated by the non-

constant fuel concentration is ceased. This suppression of chaos by a proper

fuel inhomogeneity is consistent with strategies for forest fire management that85

are based on mixed vegetation. In fact, fire severity is significantly related to

local variation in species composition [17, 18]. This suppression is not observed

indeed when the chaos is due to the fire-atmosphere coupling with constant fuel
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concentration. In all the cases, the onset of chaos is related to the logistic map.

The remainder of the paper is organised as follows. In Section 2 we derive90

the map that is the analogue of a prototypical reaction-diffusion equation for

modelling wildfire propagation and in Section 3 we study its evolution in a

number of proof-of-concept case studies. Finally, in Section 4, we report the

conclusions and the perspective for future applications.

2. Methodology95

A basic model for wildfire propagation can be stated by resembling combus-

tion waves for solid fuel beds [19], and, actually, this approach is the one used in

models based on reaction-diffusion equations, see, e.g., [20, 21, 22, 23, 24, 25].

This approach has also been calibrated, evaluated and implemented in a data

assimilation system [23]. A review of further reaction-diffusion models for wild-

land fire propagation is also available [26]. We consider the one-dimensional

case, then such prototypical reaction-diffusion equations are in the form

ρcp
∂T

∂t
= κ

∂2T

∂x2
+ ρQAY r(γ/T )− hS

V
(T − Ta) , (1)

equipped with

ρ
∂Y

∂t
= ρD

∂2Y

∂x2
− ρAY r(γ/T ) , (2)

where T (x, t) ≥ 0 and 0 ≤ Y (x, t) ≤ 1 are the temperature field and the con-

centration of the fuel (or mass fuel fraction), respectively, with x ∈ R and t ≥ 0

space and time coordinates. The other quantities are in order: ρ, the fuel den-

sity (kg m−3); cp, specific heat of fuel (J kg−1 K−1); κ, the thermal conductivity

of fuel (J s−1 m−1 K−1); Q, heat of reaction (J kg−1); A, pre-rate constant (s−1);100

r(γT ), reaction rate with γ = E/R; E, activation energy (J mol−1); R, universal

gas constant (R = 8.314J mol−1 K−1); h, heat transfer coefficient from fuel to

surroundings (J s−1 m−2 K−1); S/V , surface area to volume ratio for fuel con-

figuration (m−1); Ta, ambient temperature (K); D, molecular diffusivity of fuel

(m2 s−1). Transition to chaos of a reaction-diffusion system similar to (1-2) has105

been numerically studied for gasless combustion [19, 27] and, previously, also by
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neglecting heat transfer [28]. The present study differs from those [19, 27, 28]

mainly because there the study is focused on the fluctuations in time of the

wave speed of the combustion travelling front while here on the fluctuations

in time of temperature at fire-front. Moreover, in those paper the full system110

(T, Y ) is studied with respect to (x, t) while here we loose the spatial depen-

dence through a model that replaces the wave speed and we study T (t) at the

fire-front. As a result, our system reduction allows for a more clear identification

of the involved mechanisms as well of the parameter space and a higher control

and understanding of the route to chaos.115

We consider the temperature field in the location of the maximum flux, i.e.,

in the site x = xf such that
∂2T

∂x2

∣∣∣∣
xf

= 0 . (3)

Hereinafter, we refer to the site xf as the fire-front. A simplified governing

equation for the temperature at the fire-front xf is derived from equations (1)

and (2) as follows.

Since the temperature field refers to the fire temperature, it results that

T ≥ Tign � γ = E/R� Ta, then it holds T −Ta ' T and also that r(γ/T ) ' 1120

for any choice of the reaction rate, namely the Arrhenius law [19, 23, 12] or its

approximations [29]. However, it is worth noting that when the same analysis

discussed in the following is performed with non-approximated rate of reaction

r(γ/T ) because of non-negligible values of γ/T then the same kind of behaviours

are observed, but with a distorted parameter space. Equations can be non-125

dimensionalized by using the scales τ = 1/A, L = V/S and γ = E/R, such that

t/τ → t, x/L → x, T/γ → T and κ/ (ρcp) = L2/τ .

Finally, in the limit for solid fuel beds [19], i.e., Le = κ/ (ρcpD)→∞ where

Le is the Lewis number, and the fuel concentration is also estimated in the

fire-front, we have
dT

dt
= αY − βT , (4)

dY

dt
= −Y + Z , (5)

6



with

α =
QR

cpE
=

Q

cpγ
, β =

hL
κ

=
h

(Aκρcp)1/2
. (6)

As a matter of fact, the term Z ≥ 0 does not emerge indeed from (1) and (2).

However, we know that the process includes a rate of consumption of the fuel in

a fixed site, i.e., the term −Y in (5), and also a rate of availability, or renewal,

of unburned fresh fuel that is related with the propagation speed and it is here

denoted by Z. In fact, since the system is now described in the reference frame

of the fire-front xf(t), the propagation speed is not included. Thus, we have

introduced Z as the consumption rate of the available unburned fuel, to take

into account the fresh fuel entering in the system at the fire-front site through

the fireline propagation. The consumption rate can be associated to the renewal

of the fuel that feeds the fire, and it is provided by the combination of the

propagation of the fire-front, i.e., dxf/dt, that in a more realistic description

corresponds to the rate of spread (ROS) [30, 31], with the availability of new

ignitable fuel, i.e., ∂Y/∂x ≥ 0. Thus, in analogy with the level-set method, see,

e.g., [32, 11], or turbulent premixed models, see, e.g., [33], by tracking the fuel

concentration at the front interface the consumption rate should be

dxf
dt

∣∣∣∣∂Y∂x
∣∣∣∣ . (7)

The modulus can be disregarded if only one-sided propagation is considered.

However, the dependence on x disappears in (5) and formula (7) cannot be

used. Hence, the price to be paid after removing x is that we have a third

unknown that is Z. Moreover, this means also that system (4-5) cannot be

solved because a third equation for Z as a function of only t is actually needed.

However, the fact that we consider the system at the site of the fire-front xf

allows us to provide a model for the consumption rate Z at that site. From a

heuristic reasoning, we have that the contribution of the fresh fuel Z is null when

the fire-front does not propagate and this occurs when either the whole fuel is

locally fully burned, i.e., Y = 0, or when the whole fuel is locally unburned, i.e.,

Y = 1. In the simplest form, this suggests the logistic contribution from the
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fresh fuel entering the system at the fire-front site

Z = µY (1− Y ) , µ > 0 . (8)

Formula (8) is also used as mean consumption rate of fuel in modelling turbulent

premixed combustion, see, e.g., [34, 35].

The equation of Y (5) emerges to be composed by a linear slowing-down term

and a forcing term, in analogy to the linear friction and the random forcing of the

Langevin equation. Here, the linear slowing-down term −Y can be associated,

in general, with the resistance of the fuel to be fully burned instantaneously, e.g.,

the moisture content, and the source term Z actually replaces the Gaussian noise

but by taking non-negative values only. When the fire-front does not propagate,

i.e., Z = 0, then the fuel consumption in the fixed fire-front site decreases

exponentially in time with timescale τ equal to 1/A in dimensional form (2),

and then with a unitary timescale in nondimensional form (5). Hereinafter, we

consider the evolution of the system with respect to this unitary timescale that

is required for a full consumption of the fuel in a given site when there is no front

propagation. Hence, we study equations (4) and (5) discretised by using such

unitary timescale. We remark here that this is not at all a discretisation in the

sense of numerical schemes for solving equations, because (4) and (5) cannot be

solved since the equation for dZ/dt is unavailable. In fact, such equation would

have been in the form of (7) but, since we have removed any spatial dependence,

the gradient of Y is unavailable. Thus, with an abuse of terminology suggested

by the analogy with the Langevin equation, we can say that here we study the

process in its over-damped approximation. Finally, we have the system
Tn+1 = αYn + Tn(1− β) ,

Yn+1 = µYn(1− Yn) .

(9)

As argumented in the derivation of system (9), the fuel concentration in the130

site of the fire-front oscillates following the logistic map (8). Thus the behaviour

of Y agrees with the known results for such map, including the transition to
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chaos for proper values of µ [36, 37]. In a discrete map defined by the recursion

equation Xn+1 = F(Xn), the fixed points are found by solving F(X∗) = X∗.

In the case of the logistic map, there are two fixed points that are located at135

Y ∗
a = 0 and Y ∗

b = 1 − 1/µ. The fixed point Y ∗
a is stable when 0 < µ < 1 and

Y ∗
b is stable when 1 < µ < 3. When µ = 1, it holds Y ∗

a = Y ∗
b = 0 and the two

equilibrium points exchange stability. When the second fixed point Y ∗
b looses

stability at µ = 3, i.e., Y ∗
b = 2/3, a period-2 orbit becomes the stable attractor.

Increasing µ a period-doubling cascade is observed eventually leading to chaos140

with some windows of stability from µ ≈ 3.57 to µ = 4 when stability is fully

lost.

In the following we focus on the evolution of the temperature field in the

site of the fire-front. In particular, we study the oscillations of T with respect

to the non-trivial fixed point T ∗. To ensure that our initial conditions are145

within the basin of attraction of the respective stable orbit for each parameter

set, the initial conditions are arbitrarly close, but not equal, to the non-trivial

fixed point. Since the equation for the temperature T is coupled with Y , then

the chaotic evolution of Y leads also T towards a chaotic evolution even when

the temperature equation is linear, see left panel in Fig. 1. Actually, as it is150

displayed in the right panel of Fig. 1, within the parameter space of our system,

the onset of chaos is mediated only by µ that is the control parameter of the

logistic fuel equation. Pushing forward the analogy with the Langevin equation,

since the logistic map actually is a pseudo-random number generator [38, 39],

then the entering of fresh fuel into the system (8) provides the noise.155

If the temperature equation is modified by allowing α and β be temperature-

dependent, then complex orbits can emerge even when the fuel remains at a

constant level with 0 < µ < 3. Thus, system (9) can display transition to chaos

for a proper setting of the parameters and of the initial conditions.

The proposed approach is put at work in the next Section in a number of160

proof-of-concept case studies for showing its overall functioning and its poten-

tiality. We first study the system with a constant fuel load and later we repeat

the analysis with a non-constant fuel load. In particular, we consider three spe-
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cial mechanisms for transition to chaos. A mechanism due to fire-atmosphere

coupling, such that the heat transfer coefficient from fuel to surrounding h,165

and then its non-dimensional counter-part β (6), turns to be dependent on the

temperature. A second mechanism due to the fuel inhomogeneity that, as a

consequence of combustion differences of the different species, may cause a de-

pendence on the temperature of an effective heat of reaction Q and hence of its

non-dimensional counter-part α (6). The third mechanism is related with the170

self feedback of the fuel concentration field at the fire-front.

3. Results and discussion

3.1. Proof-of-concept case studies: constant fuel concentration

We study our map-system (9) in some meaningful settings. In particular, we

start with case studies including a constant fuel concentration at the site of the175

fire-front xf all along the process, i.e., Yn+1 = Yn = Y0, and this occurs when

µ = 1/(1 − Y0). This means that the initial fuel is located at the fixed point

Y0 = 1 − 1/µ. Hence, this is a stable point if the control parameter µ ranges

in the bounded interval [1, 3] such that the minimum constant fuel load is the

trivial value Y0 = 0 and the maximum constant fuel load is Y0 = 2/3. In plots180

we assume Y0 = 0.5 such that µ = 2. In this case, if α and β are constant, then

the temperature equation is linear and it does not display any oscillatory or

chaotic behaviour. However, fuel inhomogeneity and fire-atmosphere coupling

may induce a temperature-dependence of the corresponding parameters α and β.

This dependence on the temperature field is included in the model and analysed.185

Actually, when modelling a forest fire we may deal also with inhomogeneous

mixtures of fuels with complex patterns, specific chemical compositions and

moisture contents, which can cause an effective heat of reaction - parameterised

by α - to be dependent on the temperature. In fact, since each component

starts to burn at different ignition temperatures, while the combustion regime190

of some of them is started others are still building-up heat that is supplied by

the burning ones. Moreover, the heat loss parametrised by β can also depend
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on temperature since, at high temperatures, there is a stronger convection effect

which accelerates heat loss and we refer this as fire-atmosphere coupling.

For the present explanatory purposes, the dependence on temperature of α195

and β is assumed to be simply linear or quadratic. The case studies considered

here are reported in Table 1.

α β µ = 1/(1− Y0) µ ∈ [0, 4]

α0 β0T 1a) 1b)

α0T β0 2a) 2b)

α0T
2 β0 3a) 3b)

Table 1: Summary of the case studies analysed in the paper.

In case study 1a), the heat transfer is assumed to depend on the temperature

and this setting embodies the fire-atmosphere coupling [8, 9, 10, 11]. If β is

correlated with the temperature field through a linear dependence β = β0T , the

map for the temperature (9) becomes similar to the logistic map, i.e.,

Tn+1 = α0Y0 + Tn(1− β0Tn) . (10)

This map, as expected, displays chaos, see Fig. 2. In particular the bifurcation

diagram is homeomorphic to that of the logistic map, namely it displays the

same bifurcation structure although with quantitative differences.200

In case study 2a), the effective heat of reaction is assumed to be dependent

on the temperature and this embodies the fuel inhomogeneity. We fist consider

a linear dependence of parameter α on the temperature field, i.e, α = α0T , and

we have

Tn+1 = Tn(1− β0 + α0Y0) . (11)

The resulting map is still linear as the original equation, and it does not display

any chaotic regime, see Fig. 2.

Therefore, in the last case study 3a), we assume a quadratic law for the

dependence of parameter α on the temperature field, i.e., α = α0T
2. Then
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equation (9) turns into the following logistic map

Tn+1 = Tn(1− β0 + α0Y0Tn) , (12)

and chaos may appear, see Fig. 2.

Thus, the fuel inhomogeneity unlikely may cause the entering of chaos with

respect to the fire-atmosphere coupling.205

As a matter of fact, it is possible to argue that a meaningful transition to

chaos can occur for a proper setting of the parameters when α is correlated

with the temperature with power-laws that differ from the adopted linear and

quadratic laws. Here, we do not pursue further in this line because it goes

beyond, and with an ad hoc setting, the explorative aims of the present study.210

More in general, a further case of transition to chaos can be obtained when both

α and β are correlated with the temperature according to α = α0T and β = β0T .

In this case the transition is led by the parameter β and the map of T reads

Tn+1 = Tn(1 +α0Y0−β0Tn). In this case, a competition arises between the two

dependences on T of α and β through the factor of the quadratic contribution,215

i.e., −β0. There are of course many other combinations that can yield chaos.

Furthermore, the actual dependence of α and β on the temperature may be

more complicated than those here studied and be somewhat discontinuous.

3.2. Proof-of-concept case studies: non-constant fuel concentration

We consider now the same cases analysed with constant fuel concentration220

in the setting of non-constant fuel concentration. This means that the initial

condition of the fuel mass fraction Y0 is not related with µ, that is now allowed

to vary in the whole range where bounded orbits can appear, i.e., µ ∈ [0, 4].

Thus, in the plots we consider the parameter space (µ, β0) for a fixed α0, such

that the interplay between orbits and fixed points in each equation is shown.225

In analogy with the previous section, when the fire-atmosphere coupling is

added into the system with a non-constant fuel concentration we refer to this

as the case study 1b). The resulting system emerges to be

Tn+1 = α0Yn + Tn(1− β0Tn) , Yn+1 = µYn(1− Yn) , (13)
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and, as it is expected, the transition to chaos is observed, see Fig. 3.

In the case study 2b), the fuel inhomogeneity is modelled by means of a

temperature dependence of the effective heat of reaction through a linear law.

The resulting system is

Tn+1 = Tn(1− β0 + α0Yn) , Yn+1 = µYn(1− Yn) . (14)

Even if the fuel is governed by a logistic law, introducing a linearly time-

dependent fuel efficiency eliminates all non-trivial dynamics. The linearity of T

equation dominates over the chaotic attractor due to the logistic Y and, whilst

the parameter space is distorted, the system lays on a fixed point or moves in230

unbounded orbits, see Fig. 3.

When in case study 3b) the dependence on T of α is indeed quadratic, the

resulting system is

Tn+1 = Tn(1− β0 + α0YnTn) , Yn+1 = µYn(1− Yn) , (15)

and chaotic oscillations appear, although the fuel dominated chaos for µ close

to 4 is ceased at low values of β0 by the fixed point of the map for T , see Fig.

3. Actually, a region of mixing of the sources of chaos appears and a dynamics

quite different to all previous cases emerges, see the corresponding bifurcation235

diagram in Fig. 3. The dynamics of the case 3b) is additionally shown in Fig.

4 for different pairs of (µ, β0).

When both equations of T and Y can display chaotic oscillations, as in cases

1b and 3b, we observe a more complex parameter space. We can identify the

regions where each equation on its own yields chaos. Since these regions overlap240

for some parameter range, the interplay between these two couple chaotic os-

cillators can cause changes of stability either from stable or oscillatory to chaos

or from bounded to unbounded, or vice versa in both cases. The structure of

the parameter space displays some self-similar features when zooming in. The

bifurcation diagram when these regions are crossed is also more complex, with245

forward and backward bifurcations shown and abrupt changes in dynamics.
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4. Conclusions and future perspectives

We have derived a discrete map that is the analog of a prototypical reaction-

diffusion equation for the temperature and we have studied when the evolution of

the process turns into a chaotic evolution. The research is motivated by the aim250

to provide some hints for the forecast of the transition of wildfire propagation

from predictable to unpredictable.

Summarising the results, the transition to chaos may occur by three mecha-

nisms: the fire-atmosphere coupling, the fuel inhomogeneity and the fluctuations

of the availability of fuel at the fire-front site. In the cases of the fire-atmosphere255

coupling and the fuel inhomogeneity, the onset of chaos is due to a dependence

on the temperature of the coefficient corresponding to the heat transfer from

the fuel to the surrounding and of that corresponding to the effective heat of

reaction, respectively. The third mechanism is an independent mechanism that

can lead to chaos even without fire-atmosphere coupling or fuel inhomogeneity.260

In all the cases, the onset of chaos is of logistic type.

In particular, for a constant fuel concentration at the fire-front, the fire-

atmosphere coupling can lead to chaos when the heat transfer from the fuel to

the surrounding depends on the temperature through a simple linear law, i.e.,

β = β0T , while the fuel inhomogeneity can cause, independently, the transition265

to chaos when the effective heat of reaction depends on the temperature through

a quadratic law, i.e., α = α0T
2. Hence, the mechanism based on the combus-

tion efficiency needs a stronger dependence on the temperature. In the case

of chaos due to fuel load fluctuations between fully burned and unburned, then

transition to chaos may occur even without any fire-atmosphere coupling or fuel270

inhomogeneity. However, surprisingly, when fuel inhomogeneity causes a linear

dependence on the temperature for the effective heat of reaction, then the chaos

is suppressed. This is consistent with the fact that fire severity is significantly

related to local variation in species composition [17, 18]. This suppression is not

observed when the chaos is due to the fire-atmosphere coupling with constant275

fuel concentration.
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The logistic map is a very well-known chaotic map [36, 37, 38, 39], and this

knowledge can help in developing a procedure for real-time risk assessment. The

necessity of aiming towards definitively enhancing wildfire understanding and

management is evident; from prevention, prediction and protection to political280

policies. The key tool for prevention and suppression of forest fires, as well

as for reduction of losses, is an efficient Decision Support System (DSS). DSSs

are integrated web-based information systems that incorporate state-of-the-art

structural functions as forest-fire simulators and satellite technology tools for

immediate detection and prediction of the evolution of forest fires [40]. Finally,285

thanks to the physical meaning of the involved parameters, a classification can

be done of the intervals of the nondimensional parameters α, β and µ, as well

as of the ranges of the temperature T , such that when properly joined together

may induce chaos. By pursuing such quantitative classification a ranking-of-risk

can be established in view of the changes that may take place in the system.290

Thus, an alternative method for real-time risk assessment can be designed and

implemented in DSSs.
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Figure 1: Left panel. Plot of bifurcations of system (9) with fixed α = α0 = 1 and β = β0 = 1.

Right panel. System behaviour within the parameter space with fixed α0 = 1: unbounded

(violet), fixed-point (dark green), periodic-orbit (light green), chaotic-orbit (yellow).
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Figure 2: Left panel. Plot of bifurcations of the case studies 1a), 2a), 3a) from the top to

the bottom (see Table 1 for their settings) with constant fuel concentration Y = Y0 = 0.5

and α0 = 1. Right panel. System behaviour within the parameter space of the same cases

reported beside with constant fuel concentration Y = Y0 = 0.5: unbounded (violet), fixed

point (dark green), periodic orbit (light green), chaotic orbit (yellow).
22



Figure 3: Left panel. Plot of bifurcations of the case studies 1b), 2b), 3b) from the top to the

bottom (see Table 1 for their settings) with α0 = 1 in all the figures and β0 = 1.4, µ = 2,

µ = 3.1 from the top to the bottom. Right panel. System behaviour within the parameter

space of the same cases reported beside with α0 = 1: unbounded (violet), fixed point (dark

green), periodic orbit (light green), chaotic orbit (yellow).
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Figure 4: Plot of bifurcations of the case study 3b) with α0 = 1 and different values of µ: top

µ = 3.1 (left) and µ = 3.3 (right), bottom µ = 3.5 (left) and µ = 3.7 (right).
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