
Cloud benchmarking and performance analysis of an HPC

application in Amazon EC2

Tamara Dancheva1,2*, Unai Alonso2† and Michael Barton1,3†

1*Simulation of Wave Propagation, Basque Center for Applied Mathematics, Mazarredo
14, Bilbao, 48009, Vizcaya, Spain.

2Mechanical Engineering, University of the Basque Country, Alameda Urquijo s/n.,
Bilbao, 48013, Vizcaya, Spain.

3Ikerbasque Basque Foundation for Sciences, Maria Diaz de Haro 3, Bilbao, 48013,
Basque Country, Spain.

*Corresponding author(s). E-mail(s): tdancheva@bcamath.org,
tdancheva001@ikasle.ehu.eus;

Contributing authors: unai.alonso@ehu.eus; mbarton@bcamath.org;
†These authors contributed equally to this work.

Abstract

Cloud computing platforms have been continuously evolving. Features such as the Elastic Fabric
Adapter (EFA) in the Amazon Web Services (AWS) platform have brought yet another revolution
in the High Performance Computing (HPC) world, further accelerating the convergence of HPC and
cloud computing. Other public clouds also support similar features further fueling this change. In
this paper, we show how and why the performance of a large-scale computational fluid dynamics
(CFD) HPC application on AWS competes very closely with the one on Beskow - a Cray XC40
supercomputer at the PDC Center for High-Performance Computing - in terms of cost-efficiency
with strong scaling up to 2304 processes. We perform an extensive set of micro and macro bench-
marks in both environments and conduct a comparative analysis. Until as recently as 2020 these
benchmarks have notoriously yielded unsatisfactory results for the cloud platforms compared with
on-premise infrastructures. Our aim is to access the HPC capabilities of the cloud, and in general to
demonstrate how researchers can scale and evaluate the performance of their application in the cloud.

Keywords: AWS, C5n.x18large, ParallelCluster, Benchmark, HPC, EFA

1 Introduction

Cloud computing has revolutionized the way com-
putational resources are delivered by making them
available on-demand and at a low cost. Consistent
with the democratization of technology in this era
of globalization, it has made computing power and
data storage more affordable and accessible than

ever before [1]. The existence of hundreds of cloud
providers today attests to the massive success of
cloud computing.

Small companies and individuals can now get
access to the IT infrastructure they need with-
out any investment in hardware and maintenance.
It has considerably cut down the cost of IT and
enabled companies to scale up with little effort

1

2 Article Title

compared with before. Naturally, the potential of
using cloud service providers has widely attracted
researchers’ attention, some of whom have con-
ducted feasibility studies of moving their research
in the cloud ([2–4] among the first). When it
comes to large-scale high-performance computing
applications, which is the topic of this paper, the
question becomes the following. Can the perfor-
mance of HPC applications in the cloud match the
one in on-premises infrastructures?

In this paper, we pursue the idea of moving
HPC in the cloud and provide a thorough perfor-
mance analysis making use of the latest advances
of AWS in the direction of HPC. However, the
general procedure we outline to evaluate the per-
formance of the application and the trends we
describe could serve as blueprint for any compar-
ative study of this type regardless of the cloud
platform or on-premise infrastructure.

2 Literature Review

According to the taxonomy of efforts in HPC pre-
sented by Netto et al. [5], the contribution of this
paper is in the category of HPC in the cloud or
specifically, viability studies of moving HPC to
cloud environments. Early explorations have been
initiated as early as in 2008. Studies from this
early period of cloud computing such as the ones
performed by Walker [2], Napper et al. [3] and
Ostermann et al. [4] categorically concluded that
the cloud is not yet mature for tightly coupled
HPC applications.

In 2010, Amazon EC2 introduced the first gen-
eration of HPC infrastructure. However, various
studies from 2010 [6–9], and more importantly
2011, still indicated that while the cloud is cost
effective and delivers satisfactory performance for
“low communication-intensive applications such
as embarrassingly parallel and tree-structured
computations”[10], it is still not mature enough
for HPC applications. Zhai et al. [11] and the Mag-
ellan Report [12] both concluded that the lack of
of a high performance network severely limits the
execution of tightly-coupled HPC applications.

Numerous studies [13–17] from the period
between 2012 and 2015 indicate that while cloud
computing is not yet mature for HPC, the per-
formance is becoming comparable. In particular,
Mehrotra et al. in their “Performance evaluation
of amazon EC2 for NASA HPC applications”[13],

state that although the HPC performance in the
AWS lags behind the one on their reference super-
computer due to the network technology and
virtualization overhead, it is quickly catching up.

Starting from 2016 to 2018, feasibility stud-
ies [18, 19] suggest that a hybrid approach would
make the most of the two environments, cloud
and on-premise clusters, given that the network
latency is still higher in the cloud [20, 21]. Despite
this, Bartosz et al. [21] find that the elastic cloud
can provide a better turnaround time, “reduc-
ing the time to science”. A comparative paper by
Mohammadi also claims that “the performance on
public cloud can be comparable to modern tradi-
tional supercomputing systems”[22]. In short, the
outlook for HPC in the cloud brightens.

For a more complete literature review of feasi-
bility studies in the cloud until 2018 we refer the
readers to [5].

The needs of researchers regarding HPC have
been heard and taken into account by cloud
providers. In the case of Amazon, the result is the
announcement of the RDMA/ EFA (Elastic Fab-
ric Adapter) networking interface with up to 100
Gbps bandwidth, in 2019. Breuer et al. [23] show
promising results for Seismic Simulations in the
cloud and state that this new development, once
released, is expected to further improve the strong
scalability of their applications. Other promising
studies include NASA’s evaluation of Azure cloud
for HPC [24], Maliszewski’s study of interconnec-
tion in Azure Cloud [25, 26] and Guidi’s et al. [27]
summary/survey on cloud perfomrance over the
last ten years.

Finally, with the release of EFA, Zhuang et al.
[28] show that Amazon EC2 achieves comparable
performance to local supercomputing clusters for
their GEOS-Chem atmospheric chemistry simula-
tions, due to recent developments in the network
performance and reduction of virtualization over-
head. They dispute the validity of the paradigm
that the cloud is not mature for HPC applications
EFA is an effort in the direction of long-term coop-
eration with the industry, as highlighted by the
MVAPICH project [29]. Fernandez [30] conducts
the HPCG benchmark in five cloud platforms,
highlighting among others the scalability of the
C5n.18xlarge instances. The computational fluid
dynamics (CFD) package, Ansys Fluent [31], also
showcases the performance results for a bench-
mark on AWS EC2 of the external flow over a

Article Title 3

Formula-1 Race car with 140 million hex-core
cells using the Finite Volume Metod (FVM).
Similarly, Turner et al. [32] showcase the per-
formance of a Reynolds Averaged Navier-Stokes
(RANS) simulation of a full aircraft on Ama-
zon EC2 c5n.18xlarge instances. In contrast, our
application uses the Finite Element Method on
tetrahedral meshes of a F1 Perrinn model, which
is a conceptually different method to be compared
directly. We also conduct thorough benchmark-
ing in conjunction with the performance of the
application.

Today practically all major public cloud
providers offer HPC capabilities [33–35]. It is
already a competitive established market that
caters to a notable number of private compa-
nies (aerospace, automotive, biochemistry among
many). In comparison, in literature one finds
very few studies performed in academia showcase
the performance of HPC applications since the
introduced change performed.

The largest bottleneck identified for running
HPC applications right now in the cloud is the
networking by large consensus [5, 12, 13, 23–
25, 28, 36, 37]. Different clouds have addressed
this problem to different degrees in reference to
each other and internally based on the choice of
node. De et al. [37] provide a very detailed study of
the network performance using MPI benchmarks
for various public clouds. The important take-
away relevant here is the fact that network noise
for HPC nodes i.e. with at least 100 Gbps band-
width is comparable to the one on-premise, further
supporting the results we are about to present.

3 Goals and contributions

Networking, compute power and storage speed
are the most important factors that impact the
performance of scientific applications. Firstly,
we benchmark these factors separately. Com-
pute power and networking are the most relevant
ones for our application. We then evaluate their
impact on the performance of our massively par-
allel CFD application. Typically, applications are
categorized into four main categories: compute-
intensive, memory-intensive, data-intensive, and
high-throughput. We should note that the appli-
cation we selected is partly compute-intensive,
partly memory-intensive. Therefore, networking
and compute power have an especially strong

impact on the performance. Researchers can use
a wide range of tools to characterize their own
applications (for example VTune Profiler [38]).

In this paper we report the results from bench-
marking and examining the performance of HPC
applications on Amazon EC2, using the open-
source tool developed by AWS, ParallelCluster
(released in November 2018 [39]). Recent tech-
nological advancement such as the AWS Nitro
Hyperviso, a very light hypervisor that removes
a large part of the virtualization overhead, was
introduced in 2017. The Elastic Fabric Adapter
(EFA) feature is available in ParallelCluster as of
April 2019 [40]. These technologies have largely
made possible the results presented in the subse-
quent sections.

The contributions of this work are:

I Thorough benchmarking using the OSU
micro benchmarks and the NASA macro
benchmarks. The results can be used as
indicators to make predictions about the
performance of HPC applications by other
researchers who might want to migrate their
research to the cloud.

II Performance analysis of an HPC appli-
cation consisting of strong scaling and
profiling. This application represents a large
class of problems that involve solving a system
of non-linear PDEs, using the Newton method,
solving a linear system of equations in each
iteration. It generalizes to many scientific appli-
cations in different fields, discretized with the
Finite Element method, with sparse systems of
equations. In conjunction with I), we identify
the underlying factors that lead to improved
performance.

Both I) and II) are conducted in Amazon EC2
and on Beskow, a Cray XC40 supercomputer, fol-
lowed by a comparative analysis. Throughout the
process, we explain and highlight general trends
that are relevant for these types of feasibility
studies.

4 Configuration

Table.1 shows a summary of the hardware spec-
ifications of both environments discussed in this
section, in terms of node compute power, memory
configuration and networking.

4 Article Title

Table 1: Hardware specifications of both environments

Hardware specifications AWS EC2 Beskow
Nodes auto, max 40 2060

Processor
2 x Intel(R) Xeon(R)

Platinum 8124M
E5-2698v3 Haswell

Frequency 3.00GHz (Skylake) 2.3 GHz
Physical cores 18 16
SMT 2 2
L1 cache 64KB 64KB
L2 cache 1024KB 256KB
L3 cache 25MB 20.48MB
Main Memory 192 GiB 64 GB
NVRAM per node 35 GB -

Networking technology
Elastic Fabric Adapter (EFA)

100 Gbps
Cray Aries (Dragonfly topology)

100 Gbps
Latency ∼ 15.69 µs 1.92 µs
Power consumption 400W per node ∼ 376W per node
Turbo boost mode On On

In conjunction, we describe in detail the con-
figuration of the two environments in which we
have run both the benchmarks (micro and macro)
and the HPC application. Simultaneously, we out-
line how to create an AWS EC2 cluster and which
tools to use.

4.1 Amazon EC2 and AWS
ParallelCluster

Amazon EC2 stands for Amazon Elastic Compute
Cloud. It is one of the Amazon Web Services which
offers users access to computational resources
physically distributed in data centers across the
globe.

ParallelCluster is an open-source, command-
line tool developed by Amazon that enables a
quick way to set up and manage a cluster in Ama-
zon EC2 from a configuration file. It consists of
various groups of configuration options or sections.
Table.2 details a configuration that yields satisfac-
tory performance for an initial exploration of the
cloud’s capabilities with ParallelCluster v2. The
latest version at the time of writing, v3, offers an
interactive setup using either CLI or UI interface
for the same options. For a full list of options, see
the documentation for AWS ParallelCluster [41].

The C5n instances in Amazon’s Compute
Optimized family are fit for computationally

intensive workloads due to their Enhanced Net-
work Bandwidth support for high-speed commu-
nication between nodes, taking advantage of the
Nitro System and the Elastic Fabric Adapter
(EFA) to deliver network bandwidth of 100 Gbps
[40]. The EFA feature was introduced in 2019 [42],
at which point the C5n instances were state-of-
the-art. They remained so at the time of conduct-
ing this study and until the end of 2020 when new
instances have been added to the Compute Opti-
mized family i.e C6a, C6i, C6in, C6g, C6gn, and
C7g [43]. AWS has also created a new HPC fam-
ily that includes hpc6a and hpc6id, introduced at
the end of 2021 and 2022 accordingly [44]. Since
our reference cluster runs on Intel processors, in
this study our aim was to get to as even baseline
as possible as a first step, using machines with
same bandwidth (100 Gbps) and type of proces-
sor (Intel). Next step would be to incrementally
introduce extra layers of complexity by extend-
ing the study to Graviton and AMD architectures
with same network bandwidth as the c5n nodes i.e.
C6gn, and hpc6a respectively. The only candidates
with network bandwidth not inferior or equal to
100 Gbps are C6in, C6id, and c7gn, all of them
introduced at the end of 2022 with the optimized
version of the EFA, that open new interesting
possibilities to explore.

The C5n.x18large instances are equipped with
two sockets x 18 Intel(R) Xeon(R) Platinum

Article Title 5

Table 2: An example of an AWS ParallelCluster
configuration file

Configuration options

[global] section

cluster template = NAME CLUSTER

update check = true

sanity check = true

[aws] section, confidential - id, access key and region

[cluster NAME CLUSTER] section

key name = SSH PRIVATE KEY NAME

master instance type = c5n.4xlarge

compute instance type = c5n.18xlarge

master root volume size = 25

compute root volume size = 35

base os = ubuntu1804

max queue size = 40

scheduler = slurm

placement group = DYNAMIC

vpc settings = NAME VPC

ebs settings = NAME EBS

enable efa = compute

cluster type = spot

[vpc NAME VPC] section - id and subnet id

[ebs NAME EBS] section

shared dir = NAME SHARED FOLDER

volume type = gp2

volume size = 6000

8124M CPU @ 3.00GHz (Skylake), a total of
72 vCPUs with Simultaneous Multithreading and
192 GiB of memory. Our configuration consists
of up to 40 compute nodes, C5n.x18large type
(max queue size setting). For the master node
responsible for coordinating compute nodes, com-
piling code, and interacting with the job scheduler,
we balance cost and performance by opting for a
C5n.4xlarge instance. We utilize Ubuntu 18.04 as
the base os (see Table.2).

Amazon uses its proprietary Nitro System
to create and manage virtual machines in the
cloud. This system includes the light-weight Nitro
Hypervisor, offloading hypervisor workload to
dedicated components: Nitro Cards, and Nitro
Security Chip. This reduces virtualization over-
head - one of the major bottlenecks in the past,
and improves performance [45].

The job scheduler handles job initiation,
scheduling, and monitoring. The latest version of
ParallelCluster provides several options for cluster

schedulers, including Son of Grid Engine, Slurm
Workload Manager, Torque Resource Manager,
and AWS Batch. In the specific configuration men-
tioned in Table 2, Slurm is chosen as the scheduler,
same as the reference supercomputer.

The HPC application we focus on in this paper
makes use of the standardized Message Passing
Interface (MPI). The choice of MPI implementa-
tion can impact the performance of your appli-
cation dramatically. It is noteworthy to mention
that alternatives to using MPI implementations,
such as Chapel, UPC, UPC++, Spark, and others,
might be worth looking into as well. Techniques
such as multilevel parallelism [46] can further
improve performance or algorithms that employ
non-blocking MPI routines especially for Graviton
and AMD based nodes with more compute power
such as Hpc6a, C6gn, etc [47].

We have tested two MPI implementations on
our cluster: Open MPI and Intel MPI. Both of
them wrap around the open-source GNU compiler.
The IntelMPI version available through AWS is
the open-source version of the Intel MPI wrapper
that wraps around the GNU compiler.

The placement of the nodes within a chosen
time zone is also crucial. To minimize the dis-
tance between the nodes and achieve a low-latency
network performance, we can use the place-
ment group options available (placement group in
Table.2).

For storage, we utilize a 6000 GB gp2 SSD vol-
ume, providing a maximum of 16000 IOPS and a
Max Throughput/Volume of 250 MB/s. This mid-
range option offers both competitive pricing and
performance, making it suitable for a diverse range
of workloads.

The Nitro card for VPC supports several net-
work acceleration features, such as EFA (it opti-
mizes for latency between 2 instances, scaling elas-
ticity). You can enable the EFA (a network device)
option through the enable efa flag in the config-
uration Table.2. RDMA (Remote Direct Memory
Access) is a network protocol used to side-step
the processor and exchange data between two
main memories directly, bypassing the OS. We
observed a significant impact using this feature in
our results, which prompted us to write this paper.

Last but not least, the advances in load bal-
ancing, task scheduling, resource allocation, and
distributed computing algorithms for network
communication also play a significant role in the

6 Article Title

overall performance in the cloud. They facilitate
the ability to have a reliable low communication
latency between the nodes in a worldwide dis-
tributed system, a crucial factor in getting a good
performance.

On the software side, we use the open-source
Spack manager to manage the packages in a mod-
ular way [48, 49]. It allows for a quick installation
of core dependencies we need to run our software,
enabling different versions to coexist without any
issue - an essential requirement in supercomputing
environments.

4.2 Beskow - Cray XC40
supercomputer

Beskow [50], a Cray XC40 supercomputer, located
at the PDC Center for High-Performance Com-
puting in Stockholm, consists of 11 cabinets with
a total of 2060 compute nodes and 67,456 cores.
Each node contains 2 Intel CPUs:

• 9 cabinets with Xeon E5-2698v3 Haswell 2.3
GHz (16 cores/CPU)

• 2 cabinets with Xeon E5-2695v4 Broadwell 2.1
GHz(18 cores/CPU)

We have run the benchmarks and the simu-
lations on the Xeon E5-2698v3 Haswell 2.3 GHz
nodes. The nodes interconnect with a High-speed
network Cray Aries (Dragonfly topology) that also
supports RDMA operations.

The Haswell nodes have 64 GB of RAM, and
the Broadwell nodes have 128GB. Beskow has in
its disposal a 5 Petabyte Lustre file system.

Beskow achieves a peak performance of 2.438
Petaflops (1015 floating-point operations per sec-
ond). The Linpack benchmark has a long-standing
history as a criterion for ranking the top super-
computers. This benchmark solves dense systems
of linear equations and naturally is not a refer-
ence for the performance of all kinds of appli-
cations. Beskow lists a Linpack performance of
1.80 Petaflops. Based on the type of application,
we need a representative benchmark to obtain an
accurate estimate of its performance.

Beskow also relies on Slurm as a scheduler. The
results reported in this study have been obtained
with the native Cray MPI implementation, the
most optimized one for the underlying hardware.

5 Benchmarks

The microbenchmarks are small pieces of code
that have the purpose of quantifying the basic
building blocks of a program separately. The
macro-benchmarks, on the other hand, consist of a
more complex code that should be representative
of the class of problems for which we try to extract
conclusions. In this case, we are looking at a sci-
entific application that requires the discretization
and solution of a system of time-dependent partial
differential equations. We run the benchmarks in
the order of increasing specificity.

In this study we run all the OSU micro-
benchmark configurations for each message size
and number of processes 3000 times skipping the
initial 100 runs (i.e. warmup iterations which aim
to avoid fluctuations in the runtime) on the same
set of nodes (two nodes for the point to point MPI
benchmarks and up to 4 nodes for the collective
MPI and NASA benchmarks). The configurations
of the NAS Parallel Benchmarks were run 5 times
each. In the plots we show the mean value and the
standard deviation of the results.

5.1 OSU Micro-Benchmarks

The OSU Micro-benchmarks [51] measure the
performance of a comprehensive set of MPI rou-
tines. The amount of time spent in communication
between the processes should stay within a rea-
sonable limit. As we scale our application up to a
larger number of cores, it can become a bottleneck
that will affect the performance severely. Different
MPI implementations deploy various strategies
and algorithms, which results in differing perfor-
mance. In this paper, we report the results from
the following two categories: Point-to-Point MPI
and Collective MPI.

5.1.1 Point-To-Point MPI benchmarks

The Point-To-Point MPI communication refers to
the MPI send-and-receive routines that send and
receive a message from one process to another.
Using these routines, we can derive some funda-
mental performance indicators, such as the latency
and the bandwidth between two nodes in a system
(a supercomputing environment or a distributed
one such as the AWS EC2 one). The latency bench-
mark consists of a ping-pong exchange of messages

Article Title 7

(a) Latency for small messages from 256B to 16KiB (b) Latency for large messages from 16KiB to 1MiB

Fig. 1: Latency between 2 nodes on AWS with Intel and Open MPI, and on Beskow with Cray MPI

(a) Bandwidth for small messages from 256B to 16KiB (b) Bandwidth for large messages from 16KiB to 1MiB

Fig. 2: Bandwidth between 2 nodes on AWS with Intel and Open MPI, and on Beskow with Cray MPI

between two processes, obtaining an average one-
way latency value. The bandwidth benchmark aims
to determine the maximum data rate possible by
sending multiple messages without waiting for an
acknowledgment by the receiver.

AWS ParallelCluster offers support for setting
up an HPC cluster with pre-installed Intel MPI
and Open MPI. If EFA is enabled (enable efa
option in Table.2), ParallelCluster sets up the fol-
lowing software stack. It starts with the EFA Ker-
nel Module on the bottom, a Libfabric Network
Stack in the middle, and the MPI implementa-
tions on the top. The alternative to using EFA is
using the Transmission Control Protocol (TCP).
TCP results in longer latencies and is less fit for
tightly-coupled applications than RDMA.

The results from the OSU latency benchmarks,
shown in Fig.1, compare the latency between two
processes on two nodes using EFA-enabled Intel
MPI and Open MPI on the AWS EC2 cluster

and Beskow using Cray MPI. For smaller mes-
sage sizes, up to 4KiB (1 Kibibyte is 1024 Bytes),
Beskow exhibits significantly lower latencies than
the AWS cluster. For larger message sizes, up to
256 KiB (Fig.1), the gap between the supercom-
puter and the cloud closes. For messages larger
than 256 KiB, the discrepancy arises again, and
Beskow records lower latencies. Intel MPI and
Open MPI on AWS behave similarly on a broad
range of message sizes from 1 B to 1 MiB, with
fractionally higher latencies for Open MPI. We
find that when running the same benchmark on
one node, the latencies for Open MPI are abnor-
mally high, due to a confirmed issue at the time
of running the study (see [52]) with the Libfab-
ric provider for EFA not detecting a local process.
Given the issue and that their internode latencies
are slightly better for Intel MPI, we have chosen
to run the rest of the benchmarks and the final
application using Intel MPI.

8 Article Title

(a) MPI AllReduce (b) MPI AllGather

Fig. 3: Benchmarking of the MPI Allreduce and Allgather Collective routines

(a) MPI Reduce (b) MPI AllToAll

Fig. 4: Benchmarking of the MPI Reduce and AlltoAll Collective routines

The results from the bandwidth benchmark
shown in Fig.2 follow a similar pattern, however
in favor of AWS. For smaller message sizes, up to
1024B (Fig.2a) both environments achieve simi-
lar results. For more than 1024 B, up to 256 KiB
(Fig.2b), AWS shows higher to equalized band-
width. Beskow shows slightly better results in the
rest, up to 1 MiB.

These findings are indicators of the shift that
has taken place because numerous viability stud-
ies for moving HPC to the cloud since 2008 (see
Section.2) list the lack of a fast network suit-
able for HPC applications as an impediment. The
latency and the bandwidth are now comparable
to the reference supercomputer for a wide range
of message sizes, most notably for the bandwidth,
rather than the latency in the window of message
size we are examining.

MPI implementations offer the possibility of
tuning them for our needs (for example tuning
transport protocol algorithms and parameters),

either through runtime parameters or configu-
ration files. The very low latencies on Beskow
for very small and very large message sizes are
the result of the tuning of the Cray MPI imple-
mentation, the underlying transport and routing
protocols (proprietary in the case of AWS) and
last level cache cache misses [37]. Similarly, so
is the high bandwidth of close to 6000 MB/s
for small message sizes on AWS (Fig.2a). This is
discussed in more detail in the discussion.

5.1.2 Collective MPI Benchmarks

The Collective MPI functions communicate infor-
mation between a group of processes. In this
section, we present the results from benchmark-
ing the collectives that take most of the time
spent in communication between processes for our
HPC application. Additionally, we have run all the
blocking and non-blocking collective MPI bench-
marks for up to 128 cores and a message size of
1MiB.

Article Title 9

Fig.5 shows the results for MPI Allreduce, MPI
Allgather, MPI Reduce, MPI Alltoall, MPI All-
toallv, and MPI Allgatherv. The overall latency
for AWS becomes distinctly lower as the number
of processes increases for each of the functions. As
a general observation, we can conclude that for
larger message size, the AWS EC2 cluster exhibits
good scalability (as evidenced by other recent
studies [30, 37]). It performs better or comparable
to Beskow, for most of the blocking MPI calls. In
some cases, such as Fig.3a through Fig.5b AWS
performs considerably better with much higher
latencies for Beskow, as the message size increases.

The reason behind the efficiency and low per-
formance variability of the collectives on AWS
are the advances in the underlying distributed
computing algorithms, resource allocation, hyper-
visor technology, MPI tuning of the algorithms
behind the implementation of the collectives, the
proprietary transport protocol and EFA adapter.

We find that the benchmarks for MPI Broad-
cast (broadcast a message from one process to
all others) and MPI Barrier (synchronize all the
tasks) stand out from the rest. Fig.6a shows that
MPI Broadcast exhibits up to two times higher
latencies than Beskow for 128 processes and,
Fig.6b shows that MPI Barrier exhibits up to 8
times higher latencies than Beskow for 128 pro-
cesses. It is expected that one of the reasons is that
Beskow (Cray XC40) offloads Barrier to hardware
to accelerate it.

In our code, these latencies do not pose a
problem since Barrier and Broadcast constitute a
negligible portion of the total MPI communication
time (Fig.9a in Section 6.3).

5.2 NAS Parallel Benchmarks

The NAS benchmarks have been created by the
National Aeronautics and Space Administration
agency (NASA) to evaluate the suitability of
new architectures [53]. The package has become
representative of a wide range of categories of sci-
entific applications, although it initially aimed to
estimate the performance of computational fluid
dynamics applications. In particular, we are inter-
ested in the high throughput or tightly-coupled
applications. We also hope to be able to contribute
in a more general sense with the results from these

benchmarks. Readers who are interested in port-
ing their application to the cloud may find these
findings relevant.

The plots in this section show the results from
the original eight benchmarks that consist of the
following: Integer Sort (IS), Embarrassingly Par-
allel (EP), Conjugate Gradient (CG), Multi-Grid
(MG), 3D fast Fourier Transform (FT), a Block
Tri-diagonal solver (BT), Scalar Penta-diagonal
solver (SP), and a Lower-Upper Gauss-Seidel
solver (LU).

5.2.1 OpenMP benchmarks

Fig.7 shows the elapsed time from running the
NAS benchmarks using OpenMP in shared-
memory on one node with 32 threads and 64
threads on both Beskow and the AWS EC2 clus-
ter. On Beskow, the code is compiled with Cray
Clang and on AWS with the GNU compiler. In
both cases, for all benchmarks, AWS yields bet-
ter performance than Beskow. For 32 threads, it
achieves a mean speedup of 1.7 and for 64 of 1.37.

5.2.2 MPI benchmarks

Fig.8 visualizes the performance from running the
benchmarks with MPI on two nodes (problem size
C 1) and eight nodes (problem size D) in elapsed
time. On Beskow, the code is compiled with Cray
MPICH and on AWS with Intel MPI wrapped
around the GNU compiler. Again, AWS prevails
with less time than Beskow in both cases, for all
benchmarks. On 2 nodes AWS achieves a mean of
1.4 times more bandwidth than on Beskow and on
8 nodes it records a similar value of 1.45 times.

6 Massively parallel
FEniCS-HPC application

FEniCS-HPC [54] is a platform written in C++
that consists of Dolfin-HPC, a highly parallel
FEM (Finite Element Method) library for solving
general partial differential equations, and UNI-
CORN, a continuum mechanics solver built up on
top of Dolfin-HPC.

1The problem sizes of the NAS Parallel Benchmarks from
smallest to largest are categorized into classes S, W, A, B, C,
D, E, and F. For the CG benchmark, the size of the problem
ranges from 1.4K rows in the left-hand side matrix to 54 million
rows. Class C packs 150K rows and size D packs 1.5 million
rows for CG.

10 Article Title

(a) MPI AllToAllV (b) MPI AllGatherV

Fig. 5: Benchmarking of the MPI Alltoallv and Allgatherv Collective routines

(a) Benchmarking of MPI Broadcast (b) Benchmarking of MPI Barrier

Fig. 6: Results from the OSU benchmarks for MPI Broadcast and Barrier up to 256 processes

The advantages that it gives over other solvers
lie in:

• The automation of discretization and assembly
- generation of a wide gallery of finite element
types, arbitrary polynomial order, and finite ele-
ment spaces. The whole process is based on the
weak formulation obtained from the strong form
by integration by parts in the case of second or
higher-order derivatives (similar to the analyti-
cal process of solving a PDE on paper). It allows
the users to rather focus on the problem.

• The automation of discrete solutions - at the
heart lies the solution of a linear system of
equations using a variety of methods available
through the external linear algebra backend,
PETSc, such as AMG, iterative, and direct
methods.

• The automation of error control - based on a
measure of choice or an error indicator, that can
be obtained from the dual problem.

6.1 CFD Model

The Direct Finite Element Method (Direct FEM)
refers to a turbulence model (described in more
detail in [55], [56], and [57]), implemented within
Unicorn. It uses the the piece wise linear General
Galerkin (G2) method and belongs to the category
of stabilized space-time methods.

Eq.(1) shows the weak form of the Euler
equations with Least Squared Stabilization.

(
(Un − Un−1)

kn
+ Ûn · ∇Ûn, v) + (∇Pn, v) (1)

+(∇ · Ûn, q) (2)

+(δ1(Ûn · ∇Ûn +∇Pn), Ûn · ∇v +∇q)
+(δ2∇ · Ûn,∇ · v) = 0

where Ûn = Un+Un−1

2 for all (v,q) ∈ Vh x Qh,
and Vh ∈ [Wn]3 and Qh ∈ [Wn] are finite element

Article Title 11

(a) Run with 32 threads (b) Run with 64 threads

Fig. 7: Results from the NAS benchmarks using OpenMP, problem class C

(a) Problem size class C, on 2 nodes (b) Problem size class D, on 8 nodes

Fig. 8: Results from the NAS benchmarks using MPI, problem class C and D

approximation spaces, Vh being a vector finite ele-
ment space. δ1 = κ1(k−2

n + ‖Un−1‖2h−2
n)−1/2 and

δ2 = κ2hn are the stabilization parameters with
constants κ1 and κ2.

In order to solve the non-linear system of
equations, we use the Newton method, with the
Conjugate Gradient linear solver with a Block
Jacobi preconditioner for the continuity and the
Biconjugate gradient stabilized method with a
Block Jacobi preconditioner for the momentum.

6.2 Aerodynamics simulation of a
Perrinn F1 car

We will now analyze the performance of a
CFD (Computational fluid dynamics) applica-
tion implemented in FEniCS-HPC. We present
the results for an incompressible CFD simulation
around a F1 car (Perrinn model with 25 million
cells). We chose this particular simulation as a
showcase because it is one of the most challenging

CFD simulations, and it is representative of the
other CFD simulations we run with FEniCS-HPC,
as well as other FEM applications that involve the
solution of non-linear PDEs and sparse solvers.
This application is developed on top of the lat-
est development branch of Unicorn at the time
of writing, using the Direct FEM. The solver is
completely parallelized with MPI and MPI I/O.

6.3 MPI profiling

We have profiled the HPC application with Inte-
grated Performance Monitor (IPM) [58]. The
information we aim to extract from the reports
is the most time-consuming MPI routines in our
application and statistics about the message sizes.
Fig.9 shows the results from the profiling of
our application with 256 processes distributed
between 8 nodes.

Fig.9a displays a pie plot of the most con-
suming MPI routines. For all the functions except

12 Article Title

(a) MPI Communucation Time Pie (b) Communication balance by task (sorted by task ID)

(c) Message Buffer Size Distributions: time (d) Message Buffer Size Distributions: Ncalls

Fig. 9: IPM profiling results with 256 processes

MPI Irecv, MPI does not collect the message
size for a message with status MPI STA-
TUS IGNORE, which affects receiving, probing,
and waiting functions. Consequently, it is safe to
only take into account MPI send and the MPI col-
lectives. Excluding these functions, we have shown
the results from the OSU micro-benchmarks for
the top six time-consuming MPI collectives (see
Section.5.1.2).

Fig.9b shows the communication balance
sorted by task ID. There is more work done in the
beginning due to the initialization, and afterward,
it starts to equalize. We can see how much time
each rank (or process ID) spends in each commu-
nication routine. Having a good load balance is
crucial for the performance of HPC applications.

From Fig.9c and Fig.9d, ignoring the receive,
probe, and wait-like functions, we can see that
the message size ranges from 4 Bytes to 1 MB.
Both the number of calls and the elapsed time for
each of the MPI routines represent non-decreasing
functions of the message size. Most of the mes-
sages fall in the range from 4 B to 256 KB. This

trend holds for up to 1152 processes on 16 nodes.
Given that the problem size is constant, the mes-
sages get smaller and barely exceed the 256 KiB
mark. Therefore, in the analysis that follows, we
focus on the benchmarks results with message size
up to 256 KiB.

6.4 Results

We now show the results from the F1 car CFD
simulation. It was expected that the performance
would be at least similar to the one on Beskow,
given that the latency, bandwidth, and most rel-
evant MPI collectives results for our targeted
message size range of 4 B to 256 KiB are com-
peting, and the NAS benchmarks show favorable
results for AWS. We verified that this is indeed
the case.

The performance of the scientific application
was measured similarly to the benchmarks, the
mean of 10 runs, on the same set of nodes, for 200
iterations of the transient simulations.

Article Title 13

Fig. 10: Performance comparison between AWS and Beskow by components, strong scaling

Fig. 11: Performance comparison between AWS and Beskow, strong scaling

14 Article Title

Table 3: Speedup AWS/Beskow %

Speedup 256p 512p 1024p Mean
Momentum Total 94.2 94.9 93.66 94.26
Continuity Total 98.55 81.92 92.84 91.1

6.4.1 Performance comparison

The largest part of the application runtime con-
sists of:

• Assembling the matrix (left-hand side of the
system) and the vector (right-hand side of the
system) to be solved. The majority of time in
our application is spent in the assembly stage
[59], as can be observed from the first two plots
in Fig.10.

• Solving the resulting non-linear systems of
PDEs by iteratively solving a series of linear
systems of PDEs that result from the momen-
tum equation Eq.(1) line (1) and the conti-
nuity equation Eq.(1) line (2). The continuity
equation requires considerably more iterations
to solve, thereby taking more time than the
momentum Fig.10.

In the results below, we analyze these parts of
the runtime separately and together to have a bet-
ter overview. The first plot in Fig.10 compares the
elapsed time for solving the momentum and the
continuity equation with 128, 256, 512, and 1024
processes on Beskow and the AWS EC2 cluster.

The second plot in Fig.10 compares the elapsed
time for assembling both the left-hand side and
the right-hand side in both environments. The
time is plotted on a log scale to be able to rep-
resent both functions of different orders in one
plot.

The first and second plot in Fig.11 show the
total elapsed time and speedup from 128 to 1024
processes (with one core per processor). The third
plot in Fig.11 shows the relative speedup of the
two major components of the runtime, associated
with the momentum and the continuity in both
environments (with the first datum taken as a
reference).

Table.3 shows the ratio speedup AWS
speedup Beskow . In terms

of strong scaling, relative to the first datum in
Fig.10 (for 128 processors), Beskow exhibits
slightly better scaling than AWS given that the
ratios are less than 100% (Table.3, and the second
plot in Fig.11).

Table 4: Elapsed time ratio Beskow/AWS %

Elapsed time ratio 128p 256p 512p 1024p
Mom. Solve 114.34 102.13 102.22 100.58

Mom. Assemble 141.75 140.78 142.94 141.9
Cont. Solve 103.05 99.44 71.61 90.46

Cont. Assemble 128.26 129.14 126.21 125.41

Table.4 quantifies the plots shown in Fig.10.
From it, we can conclude that we get a consid-
erable speedup on the AWS EC2 cluster for the
assembly of the system compared to Beskow (see
line 2 and line 4 in Table.4). For the momen-
tum, it is up to 1.4 times faster, and for the
continuity, it is up to 1.2 times faster on the
AWS EC2 cluster. Solving the systems of PDEs
using the Stabilized version of BiConjugate Gra-
dient for the momentum and Conjugate Gradient
for the continuity (in combination with successive
over-relaxation (SOR) preconditioning) results in
a very similar performance in both environments.
Moreover, we can see that for the momentum,
we get a slightly better speedup on AWS, while
overall Beskow shows slightly better speedup for
the whole application (second plot in Fig.10). In
terms of elapsed time, the CFD application bet-
ter performance on the AWS EC2 cluster than on
Beskow (see Table.4, values over 100% are in favor
of AWS).

6.4.2 Strong scaling on AWS EC2 cloud

The application shows very satisfactory scaling on
the AWS EC2 cluster for up to 2304 processes with
72 processes per node Fig.12. Since the size of the
problem is more suitable for a smaller number of
nodes, we observe an even better scaling for up to
1024 processes with 32 processes per node Fig.13.

6.4.3 Compute cost comparison

In this section we only look at the cost of the com-
pute time. We highlight that depending on the
type of EBS volume chosen, the cost of EBS ..cite
can add considerably to the total cost.

AWS offers three alternatives for the cluster
type that affect the cost of the compute time
(see cluster type in Table.2): on-demand (most
reliable, with reservation), spot (use unused EC2
instances for a lower price), dedicated (serving a
single customer), and mixed strategies.

Article Title 15

500 1000 1500 2000
Processes

5

10

15

R
el
at
iv
e
Sp

ee
du

p Momentum solve time 72
Continuity solve time 72
Linear speedup

500 1000 1500 2000
Processes

5

10

15

R
el
at
iv
e
Sp

ee
du

p Momentum - matrix assemble time
Momentum - vector assemble time
Momentum - total assemble time
Continuity - matrix assemble time
Continuity - vector assemble time
Continuity - total assemble time
Linear speedup

500 1000 1500 2000
Processes

5

10

15

R
el
at
iv
e
Sp

ee
du

p Momentum total (solve + assemble)
Continuity total (solve + assemble)
Linear speedup

Fig. 12: AWS Performance, strong scaling, 72 processes per node

200 400 600 800 1000
Processes

2

4

6

8

R
el
at
iv
e
Sp

ee
du

p Momentum total (solve + assemble)
Continuity total (solve + assemble)
Linear speedup

Fig. 13: AWS Performance, strong scaling, 32 processes per node

Fig. 14: Spot pricing for the us-east region for c5n.18xlarge instances in the period March 2021 to March
2022

16 Article Title

Fig. 15: Current On-demand and Spot pricing for the us-east region for c5n.18xlarge instances

Fig.14 shows the fluctuations of the price per
hour for the C5n.18xlarge instances in the past
year in the us-east region, and all its zones. We
have run calculations in the us-east-1a zone - the
most stable region. We note that the most volatile
zone is us-east-1d with minimum and maximum
price of 1.3157$ and 1.5803$ per hour, respec-
tively. Fig.15 shows the savings of on-demand over
spot on the 18th of February 2022, with savings
from 61.41% to 69.86% for the us-east-1a zone.

Cost-wise, we observe that the prices for the
spot instances are comparable: 0.024e/core-hour
on Beskow (a flat rate set by the PDC Center
for High-Performance Computing), 0.030e/core-
hour for C5n.18xlarge spot instances (based on the
average price for zone us-east-1a shown in Fig.14),
and 0.047e/core-hour for dedicated C5n.18xlarge
instances, with the exchange rates defined by the
European Central Bank (ECB) on the 18th of
February 2022. Using this data as reference, the
savings over on-demand for the past year for the
zone us-east-1a range from 69.8% to 70%.

We report the results from running on the spot
nodes. The difference between the spot nodes and
the on-demand nodes is in the availability. The
spot nodes might become unavailable and inter-
rupt the execution of the program. The availability
depends on the current demand and the data cen-
ter/time zone that we are using. In the reported
results, 100% of the runs have been uninterrupted
and in fact the frequency of interruption is less
than 5% of the time with 70% and up savings over
on-demand. For the C5n family, the billing is per
hour and choosing between spot and on-demand
does not make a difference in the performance
because the access to the node does not vary and
since it is the largest in the family, in both cases,
we were the only tenants (a tenant is a guest on
the host machine, a virtual machine) on the node,
with exclusive access to all its resources. We chose
to use the C5n.x18large instance in the C5n fam-
ily because it is the largest in the family, which
means that whenever we get an allocation we are
not sharing with other users. The only difference

is that there is a chance that the computation will
be interrupted by another tenants if the demand
is high when using the spot instances.

Additionally, we have taken all the precautions
for ensuring that we are not taking into account
any results from interrupted instances by set-
ting up interrupt notices, defining the interruption
behavior, using the AWS console tools for find-
ing interrupted instances, checking the billing and
finally verification of the validity of the results.
Given that we do not run critical applications, we
deem that the spot instances are a cost-effective
solution for our needs.

Since we look at the price per core hour as
the main parameter for optimization, it means,
slightly more work is done per hour on AWS than
on Beskow (despite the fact that is scales slightly
worse than Beskow).

7 Discussion and limitations

The purpose of this paper is to show that there
are strong indicators that one can get the very
similar performance of HPC applications for the
same money on both the supercomputer and the
cloud. It is a result of very recent trends and tech-
nologies and there is scarce evidence showing this
conclusion for tightly-coupled HPC applications.

The final performance depends on a number of
factors, which, while we can analyze separately, we
have no way of quantifying completely how much
they will affect the performance. Therefore we opt
not to do an adjustment of the kind of scaling the
strong scaling results by the ratio of the compute
power of the machines (frequency for example).
There are other factors apart from compute power,
such as network speed, the impact of RAM mem-
ory, storage speed, MPI implementation details
and algorithms, MPI tuning, message size, instruc-
tion set, types of instructions, turbo boost mode,
and other architecture specific characteristics of
the hardware, which cannot be directly accounted
for with two largely different architectures. The

Article Title 17

MPI implementation differences, algorithm tun-
ing, and underlying network can potentially have
significant impact on the performance. For exam-
ple, as it can be seen from the MPI benchmarks,
the collective algorithms behind the Intel MPI
implementation on AWS yield decidedly better
performance for the window of message sizes char-
acteristic for our application, while the latency
between two processes does not.

Therefore we rely on benchmarks relevant for
what we want to test, i.e. run the same code on
the machine and look at the effective performance.
In this case we incrementally increased the speci-
ficity of the benchmarks and finally we ran our
application.

7.1 Compute power

The performance of benchmarks such as the NAS
EP (Embarrassingly Parallel) benchmark, largely
depend on the compute power. The frequency in
general does not necessarily scale the same way as
performance, because it depends on other factors
such as architecture, instructions set, theoretical
and sustained number of instructions/sec, theo-
retical and sustained FLOPS, dynamic frequency,
compiler settings, and system processes running in
the background. In order to assume this approx-
imation, we have to make a lot of assumptions,
for the compute related parameters, as well as
otherwise. Given the many differences in the archi-
tectures, we opted for relying on benchmarks to
examine the most influential indicators of the per-
formance, and finally optimize for cost per hour
and maintainability.

7.2 Network

The network performance is one of the most
important factors alongside compute power in
the HPC world. As the architectures grow more
complex, so is the technology improved and occa-
sionally reinvented. However, the fact is that
network technology lags behind compute per-
formance advances by large in both on-premise
architectures and in cloud environments [37].

The InfiniBand interconnect is one of the most
popular ones among supercomputers. The Infini-
banch technology stretches from the data layer
to the transport layer in the The Open Sys-
tems Interconnection model (OSI model [60]). The
latency is very low, the bandwidth is very high

up to 200Gb/s with HDR links and 100Gb/s with
EDR links in the case of Beskow. This inter-
connect is universal for all traffic types (such
as communication between nodes, storage etc).
This is made possible by offloading a significant
amount of work previously performed in software
to hardware, such as the one done by the trans-
port protocol. It also supports bypassing the OS
completely to get directly to the physical layer
when sending messages across the network, with
zero copy, from the application space. This RDMA
feature is crucial for capitalizing on the large inter-
connect bandwidth, given that repeatedly copying
the message to be sent incurs time delays due to
the limited memory bandwidth. Memory latency
and bandwidth improvements have been stretched
to a limit in the last years, and innovative tech-
nology, such as 3D-stacked DRAM, is on the
rise.

The Elastic Fabric Adapter (EFA) is a network
device that similarly to the InfiniBand’s RDMA
features has the power to bypass the OS to send
communications to other instances in the same
subnet. The compute nodes in the AWS cluster
we have created are placed in the same subnet.
The user can configure MPI with the Libfabric
framework, the interface between the user space
and the kernel space. This framework provides
access to the drivers of the EFA network device,
making it possible to bypass the OS. AWS has
also developed a new transport protocol for their
needs, the scalable reliable datagram (SRD) [61].
The SRD focuses on minimizing the traffic con-
gestion and therefore latency for large messages,
as well as combating load imbalance (crucial for
HPC applications). It sends packages out of order,
on various paths with relatively low traffic, to
achieve a bandwidth of 100Gb/s. SRD is therefore
faster for larger messages, with a high bandwidth
overall, and a decidedly improved performance of
collective MPI calls. This is in accordance with
the findings in the Section.5. Similarly to the
transport protocol in InfiniBand, the workings of
SRD are offloaded to hardware, the in-house Nitro
networking card of AWS.

Cloud providers that offer HPC capabilities
use different network and routing protocols, how-
ever most of the ones that deliver network band-
width larger than 100 Gbps rely on RDMA

18 Article Title

or RDMA-like technologies, omnipresent in on-
premise infrastructures [37].

In summary, Beskow has notably lower ping-
pong latency for smaller message sizes, however,
as the message size increases, in the middle range
up to 256 KiB, AWS is on par with Beskow. For
the larger message sizes, Beskow is again on top
in terms of latency. Both environments have a
theoretical bandwidth of 100Gb/s and from the
bandwidth benchmarks, we can conclude that the
effective bandwidth of AWS exceeds the one of
Beskow up to 256KiB. For larger messages sizes,
up to 1MiB, Beskow has an edge over AWS. In the
256KiB window of message sizes relevant for our
application, Beskow has lower latency, however
AWS exhibits higher bandwidth.

7.3 Software maintenance

Comments on cost of maintenance: Spack greatly
simplifies the process of deployment in our case.
It is an easy way of handling dependencies,
and allows for a separate environment, minimiz-
ing conflicts with other versions and packages.
Installing the FEniCS-HPC stack on a new clus-
ter in general is time-consuming because of the
multitude of dependencies and external libraries
it makes use of. However, with Spack, the process
has been considerably accelerated.

7.4 Overall performance

In terms of compute power, AWS is superior to
Beskow, given the more powerful processor and
the larger number of cores (Table.1). We have con-
firmed this with the Open MPI and MPI results
for the EP benchmark, part of the NAS Paral-
lel Benchmarks suite. Our application is balanced
between compute and memory intensive. There-
fore, whereas Beskow has better networking, lower
latency for most of the relevant window of message
sizes and comparable and superior bandwidth for
medium and large message sizes correspondingly,
AWS has more compute power.

On the other hand, the MPI communication
makes up a large percentage of the application
runtime, especially as the number of processes
increases. From the benchmarks Section. 5, we can
clearly see that the elapsed time increases with
the number of processors and message size. In the
profiling case in Subsection.6.3 with 256 processes
on 8 nodes, the MPI communications takes 14% of

the runtime. From the profiling and the results of
the OSU benchmarks for the most time-consuming
MPI functions, we can conclude that on the AWS
platform, we get an edge over Beskow, when it
comes to MPI communications.

Through the profiling and benchmarking, we
have been able to gain an insight into the impact
of key factors on the overall performance, as well
as the performance of separate components, such
as MPI communication, assembly, and solving the
resulting systems of equations. Finally, we observe
that it is possible to obtain a slightly better
performance on the cloud in terms of elapsed time.

8 Conclusion

In this paper, we have shown the results from
running the OSU micro-benchmarks relevant for
our target HPC application and the NAS Paral-
lel macro-benchmarks in two environments: AWS
EC2 cluster and Beskow supercomputer. We con-
ducted a comparative analysis for a wide range
of message sizes and processes of the full sets of
benchmarks to conclude that our application is
suitable to be run in the cloud. The final results
show strong scaling up to 2304 cores in the cloud,
and the performance is highly competitive with
the one on Beskow.

Finally, we have successfully ported a large-
scale HPC application to the cloud, providing
further evidence of a shift that began in 2020, con-
trary to an abundance of prior feasibility studies.
The performance competes with the one on the
supercomputer. Additionally, we get a fully con-
figurable and scalable environment we can tweak
for our needs. As a conclusion, this study con-
firms that due to recent advances, most notably
on the networking technologies front, the cloud
is getting closer to the on-premise supercom-
puter, performance-wise, for HPC applications.
The increased adoption of cloud within research
and furthermore, the most recent advances in net-
work technology by cloud service platforms (AWS,
Azure making available network bandwidth of 200
Gbps [62–64]) are opening yet again new frontiers
for further exploration of the future of HPC.

Acknowledgments. The authors would like to
thank Johan Jansson for initiating the idea of
exploring the possibilities of the cloud, providing

Article Title 19

support in obtaining the resources, and the initial
mesh for the CFD simulation.

This project has received funding from
the European Union’s Marie Sk lodowska-Curie
Actions (MSCA) Innovative Training Network
(ITN) H2020-MSCA-ITN-2017 under grant agree-
ment No◦764979.

Declarations

This work was supported by the European Union’s
Marie Sk lodowska-Curie Actions (MSCA) Inno-
vative Training Network (ITN) H2020-MSCA-
ITN-2017 under grant agreement No◦764979. The
authors declare that no funds, grants, or other
support were received during the preparation of
this manuscript.

The authors have no relevant financial or non-
financial interests to disclose.

All authors contributed to the study concep-
tion and design. The computations and the data
analysis were performed by Tamara Dancheva.
The first draft of the manuscript was written by
Tamara Dancheva and all authors commented on
previous versions of the manuscript. All authors
read and approved the final manuscript.

The datasets generated during and/or anal-
ysed during the current study are not publicly
available due to awaiting publication but are avail-
able from the corresponding author on reasonable
request.

References

[1] Birje, M.N., Challagidad, P.S., Goudar, R.,
Tapale, M.T.: Cloud computing review: con-
cepts, technology, challenges and security.
International Journal of Cloud Computing
6(1), 32–57 (2017). https://doi.org/10.1504/
IJCC.2017.083905

[2] Walker, E.: Benchmarking amazon ec2 for
hig-performance scientific computing. ; login::
the magazine of USENIX & SAGE 33(5),
18–23 (2008)

[3] Napper, J., Bientinesi, P.: Can cloud com-
puting reach the top500? In: Proceedings

of the Combined Workshops on UnConven-
tional High Performance Computing Work-
shop Plus Memory Access Workshop, pp. 17–
20 (2009). https://doi.org/10.1145/1531666.
1531671

[4] Ostermann, S., Iosup, A., Yigitbasi, N., Pro-
dan, R., Fahringer, T., Epema, D.: A per-
formance analysis of ec2 cloud computing
services for scientific computing. In: Inter-
national Conference on Cloud Computing,
pp. 115–131 (2009). https://doi.org/10.1007/
978-3-642-12636-9 9. Springer

[5] Netto, M.A., Calheiros, R.N., Rodrigues,
E.R., Cunha, R.L., Buyya, R.: Hpc cloud for
scientific and business applications: Taxon-
omy, vision, and research challenges. ACM
Computing Surveys (CSUR) 51(1), 1–29
(2018). https://doi.org/10.1145/3150224

[6] Arinze, B., Anandarajan, M.: Factors that
determine the adoption of cloud computing:
A global perspective. Int. J. Enterp. Inf. Syst.
6(4), 55–68 (2010). https://doi.org/10.4018/
jeis.2010100104

[7] He, Q., Zhou, S., Kobler, B., Duffy, D.,
McGlynn, T.: Case study for running hpc
applications in public clouds. In: Proceedings
of the 19th ACM International Symposium
on High Performance Distributed Comput-
ing, pp. 395–401 (2010). https://doi.org/10.
1145/1851476.1851535

[8] Jackson, K.R., Ramakrishnan, L., Muriki, K.,
Canon, S., Cholia, S., Shalf, J., Wasserman,
H.J., Wright, N.J.: Performance analysis of
high performance computing applications on
the amazon web services cloud. In: 2010
IEEE Second International Conference on
Cloud Computing Technology and Science,
pp. 159–168 (2010). https://doi.org/10.1109/
CloudCom.2010.69. IEEE

[9] Rehr, J.J., Vila, F.D., Gardner, J.P., Svec,
L., Prange, M.: Scientific computing in the
cloud. Computing in science & Engineer-
ing 12(3), 34–43 (2010). https://doi.org/10.
1109/MCSE.2010.70

[10] Gupta, A., Milojicic, D.: Evaluation of hpc

https://doi.org/10.1504/IJCC.2017.083905
https://doi.org/10.1504/IJCC.2017.083905
https://doi.org/10.1145/1531666.1531671
https://doi.org/10.1145/1531666.1531671
https://doi.org/10.1007/978-3-642-12636-9_9
https://doi.org/10.1007/978-3-642-12636-9_9
https://doi.org/10.1145/3150224
https://doi.org/10.4018/jeis.2010100104
https://doi.org/10.4018/jeis.2010100104
https://doi.org/10.1145/1851476.1851535
https://doi.org/10.1145/1851476.1851535
https://doi.org/10.1109/CloudCom.2010.69
https://doi.org/10.1109/CloudCom.2010.69
https://doi.org/10.1109/MCSE.2010.70
https://doi.org/10.1109/MCSE.2010.70

20 Article Title

applications on cloud. In: 2011 Sixth Open
Cirrus Summit, pp. 22–26 (2011). https://
doi.org/10.1109/OCS.2011.10. IEEE

[11] Zhai, Y., Liu, M., Zhai, J., Ma, X., Chen,
W.: Cloud versus in-house cluster: evaluat-
ing amazon cluster compute instances for
running mpi applications. In: State of the
Practice Reports, pp. 1–10 (2011)

[12] Coghlan, S.: The magellan final report on
cloud computing. Technical report (dec
2011). https://doi.org/10.2172/1076794.
https://doi.org/10.2172%2F1076794

[13] Mehrotra, P., Djomehri, J., Heistand, S.,
Hood, R., Jin, H., Lazanoff, A., Saini, S.,
Biswas, R.: Performance evaluation of ama-
zon ec2 for nasa hpc applications. In: Pro-
ceedings of the 3rd Workshop on Scientific
Cloud Computing, pp. 41–50 (2012). https:
//doi.org/10.1145/2287036.2287045

[14] Expósito, R.R., López Taboada, G., Pardo,
X.C., Tourino, J., Doallo Biempica, R.: Run-
ning scientific codes on amazon ec2: A per-
formance analysis of five high-end instances.
Journal of Computer Science and Technology
13(3), 153–159 (2013)

[15] Expósito, R.R., Taboada, G.L., Ramos, S.,
Touriño, J., Doallo, R.: Performance analy-
sis of hpc applications in the cloud. Future
Generation Computer Systems 29(1), 218–
229 (2013). https://doi.org/10.1016/j.future.
2012.06.009

[16] Sadooghi, I., Martin, J.H., Li, T., Brandstat-
ter, K., Maheshwari, K., de Lacerda Ruivo,
T.P.P., Garzoglio, G., Timm, S., Zhao, Y.,
Raicu, I.: Understanding the performance
and potential of cloud computing for scientific
applications. IEEE Transactions on Cloud
Computing 5(2), 358–371 (2015). https://
doi.org/10.1109/TCC.2015.2404821

[17] Rad, P., Chronopoulos, A., Lama, P., Mad-
duri, P., Loader, C.: Benchmarking bare
metal cloud servers for hpc applications.
In: 2015 IEEE International Conference
on Cloud Computing in Emerging Markets
(CCEM), pp. 153–159 (2015). https://doi.

org/10.1109/CCEM.2015.13. IEEE

[18] Freniere, C., Pathak, A., Raessi, M., Khanna,
G.: The feasibility of amazon’s cloud com-
puting platform for parallel, gpu-accelerated,
multiphase-flow simulations. Computing in
Science & Engineering 18(5), 68–77 (2016).
https://doi.org/10.1109/MCSE.2016.94

[19] Gupta, A., Faraboschi, P., Gioachin, F., Kale,
L.V., Kaufmann, R., Lee, B.-S., March, V.,
Milojicic, D., Suen, C.H.: Evaluating and
improving the performance and scheduling
of HPC applications in cloud. IEEE Trans-
actions on Cloud Computing 4(3), 307–
321 (2016). https://doi.org/10.1109/TCC.
2014.2339858

[20] Ditter, A., Graf, G., Fey, D.: Fe2vcl2: from
bare metal to high performance computing on
virtual clusters and cloud infrastructure. In:
Proceedings of the 4th Workshop on Cross-
Cloud Infrastructures & Platforms, pp. 1–7
(2017)

[21] Balis, B., Figiela, K., Jopek, K., Malawski,
M., Pawlik, M.: Porting hpc applications
to the cloud: A multi-frontal solver case
study. Journal of Computational Science
18, 106–116 (2017). https://doi.org/10.1016/
j.jocs.2016.09.006

[22] Mohammadi, M., Bazhirov, T.: Comparative
benchmarking of cloud computing vendors
with high performance linpack. In: Proceed-
ings of the 2nd International Conference on
High Performance Compilation, Computing
and Communications, pp. 1–5 (2018). https:
//doi.org/10.1145/3195612.3195613

[23] Breuer, A., Cui, Y., Heinecke, A.: Petaflop
seismic simulations in the public cloud. In:
International Conference on High Perfor-
mance Computing, pp. 167–185 (2019). https:
//doi.org/10.1007/978-3-030-20656-7 9.
Springer

[24] NASA: NASA SC19 - High-Performance
Computing in the Azure Cloud. NASA Tech-
nical Reports Server (2023)

https://doi.org/10.1109/OCS.2011.10
https://doi.org/10.1109/OCS.2011.10
https://doi.org/10.2172/1076794
https://doi.org/10.2172%2F1076794
https://doi.org/10.1145/2287036.2287045
https://doi.org/10.1145/2287036.2287045
https://doi.org/10.1016/j.future.2012.06.009
https://doi.org/10.1016/j.future.2012.06.009
https://doi.org/10.1109/TCC.2015.2404821
https://doi.org/10.1109/TCC.2015.2404821
https://doi.org/10.1109/CCEM.2015.13
https://doi.org/10.1109/CCEM.2015.13
https://doi.org/10.1109/MCSE.2016.94
https://doi.org/10.1109/TCC.2014.2339858
https://doi.org/10.1109/TCC.2014.2339858
https://doi.org/10.1016/j.jocs.2016.09.006
https://doi.org/10.1016/j.jocs.2016.09.006
https://doi.org/10.1145/3195612.3195613
https://doi.org/10.1145/3195612.3195613
https://doi.org/10.1007/978-3-030-20656-7_9
https://doi.org/10.1007/978-3-030-20656-7_9

Article Title 21

[25] Maliszewski, A.M.: Impact of network inter-
connection in cloud computing environments
for high-performance computing applications
(2021)

[26] Maliszewski, A.M., Roloff, E., Carreo, E.D.,
Griebler, D., Gaspary, L.P., Navaux, P.O.A.:
performance and cost-aware hpc in clouds: A
network interconnection assessment. In: 2020
IEEE Symposium on Computers and Com-
munications (ISCC), pp. 1–6 (2020). https:
//doi.org/10.1109/ISCC50000.2020.9219554

[27] 10 years later: Cloud computing is clos-
ing the performance gap. https://doi.org/10.
1145/3447545.3451183

[28] Zhuang, J., Jacob, D.J., Lin, H., Lund-
gren, E.W., Yantosca, R.M., Gaya, J.F., Sul-
prizio, M.P., Eastham, S.D.: Enabling high-
performance cloud computing for earth sci-
ence modeling on over a thousand cores:
Application to the GEOS-chem atmospheric
chemistry model. Journal of Advances in
Modeling Earth Systems 12(5) (2020). https:
//doi.org/10.1029/2020ms002064

[29] Panda, D.K., Subramoni, H., Chu, C.-H.,
Bayatpour, M.: The mvapich project: Trans-
forming research into high-performance mpi
library for hpc community. Journal of Com-
putational Science 52, 101208 (2021). https:
//doi.org/10.1016/j.jocs.2020.101208

[30] Fernandez, A.: evaluation of the perfor-
mance of tightly coupled parallel solvers and
mpi communications in iaas from the public
cloud. IEEE Transactions on Cloud Comput-
ing 10(4), 2613–2622 (2022). https://doi.org/
10.1109/TCC.2021.3052844

[31] White, Emma: Running ANSYS Flu-
ent on Amazon EC2 C5n with Elastic
Fabric Adapter (EFA). AWS EC2
(2019). https://aws.amazon.com/es/blogs/
compute/running-ansys-fluent-on-amazon-
ec2-c5n-with-elastic-fabric-adapter-efa/

[32] Appa, J., Turner, M., Ashton, N.: Perfor-
mance of cpu and gpu hpc architectures
for off-design aircraft simulations. In: AIAA
Scitech 2021 Forum, p. 0141 (2021). https:

//doi.org/10.2514/6.2021-0141

[33] Amazon Web Services: AWS HPC. Amazon
Web Services (2023). https://aws.amazon.
com/hpc/

[34] Azure High-Performance Computing

[35] Google: Google Cloud High-Performance
Computing. Google (2023). https://cloud.
google.com/solutions/hpc

[36] Chang, Y.-T., Hood, R.T., Jin, H., Heis-
tand, S.W., Cheung, S.H., Djomehri, M.J.,
Jost, G., Kokron, D.S.: Evaluating the suit-
ability of commercial clouds for nasa’s high
performance computing applications: A trade
study. Technical report (2018)

[37] De Sensi, D., De Matteis, T., Taranov, K.,
Di Girolamo, S., Rahn, T., Hoefler, T.: Noise
in the clouds: Influence of network perfor-
mance variability on application scalability.
Proceedings of the ACM on Measurement
and Analysis of Computing Systems 6(3),
1–27 (2022). https://doi.org/10.48550/arXiv.
2210.15315

[38] Intel: HPC Performance Character-
ization. Intel Corporation (2023).
https://www.intel.com/content/www/us/
en/docs/vtune-profiler/user-guide/2023-0/
hpc-performance-characterization-view.html

[39] Amazon Web Services: AWS Parallel Clus-
ter. Amazon Web Services (2021). https://
aws.amazon.com/hpc/parallelcluster/

[40] Amazon Web Services: Elastic Fabric
Adapter. Amazon Web Services (2021)

[41] Amazon Web Services: AWS ParallelClus-
ter Documentation. Amazon Web Ser-
vices (2021). https://docs.aws.amazon.com/
parallelcluster/

[42] Barr, Jeff: Now Available Elastic Fab-
ric Adapter (EFA) for Tightly-Coupled
HPC Workloads. Amazon Web Services
(2019). https://aws.amazon.com/blogs/aws/
now-available-elastic-fabric-adapter-efa-for-

https://doi.org/10.1109/ISCC50000.2020.9219554
https://doi.org/10.1109/ISCC50000.2020.9219554
https://doi.org/10.1145/3447545.3451183
https://doi.org/10.1145/3447545.3451183
https://doi.org/10.1029/2020ms002064
https://doi.org/10.1029/2020ms002064
https://doi.org/10.1016/j.jocs.2020.101208
https://doi.org/10.1016/j.jocs.2020.101208
https://doi.org/10.1109/TCC.2021.3052844
https://doi.org/10.1109/TCC.2021.3052844
https://aws.amazon.com/es/blogs/compute/running-ansys-fluent-on-amazon-ec2-c5n-with-elastic-fabric-adapter-efa/
https://aws.amazon.com/es/blogs/compute/running-ansys-fluent-on-amazon-ec2-c5n-with-elastic-fabric-adapter-efa/
https://aws.amazon.com/es/blogs/compute/running-ansys-fluent-on-amazon-ec2-c5n-with-elastic-fabric-adapter-efa/
https://doi.org/10.2514/6.2021-0141
https://doi.org/10.2514/6.2021-0141
https://aws.amazon.com/hpc/
https://aws.amazon.com/hpc/
https://cloud.google.com/solutions/hpc
https://cloud.google.com/solutions/hpc
https://doi.org/10.48550/arXiv.2210.15315
https://doi.org/10.48550/arXiv.2210.15315
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/2023-0/hpc-performance-characterization-view.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/2023-0/hpc-performance-characterization-view.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/user-guide/2023-0/hpc-performance-characterization-view.html
https://aws.amazon.com/hpc/parallelcluster/
https://aws.amazon.com/hpc/parallelcluster/
https://docs.aws.amazon.com/parallelcluster/
https://docs.aws.amazon.com/parallelcluster/
https://aws.amazon.com/blogs/aws/now-available-elastic-fabric-adapter-efa-for-tightly-coupled-hpc- workloads/
https://aws.amazon.com/blogs/aws/now-available-elastic-fabric-adapter-efa-for-tightly-coupled-hpc- workloads/

22 Article Title

tightly-coupled-hpc-workloads/

[43] Amazon Web Services: Amazon EC2 Com-
pute Optimized Instances. Amazon Web
Services (2023). https://docs.aws.amazon.
com/AWSEC2/latest/UserGuide/compute-
optimized-instances.html

[44] Amazon Web Services: Amazon EC2 Instance
Types. Amazon Web Services (2023). https:
//aws.amazon.com/ec2/instance-types/

[45] Amazon Web Services: AWS Nitro System.
Amazon Web Services (2021). https://aws.
amazon.com/ec2/nitro/

[46] impact of using multi-levels of parallelism
on hpc applications performance hosted on
azure cloud computing. https://doi.org/10.
1504/IJHPCN.2019.098579

[47] Ouro, P., Lopez-Novoa, U., Guest, M.F.: on
the performance of a highly-scalable compu-
tational fluid dynamics code on amd, arm and
intel processor-based hpc systems. Computer
Physics Communications 269, 108105 (2021).
https://doi.org/10.1016/j.cpc.2021.108105

[48] Gamblin, T., LeGendre, M., Collette, M.R.,
Lee, G.L., Moody, A., De Supinski, B.R.,
Futral, S.: The spack package manager: bring-
ing order to hpc software chaos. In: Proceed-
ings of the International Conference for High
Performance Computing, Networking, Stor-
age and Analysis, pp. 1–12 (2015). https:
//doi.org/10.1145/2807591.2807623

[49] AWS: AWS Workshop. AWS (2023).
https://catalog.us-east-1.prod.workshops.
aws/workshops/dd0ffcb3-ffc1-4b58-8c4b-
09f9846549c7/en-US

[50] PDC Center for High Performance Comput-
ing: Beskow. PDC Center for High Perfor-
mance Computing (2021)

[51] Network-Based Computing (NBC) Labora-
tory, The Ohio State University: MVAPICH:
MPI over InfiniBand, Omni-Path, Eth-
ernet/iWARP, and RoCE. Network-Based
Computing (NBC) Laboratory, The Ohio
State University (2021). https://mvapich.cse.

ohio-state.edu/benchmarks/

[52] Lin, H.: Abnormal in-node latency with
EFA enabled. Github, aws-parallelcluster
(2019). https://github.com/aws/aws-
parallelcluster/issues/1143

[53] NASA Advanced Supercomputing (NAS)
Division NASA Advanced Supercomputing
(NAS) Division (2021). https://www.nas.
nasa.gov/publications/npb.html

[54] Hoffman, J., Jansson, J., Jansson, N.: Fenics-
hpc: Automated predictive high-performance
finite element computing with applications in
aerodynamics. In: International Conference
on Parallel Processing and Applied Mathe-
matics, pp. 356–365 (2015). https://doi.org/
10.1007/978-3-319-32149-3 34. Springer

[55] Jansson, J., Krishnasamy, E., Leoni, M.,
Jansson, N., Hoffman, J.: Time-resolved
adaptive direct fem simulation of high-
lift aircraft configurations. In: Numerical
Simulation of the Aerodynamics of High-
Lift Configurations, pp. 67–92. Springer,
??? (2018). https://doi.org/10.1007/978-3-
319-62136-4 5

[56] Jansson, N., Hoffman, J., Nazarov, M.: Adap-
tive simulation of turbulent flow past a full
car model. In: SC’11: Proceedings of 2011
International Conference for High Perfor-
mance Computing, Networking, Storage and
Analysis, pp. 1–8 (2011). IEEE

[57] Hoffman, J., Jansson, J., de Abreu, R.V.,
Degirmenci, N.C., Jansson, N., Müller, K.,
Nazarov, M., Spühler, J.H.: Unicorn: Parallel
adaptive finite element simulation of turbu-
lent flow and fluid–structure interaction for
deforming domains and complex geometry.
Computers & Fluids 80, 310–319 (2013)

[58] Integrated Performance Monitor (IPM): Inte-
grated Performance Monitor. Integrated Per-
formance Monitor (IPM) (2021). http://ipm-
hpc.sourceforge.net/

[59] Jansson, N.: A hybrid mpi+pgas approach
to improve strong scalability limits of finite
element solvers. In: 2020 IEEE International

https://aws.amazon.com/blogs/aws/now-available-elastic-fabric-adapter-efa-for-tightly-coupled-hpc- workloads/
https://aws.amazon.com/blogs/aws/now-available-elastic-fabric-adapter-efa-for-tightly-coupled-hpc- workloads/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/compute-optimized-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/compute-optimized-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/compute-optimized-instances.html
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/nitro/
https://aws.amazon.com/ec2/nitro/
https://doi.org/10.1504/IJHPCN.2019.098579
https://doi.org/10.1504/IJHPCN.2019.098579
https://doi.org/10.1016/j.cpc.2021.108105
https://doi.org/10.1145/2807591.2807623
https://doi.org/10.1145/2807591.2807623
https://catalog.us-east-1.prod.workshops.aws/workshops/dd0ffcb3-ffc1-4b58-8c4b-09f9846549c7/en-US
https://catalog.us-east-1.prod.workshops.aws/workshops/dd0ffcb3-ffc1-4b58-8c4b-09f9846549c7/en-US
https://catalog.us-east-1.prod.workshops.aws/workshops/dd0ffcb3-ffc1-4b58-8c4b-09f9846549c7/en-US
https://mvapich.cse.ohio-state.edu/benchmarks/
https://mvapich.cse.ohio-state.edu/benchmarks/
https://github.com/aws/aws-parallelcluster/issues/1143
https://github.com/aws/aws-parallelcluster/issues/1143
https://www.nas.nasa.gov/publications/npb.html
https://www.nas.nasa.gov/publications/npb.html
https://doi.org/10.1007/978-3-319-32149-3_34
https://doi.org/10.1007/978-3-319-32149-3_34
https://doi.org/10.1007/978-3-319-62136-4_5
https://doi.org/10.1007/978-3-319-62136-4_5
http://ipm-hpc.sourceforge.net/
http://ipm-hpc.sourceforge.net/

Article Title 23

Conference on Cluster Computing (CLUS-
TER), pp. 303–313 (2020). IEEE

[60] Kumar, S., Dalal, S., Dixit, V.: The osi
model: Overview on the seven layers of
computer networks. International Journal of
Computer Science and Information Technol-
ogy Research 2(3), 461–466 (2014)

[61] Shalev, L., Ayoub, H., Bshara, N., Sabbag,
E.: A cloud-optimized transport protocol for
elastic and scalable hpc. IEEE Micro 40(6),
67–73 (2020). https://doi.org/10.1109/MM.
2020.3016891

[62] Amazon Web Services: AWS EC2 HPC6i
Instance Types. Amazon Web Services
(2022). https://aws.amazon.com/es/ec2/
instance-types/hpc6i/

[63] Amazon Web Services: New Gen-
eral Purpose, Compute Optimized,
and Memory Optimized Amazon EC2
Instances with Higher Packet Process-
ing Performance. Amazon Web Services.
https://aws.amazon.com/blogs/aws/new-
general-purpose-compute-optimized-and-
memory-optimized-amazon-ec2-instances-
with-higher-packet-processing-performance/

[64] Azure HBv2-Series Virtual Machines.
https://learn.microsoft.com/en-us/azure/
virtual-machines/hbv2-series

Tamara Dancheva is a PhD student at the
Basque Center for Applied Mathematics. She
received her Master in Computational Engineering
at the University of Strasbourg. She holds a bach-
elor in Computer Science and Engineering. Her
research focus is on computational mechanics and
HPC. Within the frame of the H2020 ENABLE

project she is working on enhancing mechanical
behavior law models within an HPC setting.

Specialist in the thermo-mechanical modelling
of machining processes and has taken part on
several national and international projects. His
recent work deals with machining of composites
and titanium alloys produced by additive manu-
facturing. Moreover, he has worked in the research
center Ideko S.Coop and at the Universities of
Magdeburg and the ENSAM in France.

Dr. Michael Barton is currently an Iker-
basque Research Associate and Ramon & Cajal
2017 Research Fellow at BCAM. Prior joining
BCAM, he was a post-doctoral fellow at JKU
Linz (Austria), Technion (Israel), King Abdullah
University of Science and Technology KAUST
(Saudi Arabia). He has published over 50 peer-
reviewed research articles. His research spans
numerical analysis, geometric modelling and pro-
cessing, and approximation and rationalization of
curved (NURBS) objects.

https://doi.org/10.1109/MM.2020.3016891
https://doi.org/10.1109/MM.2020.3016891
https://aws.amazon.com/es/ec2/instance-types/hpc6i/
https://aws.amazon.com/es/ec2/instance-types/hpc6i/
https://aws.amazon.com/blogs/aws/new-general-purpose-compute-optimized-and-memory-optimized-amazon-ec2-instances-with-higher-packet-processing-performance/
https://aws.amazon.com/blogs/aws/new-general-purpose-compute-optimized-and-memory-optimized-amazon-ec2-instances-with-higher-packet-processing-performance/
https://aws.amazon.com/blogs/aws/new-general-purpose-compute-optimized-and-memory-optimized-amazon-ec2-instances-with-higher-packet-processing-performance/
https://aws.amazon.com/blogs/aws/new-general-purpose-compute-optimized-and-memory-optimized-amazon-ec2-instances-with-higher-packet-processing-performance/
https://learn.microsoft.com/en-us/azure/virtual-machines/hbv2-series
https://learn.microsoft.com/en-us/azure/virtual-machines/hbv2-series

	Introduction
	Literature Review
	Goals and contributions
	Configuration
	Amazon EC2 and AWS ParallelCluster
	Beskow - Cray XC40 supercomputer

	Benchmarks
	OSU Micro-Benchmarks
	Point-To-Point MPI benchmarks
	Collective MPI Benchmarks

	NAS Parallel Benchmarks
	OpenMP benchmarks
	MPI benchmarks

	Massively parallel FEniCS-HPC application
	CFD Model
	Aerodynamics simulation of a Perrinn F1 car
	MPI profiling
	Results
	Performance comparison
	Strong scaling on AWS EC2 cloud
	Compute cost comparison

	Discussion and limitations
	Compute power
	Network
	Software maintenance
	Overall performance

	Conclusion
	Acknowledgments

