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A B S T R A C T

Dengue fever is the most important viral mosquito-borne disease worldwide, with approximately
3.9 billion people at risk of acquiring dengue infection. Measures against mosquito bite combined
with vector control programs to reduce mosquito population have been used in endemic countries
for several years. Most recently, vaccines have become an important ally to prevent and control
disease transmission. Economic costs of dengue control programs vary from region to region and
therefore designing an optimal control strategy must be evaluated at different epidemiological
contexts. Using a multi-strain vector-host mathematical model, we investigate the impact of
different control measures to reduce dengue prevalence. A detailed sensitivity analysis to identify
the key parameters influencing disease transmission is followed by an exploratory analysis of
the possible solutions for the optimal control problem considering preventive measures to avoid
mosquito bites, reduce mosquito population and vaccinate human hosts. The proposed cost
functional includes a weighted sum of several efforts (not necessarily quantified as economic
costs) for the controls which are evaluated alone and combined. The control system is analyzed
using the Pontryagin‘s Principle for optimal control where different strategies are compared.
Our results have shown that the simultaneous use of intervention measures are highly effective
to reduce disease cases, however, the use of a single control measure can be as effective as the
use of two or more controls combined. A careful evaluation of the epidemiological scenario
is advised before designing strategies for disease prevention and control, allowing an optimal
allocation of the public health resources.

1. Introduction
Mathematical modeling plays an important role in predicting new disease cases, assessing risks and evaluating the

impact of the various control measures implemented during an outbreak. While the dynamics of infectious diseases are
by nature non-linear, the understanding of such non-linear processes is vital, both for medical and economic reasons.
Optimal control theory is often used to investigate the effect of intervention measures implementation in the context
of public health [1–3], with the Pontryagin’s Principle being used by several authors to evaluate the performance of
vaccination and medical treatment, for example. In this paper, we evaluate the impact of the available public health
measures used in endemic countries to control the spread of dengue fever. Differently from the already existing models,
we investigate a multi-strain vector-host framework that includes the combination of two biological features of dengue
fever epidemiology generating complex behavior already in simple epidemiological systems, the disease enhancement
factor and the cross protection period [4].

Dengue fever is a major public health problem. With about half of the world’s population at risk of acquiring a
infection, disease severity is influenced by the immunological status of the individual, seronegative or seropositive,
prior to a natural infection. While a primary dengue infection in humans is usually asymptomatic or results in mild
disease clinical manifestation, the immunological response on exposure to a heterologous dengue serotype is complex,
recognized to be a risk factor for progressing to severe disease characterized by hemorrhagic symptoms via the so-called
Antibody-Dependent Enhancement (ADE) process [5–10].

Caused by four antigenically distinct virus, DENV-1, DENV-2, DENV-3 and DENV-4, the virus is transmitted
by the infected Aedes mosquitoes. With approximately 400 million dengue infections every year [11–13], treatment
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of uncomplicated dengue cases is only supportive, while severe dengue cases require careful attention and proactive
treatment of eventual hemorrhagic symptoms.

The World Health Organization (WHO) advocates combined control approaches for dengue control, and a safe,
effective and affordable dengue vaccine against the four serotypes (tetravalent vaccine) would represent a significant
advance for the control of the disease. Up to date, two tetravalent dengue vaccines have completed the phase 3 clinical
trial: Dengvaxia, developed by Sanofi Pasteur that is now licensed in several countries [14], and the Qdenga (TAK-003)
vaccine, developed by Takeda Pharmaceutical Company [15, 16]. While Dengvaxia has resulted in serious adverse
events in seronegative individuals compared with age-matched seronegative controls [17–22], long-term surveillance
consisting of prudent and careful observation of Qdenga vaccine recipients is required [23, 24], since serotype specific
negative vaccine efficacy was observed for vaccinated seronegative individuals [25].

Mathematical models describing dengue fever epidemiology go back to 1970 [26]. To date, various aspects of the
disease have been studied through mathematical models. A careful review of dengue modeling framework was recently
published [27], where three structural multi-strain approaches were studied, the within-host, the vector-host, and the
host-to-host transmission models. The within-host framework is built to describe viral replication and immunological
responses affecting differently disease outcomes in primary and secondary infections, see e.g. [28, 29], while the other
two approaches aim to describe disease transmission at population level. On the one hand, the host-to-host approach
describes the disease transmission dynamics considering a simplified host-host contact and including the effect of
seasonality to mimic abundance of mosquito population, see e.g. [4, 17, 30–38], on the other hand, the vector-host
approach considers the explicit dynamics for the mosquito population affecting the disease transmission dynamics, see
e.g. [34, 39, 40].

Coupling vector dynamics into the host-host modeling framework is critical to evaluate the impact of disease control
at population level, since vector control to reduce mosquito population is the mostly used public health intervention
measure worldwide. Vector-host dengue models dealing with optimal control problems are often proposed to evaluate
the effect of a different combination of intervention measures, from disease transmission awareness and vaccination,
including the novel strategy of transgenic vectors carrying the bacteria Wolbachia to mosquito population, see e.g.
references [41–45]. These models have provided valuable information on the effect of such control measures at the
population level. However, their formulation are often simplified such that important biological features are often not
well integrated.

Aiming at evaluating the impact of the available public health measures to control the spreading of dengue fever,
we propose a modeling framework that couples explicitly the vector dynamic into the two-serotype host model [46]
that is needed to capture differences between primary and secondary infections. The optimal control problem is
proposed to evaluate the effect of three different control measures on disease prevalence: i) self-protection measures
against mosquito bites, ii) vector control programs to reduce mosquito population and iii) vaccination of seropositive
individuals only, following the recent recommendation by the WHO [47].

This paper is organized as follows. The mathematical model is described in Section 2, where we discuss the
boundedness of solutions and present the model analysis. In Section 3, a detailed sensitivity analysis is conducted
to identify the model key parameters. The optimal control model is described in Section 4 with the results presented
for different scenarios of disease control in Section 5. The paper is finalized with discussion and conclusion remarks.

2. The two-infection vector-host dengue model
The proposed two-infection vector-host dengue model is a refined version of the model previously proposed

by Rashkov and Kooi, see reference [40], where the explicit mosquito population dynamics is coupled to the host
transmission model proposed by [4, 48]. Although the incorporation of vector dynamics in a simple SIR model is
straightforward, the multi-strain aspect increases the complexity of the system.

For the host modeling framework, we use an SIR-SIR type model [46]. The model is extended to include strain
structure of pathogens. For the sake of simplicity, only two different dengue serotypes 𝑖 = 1, 2 are considered,
and therefore, only two infections are possible. This constraint is justified in [4, 30], showing that this minimalistic
framework is complex enough to describe differences between primary and secondary infections, with a qualitatively
good agreement between model simulation and empirical data.

For the host dynamics, susceptible individuals are stratified by their immunological status prior to a natural
infection, seronegative 𝑆, i.e. susceptible individuals who were never exposed to any dengue serotype, and seropositive
𝑆𝑖, with 𝑖 = 1, 2 i.e. susceptible individuals who were already exposed to one of the dengue serotypes. Hence,
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Figure 1: Flow chart of the host model in yellow, and the vector model in orange. Circles represent the compartments for
each disease-related stage (for humans) and infection-related stage (for mosquitoes) with arrows indicating the transitions
to coupling the systems.

the disease related states in humans are: primarily infected individuals with strain type 1, 𝐼1, or strain type 2, 𝐼2,
recovered from the first infection with strain 1, 𝑅1, or strain 2, 𝑅2, seropositive infected individuals experiencing
a secondary infection with strain type 2, 𝐼12, previously infected with serotype 1 (𝑆1), and seropositive infected
individuals experiencing a secondary infection with strain type 1, 𝐼21, previously infected with serotype 1 (𝑆2). Finally,
recovered and life-long immune individuals 𝑅. The demographic rate 𝜇 is included, with natural mortality and birth
rates assumed to be equal, hence assuming a constant population size 𝑁 for humans.

For the vector dynamics, we use the SI type model, an extension of the proposed model in references [17, 39], since
mosquitoes remain infected with a unique strain type throughout their entire life spam. The system is coupled with the
host model as such: susceptible mosquitoes 𝑆𝑣 become infected with strain type 1, 𝑉1, or with strain type 2, 𝑉2, after
biting an infected host with serotype 1 or 2 respectively. The demographic rate 𝜈 is included, with natural mortality
and birth rates assumed to be equal, hence assuming a constant population size 𝑀 for mosquitoes.

Human infection occurs when an infected mosquito 𝑉𝑖, with 𝑖 = 1, 2, with bites a susceptible seronegative or
seropositive human 𝑆, 𝑆𝑖. Differently from the mosquitoes, humans hosts can acquire up to two infections since birth,
each infection with a single strain at time, due to the life long immunity conferred after an infection. Note that a
secondary infection can only occur with a distinct (heterologous) serotype than the one causing a primary infection,
and has higher risk of severe disease manifestation in humans via the ADE process (parametrized by the scaling by
the disease enhancement factor 𝜙). While the value of 𝜙 differentiates the secondary infection transmission rate from
the baseline infectivity of primary infection 𝜃, it can be tuned to reflect different situations: a value of 𝜙 > 1 reflects
the fact that severe cases, i.e. secondary infections, have larger infectivity than mild cases, i.e. primary infections due
to, for example, the enhanced viral load from the the ADE process, while 𝜙 < 1 indicates that severe cases contribute
less to the force of infection than primary infections, due to, for example, their lower interaction with mosquitoes once
they are hospitalized and isolated [4, 30–33, 48, 49]. Conversely, susceptible mosquitoes (𝑆𝑣) become infected at rate
𝜃 after biting infected individuals in a primary infection or at rate 𝜙𝜃 after biting infected individuals experiencing a
secondary infection. Infected mosquito transmit the virus to a susceptible host with the transmission rate 𝛽.

The model dynamics illustrated in Fig. 1 is a refinement of the model proposed in [40]. The main differences are
highlighted in blue in the corresponding coupled ODE system (1), for the following considerations: i) reduction in
transmissibility from humans to vectors when vectors acquire the infection from humans experiencing their secondary
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infection (𝜙 < 1), as proposed in [48], and ii) symmetric transmission rate from an infected mosquito to seronegative
and seropositive susceptible humans (𝛽).

𝑆̇ = −
𝛽
𝑀

𝑆(𝑉1 + 𝑉2) + 𝜇(𝑁 − 𝑆),

𝐼1 =
𝛽
𝑀

𝑆𝑉1 − (𝛾 + 𝜇)𝐼1,

𝐼2 =
𝛽
𝑀

𝑆𝑉2 − (𝛾 + 𝜇)𝐼2,

𝑅̇1 = 𝛾𝐼1 − (𝛼 + 𝜇)𝑅1,
𝑅̇2 = 𝛾𝐼2 − (𝛼 + 𝜇)𝑅2,

𝑆̇1 = 𝛼𝑅1 − 𝜇𝑆1 −
𝛽
𝑀

𝑆1𝑉2, (1)

𝑆̇2 = 𝛼𝑅2 − 𝜇𝑆2 −
𝛽
𝑀

𝑆2𝑉1,

̇𝐼12 =
𝛽
𝑀

𝑆1𝑉2 − (𝛾 + 𝜇)𝐼12,

̇𝐼21 =
𝛽
𝑀

𝑆2𝑉1 − (𝛾 + 𝜇)𝐼21,

𝑅̇ = 𝛾(𝐼12 + 𝐼21) − 𝜇𝑅,

𝑆̇𝑣 = − 𝜃
𝑁

𝑆𝑣(𝐼1 + 𝐼2 + 𝜙(𝐼21 + 𝐼12)) + 𝜈(𝑀 − 𝑆𝑣),

𝑉̇1 = 𝜃
𝑁

𝑆𝑣(𝐼1 + 𝜙𝐼21) − 𝜈𝑉1,

𝑉̇2 = 𝜃
𝑁

𝑆𝑣(𝐼2 + 𝜙𝐼12) − 𝜈𝑉2.

Both dengue serotypes are assumed to be symmetric, see references [35, 50], and therefore the dynamics of
the complete vector-host model is described as follows. Susceptible individuals become infected with rate 𝛽 after a
mosquito bite, recovering with a recovery rate 𝛾 . Although human hosts remain lifelong immune against the strain
causing a primary infection, a short Temporary Cross-Immunity (TCI) period 𝛼, conferred by the antibody levels
produced during the immune response of the first infection [28, 29], is included, protecting these individuals against an
immediate secondary dengue infection. Waning protection occurs with individuals becoming susceptible seropositive
after the TCI period, able to acquire a secondary infection with a heterologous dengue serotype. The clinical response
on exposure to a second serotype is complex due to the ADE process, where the pre-existing antibodies to previous
dengue infection do not neutralize but rather enhance the new infection. Individuals experiencing a secondary infection
are assumed to develop severe disease prone to hospitalization, assumed to have a slightly lower transmission rate
(𝜙 < 1) than individuals experiencing a primary infection, according to the results published in reference [51], where
persons with unapparent dengue infections were more infectious to mosquitoes than clinically symptomatic patients.

2.1. Positivity and boundedness of the solutions
In this section, the positivity and boundedness of the solutions of the system (1) is proved. From the system (1),

the following is verified

𝑑𝑆
𝑑𝑡

|

|

|

|𝑆=0
= 𝜇𝑁 > 0,

𝑑𝐼1
𝑑𝑡

|

|

|

|𝐼1=0
=

𝛽
𝑀

𝑆𝑉1 ≥ 0,
𝑑𝐼2
𝑑𝑡

|

|

|

|𝐼2=0
=

𝛽
𝑀

𝑆𝑉2 ≥ 0,
𝑑𝑅1
𝑑𝑡

|

|

|

|𝑅1=0
= 𝛾𝐼1 ≥ 0,

𝑑𝑅2
𝑑𝑡

|

|

|

|𝑅2=0
= 𝛾𝐼2 ≥ 0,

𝑑𝑆1
𝑑𝑡

|

|

|

|𝑆1=0
= 𝛼𝑅1 > 0,

𝑑𝑆2
𝑑𝑡

|

|

|

|𝑆2=0
= 𝛼𝑅2 ≥ 0,

𝑑𝐼12
𝑑𝑡

|

|

|

|𝐼12=0
=

𝛽
𝑀

𝑆1𝑉2 ≥ 0,
𝑑𝐼21
𝑑𝑡

|

|

|

|𝐼21=0
=

𝛽
𝑀

𝑆2𝑉1 ≥ 0,

𝑑𝑅
𝑑𝑡

|

|

|

|𝑅=0
= 𝛾(𝐼12+𝐼21) ≥ 0,

𝑑𝑆𝑣
𝑑𝑡

|

|

|

|𝑆𝑣=0
= 𝜈 > 0,

𝑑𝑉1
𝑑𝑡

|

|

|

|𝑉1=0
= 𝜃

𝑁
𝑆𝑣(𝐼2+𝜙𝐼21) ≥ 0

𝑑𝑉2
𝑑𝑡

|

|

|

|𝑉2=0
= 𝜃

𝑁
𝑆𝑣(𝐼1+𝜙𝐼12) ≥ 0.
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All the above inequalities are non-negative on the boundary planes. Hence, if we begin in the interior of the non-
negative bounded cone 𝑅10

+ , we will remain in this cone, since the vector field direction is not outward of the bounding
planes. Thus, the solutions of the system (1) being non-negative is guaranteed. Furthermore, it is possible to conclude
that the total populations 𝑁 and 𝑀 satisfies

𝑑𝑁
𝑑𝑡

= 0

and
𝑑𝑀
𝑑𝑡

= 0.

Therefore, the total human population 𝑁 = 𝑆 + 𝐼1 + 𝐼2 + 𝑆1 + 𝑆2 +𝑅1 +𝑅2 + 𝐼12 + 𝐼21 +𝑅 and the total mosquito
population 𝑀 = 𝑆𝑣 + 𝑉1 + 𝑉2 are constant, and all the solutions 𝑆, 𝐼1, 𝐼2, 𝑆1, 𝑆2, 𝑅1, 𝑅2, 𝐼12, 𝐼21, 𝑅 are bounded by
𝑁 . Similarly, the solutions 𝑆𝑣, 𝑉1, 𝑉2 are bounded by 𝑀 . Hence, the biologically feasible region of the model system
(1) is given by the following positive invariant set:

Ω = {(𝑆, 𝐼1, 𝐼2, 𝑆1, 𝑆2, 𝑅1, 𝑅2, 𝐼12, 𝐼21, 𝑉1, 𝑉2) ∈ 𝑅11
| 0 ≤ 𝑆, 𝐼1, 𝐼2, 𝑆1, 𝑆2, 𝑅1, 𝑅2, 𝐼12, 𝐼21 ≤ 𝑁, (2)

𝑆 + 𝐼1 + 𝐼2 + 𝑆1 + 𝑆2 + 𝑅1 + 𝑅2 + 𝐼12 + 𝐼21 ≤ 𝑁, 0 ≤ 𝑆𝑣, 𝑉1, 𝑉2 ≤ 𝑀, and𝑆𝑣 + 𝑉1 + 𝑉2 ≤ 𝑀}.

All parameters are non-negative constants and thus, in order to work with the fraction of each sub-population we
define

𝑠 = 𝑆
𝑁

, 𝑖1 =
𝐼1
𝑁

, 𝑖2 =
𝐼2
𝑁

, 𝑟1 =
𝑅1
𝑁

, 𝑟2 =
𝑅2
𝑁

𝑠1 =
𝑆1
𝑁

, 𝑠2 =
𝑆2
𝑁

, 𝑖12 =
𝐼12
𝑁

, 𝑖21 =
𝐼21
𝑁

, 𝑟 = 𝑅
𝑁

= 𝑟,

𝑠𝑣 =
𝑆𝑣
𝑀

,𝑣1 =
𝑉1
𝑀

,𝑣2 =
𝑉2
𝑀

.

The system (1) can be rewritten in the following form

𝑠̇ = −𝛽𝑠(𝑣1 + 𝑣2) + 𝜇(1 − 𝑠),
̇𝑖1 = 𝛽𝑠𝑣1 − (𝛾 + 𝜇)𝑖1,
̇𝑖2 = 𝛽𝑠𝑣2 − (𝛾 + 𝜇)𝑖2,
̇𝑟1 = 𝛾𝑖1 − (𝛼 + 𝜇)𝑟1,
̇𝑟2 = 𝛾𝑖2 − (𝛼 + 𝜇)𝑟2,
̇𝑠1 = 𝛼𝑟1 − 𝜇𝑠1 − 𝛽𝑠1𝑣2, (3)
̇𝑠2 = 𝛼𝑟2 − 𝜇𝑠2 − 𝛽𝑠2𝑣1,
̇𝑖12 = 𝛽𝑠1𝑣2 − (𝛾 + 𝜇)𝑖12,
̇𝑖21 = 𝛽𝑠2𝑣1 − (𝛾 + 𝜇)𝑖21,
𝑟̇ = 𝛾(𝑖12 + 𝑖21) − 𝜇𝑟,
̇𝑠𝑣 = −𝜃𝑠𝑣(𝑖1 + 𝜙𝑖21 + 𝑖2 + 𝜙𝑖12) + 𝜈(1 − 𝑠𝑣),
𝑣1 = 𝜃𝑠𝑣(𝑖1 + 𝜙𝑖21) − 𝜈𝑣1,
𝑣2 = 𝜃𝑠𝑣(𝑖2 + 𝜙𝑖12) − 𝜈𝑣2.

where the solution of each equation describes the fraction of the prevalence of each sub-population (class).

2.2. Model analysis
2.2.1. Disease-free equilibrium 𝐸0

The Equation System (3) has the disease-free equilibrium, given by

𝐸0 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0) .
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2.2.2. The basic reproduction number 0
The basic reproduction number of the Equation System (3) is given by

0 =

√

𝜃𝛽
𝜈(𝛾 + 𝜇)

.

The term 𝛽
(𝛾 + 𝜇)

denotes the expected number of infected mosquitoes generated by a single infected human during his

infectious period. Similarly, the term 𝜃
𝜈

denotes the expected number of infected humans generated by a single infected
mosquito during his infectious period. The product of these two terms, 0, represents the number of infected hosts
generated by a single infected human and a single infected mosquito during the whole infectious period. Calculations
of the 0 and details are given in the Appendix (6).
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Figure 2: Effect of the transmission rates on 0 values. In (a) we vary the human transmission rate 𝛽 and the mosquito
transmission 𝜃. In (b) the human transmission rate and natural mortality rate for mosquitoes 𝜈 are varied. The baseline
values of the model parameters are shown in Table 1.

Figure 2(a) illustrates the impact of the infection rates of humans and mosquitoes on the basic reproduction number
0, while as in Fig. 2(b) the natural mortality rate of mosquitoes is shown. The choice of these parameters are in
accordance with the sensitivity analysis performed in Section 3, and are reflecting on the optimal control problem
formulated in Section 4. Both, the human transmission rate (𝛽) and the mosquito transmission rate (𝜃) have a direct
effect on the basic reproduction number 0, that is, if the values for 𝛽 and 𝜃 increase (or decrease), then the value of
0 will increase (or decrease) as well. As a result, disease spreading could be reduced by using public health measures
able to reduce the viral transmission from humans to vectors and from vectors to humans, such as, for example, the
use of repellents, mosquito nets and effective vaccines. On the other hand, Figure 2(b) shows an indirect effect of the
mortality rates of mosquitoes (𝜈), that is, if mosquito mortality increases, the value of 0 decreases. Here, the disease
spreading could be also controlled by efficacious mosquito eradication programs.

3. Sensitivity analysis (PRCC)
Aiming to identify and rank the key parameters whose uncertainties contribute more to the variability of the disease

prevalence (the model output), we use the approach described in references [52, 53], and perform a global sensitivity
analysis of system. The sensitivity analysis of the vector-host system is performed using two statistical techniques, the
Latin Hypercube Sampling (LHS) and Partial Rank Correlation Coefficients (PRCCs).

The LHS method varies all the parameters together in a defined interval and in a systematic way, generating and
providing a quasi-random sample of the parameter values, the so called LHS matrix, that will be used for the PRCC
plot. The PRCC method measures the monotonicity between the LHS parameters and the model output after removing
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the linear effects of all parameters, except the parameter of interest. Hence, it connects the input parameters and the
response function by assigning values between −1 and 1. These values represent the strength of correlation between
them, while the sign represents the type of correlations, positive or negative.

Figure 3: LHS Matrix correlation for the model parameters. With 200 iterations per parameter, we consider ±25% deviation
from the baseline parameter value listed in Table 1.

(a) Output infected host population 𝑖 = 𝑖1 + 𝑖2 + 𝑖12 + 𝑖21 (b) Output infected mosquito population 𝑣 = 𝑣1 + 𝑣2

Figure 4: Effect of model parameters uncertainties. In (a) PRCC for the infected human population and in (b) PRCC for
the infected mosquito population. The baseline parameter values used in these computations are listed in Table 1.

In detail, for the LHS method, we consider an uniform distribution for each input parameter. With ±25% deviation
from the baseline parameter values (see Table 1), 200 simulations are obtained. Results are shown in Figure 3, where the
correlation between each parameter and the p-values are shown. Strong correlation is characterized by p-values below
0.05. For the PRCC analysis, the epidemiological parameters 𝛽, 𝛾, 𝛼, 𝜇, 𝜙, 𝜃 and 𝜈, are considered as input parameters,
while the infected host variables 𝑖 = (𝑖1+𝑖2+𝑖12+𝑖21) and the infected mosquitoes variables 𝑣 = 𝑣1+𝑣2, are considered
as response functions, with nonlinear and monotone relationships being recognized between the infected populations
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Table 1
The vector-host model baseline parameters obtained from references [4, 40, 46, 48, 54]. Other parameter values eventually
used for numerical simulations will be explicitly stated in the specific figure captions.

parameters description baseline values
𝛽 : transmission rate from vector to humans 104𝑦−1 (2 𝛾)
𝛾 : recovery rate 52𝑦−1 (7 days)
𝛼 : temporary cross-immunity rate 2𝑦−1 (6 months)
𝜙 : ratio of secondary infections contribution to the overall force of infection 0.6 or 2.6
𝜇 : natural mortality and birth rates (humans) 1∕65𝑦−1
𝜃 : transmission rate from host to vector 73𝑦−1 (2 𝜈)
𝜈 : natural mortality and birth rate (mosquito) 36.5𝑦−1 (20 days)
𝜌 : vaccine distribution to seropositive per time unit 0.2
𝜂 : additional mosquito killing rate 0.4
population variables
𝑁 : total human population 1000
𝑀 : total mosquito population 10000
control variables
𝑢1(𝑡) : measures against mosquito bites (0, 1)
𝑢2(𝑡) : measures to reduce mosquito population (0, 1)
𝑢3(𝑡) : vaccination of seropositive individuals (0, 1)

weight constants
𝐴1 = 𝐴2 = 𝐴3 = 𝐴4 : weight constant for infective human population 1
𝐴5 : weight constant for mosquito population 0
𝐷1 : weight constant for control 𝑢1 0.3
𝐷2 : weight constant for control 𝑢2 0.9
𝐷3 : weight constant for control 𝑢3 0.7

and the input parameters, see Figure 4. In Fig. 4(a), the correlations for the total infected human population are shown, in
which the parameters 𝛽, 𝜇 and 𝜙 have a direct correlation with the disease spreading, i.e, the increase/decrease of these
parameters values lead to increase/decrease of infections. On the other hand, the parameter 𝛾 has a indirect correlation
effect with the total infected human population, i.e, the increase of 𝛾 value will decrease the number of infections.
Similarly, the positive correlations for the infected mosquito population are observed for the following parameters 𝜃
and 𝜙, while the parameter 𝜈 has a negative correlation effect, see Fig. 4(b).

These results will be used to evaluate the impact of the available public health measures for dengue control targeting
the parameters with highest impact on the model output.
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4. The two-infection vector-host dengue model with optimal control
The results presented in the previous Section have shown that the transmission rates for human hosts and vectors,

𝛽 and 𝜃, the disease enhancement factor 𝜙 and the mosquitoes mortality rate 𝜈 are the model parameters affecting most
the dynamics of the system, with high impact on disease prevalence. Our model described in Equation System (3) is
extended to include the available control measures associated with each one of the parameters and will be analysed as
an optimal control problem. The control methods are divided into three categories.

i. Control measures to reduce disease transmission 𝑢1(𝑡):
In the absence of a save and effective vaccine, self-protection measures such as the use of repellent or bed nets,
for example, are effective strategies against mosquito bites reducing transmission from mosquito to humans (𝛽)
and from humans to mosquitoes (𝜃).
The term 𝑢1(𝑡) is incorporated into the system to represent the reduction in transmissibility from humans to
vectors and from vectors to humans.

ii. Control measures to reduce mosquito population 𝑢2(𝑡):
Vector control includes mosquito surveillance combined with different methods to reduce mosquito population
at larger geographical scales. The existing mosquito control programs aim at eliminating mosquito larval
habitats, applying larvicides to kill mosquito larvae, or spraying insecticides from trucks or aircrafts to kill
adult mosquitoes [55].
The term 𝑢2(𝑡) is incorporated into the system to represent the reduction of mosquito populations by using
insecticide treatment applied to large areas, and hence, more costly than the self protection measures against
mosquito bites. Moreover, as the insecticide product may vary in quality and effectiveness, we incorporate the
term as 𝜂 as an additional killing rate for mosquitoes as proposed by [56].

iii. Vaccine administration to seropositive individuals 𝑢3(𝑡):
The sustained failures to control vector abundance using classical vector control methods have resulted in a
large effort to develop new vaccines. A safe, effective and affordable dengue vaccine against the four serotypes
(tetravalent vaccine) would represent a significant advance for the control of the disease [13]. Up to date, two
tetravalent dengue vaccines have completed their phase 3 clinical trial, the Dengvaxia vaccine [14, 57, 58],
developed by Sanofi Pasteur, and the Qdenga (TAK-003) vaccine, developed by Takeda Pharmaceutical
Company [25, 59, 60]. The Dengvaxia vaccine was licensed in 2016 and used in mass vaccination programs
in the Philippines and in Brazil in spite of vaccine trial results showing serious adverse events in vaccinated
children without history of previous dengue infection (seronegative) [17, 61]. The risks behind the Dengvaxia
vaccine recommendation was exhaustively discussed [17, 19–21, 62–64], after an age-structured model [62],
validated and parametrized with the available vaccine trial data [14, 57, 58], has shown that a significant
reduction of hospitalizations would be only possible when this vaccine would be given to individuals with
a history of previous dengue infection (seropositive). These results contradicted the results from the WHO-
SAGE modeling group [65] and by the Sanofi Pasteur’s modelling group [66], predicting a significant increase
of hospitalizations when this vaccine would be administered without prior population screening, i.e. vaccinating
both seropositive and seronegative individuals [20, 21, 62]. The individuals’ serostatus prior to vaccination was
the determinant for this vaccine efficacy and its possible benefits [21]. We note that eventually these results
have led the vaccine manufacturer to perform new tests [67], changing this vaccine recommendation by the
World Health Organization (WHO) in April 2018 [47]. With that said, it is important to mention that to a
realistic evaluation of the effect of this vaccine in a ethical vaccination programme [63] would be only possible
by vaccinating seropositive individuals only. Although this specific recommendation would involve population
screening prior to vaccination, the initial assumption was to consider that measure to be slightly less costly that
the vector control programs that are used widely and more often that the first.
Here, differently from the already existing optimal control modeling approaches, we consider vaccinating only
seropositive individuals, with the cost of population screening prior to vaccination included into the cost of
vaccine administration. Hence, to evaluate the impact of this vaccination strategy on the overall number of
infections, while keeping the costs at its minimum value, vaccination of seropositive individuals 𝑆1, and 𝑆2 is
included into the system as 𝜌𝑢3(𝑡) term, following the current vaccine recommendation strategy. The parameter
𝜌 refers to the number of vaccine doses distributed to seropositive individuals per time unit.

The extended ODE system with controls is shown in Equation System (4):
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𝑠̇ = −(1 − 𝑢1)𝛽𝑠(𝑣1 + 𝑣2) + 𝜇(1 − 𝑠),
̇𝑖1 = (1 − 𝑢1)𝛽𝑠𝑣1 − (𝛾 + 𝜇)𝑖1,
̇𝑖2 = (1 − 𝑢1)𝛽𝑠𝑣2 − (𝛾 + 𝜇)𝑖2,
̇𝑟1 = 𝛾𝑖1 − (𝛼 + 𝜇)𝑟1,
̇𝑟2 = 𝛾𝑖2 − (𝛼 + 𝜇)𝑟2,
̇𝑠1 = 𝛼𝑟1 − 𝜇𝑠1 − (1 − 𝑢1)𝛽𝑠1𝑣2 − 𝜌𝑢3𝑠1, (4)
̇𝑠2 = 𝛼𝑟2 − 𝜇𝑠2 − (1 − 𝑢1)𝛽𝑠2𝑣1 − 𝜌𝑢3𝑠2,
̇𝑖12 = (1 − 𝑢1)𝛽𝑠1𝑣2 − (𝛾 + 𝜇)𝑖12,
̇𝑖21 = (1 − 𝑢1)𝛽𝑠2𝑣1 − (𝛾 + 𝜇)𝑖21,
𝑟̇ = 𝜌𝑢3𝑠1 + 𝜌𝑢3𝑠2 + 𝛾(𝑖12 + 𝑖21) − 𝜇𝑟,
̇𝑠𝑣 = −(1 − 𝑢1)𝜃𝑠𝑣(𝑖1 + 𝜙𝑖21 + 𝑖2 + 𝜙𝑖12) + (𝜈 + 𝜂𝑢2)(1 − 𝑠𝑣),
𝑣1 = (1 − 𝑢1)𝜃𝑠𝑣(𝑖1 + 𝜙𝑖21) − (𝜈 + 𝜂𝑢2)𝑣1,
𝑣2 = (1 − 𝑢1)𝜃𝑠𝑣(𝑖2 + 𝜙𝑖12) − (𝜈 + 𝜂𝑢2)𝑣2.

4.1. The optimal control problem formulation
While the WHO advocates a combined control approaches for vector-borne diseases, the core idea of this work is

to explore the impact of different strategies to asses its effects on disease prevalence.
Using the optimal control theory, we analyze the behavior of the model shown in Equation System (4). The cost

functional corresponding to the total cost incurred for the control measures for a fixed time 𝑡𝑓 , which need to be
minimized, is given by:

𝐽 = ∫

𝑡𝑓

0
(𝐴1𝑖1 + 𝐴2𝑖2 + 𝐴3𝑖12 + 𝐴4𝑖21 + 𝐴5(𝑠𝑣 + 𝑣1 + 𝑣2) +

1
2
𝐷1𝑢1

2 + 1
2
𝐷2𝑢2

2 + 1
2
𝐷3𝑢3

2)𝑑𝑡. (5)

Here the parameters 𝐴1 ≥ 0, 𝐴2 ≥ 0, 𝐴3 ≥ 0, 𝐴4 ≥ 0 represent the constant cost for minimizing disease
prevalence in humans while the parameter 𝐴5 ≥ 0 represents the constant cost for minimizing mosquito population.
The parameters 𝐷1 ≥ 0 and 𝐷2 ≥ 0 are the cost of the control strategies used to reduce mosquito bites and mosquito
population respectivelly while the parameter 𝐷3 ≥ 0 is the cost for vaccinating seropositive individuals.

Our objective is to find the control 𝑢1∗, 𝑢2∗ and 𝑢3∗, such that

𝐽 (𝑢1∗, 𝑢2∗, 𝑢3∗) = min
𝑢1,𝑢2,𝑢3∈ℚ

𝐽 (𝑢1, 𝑢2, 𝑢3),

where ℚ is the control set which is defined as ℚ = {𝑢1, 𝑢2, 𝑢3 : measurable and 0 ≤ 𝑢1, 𝑢2, 𝑢3 ≤ 1} and 𝑡 ∈ [0, 𝑡𝑓 ].

4.2. Existence and characterization of optimal controls
Here we establish the existence of control functions that minimize the cost functional 𝐽 . The Lagrangian of this

problem is defined as:

𝐿(𝑖1, 𝑖2, 𝑖12, 𝑖21, 𝑠𝑣, 𝑣1, 𝑣2, 𝑢1, 𝑢2, 𝑢3) = 𝐴1𝑖1+𝐴2𝑖2+𝐴3𝑖12+𝐴4𝑖21+𝐴5(𝑠𝑣+𝑣1+𝑣2)+
1
2
𝐷1𝑢1

2+ 1
2
𝐷2𝑢2

2+ 1
2
𝐷3𝑢3

2.

Theorem 1. There exist optimal controls 𝑢1∗, 𝑢2∗, 𝑢3∗ ∈ ℚ such that

𝐽 (𝑢1∗, 𝑢2∗, 𝑢3∗) = min 𝐽 (𝑢1∗, 𝑢2∗, 𝑢3∗)

subject to system (4).
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PROOF. To establish this result, we follow the Theorem 3.1 proved in [68] for the existence of optimal controls. As
discussed above, the state variables are bound to the control set ℚ. Furthermore, Lipschitz condition with respect to
state variables is satisfied by the right hand part of the equation system (4). The control set ℚ is also convex and closed
by the convexity definition, and the system (4) is linear in terms of the control variables. The integrand of the functional

𝐿 = 𝐴1𝑖1 + 𝐴2𝑖2 + 𝐴3𝑖12 + 𝐴4𝑖21 + 𝐴5(𝑠𝑣 + 𝑣1 + 𝑣2) +
1
2
𝐷1𝑢1

2 + 1
2
𝐷2𝑢2

2 + 1
2
𝐷3𝑢3

2

is convex on the control set ℚ due to the quadratic nature of the control variables. Moreover,

𝐿 = 𝐴1𝑖1+𝐴2𝑖2+𝐴3𝑖12+𝐴4𝑖21+𝐴5(𝑠𝑣+𝑣1+𝑣2)+
1
2
𝐷1𝑢1

2+ 1
2
𝐷2𝑢2

2+ 1
2
𝐷3𝑢3

2 ≥ 1
2
𝐷1𝑢1

2+ 1
2
𝐷2𝑢2

2+ 1
2
𝐷3𝑢3

2.

Considering 𝑐1 = 𝑚𝑖𝑛(𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐷1, 𝐷2, 𝐷3) > 0 and 𝑔(𝑢1, 𝑢2, 𝑢3) = 𝑐1(
1
2
𝐷1𝑢12 + 1

2
𝐷2𝑢22 + 1

2
𝐷3𝑢32),

𝐿 ≥ 𝑔(𝑢1, 𝑢2, 𝑢3) holds true and 𝑔 is continuous, satisfying the condition ∣ (𝑢1, 𝑢2, 𝑢3) ∣−1 𝑔(𝑢1, 𝑢2, 𝑢3) → ∞ whenever
∣ (𝑢1, 𝑢2, 𝑢3) ∣→ ∞. Thus, all the conditions for the existence of controls are fulfilled (for more details, please see
[68, 69] and references therein. Hence, the result is proved. □

The existing optimal solution for our problem can be found with Pontryagin’s Minimum principle [69] as follows.
We define the Hamiltonian  by

 = 𝐿(𝑖1, 𝑖2, 𝑖12, 𝑖21, 𝑠𝑣, 𝑣1, 𝑣2, 𝑢1, 𝑢2, 𝑢3) +
13
∑

𝑖=1
𝜆𝑖
𝑑𝑓𝑖
𝑑𝑡

, (6)

where 𝜆𝑖, 𝑖 = 1…13 are the adjoint variables (the time-varying Lagrange multipliers).
The conditions for optimizing the Hamiltonian are described in the following theorems.

Theorem 2. Let 𝑢∗𝑖 , 1 ≤ 𝑖 ≤ 3, be the optimal control functions and 𝑠∗, 𝑖∗1, 𝑖
∗
2, 𝑟

∗
1, 𝑟

∗
2, 𝑠

∗
1, 𝑠

∗
2, 𝑖

∗
12, 𝑖

∗
21, 𝑟

∗, 𝑠∗𝑣, 𝑣
∗
1, 𝑣

∗
2,

the corresponding state variables of the optimal control problem (1)-(2). Then there exists adjoint variables 𝜆 =
(𝜆1, 𝜆2,… , 𝜆13)𝑇 ∈ ℝ13, which satisfies the following equations

𝑑𝜆1
𝑑𝑡

= −𝜕𝐻
𝜕𝑠

= (1 − 𝑢1)𝛽𝑣1(𝜆1 − 𝜆2) + (1 − 𝑢1)𝛽𝑣2(𝜆1 − 𝜆3) + 𝜆1𝜇

𝑑𝜆2
𝑑𝑡

= −𝜕𝐻
𝜕𝑖1

= −𝐴1 + 𝜆2(𝛾 + 𝜇) + (1 − 𝑢1)𝜃𝑠𝑣(𝜆11 − 𝜆12)

𝑑𝜆3
𝑑𝑡

= −𝜕𝐻
𝜕𝑖2

= −𝐴2 + 𝜆3(𝛾 + 𝜇) + (1 − 𝑢1)𝜃𝑠𝑣(𝜆11 − 𝜆13)

𝑑𝜆4
𝑑𝑡

= −𝜕𝐻
𝜕𝑟1

= (𝛼 + 𝜇)𝜆4 − 𝛼𝜆6

𝑑𝜆5
𝑑𝑡

= −𝜕𝐻
𝜕𝑟2

= (𝛼 + 𝜇)𝜆5 − 𝛼𝜆7

𝑑𝜆6
𝑑𝑡

= −𝜕𝐻
𝜕𝑠1

= 𝜇𝜆6 + 𝜌𝑢3(𝜆6 − 𝜆10) + (1 − 𝑢1)𝛽𝑣2(𝜆6 − 𝜆8)

𝑑𝜆7
𝑑𝑡

= −𝜕𝐻
𝜕𝑠2

= 𝜇𝜆7 + 𝜌𝑢3(𝜆7 − 𝜆10) + (1 − 𝑢1)𝛽𝑣1(𝜆7 − 𝜆9)

𝑑𝜆8
𝑑𝑡

= − 𝜕𝐻
𝜕𝑖12

= −𝐴3 + 𝜆8(𝜇 + 𝛾) − 𝜆10𝛾 + (1 − 𝑢1)𝜃𝑠𝑣𝜙(𝜆11 − 𝜆13)

𝑑𝜆9
𝑑𝑡

= − 𝜕𝐻
𝜕𝑖21

= −𝐴4 + 𝜆9(𝜇 + 𝛾) − 𝜆10𝛾 + (1 − 𝑢1)𝜃𝑠𝑣𝜙(𝜆11 − 𝜆12)

𝑑𝜆10
𝑑𝑡

= −𝜕𝐻
𝜕𝑟

= 𝜆10𝜇

𝑑𝜆11
𝑑𝑡

= −𝜕𝐻
𝜕𝑠𝑣

= −𝐴5 + (𝜈 + 𝜂𝑢2)𝜆11 + (1 − 𝑢1)𝜃(𝑖1 + 𝜙𝑖21)(𝜆11 − 𝜆12) + (1 − 𝑢1)𝜃(𝑖2 + 𝜙𝑖12)(𝜆11 − 𝜆13)
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𝑑𝜆12
𝑑𝑡

= −𝜕𝐻
𝜕𝑣1

= −𝐴5 + (𝜈 + 𝜂𝑢2)𝜆12 + (1 − 𝑢1)𝛽𝑠(𝜆1 − 𝜆2) + (1 − 𝑢1)𝛽𝑠1𝜆7

𝑑𝜆13
𝑑𝑡

= −𝜕𝐻
𝜕𝑣2

= −𝐴5 + (𝜈 + 𝜂𝑢2)𝜆13 + (1 − 𝑢1)𝛽𝑠(𝜆1 − 𝜆3) + (1 − 𝑢1)𝛽𝑠1𝜆6.

PROOF. Let 𝑠̃, 𝑖1, 𝑖2, 𝑟1, 𝑟2, 𝑠1, 𝑠2, 𝑖12, 𝑖21, 𝑟̃, 𝑠𝑣, 𝑣1, 𝑣2 be the optimum values of 𝑠, 𝑖1, 𝑖2, 𝑟1, 𝑟2, 𝑠1, 𝑠2, 𝑖12, 𝑖21, 𝑟, 𝑠𝑣,
𝑣1, 𝑣2 respectively, and 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6, 𝜆7, 𝜆8, 𝜆9, 𝜆10, 𝜆11, 𝜆12, 𝜆13 be the solution of the system of differential
equations (4). By using [68, 69], we prove this theorem where the transversality conditions are given by

𝜆𝑖(𝑡𝑓 ) = 0, 𝑖 = 1…13. (7)

Let 𝑢∗𝑖 , 1 ≤ 𝑖 ≤ 3, be the optimal control functions and 𝑠∗, 𝑖∗1, 𝑖
∗
2, 𝑟

∗
1, 𝑟

∗
2, 𝑠

∗
1, 𝑠

∗
2, 𝑖

∗
12, 𝑖

∗
21, 𝑟

∗, 𝑠∗𝑣, 𝑣
∗
1, 𝑣

∗
2, the

corresponding state variables. Then, the Pontryagin’s Minimum Principle ensures the existence of the following adjoint
variables 𝜆 = (𝜆1, 𝜆2,… , 𝜆13)𝑇 ∈ ℝ13, which satisfy the following canonical equations:

𝑑𝜆1
𝑑𝑡

= −𝜕𝐻
𝜕𝑠

,
𝑑𝜆2
𝑑𝑡

= −𝜕𝐻
𝜕𝑖1

,
𝑑𝜆3
𝑑𝑡

= −𝜕𝐻
𝜕𝑖2

,
𝑑𝜆4
𝑑𝑡

= −𝜕𝐻
𝜕𝑟1

,
𝑑𝜆5
𝑑𝑡

= −𝜕𝐻
𝜕𝑟2

,
𝑑𝜆6
𝑑𝑡

= −𝜕𝐻
𝜕𝑠1

,
𝑑𝜆7
𝑑𝑡

= −𝜕𝐻
𝜕𝑠2

,

𝑑𝜆8
𝑑𝑡

= − 𝜕𝐻
𝜕𝑖12

,
𝑑𝜆9
𝑑𝑡

= − 𝜕𝐻
𝜕𝑖21

,
𝑑𝜆10
𝑑𝑡

= −𝜕𝐻
𝜕𝑟

,
𝑑𝜆11
𝑑𝑡

= −𝜕𝐻
𝜕𝑠𝑣

,
𝑑𝜆12
𝑑𝑡

= −𝜕𝐻
𝜕𝑣1

,
𝑑𝜆13
𝑑𝑡

= −𝜕𝐻
𝜕𝑣2

,

following the definition given in eq. (7), and where the H is the Hamiltonian defined in (6). Thus, the adjoint system
can be obtained.

Theorem 3. The optimal controls (𝑢1∗, 𝑢2∗, 𝑢3∗) which minimizes J over the region Ω are given by

𝑢1
∗ = 𝑚𝑖𝑛{1, 𝑚𝑎𝑥(0, 𝑢1)}, 𝑢2∗ = 𝑚𝑖𝑛{1, 𝑚𝑎𝑥(0, 𝑢2)}, 𝑢3∗ = 𝑚𝑖𝑛{1, 𝑚𝑎𝑥(0, 𝑢3)},

where
𝑢1 =

𝑀1
𝐷1

,

and

𝑀1 = 𝛽𝑠𝑣1(𝜆2 − 𝜆1) + 𝛽𝑠𝑣2(𝜆3 − 𝜆1) + 𝛽𝑠1𝑣2(𝜆8 − 𝜆6) + 𝛽𝑠2𝑣1(𝜆9 − 𝜆7) + 𝜃𝑠𝑣(𝑖1 + 𝜙𝑖21)(𝜆12 − 𝜆11)
+𝜃𝑠𝑣(𝑖2 + 𝜙𝑖12)(𝜆13 − 𝜆11)

𝑢2 =
𝜂((1 − 𝑠𝑣)𝜆11 + 𝑣1𝜆12 + 𝑣2𝜆13)

𝐷2

𝑢3 =
(𝜌𝑠1(𝜆6 − 𝜆10) + 𝜌𝑠2(𝜆7 − 𝜆10))

𝐷3
.

PROOF. Using the optimality condition:

𝜕
𝜕𝑢1

= 0, 𝜕
𝜕𝑢2

= 0, 𝜕
𝜕𝑢3

= 0.

we get,

𝜕
𝜕𝑢1

= 𝐷1𝑢1 + 𝛽𝑠𝑣1(𝜆1 − 𝜆2) + 𝛽𝑠𝑣2(𝜆1 − 𝜆3) + 𝛽𝑠1𝑣2(𝜆6 − 𝜆8) + 𝛽𝑠2𝑣1(𝜆7 − 𝜆9) + 𝜃𝑠𝑣(𝑖1 + 𝜙𝑖21)(𝜆11 − 𝜆12)

+𝜃𝑠𝑣(𝑖2 + 𝜙𝑖12)(𝜆11 − 𝜆13) = 0.

This implies

𝑢1 =
𝑀1
𝐷1

= 𝑢1,
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where,
𝜕
𝜕𝑢2

= 𝑢2𝐷2 − 𝜂(1 − 𝑠𝑣)𝜆11 − 𝜂𝑣1𝜆12 − 𝜂𝑣2𝜆13 = 0,

gives

𝑢2 =
𝜂((1 − 𝑠𝑣)𝜆11 + 𝑣1𝜆12 + 𝑣2𝜆13)

𝐷2
= 𝑢2,

and,
𝜕
𝜕𝑢3

= 𝑢3𝐷3 − 𝜌𝑠1𝜆6 + 𝜌𝑠1𝜆10 − 𝜌𝑠2𝜆7 + 𝜌𝑠2𝜆10 = 0,

gives

𝑢3 =
(𝜌𝑠1(𝜆6 − 𝜆10) + 𝜌𝑠2(𝜆7 − 𝜆10))

𝐷3
= 𝑢3,

Again, the upper and lower bounds for these controls are 0 and 1 respectively. In detail, 𝑢1 = 𝑢2 = 𝑢3 = 0 if 𝑢1 < 0,
𝑢2 < 0 and 𝑢3 < 0, and 𝑢1 = 𝑢2 = 𝑢3 = 1 if 𝑢1 > 1, 𝑢2 > 1 and 𝑢3 > 1, otherwise 𝑢1 = 𝑢1, 𝑢2 = 𝑢2 𝑢3 = 𝑢3. Hence for
these controls 𝑢1∗, 𝑢2∗, 𝑢3∗ we get the optimum value of the function 𝐽 .

5. Control theory results
To find the optimal control and the solutions of disease prevalence after the implementation of each control measure,

i.e., (𝑥∗(𝑡), 𝑢∗(𝑡)), we solve the adjoint equations, together with the transversality conditions, and the equation system
(4), where 𝑢∗(𝑡) = (𝑢∗1, 𝑢

∗
2, 𝑢

∗
3) and 𝑥∗(𝑡) are the correspondent trajectories. For this, numerical methods are used with

the default parameter values shown in Table 1.
The optimal control solutions of the model (4) were obtained with MATLAB software.
Note that the proposed cost functional includes a weighted sum of several efforts for each specific control measure.

The costs are not necessarily quantified as economic costs as the costs for implementing a control measure may vary
from region to region experiencing different needs in their public health context as well as different limitations of
resources. The costs for each intervention measure can be "low", "medium" or "high", but are assumed to be always
less expensive than the cost of infection. The initial value for the weight constants for the human host infections are
𝐴1 = 1, 𝐴2 = 1, 𝐴3 = 1, 𝐴4 = 1, while the cost for protection against mosquito bites, reduction of vector abundance
and vaccination are 𝐷1 = 0.3, 𝐷2 = 0.9 and 𝐷3 = 0.7 respectively. The differences in weights were defined using
common sense, since the real economical costs are unknown. Moreover, as opposed to most of the already existing
optimal control studies applied to vector-borne diseases, the weight constant associated with mosquito infections is
fixed to 𝐴5 = 0, i.e. there is no cost associated for infection occurring in mosquitoes.

As proposed in [68], the control problem is solved by the forward-backward sweep method, for a time interval of
5 years ([0, 5]). The relevant optimal controls are updated using these state and adjoint variables solutions, and these
iterative procedures are continued until a predefined convergence threshold is reached. Using numerical simulations,
we will investigate three different strategies considering the implementation of a single control measure at the time
(Strategy I), the implementation of two control measures simultaneously (Strategy II) and finally, the implementation
of those three control strategies together (strategy III).

5.1. Strategy I: Only one control at the time
Strategy one is used to identify which of the available control measure is most effective in reducing the number of

disease cases in a period of time. To evaluate the impact of a control measure to reduce transmissibility from vectors
to humans and from humans to vectors such as personal protection to avoid mosquito bites (using repellents on skin
and clothing, for example), we have implemented a control function 𝑢1(𝑡) to minimize the objective function 𝐽 , while
the control functions 𝑢2(𝑡) = 𝑢3(𝑡) = 0 (policy A). The control profile is shown in 5(a) and its effect on the number of
severe cases is shown in Figure 5(b).

To evaluate the impact of intervention measures aiming at reducing vector population, such as indoor residual
spraying and a combination of interventions to attack the vector at different stages of its life cycle, the control function
𝜂𝑢2(𝑡) is implemented to minimize the objective function 𝐽 , while the other two control measures are 𝑢1(𝑡) = 𝑢3(𝑡) = 0
(police B). The control profile is shown in Fig. 5(c), and effect on the number of severe cases is shown in Figure 5(d).
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Figure 5: Strategy I: Only one control is used at the time. In (a), (c) and (e), control profiles for 𝑢1(𝑡) (policy A), 𝑢2(𝑡)
(policy B) and 𝑢3(𝑡) (policy C), respectively. The effect on the prevalence of severe cases (𝑖12 + 𝑖21) for policy A, policy
B and police C over 5 years are shown in (b), (d) and (f) respectively, where blue lines show disease prevalence in the
absence of control while lines in yellow, red and purple represent disease prevalence after control implementation.

Finally, to evaluate the effect of vaccination programs restricted to seropositive individuals only, i.e. after a
serological screening prior to vaccination, the control function 𝜌𝑢3(𝑡) is implemented to minimize the objective function
𝐽 , while the other possible control interventions are 𝑢1(𝑡) = 𝑢2(𝑡) = 0 (policy C). We consider constant vaccine
distribution initially set as 𝜌 = 0.2. The control profile is shown in Fig. 5(e), and the and effect on the number of severe
cases is shown in Figure 5(f).

Over a 5 years period, policy A leads to a moderate reduction of disease cases (approximately 15% and 1.5% for
overall infections and severe cases respectively) when the control measure is maintained at its maximum level for the
whole time period, while policy B shows the best result in reducing disease cases (approximately 18% and 2% for
overall infections and severe cases respectively). Here, control measures for mosquito reduction starts at its maximum
level, following a smooth decrease throughout the first year, and are kept at a constant level during the following years.
Policy C leads to small reduction of severe cases (approximately 10% and 0.5% for overall infections and severe cases
respectively) mostly because it depends on the availability of seropositive individuals to receive the vaccine. Note
that on top of that, when evaluation this strategy, one must consider the associated high costs of population screening
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prior vaccination which economically speaking might by lead to an even lower cost-effectiveness of this measure. The
vaccination control profile shows a peculiar shape, initiated with a rapid increase of vaccine (possibly related to the
availability of seropositive individuals) that is quickly relaxed during the first year (possible because of the lack of
seropositive individuals in the population). Vaccine distribution gradually increases again (when the target population
receiving this vaccine increases) for the following 2 years before its smooth relaxation in the following years.

Overall, within Strategy I, policy B is the most effective policy to be implemented, followed by policy A and policy
C.

5.2. Strategy II: Two controls implemented simultaneously
The ability to provide guidance on how best to allocate the often scarce resources while implementing the most

cost-effective control strategies will have significant economical consequences of future public health decision making.
Strategy II combines the use of two controls simultaneously, aiming to identify which combinations are most effective
in reducing the number of infections, enabling a more genuine and realistic assessment of mosquito-borne disease
control in the public health context.

We investigate three combinations to minimize the objective function 𝐽 as follows. (i) the use of personal protection
to avoid mosquito bites 𝑢1(𝑡) combined with vector-control program to reduce mosquito population 𝑢2(𝑡) (policy D),
(ii) the use of personal protection to avoid mosquito bites 𝑢1(𝑡) combined with vaccination of seropositive individuals
only 𝑢3(𝑡) (policy E), and (iii) vaccination of seropositive individuals 𝑢3(𝑡) combined with vector control mosquito
program to reduce mosquito population 𝑢2(𝑡) (policy F). The profiles of the possible control measure combination are
shown in Fig.6.

Over 5 years period, policy D leads to a significant reduction of cases (approximately 24% and 5% for overall
infections and severe cases respectively) when personal protection to avoid mosquito bites (𝑢1(𝑡)) is maintained at its
highest level for the first 3.5 years, together with measures to control vector abundance (𝑢2(𝑡)) applied initially at its
maximum level, gradually decreasing up to a constant level, see Fig. 6(c). Policy E leads to a slightly smaller reduction
on disease cases (approximately 22% and 3% for overall infections and severe cases respectively) when protection
against mosquito bites is kept at its maximum level for 3 consecutive years before being relaxed, combined with
vaccine distribution with a similar shape as observed for police C, with slightly less effort during the second phase of
the control implementation, see Fig. 6(f). Policy F leads to a similar reduction of disease cases (approximately 23% and
4% for overall infections and severe cases respectively) with control 𝑢3 and control 𝑢2 being implemented as proposed
for police D and police E respectively, see Fig. 6(i). Overall, within Strategy II, policy D is the most effective policy
to be implemented, followed by policy F and policy E.

5.3. Strategy III: Three controls implemented simultaneously
Strategy III combines the use of all three control measures 𝑢1(𝑡), 𝑢2(𝑡) and 𝑢3(𝑡) simultaneously (policy G). The

control profiles are shown in Fig.7(a-c) for 𝑢1(𝑡), 𝑢2(𝑡) and 𝑢3(𝑡), respectively. Surprisingly, police G leads to a similar
results as obtained with Strategy II, policy D, able to reduce, over a period of 5 years, the number of overall infections
by approximately 26% and only 5% for severe cases. Here, while protection against mosquito bites 𝑢1(𝑡) can be relaxed
after 2 years, the program to reduce mosquito population 𝑢2(𝑡) must be kept at its highest level throughout the time,
combined with vaccine distribution 𝑢3(𝑡) following a similar control profile as shown for Strategy II, see Fig. 7.
The comparison of the performance of public health strategies for reducing dengue infections is shown in Figure 8.

5.4. The effect of weight constant values on policies and model limitations
Aiming at finding a solution that minimizes the cost functions, we define a weight constant (cost) for each control

measure, based on a common sense and realistic information, giving the final solution for an optimized strategy. While
the optimal control solutions are bound to the assigned weight constants, here we vary the initial weight constant
values to explore the variation on the results, see Fig. 9(a), Fig. 9(b) and Fig. 9(c) for 𝑢1, 𝑢2 and 𝑢3 respectively. This
exploratory analysis allows us to investigate the impact of various costs for a control measure. For these combinations,
the qualitative results are consistent in respect to the best policy for disease control, while different weights will change
the final quantitative results for disease prevalence, increasing or decreasing the number of infections over a period of
5 years, see Fig. 9(d-f) and Fig. 9(g-i) for overall infections and severe cases respectively.

5.5. The impact of vaccine distribution rate (𝜌) and the additional killing mosquito factor (𝜂)
Similarly to the analysis performed in Section 5.4, the vaccine distribution 𝜌 and the additional killing mosquito 𝜂

factors are varied to explore their impact on disease control performance.
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Figure 6: Strategy II: Two control measures are used simultaneously. In (a) the control profile for the 𝑢1(𝑡) and in (b) the
control profile for the 𝑢2(𝑡) (policy D). In (d) the control profile for the 𝑢1 and in (e) the control profile for the 𝑢3 (policy
E). In (g) the control profile for the 𝑢2(𝑡) and in (h) the control profile for the 𝑢3 (policy F). Reduction of severe dengue
infections (𝑖12 + 𝑖21) for policy D, policy E and policy F are shown in (c), (f) and (i) respectively, where the blue line refers
to disease prevalence in the absence of control and the lines in green, brown and cyan represent disease prevalence after
the combined controls are implemented over a period of 5 years.

Figure 10(a) and (b) show the impact of various values of vaccine distribution factor (see color lines) on overall
cases and severe cases respectively. Note that although vaccination is restricted to seropositive individuals only, we
have a strong assumption of a perfect vaccine, i.e. 100% vaccine efficacy, being initially distributed to given percentage
of seropositive individuals per year. Here, the parameter 𝜌 is used as proxy for vaccination coverage and results change
when different vaccine efficacy is considered. Overall, if the cost for vaccine distribution decreases, a small reduction
of severe cases (up to 1.4%) and a moderate reduction of overall infections (up to 11%), are observed.

Figure 10(c) and (d) show the impact of various values of additional killing mosquito factor (see color lines) on
overall cases and severe cases respectively. In respect to the effectiveness of vector control programs, the additional
killing mosquito factor leads to a moderate reduction of severe cases (up to 3.3%) and higher reduction of overall
infections (up to 22%) when the costs decreases.
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Figure 7: Strategy III: Three control measures are used simultaneously. In (a) the control profile for the 𝑢1(𝑡), in (b) the
control profile for the 𝑢2(𝑡) and in (c) the control profile for the 𝑢3(𝑡). Reduction of severe dengue infections (𝑖12 + 𝑖21)
are shown in (d) where the blue line refers to disease prevalence in the absence of control and the pink line represents
disease prevalence after the simultaneously implementation of control measures and Reduction of total dengue infections
(𝑖1 + 𝑖2 + 𝑖12 + 𝑖21) are shown in (e) where the blue line refers to disease prevalence in the absence of control and the black
line represents disease prevalence after the simultaneously implementation of control measures over a period of 5 years.
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Figure 8: Comparison of the performance of public health strategies in a period of 5 years. Reduction of severe dengue
infections (𝑖12 + 𝑖21) and overall disease prevalence (𝑖1 + 𝑖2 + 𝑖12 + 𝑖21) are shown in (a) and (b) respectively.
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Figure 9: Optimal control profiles with different weigh values and their outcome on disease prevalence. The weight values
of a specific control measure is varied and shown in different color lines, while keeping the others fixed to its baseline value
shown in Table 1. In (a) the control profile 𝑢1 with various weight for its cost 𝐷1. The effect on overall cases and severe
cases are shown in (d) and (g) respectively. In (b) the control profile 𝑢2 with various weight for its cost 𝐷2. The effect on
overall cases and severe cases are shown in (e) and (h) respectively. In (c) the control profile 𝑢3 with various weight for its
cost 𝐷3. The effect on overall cases and severe cases are shown in (f) and (i) respectively.
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Figure 10: The impact of vaccine distribution rate (𝜌) and the additional killing mosquito (𝜂) factor on the prevalence of
severe cases (𝑖12 + 𝑖21) and overall cases (𝑖1 + 𝑖2 + 𝑖12 + 𝑖21). Blue lines refer to disease prevalence in the absence of control
while the red, yellow and purple lines show the results for various values of the additional factors set to 0.2 (in red), 0.5
(in yellow) and 1 (in purple).
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6. Discussions and conclusions
We propose refined vector-host dengue model with strain structure of pathogens including two biological features

of dengue fever epidemiology. To determine the key parameters of the model affecting disease transmission, a detailed
sensitivity analysis was performed. With these results at hand, the system was extended to include realistic control
measures. Using optimal control theory we have evaluated the effect of different strategies for disease control, alone
and combined, on severe disease cases and on the overall infections over a period of 5 years.

The optimal control problem studied here considers realistic intervention measures in the public health context.
The preventive measures included into the model are: (1) reduction of disease transmission from human to vectors
and from vectors to humans by avoiding mosquito bites, (2) reduction of mosquito population by an effective vector
control program and (3) vaccination of seropositive individuals, following the current recommendation of the WHO.
For each measure, a control function 𝑢𝑖(𝑡) is incorporated to minimize the objective cost function 𝐽 , which includes
a weighted sum of several efforts for the controls. Note that the assigned weights for each control measure are not
necessarily quantified as economic costs, assuming that the costs for implementing an intervention measure may vary
from region to region experiencing different needs in terms of public health burdens, as well as different limitations of
resources. In this context, the exploratory analysis performed here allows us to interpret our results in a more realistic
way, assuming different scenarios, often neglected by theoretical studies. The control system is analyzed using the
Pontryagin‘s Principle for optimal control where three different strategies are compared.

Using numerical simulations we observe that model performance improves when introducing controls, with
different outputs observed for different policies, see Fig. 8. In detail, Strategy III, considering the simultaneous use
of all three controls, has a higher impact, reducing, over a period of 5 years, approximately 26% and 5% of overall
infections and severe cases respectively (see Fig. 7. Strategy II, considering the simultaneous use of two controls
together have show a moderate impact on disease prevalence for all the three possible policies. Among them, policy D,
combining protection against mosquito bites and reduction of mosquito population, has shown the best performance,
reducing approximately 24% and 5% of overall infections and severe cases respectively, followed by policy C and policy
A with a slightly less reductions, see Fig. 6. Out of surprise, Strategy I, considering the use of a single control at the
time, shows the lowest reductions when compared with the other strategies. Within the three possible policies, policy
B has the best performance, reducing approximately 18% and 2% of overall infections and severe cases respectively,
followed by policy A and policy C, see Fig. 5. While the optimal control solutions are bound to the assigned weight
constants, we have conducted an exploratory analysis for different values of each weight constant, see Fig. 9. Our
findings have shown that the assigned costs for the controls were not crucial for the obtained results in respect to the
performance of each strategy and its policies, only affecting slightly the quantitative results.

Although these strategies are optimized in term of cost-effectiveness, it is important to mention that in the public
health context the real economic costs for control measure implementation are often not publicly available and
eventually significantly different from region to region. This is definitely a limitation of the existing optimal control
analysis where the economic cost function are not included. Moreover, while resource limitation for public health
interventions is a global issue, the economic capacity is significantly different between low and high income countries,
without mentioning the specific needs of each region in terms of their current epidemiological scenario. That was
observed during the COVID-19 pandemic and it is no different for any other public health burden.

Studies like this can provide important results obtained from numerical experiments (where the weight constants
are used as arbitrary values and will influence the outcomes), however, we claim that using the common sense while
assigning "realistic" differences for the weights of an specific control is fundamental to a correct interpretation and
eventual extrapolation of the results into a real world problem.

Specific for this study, we have assumed a very low cost for self-preventive measure (𝐷1 = 0.3) as they are
often bought by the individuals themselves without much financial effort from the public health decision making
(governmental) view point. On the other hand, we have assumed a very high cost for vector control programs to reduce
mosquito population (𝐷2 = 0.9), and a slightly smaller cost for vaccinating seropositive individuals only (𝐷2 = 0.7).
This assumption is justified when vector control programmes are widely implemented worldwide, covering large
geographic scales, while vaccination is only recently available and restricted to specific target groups (seropositives)
existing only in endemic countries. Note that the extra effort of human resources to perform population screening prior
to vaccination is not considered as incremental cost. While the simultaneous use of controls are highly effective, the
use of a single control measure can eventually produce similar effects on disease prevalence as shown in our study.
We propose a careful evaluation of the epidemiological scenario before designing strategies for disease prevention and
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control, as that would allow an optimal allocation of the public health resources considering the specific needs of each
region.
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Appendix
(I) Basic Reproduction Number 𝟎 calculations
The basic reproduction number, 𝑅0, of the system (3), is calculated using the next generation matrix method [70]. The
compartmental model is decomposed into  and  as follows:
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Considering 𝐹 the Jacobian matrix of  at the disease free equilibrium 𝐸0,
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and 𝑉 , the Jacobian matrix of  at 𝐸0,
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the next generation matrix 𝐾 = 𝐹𝑉 −1 has a non-negative eigenvalue, with 0 being the greatest eigenvalue, in
modulus, of 𝐾 [70] .

The eigenvalues are given explicitly by

𝐸𝑖𝑔(𝐾) =

(

0, 0,

√

𝜃𝛽
𝜈(𝛾 + 𝜇)

,

√

𝜃𝛽
𝜈(𝛾 + 𝜇)

,−

√

𝜃𝛽
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,−

√

𝜃𝛽
𝜈(𝛾 + 𝜇)

)

0 =

√

𝜃𝛽
𝜈(𝛾 + 𝜇) .

(II) The role of disease enhancement factor 𝜙 via the ADE process
The value of the disease enhancement factor𝜙 can be tuned to reflect different situations. A value of𝜙 > 1 describes

the scenario where secondary infections (severe cases) have larger infectivity than primary infections (mild cases), due
to the enhanced viral load (via the ADE process) leading to hospitalization and hence, decreasing the mobility and
interactions with mosquitoes. On the other hand, 𝜙 < 1 describes the scenario whereas primary infections contribute
more to the force of infection (than the secondary infections), due to their higher mobility and possibility of interaction
with mosquitoes [4, 30–33, 48, 49].

The main results of this work are obtained for 𝜙 < 1. Here, we present the effect of this parameter on the model
time series output.

In detail, for the scenario of 𝜙 < 1, see Fig. 11(a-c), as the parameter value increases the solution of the system
changes from stable equilibria to stable periodic solutions. Figure 11 (a) shows that solutions converge to endemic
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equilibria, (b) to a stable periodic solution, (c) and (d) to a double limit cycle. On the other hand, for the scenario of
𝜙 > 1, see Fig. 12, there is no change of the behaviour of the system as the parameter increases, with all the solutions
converging to periodic solutions. In addition, as 𝜙 increase the prevalence of the total infection also increases.
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Figure 11: Time series for 𝜙 < 1. The other parameters are fixed as described in Table 1. In (a) 𝜙 = 0.1, in (b) 𝜙 = 0.3,
in (c) 𝜙 = 0.6, and in (d) 𝜙 = 0.9.
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(b) 𝜙 = 1.6

0 50 100 150 200

Time( in years)

0

1

2

3

4

5

(i
1
+

i 2
+

i 1
2
+

i 2
1
)

10
-3

(c) 𝜙 = 2

0 50 100 150 200

Time( in years)

0

1

2

3

4

5

(i
1
+

i 2
+

i 1
2
+

i 2
1
)

10
-3

(d) 𝜙 = 2.6

Figure 12: Time series considering scenario 𝜙 > 1, for the parameter set 𝛽 = 2 ∗ 𝛾, 𝛾 = 52, 𝜃 = 73, 𝜇 = (1∕65), and 𝛼 = 2.
Fig. (a) 𝜙 = 1.1, (b) 𝜙 = 1.6, (c) 𝜙 = 2, and (d) 𝜙 = 2.6. Baseline values of parameters are described in Table 1.
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Figure 13 shows the long term behaviour of the time series solution and the respective phase space plots in one and
in two dimensions for the scenario of 𝜙 < 1, while Figure 14 shows the long term behaviour of the time series solution
and the respective phase space plots in two dimensions (2d) and in three dimensions (3d) for the scenario of 𝜙 > 1.
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Figure 13: With 5000 years of transients discarded, in (a) time series for 𝜙 = 0.6, in (b) the 2d phase plot showing the
double limit cycle attractor. In (c) the 3d phase plot considering the variables 𝑠, 𝑖1 and 𝑖2. Baseline parameter values are
shown in Table 1.

4900 4920 4940 4960 4980 5000

Time (in years)

0

1

2

3

4

i 1
+

i 2
+

i 1
2
+

i 2
1

10
-3

(a)

0.06 0.07 0.08 0.09 0.1

s

0

1

2

3

4

i 1
+

i 2
+

i 1
2
+

i 2
1

10
-3

(b) (c)

Figure 14: With 5000 years of transients discarded, in (a) time series for 𝜙 = 2.6, in (b) the 2d phase plot showing the
double limit cycle attractor. In (c) the 3d phase plot considering the variables 𝑠, 𝑖1 and 𝑖2. Baseline parameter values are
shown in Table 1.

We observe the clear switch from a double limit cycle (see Fig. 13) to a single limit cycle (see Fig. 14) as 𝜙
increases.

(III) The role of temporary cross-immunity 𝛼
The main results of this work are obtained for the disease enhancement factor 𝜙 < 1 and intermediate temporary

cross immunity period 𝛼 = 2. Here, we present the effect of different temporary cross immunity periods, from long to
small, on the model time series output for the scenarios of 𝜙 < 1, see Figure 15, and of 𝜙 > 1, see Figure 16.

For the scenario of 𝜙 < 1, see Fig. 15, as the parameter 𝛼 increases, from 𝛼 = 2, representing an intermediate
temporary cross immunity period (6 months), to 𝛼 = 52, representing a negligible temporary cross immunity period (7
days), the solutions of the system change from stable double limit cycle to stable equilibrium solution. For the scenario
of 𝜙 > 1, see Fig. 16, as the parameter 𝛼 increases, the solutions of the system change. Stable single limit cycles are
observed for 𝛼 = 2 and 𝛼 = 32), while a complex attractor is observed for 𝛼 = 12, followed by a stable equilibrium
solution 𝛼 = 52.
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Figure 15: Time series and state space for fixed 𝜙 = 0.6. Baseline parameter values are shown in Table 1. In (a-b) 𝛼 = 2,
in (c-d) 𝛼 = 12, in (e-f) 𝛼 = 32, and in (g-h) 𝛼 = 52.
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Figure 16: Time series and state space for fixed 𝜙 = 2.6. Baseline parameter values are shown in Table 1. In (a-b) 𝛼 = 2,
in (c-d) 𝛼 = 12, in (e-f) 𝛼 = 32, and in (g-h) 𝛼 = 52.
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(IV) The impact of implementing control measures for longer period of time
While the main results of this work evaluates the results of disease cases after five years of control implementation,

here we explore the effect of longer time periods on overall disease prevalence, see Fig. 17(a) and (c) for the scenario
of 𝜙 < 1, Fig. 17 (b) and (d) for the scenario of 𝜙 > 1.
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Figure 17: Prevalence of infections in the human population when all control measures (policy G) are applied for longer
time period (50 years). For 𝑝ℎ𝑖 < 1: (a) overall infections (𝑖1 + 𝑖2 + 𝑖12 + 𝑖21), and in (b) severe cases (𝑖12 + 𝑖21). For 𝑝ℎ𝑖 > 1:
(c) overall infections (𝑖1 + 𝑖2 + 𝑖12 + 𝑖21), and in (d) severe cases (𝑖12 + 𝑖21). Baseline parameter values are shown in Table 1.

Here we observe that applying the control measures for longer period will shift and decrease the burden of the
outbreaks, however, this strategy is also not able to eradicate the disease. For longer time simulations, the final outcome
for 𝜙 < 1 is a double limit cycle wheres for 𝜙 > 1 a single limit cycle is observed.
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