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Abstract

The high impact of the lymph node ratio as a prognostic factor is widely established in

colorectal cancer, being used as a categorized predictor variable in several studies.

However, the cut-off points as well as the number of categories considered differ

considerably in the literature. Motivated by the need to obtain the best categorization of

the lymph node ratio as a predictor of mortality in colorectal cancer patients, we

propose a method to select the best number of categories for a continuous variable in a

logistic regression framework. Thus, to this end, we propose a bootstrap-based

hypothesis test, together with a new estimation algorithm for the optimal location of the

cut-off points called BackAddFor, which is an updated version of the previously

proposed AddFor algorithm. The performance of the hypothesis test was evaluated by

means of a simulation study, under different scenarios, yielding type I errors close to the

nominal errors and good power values whenever a meaningful difference in terms of

prediction ability existed. Finally, the methodology proposed was applied to the

CCR-CARESS study where the lymph node ratio was included as a predictor of

five-year mortality, resulting in the selection of three categories.

Keywords: categorization; prediction models; cut-off point; bootstrap
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Introduction

Colorectal cancer is an important cause of mortality all over the world, with more than

800 000 cases in 20151 and it is among the most commonly occurring cancers in men and

women2. Prediction models to estimate the risk of mortality or relapse of the disease need

to be developed to enhance prevention and early detection. These models identify the

tumour-, genetic-, and patient-associated risk factors, which allow to groups of patients

to be categorized depending on high or low risk levels.

Several risk prediction models for mortality and other adverse events, such as

recurrence or complications, have been developed3,4, and the impact of different

prognostic factors has been discussed5–7. In this context, the high prognostic impact

of the lymph node ratio (LNR), i.e. the ratio of metastatic to examined lymph nodes, is

widely established in colorectal cancer8–11. In all these studies, the LNR was categorized;

however, the cut-off points as well as the number of categories considered differed among

the studies. Berger et al.8 divided the LNR into four categories using the quartiles as cut-

off points. On the other hand, De Ridder et al.9 and Rosenberg et al.10 used statistical

methods to select the optimal cut-off points. While the former considered a dichotomized

version of the LNR, choosing a cut-off point that maximized the Nagelkerke’s r2 index,

the later used the minimum p-value approach of the log-rank test to group the LNR into

four categories. Therefore, not only did the methods to select the cut-off points and their

location differ among the studies, but also the number of categories to be considered.

On the other hand, the classification and staging of cancer enables the physicians

to stratify patients, which leads to better treatment decisions and the development of a
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common cancer treatment strategies12. Therefore, an efficient classification of lymphatic

involvement is crucial to define the prognosis of the disease and define an adecuate

theraphy for patients depending on the stage they belong to. Moreover, the most clinically

useful cancer staging system is the tumour node metastasis (TNM) system created

by the American Joint Committee on Cancer (AJCC) and the International Union for

Cancer Control (UICC)12. The TNM system classifies cancers by the size and extend

of the primary tumour (T), involvement of regional lymph node (N) and the presence

or absence of distant metastasis (M). The classification is based on categorizations and

combinations of the three components in a specific way for each anatomic site, allowing

the stratification of patients with similar prognosis.

The Results and Health Services Research in Colorectal Cancer (CCR-CARESS)

project is a prospective cohort study of new cases of colorectal cancer patients with five

years of follow-up13. One of the main purposes of the CCR-CARESS study was the

development of clinical prediction models and scores for mortality or tumour recurrence.

In this study, categorization of some of the continuous predictors was performed during

the modelling phase for reasons such as lack of linearity, model interpretability as well as

ease of the punctuation of the scores derived from the models or compliance with clinical

practice criteria7. Therefore, the selection of a method for categorization, the location

of the cut-off points, and the optimal number of categories were relevant issues that

arose while the clinical prediction models were being developed in the CCR-CARESS

study. However, for variables such as LNR, which is an important variable in the staging

system, a wide variety of either number and location of cut-off points have been used in
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the literature and therefore researchers wanted to study the best possible categorization

for this variable.

A methodology to select the optimal cut-off points to categorize a continuous predictor

in the context of logistic regression has been previously proposed. It was based on the

maximal discrimination ability of the model measured by the area under the receiver

operative characteristic (ROC) curve (AUC)14. Furthermore, this methodology has also

been extended for use in the Cox proportional hazards regression model15. Although this

methodology allows selecting any possible number of cut-off points, either in a univariate

or a multiple context, in many circumstances the number of categories in which to

categorize the predictor variable is unclear. Moreover, the disadvantages of categorizing

a continuous variable, such as, for instance, the loss of information or statistical power,

have been widely discussed16. However, if both the number and location of the cut-off

points are appropriately searched for, it is possible to minimize the loss in predictive

ability with respect to the continuous predictor modelled by means of a spline function.

Along these lines, and motivated by the need to find the most appropriate categorization

of the LNR in the CCR-CARESS study, we were interested in a methodology that

provides not only the optimal location of a pre-selected number of cut-off points, but

also the best number of cut-off points to look for. Therefore, the aim of the current study

is to propose a bootstrap-based hypothesis test to select the best number of categories in

which a continuous predictor variable should be categorized in the context of a logistic

prediction model.
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The rest of the paper is organized as follows. Section 2 provides a description

of the CCR-CARESS study of patients with colorectal cancer which motivated the

development of the methodology presented in this paper. Section 3 outlines some notation

and background along with a new algorithm to estimate the optimal cut-off points. In

Section 4, a bootstrap-based hypothesis test is proposed for selecting the best number

of categories. In Section 5, we present the results from two simulation studies that were

conducted to assess the performance of the methodologies presented in Sections 3 and

4, respectively. Section 6 describes the application of the proposed methodology to the

CCR-CARESS study data set. Finally, the paper closes with a discussion in Section 7 in

which the main findings are reviewed and conclusions are drawn.

Motivating data: The CCR-CARESS study

CCR-CARESS is a prospective multi-center cohort study of patients diagnosed with

colorectal cancer who had undergone surgical interventions between June 2010 and

December 2012 and consented to participate in the study. Subjects were followed up for

up to five years. The 22 participating hospitals represent six regions in Spain, and they

operate under the Spanish National Health Service. Patients’ selection criteria, explicit

definition of diagnosis, and patient recruitment were explained in detail in the study

protocol13.

Variables collected include pre-intervention background, sociodemographic parame-

ters, hospital admission records, biological and clinical parameters, treatment informa-

tion, and outcomes up to five years after surgical intervention. LNR, defined as the ratio
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of tumour-infiltrated lymph nodes to total number of resected lymph nodes, was collected

after the surgical intervention.

The role of LNR as a predictive factor in the prognosis for colorectal cancer patients

has been widely discussed previously5,8–10, especially for colon cancer. Therefore, LNR

was one of the predictive variables that was considered when developing a clinical

prediction model of mortality in the CCR-CARESS study. Previous results derived from

the study included different categorizations and transformations of the LNR in mortality

prediction of colon cancer7,17. The absence of consensus related to the best categorization

in terms of both the location of the cut-off points and the number of categories, and the

controversy around this issue, was the motivation for this work. In the current study, only

patients with a diagnosis of colon cancer were selected from the CCR-CARESS study.

Further, patients with incomplete follow-up as regards to mortality were excluded (161,

8.1%) for this study as the necessary information was not available to be able to include

them in the 5-year predictive model. A brief description of the main variables of the

CCR-CARESS study is reported in the supplementary material (Web Appendix A).

Models and estimation algorithms

Let Y be a binary (0/1) response variable and (Z, X) a vector of associated covariates

with Z = (Z1, . . . , Zq) and X a continuous variable. In this context, the generalized

linear model (GLM) with a logistic link is commonly used to predict the probability of

success (Y = 1) considering the values taken by the covariates. Let us use the notation

P (Z, X) = P (Y = 1|Z, X). Traditionally, the effect of the continuous covariate X on
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the logit(P (Z, X)) is considered to be linear. However, that effect may be nonlinear but

can be approximated by a piecewise constant relationship. In that case, the effect of X

would be given by the following expression:

logit(P (Z, X)) = log
P (Z, X)

1− P (Z, X)
= δ0 +

q∑
r=1

δrZr +

k∑
s=1

βs
(
1cs<X≤cs+1

)
(1)

where (δ0, δ1, . . . , δq;β1, . . . , βk) are unknown coefficients associated with the effect of

the covariates, and c = (c1, . . . , ck) is a vector of k cut-off points (ordered from lowest to

highest) which define the k + 1 intervals for the variableX (considering [min(X), c1] as

the reference category). Moreover, for simplicity of notation, we consider that ck+1 =∞.

Given a sample {(zi, xi, yi)}ni=1 and fixing the vector of cut-off points c , from the

expression in equation (1), the estimation of the true probability p(z, x) is given by

p̂(c, z, x) =
exp

(
δ̂0(c) +

∑q
r=1 δ̂r(c)zr +

∑k
s=1 β̂s(c)

(
1cs<X≤cs+1

))
1 + exp

(
δ̂0(c) +

∑q
r=1 δ̂r(c)zr +

∑k
s=1 β̂s(c)

(
1cs<X≤cs+1

)) (2)

where δ̂0(c), δ̂1(c), . . . , δ̂q(c) and β̂1(c), . . . , β̂k(c) are the estimated coefficients

obtained by maximum likelihood (using the iterative weighted least squares local scoring

algorithm18).

The discriminatory ability of a logistic model is commonly measured by the AUC19,20.

Once the estimated probabilities p̂(c, zi, xi) for i = 1, . . . , n, have been computed,

Prepared using sagej.cls



9

the estimation of the true AUC (ÂUC(c)) can be obtained using the Mann-Whitney

statistic21 as follows:

ÂUC(c) =
1

n0n1

∑
j∈DY =0

∑
m∈DY =1

I[p̂(c, zj , xj), p̂(c, zm, xm)], (3)

where DY=1 and DY=0 are the sets of subjects with Y = 1 and Y = 0, respectively; n1

and n0 are the sizes of these sets; and I[•] = I[p(c, zj , xj), p(c, zm, xm)] is the indicator

function adjusted for ties:

I[•] =


1 if p(c, zj , xj) < p(c, zm, xm)

0.5 if p(c, zj , xj) = p(c, zm, xm)

0 otherwise.

∀j ∈ DY=0 and ∀m ∈ DY=1

Note that the obtained ÂUC(c) depends on c. In practice, the locations of the cut-off

points are unknown, and thus it is necessary to estimate them. Barrio et al.14 proposed and

compared two algorithms named AddFor and Genetic to estimate the optimal locations

of the cut-off points c = (c1, . . . , ck), considering the maximal AUC.

In the AddFor algorithm, one cut-off point is searched for at a time. To be specific,

the steps of the proposed algorithm are as follows: first, considering k = 1, the first cut-

off point is obtained as the one that maximizes the AUC of the probabilities given in

equation (2) for k = 1, i.e. ĉ1 = argmaxcÂUC(c); fixing ĉ1, the second cut-off point is

obtained (for k = 2) as ĉ2 = argmaxcÂUC(ĉ1, c); fixing (ĉ1, ĉ2), the third cut-off point

is obtained as ĉ3 = argmaxcÂUC(ĉ1, ĉ2, c); and the process is then repeated until the
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vector of k cut-off points ĉ = (ĉ1, ..., ĉk) has been obtained for a previously fixed value

of k.

On the other hand, the Genetic algorithm simultaneously finds the vector of k cut-off

points by using an evolutionary algorithm22 which looks for the vector c = (c1, . . . , ck)

that maximizes the fitness function ÂUC(c).

As discussed in Barrio et al., the AddFor algorithm may lead to a non-optimal vector

of cut-off points because the selection of each cut-off point is influenced by the preceding

selected ones14. The authors recommend the use of the Genetic algorithm as far as it is

computationally achievable. However, for large data sets or when the process needs to

be incorporated into a more complex procedure, especially if it comprises a bootstrap

estimation method, this may not be feasible. Therefore, in this paper, we propose a new

estimation algorithm called BackAddFor, which is an updated procedure of the previously

described AddFor algorithm. The steps of this new algorithm are as follows:

Initialize: Compute the initial estimates (ĉ0,1, ..., ĉ0,k).

Step 1: Cycle j = 1, . . . , k calculating the update

ĉj = argmaxcÂUC(ĉ1, . . . , ĉj−1, c, ĉ0,j+1, . . . , ĉ0,k)

Step 2: Repeat Step 1 replacing (ĉ0,1, ..., ĉ0,k) by (ĉ1, ..., ĉk) until the difference

ÂUC(ĉ1, ..., ĉk)− ÂUC(ĉ0,1, ..., ĉ0,k) is zero.

In Step 1, different strategies can be considered for the initialization of the cut-off

points, such as: (a) random selection of k cut-off points in the range of X; (b) a grid of

size k of equally spaced values in the range ofX , and (c) quantiles of X. In our experience
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we have seen no difference between any of the three options, in practice the algorithm

converges in few iterations. Nevertheless, we propose to use a random selection prior to

the selection of a k-size grid, to avoid possible problems with local minimums.

In addition, as detailed in Step 2, the initial cut-off points are updated after searching

for the final cut-off points. The difference between the BackAddfor and the Addfor

algorithm is that the latest does not update the cut-off points assuming that the optimal

cut-off point when k = 1 is also one of the optimal cut-off points when k > 1. As seen

in Barrio et al.14 this does not always have to be the case, and therefore we expect that

by allowing an update of the cut-off points the results will be improved.

Model Selection

In the previous section, we proposed a new algorithm to look for the vector of the cut-off

points c = (c1, . . . , ck) given that the number of categories, k + 1, was previously fixed.

In this section, we propose a procedure that will help to determine the optimum number

of categories to be considered in the categorization of a continuous predictor variable.

To this end, given k, the number of cut-off points, consideration will be given to a test

for the null hypothesis:

H0(k) : logit(P (Z, X)) = δ0 +

q∑
r=1

δrZr +

k∑
s=1

βs

(
1c0s<X≤c0s+1

)
(4)

for some k cut-off points c0 = (c01 < . . . < c0k) (considering c0k+1 =∞) versus the

alternative hypothesis
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H1(k) : logit(P (Z, X)) = δ0 +

q∑
r=1

δrZr +

k+1∑
s=1

βs

(
1c1s<X≤c1s+1

)
(5)

for some k + 1 cut-off points c1 = (c11 < . . . < c1k+1) (considering c1k+2 =∞).

To test H0, we propose the use of a statistic based on the increment of the predictive

loss function, which is defined as

T = ÂUC(ĉ11, ..., ĉ
1
k+1)− ÂUC(ĉ01, ..., ĉ0k), (6)

where ÂUC(ĉ01, ..., ĉ
0
k) and ÂUC(ĉ11, ..., ĉ

1
k+1) are the estimated AUCs for the models

under the null and the alternative hypothesis, respectively. It must be remarked that if T

takes a high enough value, the test would decide in favour of the alternative hypothesis,

while if T is small, the null hypothesis would not be rejected. Thus, the test rule for

checking H = H0 with significance level α is that the null hypothesis is rejected if T is

larger than its upper α-percentile. It is well known that in these kind of tests it is difficult

to analytically find the exact null distribution of the test statistic, and resampling methods

such as the bootstrap introduced by Efron23 can be applied instead. To be specific, to

obtain these critical values, we apply the following binary bootstrap procedure24,25:

Step 1. Estimate the null and alternative models based on the original sample.

Step 2.1 Obtain the null estimated cut-off points ĉ0 = (ĉ01, . . . , ĉ
0
k) and the associated

null estimated probabilities p̂0i = p̂(ĉ0, zi, xi) for i = 1, . . . , n.

Step 2.2 Obtain the estimated cut-off points ĉ1 = (ĉ11, . . . , ĉ
1
k+1) and the associated

estimated probabilities p̂1i = p̂(ĉ1, zi, xi) for i = 1, . . . , n.
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Step 3. Obtain the value of the T statistic using the original sample.

Step 4. For b = 1, . . . , B, generate bootstrap samples
{
xi, y

•b
i

}n
i=1

with y•bi ∼

Bernoulli(p̂0i ), and compute the bootstrap statistics T •b:

T •b = ÂUC(ĉ1,•b1 , . . . , ĉ1,•bk+1)− ÂUC(ĉ
0,•b
1 , . . . , ĉ0,•bk )

where (ĉ0,•b1 , . . . , ĉ0,•bk ) and (ĉ1,•b1 , . . . , ĉ1,•bk+1) are the estimated cut-off points under H0

and H1, respectively, obtained with the bootstrap sample.

Step 5. Finally, the decision rule for each T consists of rejecting the null hypothesis if

T > T̂ 1−α, where T̂ 1−α is the empirical (1− α)-percentile of the values T •1, . . . , T •B

obtained before.

We propose this procedure as a useful tool to select the most suitable number of cut-off

points. If H0(k) is not rejected, our recommendation is that only k cut-off points should

be considered. Otherwise, the test is repeated with k + 1 cut-off points until the null

hypothesis is not rejected. For example, if H0(1) is not rejected, just one cut-off point is

recommended for inclusion in the model. If this hypothesis is rejected, it will be required

to test H0(2). If this new hypothesis is again rejected, H0(3) should be tested, and so on,

until a certain H0(k) is not rejected.

Simulation study

In this section, we present several simulation studies with two different goals. On the

one hand, a simulation study was conducted to compare the performance of the proposed
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BackAddFor algorithm with respect to the Genetic and AddFor algorithms proposed in

Barrio et al14. On the other hand, we carried out a simulation study to examine the

behaviour of the proposed bootstrap hypothesis test presented in Model Selection Section

above, under different scenarios. Both simulation studies are explained in detail below,

and the results obtained are reported.

The simulation studies were performed in (64 bit) R 3.4.326. The first simulation study

was run on a workstation equipped with 24 GB of RAM, Intel Xeon E5620 processor

(2.40 GHz), and the Windows 7 operating system, whereas the second simulation study

was executed on a workstation equipped with 16 GB of RAM, an Intel Core i7-7700

processor (3.6 GHz), and the Windows 10 operating system. The code in R was observed

to be slow, and therefore we wrote a much faster version of the code in Fortran,

to obtain the results presented in the Section Performance evaluation of the bootstrap

hypothesis test (it is possible to call it from R). The computational times were calculated

in a computer equipped with 16 GB of RAM, Intel Core i5-8400 processor (2.8 Hz), and

the Windows 10 operating system.

Comparison of the estimation algorithms

Scenarios and setup:

In the first setting, the predictor variable X was simulated from a normal distribution

separately in each of the populations defined by the outcome (Y = 0 and Y = 1),

under the same conditions as the ones considered in Barrio et al.14, i.e. X|(Y = 0) '

N(µ0 = 0, σ0 = 1), X|(Y = 1) ' N(µ1 = 1.5, σ1 = 1). Note that for σ0 = σ1, the
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linear relationship between X and the logistic function holds. In addition, based on

the parametric method proposed by Tsuruta and Bax27, given k cut-off points, the

theoretical locations of the optimal cut-off points can be obtained, as well as the AUC

associated with the corresponding categorical covariate. To be specific, in the simulations

presented in this paper, we assumed the same number of individuals in Y = 0 and Y = 1.

Furthermore, different sample sizes (n = 500 and n = 1000) and number of cut-off

points (k = 2 and k = 3) have been considered.

The corresponding theoretical cut-off points in these scenarios were c =

(−0.068, 0.750, 1.568) and c = (0.227, 1.274) with the corresponding theoretical AUC

values of 0.835 and 0.820, for k = 3 and k = 2, respectively. For the AddFor and

BackAddFor algorithms, a grid size of M = 50 was used. All results are based on

R = 500 replicates.

The performance of each of the algorithms was evaluated by means of the bias and

mean square error (MSE) of the estimated optimal cut-off points for each iteration as

follows:

MSEr =
1

k

k∑
d=1

(ĉrd − cd)2, r = 1, . . . , R,

where ĉrd is the estimated dth optimal cut-off point in the simulation r, and cd is the dth

theoretical cut-off point.

Finally, the corresponding AUC for the optimal estimated vector of cut-off points with

each of the three algorithms was estimated (ÂUC(ĉ)). As reported in Barrio et al.14, this

AUC is overestimated because the same data is used a) to estimate p̂(c, x) for each c,
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and b) to estimate the corresponding ÂUC(c). Therefore, the AUC bias was corrected

by means of the bootstrap bias-corrected method proposed by the same authors.

Results:

The numerical results obtained for the estimated optimal cut-off points obtained with

the AddFor, BackAddFor, and Genetic estimation algorithms for different sample sizes

(n = 500 and n = 1000), number of cut-off points (k = 2 and k = 3), and R = 500

replicates are summarized in Table 1. As can be observed, for k = 2, the BackAddFor

algorithm exhibits good performance, similar to Genetic, and notably improves the

results obtained by the AddFor algorithm. More specifically, the MSEs obtained with

the AddFor algorithm are 0.136 and 0.14 for sample sizes of n = 500 and n = 1000,

respectively, while those obtained with BackAddFor are 0.051 and 0.039, respectively, in

the same scenarios. With respect to the bias, very similar results are obtained with the

BackAddFor and Genetic algorithms. In particular, for n = 500, the bias of the first and

second cut-off points are −0.022 and 0.018 with BackAddFor against −0.028 and 0.009

with the Genetic algorithm. On the other hand, for k = 3, very similar results in terms of

bias and MSE are obtained with all the algorithms considered.

The corresponding numerical results obtained for the estimated and bias-corrected

AUCs derived from each algorithm in each scenario are given in Table 2. In general, the

highest AUC values correspond to the cut-off points obtained with the Genetic algorithm,

while the lowest correspond to those derived from the AddFor algorithm. Although

the AUCs based on BackAddFor are not as high as the ones obtained with Genetic, as

mentioned above, the cut-off points estimated with both algorithms are equally accurate
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in terms of bias and MSE, and improve those obtained with the AddFor algorithm (Table

1). In terms of the bias-corrected AUC, the results obtained are in line with those shown

in Barrio et al.14, leading to a non-bias-estimated AUC.

With regard to computation times, the BackAddFor requires slightly greater

computation times than the AddFor. For example, for k = 2 and n = 1000, the AddFor

takes on average 0.90 seconds while the BackAddFor takes 2.29 seconds. However, in

the same scenario, when we move to the Genetic algorithm the computational cost is of

another magnitude, requiring on average 93.95 seconds. The specific details regarding

the computational times are shown in Web Appendix D.
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Table 1. Numerical results of the comparison between the AddFor, BackAddFor, and Genetic
estimation algorithms.

k
Sample

Size Algorithm c Mean (sd) Median Bias
MSE
(sd)

k = 2 n=500

AddFor
0.227 0.282 (0.367) 0.346 0.054 0.136

(0.083)1.274 1.196 (0.359) 1.127 -0.078

BackAddFor
0.227 0.206 (0.226) 0.195 -0.022 0.051

(0.057)1.274 1.292 (0.226) 1.291 0.018

Genetic
0.227 0.199 (0.225) 0.199 -0.028 0.049

(0.056)1.274 1.283 (0.214) 1.270 0.009

k = 2 n=1000

AddFor
0.227 0.378 (0.363) 0.562 0.150 0.140

(0.066)1.274 1.265 (0.355) 1.402 -0.009

BackAddFor
0.227 0.209 (0.203) 0.227 -0.018 0.039

(0.051)1.274 1.297 (0.191) 1.316 0.023

Genetic
0.227 0.219 (0.188) 0.234 -0.008 0.035

(0.042)1.274 1.311 (0.183) 1.314 0.037

k = 3 n=500

AddFor
-0.068 -0.103 (0.219) -0.100 -0.035

0.047
(0.046)

0.750 0.744 (0.186) 0.747 -0.006
1.568 1.600 (0.238) 1.592 0.032

BackAddFor
-0.068 -0.107 (0.244) -0.098 -0.039

0.062
(0.060)

0.750 0.777 (0.220) 0.777 0.027
1.568 1.634 (0.267) 1.637 0.066

Genetic
-0.068 -0.109 (0.238) -0.095 -0.041

0.059
(0.056)

0.750 0.762 (0.221) 0.751 0.012
1.568 1.623 (0.257) 1.605 0.054

k = 3 n=1000

AddFor
-0.068 -0.112 (0.179) -0.112 -0.044

0.029
(0.025)

0.750 0.728 (0.138) 0.728 -0.021
1.568 1.579 (0.181) 1.554 0.011

BackAddFor
-0.068 -0.117 (0.198) -0.115 -0.049

0.041
(0.043)

0.750 0.748 (0.188) 0.745 0.002
1.568 1.610 (0.207) 1.598 0.041

Genetic
-0.068 -0.110 (0.192) -0.110 -0.042

0.04
(0.039)

0.750 0.748 (0.188) 0.738 -0.002
1.568 1.610 (0.209) 1.588 0.042

A grid of size M = 50 was used for the AddFor and BackAddFor algorithms. k
represents the number of cut-off points chosen and c the theoretical vector of the cut-off
points for each value of k.
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Performance evaluation of the bootstrap hypothesis test

Scenarios and setup:

In this simulation study, the continuous covariate X was drawn from a uniform

distribution U [−2, 2]. Different scenarios were considered to study the behaviour of the

hypothesis test under different circumstances. In particular, four different settings were

simulated, each with a different goal. In the first scenario (S1), fixing the number of true

cut-off points as k = 3 (i.e. four categories), we studied the power of the hypothesis test

considering different probabilities for the fourth category, which vary according to the

value of a constant a. In the second scenario (S2), we considered a model with k true cut-

off points to study the performance of the test as a function of k. Finally, we considered

two scenarios in which the true number of cut-off points forX did not exist; in particular,

we considered a linear and a quadratic relationship between the continuous covariate X

and logit(P (Y = 1|X)) in the third (S3) and fourth (S4) scenarios, respectively. For

ease of reading, scenarios S3 and S4 are shown in detail in Web Appendix B . In all

cases, R = 1000 replicates {(xri , yri )}
n
i=1 (r = 1, . . . , R) were generated according to

the corresponding model. In all the scenarios, we considered the null hypothesis H0(k)

versus the alternative H1(k), using the test statistic T explained in Model Selection

Section. For determining the critical values of T , we applied a bootstrap resampling

approach withB = 300 bootstrap samples. Type I errors and power rates were calculated

as the rejection proportion of H0(k) (in R = 1000 replicates). The test size and power

were determined for different nominal levels (α = 1%, α = 5%, α = 10%, α = 15%,

and α = 20%) and sample sizes (n = 500 and n = 1000).
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S1. In this first setting, the response variable was generated according to the following

model:

log
p(Y = 1|X)

1− p(Y = 1|X)
=



-3 if X ≤ −1.25

-0.75 if −1.25 < X ≤ −0.25

2.5 if −0.25 < X ≤ 0.75

2.5− a if X > 0.75 .

To study the power of the test, different values of a were considered, ranging

from 0.25 to 3. In particular, the values for the constant a were limited to

(0.25, 0.5, 0.75, 1, 2, 3), each of them leading to a different modelling distribution

(see supplementary material for additional detail) and three true cut-off points

c = (−1.25,−0.25, 0.75). We also considered the case for a = 0, where there

were two true cut-off points c = (−1.25,−0.25), in order to study the type I error

of the test.

S2. In the second setting, we considered k true cut-off points according to the model

p(Y = 1|X) =



p1 if X ≤ c1

p2 if c1 < X ≤ c2
...

pk if ck−1 < X ≤ ck

pk+1 if X > ck

where
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
cj = −2 + j 4

k+1

pj = pmin + (j − 1)pmax−pmin

k

for j = 1, . . . , k + 1 and k ≤ 10

with pmin = 0.5− 0.05k and pmax = 0.5 + 0.05k. Note that the values cj (for

j = 1, . . . , k) were defined to obtain an equidistant sequence of values in the

interval [−2, 2], leaving aside the extreme values. Similarly, the probabilities for

the first and last categories were defined in such a way that the theoretical AUC for

the model defined is greater as the number of cut-off points k increases.

Results:

Given the large number of settings studied, we begin by summarizing the main findings

and continue by analyzing in detail the results obtained in each of the proposed scenarios.

First, the results suggest that whenever there are true optimal number of cut-off points,

the test performs well in general, providing type I errors close to the nominal errors (α).

In addition, for a small number of cut-off points, the test has good power. However, it

tends to be conservative as the number of cut-off points increases, especially if there

are no differences in terms of the estimated AUCs for k + 1 and k cut-off points. In the

following, we will show in detail the results obtained in each of the scenarios studied.

S1 We first studied the type I error of the test for a = 0 (i.e, k = 2, three categories).

The results obtained (expressed in %) are shown in Table 3, from which it can

be seen that the test performed well in general, with type I errors proving to be

relatively close to the nominal errors.
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Table 3. Estimated type I error (in %) for different sample sizes (n = 500 and n = 1000) and
nominal levels (1%, 5%, 10%, 15%, and 20%).

Nominal Level (α)
Sample Size 1% 5% 10% 15% 20%
n = 500 0.6 4.9 10.8 15.8 21.4
n = 1000 0.8 5.6 10.7 15.7 22.2
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Figure 1. Percentage of rejections of the null hypothesis (power of the hypothesis test) for
α = 0.05 (left plot) and α = 0.10 (right plot) significance levels (red line).

Figure 1 depicts the power curves for different sample sizes (n = 500 and

n = 1000), values of a (a ∈ {0, 0.25, 0.5, 0.75, 1, 2, 3}), and significance levels

(α = 0.05 and α = 0.1, left- and right- hand-side plots, respectively). For either

sample size and significance level, when a = 0, the probability of rejection is

approximately at the nominal level, whereas this probability rises to 1 as the value
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of a increases. Although all the power curves exhibited the expected behaviour

pattern, it can be observed that the power of the test strongly depends on the

value of a. Thus, while the test power was very poor whenever the estimated

probabilities for two categories were very similar (i.e., for small values of a),

it nevertheless registered an important improvement as the value of a increased.

Finally, as expected, in general, the method performed better for a sample size of

n = 1000 than for n = 500.

S2 In this simulation study, we analyzed the performance of the hypothesis test as

a function of the number of cut-off points k. Table 4 shows the type I errors

obtained for different sample sizes (n = 500 and n = 1000), nominal levels (1%,

5%, 10%, 15%, and 20%), and number of true cut-off points k (k = 1, . . . , 6) when

we performed the contrast H0(k) versus the alternative H1(k). The results show

that type I errors are close to the nominal levels. Nevertheless, for small sample

sizes, as the number of true cut-off points increases, type I errors tend to be smaller

than the nominal levels.

On the other hand, we studied the power of the test for different possible

combinations of the true number of cut-off points k. Due to the large number of

possible combinations, we show the results only for the case of k = 5 true number

of cut-off points. Table 5 shows the estimated power rates when we compared

the null hypothesis (H0(k0)) against the alternative (H1(k0)), for k0 = 1, . . . , 4

and data simulated based on k = 5 true number of cut-off points. In addition, the

differences between the estimated and bias-corrected estimated AUCs for each k0
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Table 4. Estimated type I error (in %) for different sample sizes (n = 500 and n = 1000) and
nominal levels (1%, 5%, 10%, 15%, and 20%) when we considered the null hypothesis H0(k)
versus the alternative H1(k) for k = 1, . . . , 6 under the conditions of S2.

n True k
H0 H1 Nominal Level α
k k + 1 1% 5% 10% 15% 20%

500

1 1 2 0.9 5.7 9.6 14.8 20.0
2 2 3 0.8 4.4 8.7 14.0 19.3
3 3 4 0.4 4.1 7.5 11.5 16.3
4 4 5 0.4 3.3 7.1 11.5 16.0
5 5 6 0.5 3.5 7.6 12.6 16.3
6 6 7 0.5 4.6 8.5 12.1 17.4

1000

1 1 2 1.5 6.1 10.2 15.3 19.8
2 2 3 0.5 4.2 9.4 15.3 20.1
3 3 4 0.5 4.6 8.7 14.7 20.0
4 4 5 0.3 4.5 10.4 15.5 20.2
5 5 6 0.4 3.8 8.0 13.0 17.2
6 6 7 0.6 5.6 9.9 14.7 20.2

are also reported in Table 5. The results show that even though the true number

of cut-off points is 5, there are no differences in terms of the estimated AUCs,

and therefore, good power rates are obtained only when 1 vs. 2 numbers of cut-off

points are compared (where the differences in terms of the AUC are greater than

0.01). To study whether the low power is due to the increase in the number of

cut-off points or to the need for them (in terms of the AUC), a similar simulation

study has been carried out where distant probabilities have been assigned to the

adjacent categories (for the details, see Web Appendix C). In this case, the power

of the test is very high. Simulations have been performed for other values of k, and

similar results have been obtained (results not shown). Moreover, the estimated

AUCs for each k0 have been compared with that obtained when data simulated

based on k = 5 true number of cut-off points was modelled with a generalized

Prepared using sagej.cls



26 Journal Title XX(X)

additive model (GAM), which turned out to be 0.696 (bias corrected: 0.694). As

can be seen in Figure S2(c) in the supplementary material, the increment in the

AUC is very slow when k0 ≥ 3, with similar estimated AUCs to that obtained with

a GAM.
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Application to the CCR-CARESS study

We applied the methodology proposed in this paper to the CCR-CARESS data presented

in Section 2. As pointed out before, we were interested in the selection of the best

number of cut-off points to categorize the predictor variable LNR. We considered the

response variable 5-year mortality after surgery and categorized the predictor variable

LNR considering a univariate logistic regression model. We used the BackAddFor

estimation algorithm with a grid of size 50. The bootstrap hypothesis test was carried

out considering 400 bootstrap samples. An additional cut-off point (i.e., category) was

considered statistically significant at α = 0.05.

Table 6 shows the results obtained when the predictor variable LNR was categorized

into 2, 3, 4, and 5 categories. The results suggested that the best number of cut-off points

was 2 (p-value < 0.001 when 1 vs. 2 cut-off points are compared, and p-value = 0.12

when 2 vs. 3 cut-off points are compared). The estimated optimal cut-off points thus

would be 0.06 and 0.22.

Table 6. Results obtained in the categorization of the predictor variable lymph node ratio.

Number of
cut-off points (k) AUC AUCC

Estimated cut-off points p-value
ck vs. ck+1c1 c2 c3 c4

1 0.638 0.627 0.06 < 0.001
2 0.651 0.639 0.06 0.22 0.12
3 0.653 0.643 0.04 0.10 0.22 0.95
4 0.655 0.649 0.04 0.10 0.22 0.41

ÂUC
C
(k) is the bootstrap bias-corrected AUC for k cut-off points.

As can be seen in Table 6, p-values for comparing k = 2 vs k = 3 and k = 3 vs k = 4

are all greater than the previously fixed 5% significance level. However, it is not clear if
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the AUCs are significantly different when k = 2 number of cut-off points is compared

to k = 4 or at an even larger increment in the number of cut-off points and whether in

that case different results would be obtained. In order to shed light on this issue, we have

carried out all the hypothesis tests in such a way that we have contrasted H0 : k = k0 vs

H1 : k = k1, where k0 = 1, 2, 3 and k1 = k0 + 1, . . . , 4. The results obtained show that

one cut-off point is not enough (p-values < 0.01) and yet when contrasting H0 : k = 2

cut-off points against H1 : k = k1, for k1 = 3, 4 all the p-values obtained are > 0.05,

thus the optimal number of cut-off points will still be two.

Figure 2 depicts the relationship of the categorized LNR variable (2(a) two categories;

2(b) three categories; 2(c) four categories, and 2(d) five categories) together with the

relationship obtained when the LNR variable was modelled considering a GAM. As can

be observed, when the number of cut-off points considered is greater than 1, the estimated

results obtained by the categorized variable are in line with those obtained with the GAM

model. In fact, similar results are obtained in terms of discriminatory ability with the best

categorization (i.e, the three categories option) and the GAM model, the estimated AUCs

being 0.651 (bias corrected: 0.639) for the first and 0.654 (bias corrected: 0.651) for the

GAM model, respectively (see Table 6). Nevertheless, as expected, the AUC obtained

with the categorized variable is a little smaller, especially when comparing bias-corrected

AUCs.
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Figure 2. Graphical representation of the categorized LNR variable together with the
relationship obtained with a generalized additive model (GAM).

Prepared using sagej.cls



31

Discussion

Although different methods have been proposed to select the optimal location of the

cut-off points to categorize a continuous predictor variable14,15,27–29, to the best of our

knowledge, up to now, no approaches have been proposed in the literature to select the

number of categories. Nevertheless, in the context of regression splines, the optimal

allocation and selection of the number of knots has been adequately discussed in the

literature30–32. Different algorithms have been proposed to select the optimal number

of knots by minimizing (or maximizing) a certain statistical measure. For instance,

Valenzuela et al.32 proposed an algorithm to simultaneously optimize the placement

and number of knots in smoothing splines by using a multi-objective genetic algorithm.

Returning to the context of categorization, the need for further research into how to

determine the best number of categories has already been mentioned. Barrio et al.14

considered two procedures to select the best number of cut-off points for the application

to a real data set. However, as they stated in the discussion, further work was needed

on that. Therefore, in this work, we have proposed a bootstrap-based hypothesis test

to compare k against k + 1 number of categories (which also allows to compare k vs

> k number of cut-off points). We have conducted a simulation study with a variety

of scenarios in which we have studied different relationships between the continuous

covariate and the response variable. Although the scenarios are very different from one

another, similar results have been obtained overall. On the one hand, type I errors very

close to the nominal errors have been obtained. On the other hand, good power rates

(or rejection percentages in the Linear and Quadratic scenarios) have been obtained
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regardless of the value of k, provided that the differences in the AUC have been greater

than 0.01.

In addition, we have proposed a new estimation algorithm called BackAddFor, which,

according to the results obtained in our simulation studies, improves the performance

of the AddFor algorithm whenever the performance of the latter is not accurate, and

has a similar performance as the Genetic algorithm. Therefore, given that BackAddFor

is computationally more efficient than Genetic, the former is the algorithm we have

considered to develop the bootstrap hypothesis test. It is worth mentioning that unlike

the proposals for the selection of the optimal number of knots in splines, we have not

considered optimizing jointly the number and the location of the cut-off points. We see

three reasons for this. On the one hand, in practice, there are situations in which the

number of cut-off points is previously known so that joint optimization in this case would

not be necessary; on the other hand, given that AUC(k) is an increasing function but

with a growth that tends to zero as k increases, we consider that a hypothesis contrast

is needed to decide at which value of k that increase in AUC ceases to be statistically

significant; and finally, we found it to be a very computationally expensive approach.

However, a comparison of the differences between using the bootstrap hypothesis test

and a joint optimization approach is of great interest as future work. At this point it

is worth mentioning that we have selected the AUC (numerically equivalent to the c-

index33,34 in the logistic regression framework) as a measure of the discrimination ability

of the categorized variable because it is the most commonly used parameter in practice.

Although other parameters have been also proposed in the literature such as the effect
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size and the overlap coefficient35, these were not suitable to measure the discrimination

ability of the categorized variable in this context.

Further, a bootstrap resampling procedure has been used to implement the test that will

help determine the number of categories. In particular, the test statistic we have proposed

consists of the increment obtained for the estimated AUC when the number of categories

increases by one. We have seen that the differences between the estimated AUCs

(ÂUC(k + 1)− ÂUC(k)) and the bias-corrected AUCs (ÂUC
C
(k + 1)− ÂUC

C
(k))

are approximately the same (simulation results not shown); therefore, we have not

considered the need to approach the test from the standpoint of the difference of the

corrected AUC, because we believe that it only increases the computational cost.

The methodology presented in this paper was applied to the CCR-CARESS study data

set, and the LNR continuous variable was categorized to predict 5-year mortality in a

logistic regression model. The results suggested that the best number of categories was

three, with 0.06 and 0.22 being the optimal cut-off points. In addition, the bias-corrected

estimated AUC obtained for this categorization proposal was 0.639. The cut-off points as

well as the number of categories obtained were different from those previously used in

the literature, where there was no prior consensus. In fact, Rosenberg et al.10 identified

three cut-off points (0.17, 0.41, and 0.69) which in our data set lead to an AUC of 0.612.

In addition, Berger et al.8 categorized the LNR based on quantiles, which differed from

the LNR quantiles in our data set. Thus, because the distribution of the LNR variable may

differ from one study to another, the optimal cut-off points may differ too. Therefore, we
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propose that the optimal cut-off points and number of categories should be checked with

an appropriate methodology depending on the settings of the study.

Finally, note that the proposed procedure for determining the number of categories

consists of testing multiple hypotheses, where a set of k p-values corresponding to k null

hypotheses,H0(1), . . . ,H0(k), are given. To be specific, the most appropriate number of

cut-off points k is obtained using the following algorithm. Step 1: Initialize with k = 1;

Step 2: test H0(k); if the null hypothesis is rejected, then set k = k + 1 and repeat Step

2; otherwise k is considered as the best number of cut-off points. Therefore, the main

limitation of this study is that the hypothesis test proposed may imply a multiple testing

procedure. Nevertheless, unlike what we might expect, we have observed that the type 1

error does not increase when we perform the whole procedure, and that the method does

not seem to select more cut-off points than necessary. Thus no cut-off points are detected

that do not exist (results not shown). Even so, we consider it interesting and necessary

for future work to study theoretically or empirically the type 1 error and the power of the

whole process.

In the present work, the categorization of a continuous variable has been studied in a

univariate model for simplicity when defining the simulation study. However, it is directly

applicable to the context where there are multiple covariates in the model. However, in

the case in which it is desired to categorize more than one variable at the same time,

although the methodology is theoretically applicable, it is computationally unfeasible.

We are currently working on alternatives to make simultaneous categorization viable.

Therefore, in the case where it is required to categorize and select the number of optimal

Prepared using sagej.cls



35

categories for more than one variable, we propose to apply the method to one at a time,

but including a smooth effect of the other covariate in the model.

In summary, we have proposed a methodology that allows one to select the number

of categories whenever a predictor variable is to be categorized in a logistic regression

setting. According to the simulation studies considered, the hypothesis test proposed

has type I errors close to the nominal values and good power rates whenever the

differences in terms of the AUC between two adjacent number of categories is larger than

0.01. In addition, the results obtained are consistent in the various situations analyzed.

Nevertheless, although we have considered different scenarios representing a variety of

relationships between the covariate and the response variable, we are aware that we have

not studied every possible situation. Finally, a categorization of the LNR in a logistic

regression model for 5-year mortality has been provided to clinical researchers with a

minimum loss of discriminatory ability when compared to a GAM.
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