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Abstract

Variable selection is an important step to end up with good prediction models. LASSO re-

gression models are one of the most commonly used methods for this purpose, for which

cross-validation is the most widely applied validation technique to choose the tuning pa-

rameter (λ). Validation techniques in a complex survey framework are closely related to

“replicate weights”. However, to our knowledge, they have never been used in a LASSO

regression context. Applying LASSO regression models to complex survey data could be

challenging. The goal of this paper is two-fold. On the one hand, we analyze the performance

of replicate weights methods to select the tuning parameter for fitting LASSO regression

models to complex survey data. On the other hand, we propose new replicate weights meth-

ods for the same purpose. In particular, we propose a new design-based cross-validation

method as a combination of the traditional cross-validation and replicate weights. The per-

formance of all these methods has been analyzed and compared by means of an extensive

simulation study to the traditional cross-validation technique to select the tuning param-

eter for LASSO regression models. The results suggest a considerable improvement when

the new proposal design-based cross-validation is used instead of the traditional cross-

validation.
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1 INTRODUCTION

Complex survey data are becoming increasingly relevant in a number of fields, including social and health sciences, among others. In this framework,
the finite population of interest for the study is usually sampled following a complex sampling design, which may include techniques such as
stratification, clustering, or a combination of them in different stages of the sampling scheme. In this context, a sampling weight is assigned to each
sampled unit, indicating the number of units that this observation represents in the finite population. Suppose, for example, we consider a stratified
sampling scheme, in which several strata are defined in the finite population and a number of units or a number of clusters of units (which will
be denoted as Primary Sampling Units (PSU), hereinafter) is sampled from each stratum. In this case, the sampling weight for each sampled unit
is usually defined as its inverse inclusion probability, i.e., the probability for each unit being sampled. Due to these particularities, complex survey
data do not satisfy the independence and identically distributed conditions, and hence, the validity of traditional statistical techniques should be
checked before applying them to data collected from complex surveys (see, e.g., Skinner, Holt, and Smith (1989) for more information on this
topic). Among other issues, the need for and use of sampling weights and the design effect on the development of prediction models has been
widely discussed in the literature (see, e.g., Iparragirre, Barrio, Aramendi, and Arostegui (2023); Lumley and Scott (2015 2017); Pfeffermann and
Sverchkov (2009); Smith (1988) as a summary of this debate that is still alive).
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In this paper, we focus on the development of predictionmodels, andmore specifically, on the variable selection for complex survey data in linear
and logistic regression frameworks. Least Absolute Shrinkage and Selection Operator (LASSO) regression (Tibshirani 1996), is nowadays a widely
used technique for variable selection, especially when a large amount of predictor variables are available, in order to obtain more parsimonious, and
hence, more interpretable prediction models. Very briefly, one goal of LASSO regression models, is to set some model coefficients to zero, reducing
in this way the dimension of the model by selecting a subset of the available predictor variables. The selection of this subset depends in turn on the
election of a tuning parameter (λ) for which techniques such as bootstrap or cross-validation can be applied, the latter being the most widely used
technique, in practice. These techniques, commonly known as validation methods, are used in order to select the tuning parameter with which
the error of the final model, evaluated in a sample different from the one used to develop the model, is minimized (see, e.g., Hastie, Tibshirani,
and Friedman (2009); James, Witten, Hastie, and Tibshirani (2013)). Shortly, those techniques consist in defining different training sets (in which
models are fitted considering several tuning parameters) and test sets (in which the error of the models is estimated). The tuning parameter that
minimizes the error of the training models in the test sets is selected for fitting the LASSO model to the whole sample.

However, fitting LASSO regression models to complex survey data could be problematic for two reasons. In the first place, the previously
mentioned debate about the need for sampling weights when fitting prediction models could be extended to LASSO regression models. In addition,
with the traditional above-mentioned validation methods training and test sets are randomly defined, without considering the sampling design in
the process. This may be a problem when working with complex survey data given that PSUs could be split into training and test sets which may
lead the training sets to underestimate the variability produced due to the sampling process and underestimate population error. This problem is
usually known as “data leakage” (Kaufman, Rosset, Perlich, & Stitelman 2012). Both of these problems (weights-related as well as design-related)
have recently been discussed in the literature. McConville, Breidt, Lee, andMoisen (2017) proposed incorporating sampling weights into the LASSO
linear regression estimation process and Kshirsagar,Wieczorek, Ramanathan, andWells (2017) extended this proposal to logistic regressionmodels.
Nonetheless, both of them applied the traditional K-fold cross-validation, which consists in randomly splitting sampled units into K subsamples
(or folds) and definingK training sets, excluding a different fold (test set) each time. Nevertheless, if we apply this method to complex survey data
we may come across two types of problems. In the first place, sampling weights of the units in neither the training sets nor the test sets properly
represent the entire finite population. Besides, and more importantly, as mentioned above, sampling design is not reflected in the way the folds
are defined. Wieczorek, Guerin, and McMahon (2022) warned about this problem and proposed mimicking the structure of the sample obtained
from the finite population in each fold. For example, for stratified sampling designs, Wieczorek et al. (2022) proposed making each fold a stratified
sample of PSUs from each stratum, i.e., creating simple random sample folds separately within each stratum (being all the elements from a given
PSU placed in the same fold) and then combine them across strata. In this way, the weights of the units in the training and test sets represent the
finite population properly and the variability of the data is also represented. However, as pointed out by the authors, it should be noted that in this
way the number of folds could be limited by means of the sampled PSUs in each stratum (cannot be defined more folds than the maximum number
of sampled PSUs per stratum). In other words, we need at least K PSUs per stratum for the proper application of this method. Furthermore, if
we have a different (and non-proportional to K) number of PSUs in each stratum, the sampling weights of the training and test sets would also
incorrectly represent the finite population.

In complex survey frameworks, other approaches, different from the abovementioned validation techniques, are usually used to define partially
independent subsets of the sample. Those approaches are known as “replicate weights” methods. Thesemethods consist of modifying the sampling
weights to define new subsamples that replicate the original sample, in the way that these subsamples by means of these new weights (i.e.,
the “replicate weights”) correctly represent the finite population. The most well-known replicate weights methods which are implemented in the
survey R package (Lumley (2011), Lumley (2020), are Jackknife Repeated Replication (JKn), Balanced Repeated Replication (BRR) and Rescaling
Bootstrap (Bootstrap). Note that Jackknife term is usually used in variance estimation framework but this term is commonly denoted as leave-
one-cluster-out (LOCO) (Merkle, Furr, & Rabe-Hesketh 2019) or leave-one-group-out (LOGO) cross-validation Kuhn and Johnson (2019) when the
goal is validation. However, in order to be consistent with the terminology used in the survey R package (Lumley 2020) we denote this method as
Jackknife throughout the paper.

Therefore, the aim of the present work is two-fold. On the one hand, we aim to analyze the performance of the above-mentioned replicate
weights methods, instead of traditional validation techniques, to select the tuning parameter for fitting LASSO regression models. On the other
hand, our goal is to propose new methods to this end based on the idea of replicating weights. In particular, due to the popularity of cross-
validation in this context, we propose a new design-based cross-validation method based on replicate weights, which will be more flexible than
the one proposed by Wieczorek et al. (2022). In addition to the cross-validation, we also propose two new techniques (which we denote as split-
sample repeated replication (split) and extrapolation (extrap)) to select the tuning parameter for LASSO models. In this study we aim to analyze a)
the impact of considering complex designs when using validation techniques for the selection of the tuning parameter, and b) the impact of the
sampling weights when fitting LASSOmodels. Therefore, we compare by means of a simulation study the performance of different proposals based
on replicate weights, to a) the traditional K-fold cross-validation that defines the folds by ignoring the sampling design but considers sampling
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weights for fitting LASSO models (weighted simple random sample cross-validation, w-SRSCV), and b) the unweighted simple random sample
K-fold cross-validation ignoring weights for fitting LASSO models (unw-SRSCV).

The rest of the paper is organized as follows. In Section 2 the basic notation on linear and logistic regression models and LASSO regression are
given, existing replication methods applied in this work for the selection of the tuning parameter are defined and new methods based on the idea
of replicating weights are also proposed. The performance of all the methods is analyzed by means of a simulation study, which is described in
Section 3. Finally, we close the paper with the main conclusions in Section 4.

2 METHODS

This section is divided into three different parts. In Section 2.1 the basic notation is set, in Section 2.2 LASSO regression is described, and finally,
Section 2.3 describes replicate weights methods considered in this study together with the new methods proposed by the authors.

2.1 Basic Notation

Let U denote a finite population of N units, for which information of the vector of p covariates XXX = (X1, . . . , Xp) is available, i.e.,
{xxxi = (xi1, . . . , xip)}Ni=1. Let S be a sample obtained from U following some complex sampling design. In addition to the information of covari-
ates, values for the response variable Y are also known for sampled units: yi, ∀i ∈ S. Furthermore, for each sampled unit i ∈ S a sampling weight
is assigned as wi = 1/πi, where πi indicates the probability of being sampled, ∀i ∈ S.

For a continuous response variable Y , the linear regression model for the observed data is defined as follows:
yi = xxxiβββ + ϵi, ϵi ∼ N(0, σ2), (1)

and the vector of regression coefficientsβββ = (β0, β1, . . . , βp)T are estimated (β̂ββ) based on sampleS byminimizing the residual sum of square (RSS):
RSS(βββ) = ∑

i∈S

(yi − β0 −
p∑

j=1

βjxij)
2. (2)

In a similar way, if Y is a dichotomous response variable, the logistic regression model is defined as,
logit(P (Y = 1|xxxi)) = logit(p(xxxi)) = ln

[
p(xxxi)

1− p(xxxi)

]
= xxxiβββ, (3)

where p(xxxi) =
exxxiβββ

1 + exxxiβββ
and β̂ββ is obtained by maximizing the log-likelihood function ℓ(βββ) (or equivalently, minimizing −ℓ(βββ)):

ℓ(βββ) =
∑
i∈S

[yi ln(p(xxxi)) + (1− yi) ln(1− p(xxxi))] . (4)
However, when working with complex survey data, sampling weights should be considered when estimating model coefficients as proposed

by Fuller (1975) and Binder (1983), and the weighted residual sum of square (WRSS) and the pseudo-log-likelihood (pℓ) functions are usually
considered instead of (2) and (4), respectively:

WRSS(βββ) = ∑
i∈S

wi(yi − β0 −
p∑

j=1

βjxij)
2 and pℓ(βββ) =

∑
i∈S

wi [yi ln(p(xxxi)) + (1− yi) ln(1− p(xxxi))] . (5)
After estimating regression coefficients, a value for the response variable can be estimated given the values of covariates xxxi for unit i ∈ U as

ŷi = xxxiβ̂ββ in linear regression framework and as p̂(xxxi) =
exxxiβ̂ββ

1 + exxxiβ̂ββ
in logistic regression. In order to ease the notation, let us denote as f̂(·) the

fitted (either linear or logistic) model and as f̂(xxxi) the corresponding estimated response for unit i, hereinafter.

2.2 LASSO regression for variable selection

When a large amount of predictor variables are available, the LASSO regression model is commonly used for variable selection. Briefly, this method
forces some regression coefficients to zero, and thus more interpretable models are obtained. This variable selection method is described below.

For a given value of the tuning parameter λ, linear and logistic LASSO regression models are fitted by minimizing the following functions,
respectively:

min

RSS(βββ) + λ

p∑
j=1

|βj |

 and min

−ℓ(βββ) + λ

p∑
j=1

|βj |

 . (6)
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In practice,K−fold cross-validation is usually applied to select the optimum value for λ in order to minimize the error of the fitted model. Sampled
units are randomly split intoK subsamples of the same size. For ∀k = 1, . . . ,K the kth subsample is set as test set (Stest(k)), while the restK − 1

subsets form the training set (Str(k)). Then, a grid for λ values is defined (λl, ∀l = 1, . . . , L), and for each of these values a model is fitted to
each training set Str(k), ∀k = 1, . . . ,K following (6) (let us denote this model (either linear or logistic) as f̂ ltr(k)(·)) and applied to the test set (let
f̂ ltr(k)(xxxi) indicate the predicted value, ∀i ∈ Stest(k)). The estimation error for each unit is calculated by means of the loss function as follows:

L(yi, f̂ ltr(k)(xxxi)) =

 (yi − f̂ ltr(k)(xxxi))
2, in linear regression framework,

−yi ln(f̂
ltr(k)(xxxi))− (1− yi) ln(1− f̂ ltr(k)(xxxi)), in logistic regression framework. (7)

For ∀k = 1, . . . ,K , the error in subset k and λl, ∀l = 1, . . . , L is then estimated as follows:
Êrr

l

(k) =
1

ntest(k)
∑

i∈Stest(k)

L(yi, f̂ ltr(k)(xxxi)), (8)
being ntest(k) the size of Stest(k), ∀k = 1, . . . ,K. This process is repeated K times, by setting a different subset k as the test set each time. The
cross-validated error for λl is estimated as follows:

ÊrrCV (λl) =
1

K

K∑
k=1

Êrr
l

(k). (9)
Finally, the value that minimizes the cross-validated error is selected as the penalty parameter,

Λ = argmin{ÊrrCV (λl), ∀l = 1, . . . , L}, (10)
and the model is fitted to the whole sample S including Λ as the tuning parameter in expression (6).

However, in all the process explained above, sampling design and sampling weights are not considered (let us denote it as the unweighted simple
random sample cross-validation (unw-SRSCV), hereinafter). We believe that when working with complex survey data, sampling design should be
considered in the whole process: 1) when fitting the model, 2) when defining training and test sets, and 3) when estimating the error. Below, we
explain how we propose to address these three points as a whole.

In the first place, when fitting the LASSO regression models, sampling weights should be considered as follows instead of (6) for linear and
logistic regression models, respectively (Kshirsagar et al. 2017; McConville et al. 2017):

min

WRSS(βββ) + λ

p∑
j=1

|βj |

 and min

−pℓ(βββ) + λ

p∑
j=1

|βj |

 . (11)
Secondly, in Section 2.3 we describe different methods based on replicate weights that could be considered to take into account the sampling
design when defining training and test sets. Finally, sampling weights should also be considered when estimating the error. In particular, if we focus
on the above-mentioned cross-validation method, we could rewrite eq. (8) as follows in order to consider the weights when estimating the error
in subset k:

Êrr
l

(k) =
1∑

i∈Stest(k)
wi

∑
i∈Stest(k)

wiL(yi, f̂ ltr(k)(xxxi)). (12)
We denote as weighted simple random sample cross-validation (w-SRSCV) the method that considers (11) to fit the model and (12) to estimate

the error, but defines the folds by randomly splitting sampled units into different subsets ignoring the sampling design as described previously.

2.3 Selecting LASSO model’s tuning parameter with complex survey data

In this work, we propose to use replicate weights for the selection of the tuning parameter λ. In the following lines, we describe the six replicate
weights methods we considered in this work to define training and test sets when selecting the tuning parameter for LASSO models. The goal of
replicate weights methods is to modify the sampling weights to define new partially independent subsamples that replicate the original sample, in
theway that the finite population is properly represented in each subsample bymeans of themodifiedweights known as “replicateweights”. Someof
the replicate weights methods that are described below are commonly applied for other purposes, such as variance estimation, when working with
complex survey data. These methods are known as Jackknife Repeated Replication (JKn), Rescaling Bootstrap (Bootstrap), and Balanced Repeated
Replication (BRR) (see, e.g., Heeringa, West, and Berglund (2017); Wolter (2007) for more information about these methods). However, as far as
we know, they have never been used for selecting the tuning parameter for LASSO regression models. In this work, we propose to incorporate
the abovementioned replicate weights methods in this context. In addition, we also propose three new methods based on the idea of replicating
weights, which we denote as the design-based K-fold cross-validation (dCV), Split-sample Repeated Replication (split) and extrapolation (extrap)
for the same purpose. Figure 1 depicts a graphical summary of all these methods (note that the figures are not self-explanatory and should be read
in combination with the descriptions below for a correct understanding of each method).
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Let ah indicate the number of sampled PSUs from stratum h, ∀h = 1, . . . , H , where∑H
h=1 ah = a indicates the total number of sampled PSUs.

In this study a stratified cluster sampling has been considered, thus PSUs are the clusters sampled from each stratum but note that all the methods
described below can be extended to one-step stratified samples in which different numbers of individuals (which would be the PSUs in that case)
are sampled from each stratum.

• Jackknife Repeated Replication (JKn): This method, leaves one PSU α, ∀α = 1, . . . , a as test set (Stest(α)), being the corresponding training
sets (Str(α)) defined by the rest a−1 PSUs, excluding the αth one. A total of TJKn = a training and test sets are defined in this way, excluding
one PSU from the training set each time. ∀α = 1, . . . , a let us suppose that α indicates a PSU from stratum h, ∀h = 1, ..., H . Replicate
weights are defined ∀i ∈ S, for the αth training set as follows:

w
∗,tr(α)
i,JKn =


0, if i ∈ Stest(α),

wi, if i ∈ Str(α) but it is not in stratum h,

wi ·
ah

ah − 1
, if i ∈ Str(α) and it is in stratum h.

(13)

Even though each test set is formed by the PSU excluded from the corresponding training set, the error is usually estimated considering
the whole sample, so the replicate weights corresponding to the test set can be defined as the original sampling weights, i.e., w∗,test

i,JKn = wi.
• Rescaling Bootstrap (Bootstrap): TBootstrap = B bootstrap resamples are generated as proposed by Rao andWu (1988). ∀h = 1, . . . , H ah −1

PSUs are selected with replacement, which form the bth training set, ∀b = 1, . . . , B. ∀α = 1, . . . , a let us denote as v(b)α , the number of times
that the αth PSU is selected to be part of the bootstrap resample b. Note that if the αth PSU is not selected for resample b, then v

(b)
α = 0.

Then, ∀b = 1, . . . , B the replicate weights for the bth training set are defined as follows. ∀i ∈ S, suppose i is a unit from the αth PSU:
w

∗,tr(b)
i,Bootstrap = wi ·

ah

ah − 1
· v(b)α . (14)

The corresponding test set for each training set is the original sample S with its sampling weights, i.e., w∗,test(b)
i,Bootstrap = wi.

• Balanced Repeated Replication (BRR): This method was originally designed to be applied in samples with 2 PSUs per stratum. ∀h = 1, . . . , H

one of the PSUs from the stratum is set to the training set while the other is set to the test set. There are 2H different possible training and
test sets to define in this way, which may usually be computationally unfeasible. Instead, TBRR (where TBRR ≤ H+4) the number of different
sets are usually defined by selecting the PSU splits in a particular way by means of the Hadamard matrix as proposed by McCarthy (1966).
Nowadays, this method is extended to be also applied when an even number of PSUs per stratum are available (Lumley 2020; Wolter
2007). ∀i ∈ S, the replicate weights for the tth training set are defined as follows, ∀t = 1, . . . , TBRR:

w
∗,tr(t)
i,BRR =

{
0, if i ∈ Stest(t),
2wi, if i ∈ Str(t).

(15)
Replicate weights for the corresponding test sets (w∗,test(t)

i,BRR ) are defined by exchanging the roles of test and training sets in (15).
• Design-based K-fold cross-validation (dCV): The a sampled PSUs are randomly split into K subsets. For k = 1, . . . ,K the kth subset is set as

test set (Stest(k)), being the training set (Str(k)) formed by the rest K − 1 subsets. In this way, TdCV = K training and test sets are defined.
For each sampled unit i ∈ S from stratum h, we propose to define replicate weights as follows for the kth training set:

w
∗,tr(k)
i,dCV =

 0, if i ∈ Stest(k),
wi ·

ah

ah − a∗h
, if i ∈ Str(k), (16)

being a∗h the number of PSUs from stratum h in the kth test set. In the same way, replicate weights for the kth test sets (which will be
denoted as w∗,test(k)

i,dCV hereinafter) can be defined in the same way exchanging the roles of the training and test sets with each other in (16).
Note that our goal is to get at least one PSU from each stratum in every training set (not in every fold) and this will happen as long as no
stratum ends up with all its PSUs in the same fold. In order to ensure this, after PSUs are randomly assigned to folds, dCV needs to check
whether this condition is satisfied or not. In case any stratum has all its PSUs in the same fold, then it needs to reassign folds until this
condition is satisfied. Therefore, at least two PSUs per stratum are needed, each of them classified in a different fold. This is an advantage
over the method proposed by Wieczorek et al. (2022), which requires at leastK PSUs per stratum.

• Split-sample Repeated Replication (split): A given percentage of PSUs is randomly set into the training set and the rest into the test set. This
process could be repeated Tsplit times with a different split each time, defining in this way Tsplit training and test sets. Replicate weights for
units in both, training and test sets, can be defined in two different ways, ∀t = 1, . . . , Tsplit:

– split-cv: As described in equation (16) for the dCV (w
∗,tr(t)
i,split-cv, w∗,test(t)

i,split-cv ).
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– split-boot: Replicating by replacement the PSUs until having ah − 1 in each stratum and calculating the weights as in equation (14)
for the Bootstrap (w

∗,tr(t)
i,split-boot, w∗,test(t)

i,split-boot).
• Extrapolation (extrap): A given percentage of strata are set as training set and the rest as the test set. The process is repeated Textrap times

with a different split each time, defining Textrap different training and test sets. In this case, replicate weights are equal to sampling weights
for units in the training set and 0 for units in the test set when fitting the models, ∀i ∈ S. ∀t = 1, . . . , Textrap:

w
∗,tr(t)
i,extrap =

{
0, if i ∈ Stest(t),
wi, if i ∈ Str(t).

(17)
Replicate weights w∗,test(t)

i,extrap are described in the same way, exchanging the roles of training and test sets in (17).

3 SIMULATION STUDY

This section describes the simulation study conducted in order to analyze the performance of different methods when selecting the tuning param-
eter for fitting LASSO regression models. Our goal is to compare the performance of the replication methods proposed in Section 2.3 (i.e., JKn,
Bootstrap, BRR, dCV, split-cv, split-boot and extrap), to the methods described in Section 2.2 (unw-SRSCV and w-SRSCV). The goal is to compare
the differences between the tuning parameters selected with different methods, the number of covariates that would be selected if the models
were fitted considering that tuning parameter, and the error we would obtain with that model. We compare those results with the “true” results
we would obtain if the finite population were known in practice.

The rest of the section is organized as follows: Section 3.1 describes the process of data simulation and scenarios, Section 3.2 describes the
simulation study process, and Section 3.3 depicts and summarizes the main results.

3.1 Data generation and sampling design

In the following lines data simulation process is described. Let us define as N = 100000 the finite population size and as p = 75 the number of
variables denoted asX1, . . . , X50, Z1, . . . , Z25. In this simulation study, we consider the variables Z1, . . . , Z25 to be latent variables, that are used
to define the response variable, but are not available in the samples to fit the models. In this way, we aim to define more realistic scenarios, in
which the perfect models cannot be fitted. Instead, Z1, . . . , Z25 are used to define the sampling design.

For a given value of p∗, where p∗ ≤ p, let µµµp∗ indicate the null vector of dimension 1× p∗ and Σp∗×p∗ a matrix of dimension p∗ × p∗ of values
of η = 0.15 off-diagonal and values of 1 on the diagonal, i.e.,

µµµ(p∗) = (0, . . . , 0)T and Σp∗×p∗ = (1− η) · Ip∗×p∗ + η · Jp∗×p∗ , (18)
being Ip∗×p∗ the identitymatrix and Jp∗×p∗ thematrix of 1s. In addition, the vector of regression coefficientsβββ = (βββXXX ,βββZZZ)T is defined as follows:

βββXXX = (−2, . . . ,−2︸ ︷︷ ︸
(11)

, 0, . . . , 0︸ ︷︷ ︸
(9)

,−2, . . . ,−2︸ ︷︷ ︸
(10)

, 0, . . . , 0︸ ︷︷ ︸
(9)

,−2, . . . ,−2︸ ︷︷ ︸
(11)

)T , βββZZZ = (2, . . . , 2︸ ︷︷ ︸
(25)

)T . (19)

We describe below the steps followed to generate the finite populations of this simulation study. Two scenarios are defined generating two
different populations. In Scenario 1 (S1) the p = 75 covariates are unit-level variables (i.e., there are q = 0 cluster-level variables), while in Scenario
2 (S2) q = 5 variables are defined as cluster-level variables, while the rest of p− q = 70 variables are unit-level. In each population, two response
variables have been generated: (a) a continuous response variable (linear regression), and (b) a dichotomous response variable (logistic regression).

1. For q = 0 (S1) and q = 5 (S2), two finite populations are generated by making N realizations of:
(Xq+1, . . . , X50, Z1, . . . , Z25) ∼ N(µµµ(p−q),Σ(p−q)×(p−q)). (20)

2. Let us denote as {zzzi = (zi,1, . . . , zi,25)}Ni=1 the set of N realizations of Z1, . . . , Z25. Data is sort based on zzziβββ
ZZZ , ∀i = 1, . . . , N . Strata

are defined by partitioning the population data set on sets of the same size (H = 5) and clusters by partitioning each stratum on sets of the
same size (Ah = 20, ∀h = 1, . . . , H , being Ah the number of clusters generated in stratum h in the population). In this way, a total of 100
clusters of size Nh,α = 1000 are generated, ∀h = 1, . . . , H and ∀α = 1, . . . Ah.

3. If q ̸= 0, generate q cluster-level variables by making A =
∑H

h=1 Ah realizations of:
(X1, . . . , Xq) ∼ N(µµµ(q),Σ(q)×(q)). (21)
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Note that for two different units in the same cluster, their corresponding cluster-level covariates should take the same values, i.e., ∀i, j in
the same cluster, (xi,1, . . . , xi,q) = (xj,1, . . . , xj,q). Therefore, we repeat each realization Nh,α times. We now have defined the values
corresponding toX1, . . . , X50 variables for all the units in the finite population: {xxxi = (xi,1, . . . , xi,50)}Ni=1.

4. Generate the values for the response variables as follows:
(a) Linear regression framework: yi = xxxiβββ

XXX + zzziβββ
ZZZ + ϵi, where ϵi is a realization of N(0, 102), ∀i = 1, . . . , N .

(b) Logistic regression framework: logit(p(xxxi, zzzi)) = β0+xxxiβββ
XXX+zzziβββ

ZZZ , and the value for the response variable yi is randomly generated
by following Bernoulli(p(xxxi, zzzi)). We set β0 = −10, defining in this way a prevalence (i.e., probability of event) of around 25%.

Then, the finite population U is defined as the set of values corresponding to the response variable yi and the covariates xxxi (excluding the
latent variables zzzi), ∀i = 1, . . . , N as well as strata and cluster indicators corresponding to each of them.

5. Sampling design is defined as a stratified cluster sampling scheme. First, ah = 4, ∀h = 1, . . . , H clusters or PSUs are sampled per stratum.
Afterward, a different number of units is sampled from each PSU of each stratum (nh,α). In particular, ∀α = 1, . . . , 4 PSUs for each stratum,
the following number of units have been sampled in each scenario:
S1(G): n1,α = 500, n2,α = 50, n3,α = 25, n4,α = 10, n5,α = 5, S1(B): n1,α = 5, n2,α = 10, n3,α = 25, n4,α = 50, n5,α = 500,

S2(G): n1,α = 250, n2,α = 100, n3,α = 50, n4,α = 25, n5,α = 5, S2(B): n1,α = 5, n2,α = 25, n3,α = 50, n4,α = 100, n5,α = 250.

Note that the names of the scenarios refer to the distribution of the response variable: “G” for Gaussian distribution with reference to the
framework of the linear regression and “B” for the Bernoulli distribution indicating the logistic regression framework.

6. For i ∈ S, suppose i is a unit sampled from PSU α, ∀α = 1, . . . , ah in stratum h, ∀h = 1, . . . , H . The sampling weight for unit i is then
calculated as follows:

wi =
Ah

ah
·
Nh,α

nh,α
. (22)

3.2 Set up

As explained above, in this simulation study we aim to compare the performance of the methods described in 2.3, to the w-SRSCV, and to the
unw-SRSCV (both of them described in Section 2.2). In order to ease the notation, we could define replicate weights for training and test sets of
the w-SRSCV as the original weights, i.e., w∗,tr(t)

i,w-SRSCV = w
∗,test(t)
i,w-SRSCV = wi, ∀i = 1, . . . , n for the tth training and test sets. In the same way, the unw-

SRSCV would be equivalent to setting all the replicate weights for training and test sets to one: w∗,tr(t)
i,unw-SRSCV = w

∗,test(t)
i,unw-SRSCV = 1, ∀i = 1, . . . , n for

the tth training and test sets. Considering this notation, the lines below describe the process of the simulation study for all the methods, including
w-SRSCV and unw-SRSCV.

For r = 1, . . . , R:
Step 1. Obtain the sample Sr .
Step 2. Define the penalty grid based on Sr using the default approach in glmnet (Friedman, Hastie, & Tibshirani 2010): λr

1, . . . , λ
r
L.

Step 3. For each value λr
l , ∀l = 1, . . . , L:

Step 3.1 Fit the model to Sr (f̂r,l(·)) considering the vector of covariates xxxi, sampling weights wi, ∀i ∈ Sr and λr
l following eq. (11).

Step 3.2 Apply the model f̂r,l(·) to the finite population and estimate the response: f̂r,l(xxxi), ∀i = 1, . . . , N .
Step 3.3 Calculate the error of the model f̂r,l(·) in the finite population (i.e., true population error of the model fitted to Sr ):

Êrr
rtrue(λr

l ) =
1

N

N∑
i=1

L(yi, f̂r,l(xxxi)), (23)
where L(yi, f̂r,l(xxxi)) is calculated as in (7).

Step 3.4 Define the “true” optimal tuning parameter (not available in practice):
Λrtrue = argmin{Êrr

rtrue(λr
l ), l = 1, . . . , L}. (24)

Step 4. For each methodm, wherem ∈ {JKn, dCV, Bootstrap, BRR, split-cv, split-boot, extrap, w-SRSCV, unw-SRSCV}:
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Step 4.1 Define training and test sets (Sr,mtr(t) and Sr,mtest(t), ∀t = 1, . . . , Tm, respectively) and calculate the corresponding replicate weights for
the sampled units: w∗,r,tr(t)

i,m and w
∗,r,test(t)
i,m , ∀i ∈ Sr .

Step 4.2 For t = 1, . . . , Tm and l = 1, . . . , L:
Step 4.2.1 Fit the model to Sr,mtr(t) considering λr

l and the corresponding replicate weights w∗,r,tr(t)
i,m following (11): f̂r,l,mtr(t) (·).

Step 4.2.2 Apply f̂r,l,mtr(t) (·) to ∀i ∈ Sr,mtest(t) and estimate the response: f̂r,l,mtr(t) (xxxi). Calculate the error of the model in the test set (this is
the error that can be estimated in practice):

Êrr
r,m,ttest (λr

l ) =
1∑

i∈S
r,m
test(t) w

∗,r,test(t)
i,m

∑
i∈S

r,m
test(t)

w
∗,r,test(t)
i,m L(yi, f̂r,l,mtr(t) (xxxi)). (25)

Step 4.3 Define the average error of the training models in the test sets:
Êrr

r,mtest (λr
l ) =

1

Tm

Tm∑
t=1

Êrr
r,m,ttest (λr

l ). (26)
Step 4.4 Define the optimal tuning parameter for methodm as follows:

Λr,mtest = argmin{Êrr
r,mtest (λr

l ), l = 1, . . . , L}. (27)
Step 5. Analyze the performance of each methodm comparing the results to the “true” ones as follows:

Step 5.1 Define the difference between the true optimal tuning parameter and the one obtained based on methodm as follows:
diffr,m = log(Λr,mtest )− log(Λrtrue). (28)

Step 5.2 Define drtrue and dr,mtest as the number of regression coefficients different to 0, when fitting LASSO models considering the tuning
parameters Λrtrue and Λr,mtest , respectively. The former indicates the number of variables that would be selected based on LASSO in
case the finite population were available (i.e., the “true” number of variables selected based on LASSO), while the latter indicates the
number of variables that would be selected based on each methodm.

Step 5.3 For each selected tuning parameter Λrtrue and Λr,mtest , the true population error (obtained by applying to the finite population, the
LASSO regression model fitted to the whole sample Sr considering Λrtrue and Λr,mtest parameters, respectively) is calculated following
(23) as Êrr

rtrue(Λrtrue) and Êrr
rtrue(Λr,mtest ).

In this simulation study, a total ofR = 500 samples were obtained. Cross-validation methods were applied forK = 10 number of folds,B = 200

bootstrap resamples were considered, and a total of 20 train and test sets were defined for split and extrap methods. For split methods, 70% of
clusters are used for defining training sets, while for extrap training sets are defined by means of 3 out of 5 strata. All computations were performed
in (64 bit) R 4.2.0 (R Core Team 2022) and a workstation equipped with 32GB of RAM, an Intel i7-8700 processor (3.20 Ghz), and a Windows 10
operating system. In particular, LASSO models were fitted by means of glmnet R package (Friedman et al. 2010) and for applying JKn, BRR and
Bootstrap methods survey package (Lumley 2020) was used.

3.3 Results

In this section, we summarize the main results we obtained from the simulation study. Figure 2 depicts the differences between the logarithms of
the true optimum tuning parameter and the ones obtained for each method (see eq. (28)), while Figure 3 shows the number of variables that would
be selected based on those tuning parameters. Numerical results for linear (S1(G) and S2(G)) and logistic (S1(B) and S2(B)) models with cluster-level
variables (S2(G) and S2(B)) or without them (S1(G) and S1(B)) are described in Table 1. Due to the large number of results, we proceed to summarize
the main findings.

The unw-SRSCV performs poorly in all scenarios, it selects unnecessarily complex models with a large number of variables. In particular, in more
than 50% of the samples in scenario S1(G), all the 50 covariates are kept in the final model based on this method. This method is also the one
with the highest error in all scenarios except in S1(G), where the extrap method showed the worst results in this aspect. Such a bad performance
indicates the need of considering sampling weights when fitting LASSO models to complex survey data. In contrast, BRR, split-cv, split-boot and,
in particular, extrap methods select large tuning parameters, that lead to models with very few numbers of covariates, increasing the population
error estimated based on them.

The performance of the rest of the methods depends on the scenario. No great differences have been observed comparing the results obtained
from scenarios related to linear (S1(G) and S2(G)) and logistic (S1(B) and S2(B)) regression models. However, the results obtained in scenarios with
cluster-level variables (S2(G) and S2(B)) or without them (S1(G) and S1(B)) differ considerably for some methods. In S1(G) and S1(B) the selected
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tuning parameters based on the JKn and the dCV are unbiased with respect to the true population parameter, which leads to keeping a similar
number of variables in the final models. In S2(G) and S2(B), these methods select slightly greater tuning parameters, which leads them to select
in general models with less number of variables. Nevertheless, there are no great differences in terms of error, compared to the error that would
be obtained if the true tuning parameter were selected. Therefore, it can be concluded that the performance of these methods is correct in all
scenarios. In S1(G) and S1(B), there are no differences between w-SRSCV and dCV methods, and as mentioned above, all of them perform quite
properly. In contrast, in S2(G) and S2(B), the tuning parameter selected by means of w-SRSCV is lower than the true one, which leads to select
unnecessarily complex models with a large number of parameters, without a gain in terms of the error of the model, in comparison to the dCV
method. The Bootstrap method is the one that performs the best in terms of the error in all the scenarios. However, its performance in terms of
the number of variables of the selected models depends on the scenario: even though it shows a good performance selecting a similar number of
covariates to the true model in S2(G) and S2(B), it tends to select a too large number of covariates in the models corresponding to S1(G) and S1(B).

4 DISCUSSION

In this study, we worked on the variable selection process by means of LASSO regression models for complex survey data. As discussed throughout
the paper, two issues need to be analyzed before implementing LASSO regression to complex surveys. In the first place, the need of incorporating
sampling weights into the estimation process of LASSO models should be checked. In addition, the validity of the traditional cross-validation
techniques commonly applied to simple random samples for selecting the tuning parameters for LASSO models should also be analyzed when
working with complex survey data. In this paper, the performance of methods based on replicate weights that are well-known for other purposes
in complex survey data framework but, to our knowledge, have never been used for LASSO, have been compared to the traditional cross-validation
techniques to select the tuning parameter λ. In addition, newmethods based on the idea of replicating weights have been proposed, among others,
the dCV. This method could be seen as an extension of the Survey CV method proposed by Wieczorek et al. (2022), which in combination with
replicate weights, allows us to be more flexible when defining different folds, and thus, it is valid for more types of designs, for example when
different number of PSUs per stratum is available, or a few numbers of PSUs per stratum are sampled.

The performance of all those methods for selecting the tuning parameter for LASSO models has been compared by means of an extensive
simulation study. The sampling design considered in this study is a stratified cluster sampling in which a different number of units are sampled
from each cluster. In order to reduce the number of results shown in the paper, we set the number of folds as K = 10, given that it is the one
most commonly used in the literature (see, e.g., Witten, Frank, Hall, and Pal (2016)). Let us highlight some of the most interesting conclusions of
the simulation study in the following lines.

In the first place, the bad performance of the unw-SRSCV, which leads to very complex regression models selecting almost all variables, shows
the need of incorporating sampling weights into the estimation process of LASSO regression models. It should be noted that in this paper we have
not considered the option to fit perfect prediction models for which the sampling design is uninformative given the covariates included in the
model. In line with previous works (see, e.g., Pfeffermann (1993); Scott and Wild (1986); Sugden and Smith (1984)), if we try to fit perfect models
sampling weights are not needed in the estimation process of linear and logistic regression models. These conclusions can also be extended to
LASSO models, and hence, this method would perform properly in that situation. However, it is important to point out, that when working with
LASSO regression models, as we are using a sparse shrinkage estimator, the sampling design must be uninformative given, not all the covariates,
but the ones that actually end up in the final model, which is even more complicated and beyond the researcher’s control. In addition, it should also
be noted that when we work with real data, we will hardly ever be able to fit “perfect” regression models. Therefore, we would not recommend
the use of this method in practice, in order to avoid fitting too complex regression models with biased estimates of regression coefficients.

The second point that should bementioned is the similarities and differences between the performance of thew-SRSCV (which does not consider
the sampling design when defining folds) and the new proposal dCV. It is striking that for the same sampling design such different results were
obtained across different scenarios. This fact could be explained as follows. In the scenario where no cluster-level variable was incorporated, most
of the variability offered by the cluster could be explained by means of the sampling weights. In contrast, the inclusion of cluster-level variables
leads to an increase in the effect of the sampling design relative to clustering, thus offering greater differences between one method and the other.
When no cluster-level variable is considered in the model, both methods perform properly and lead to reasonable and parsimonious regression
models. In contrast, when including cluster-level variables into the process, models selected based on those methods differ considerably, being the
ones selected by thew-SRSCVmore complex than necessary. This is in line with the results obtained by Lumley and Scott (2015), in which the effect
of the sampling design has shown an important role in the model selection, in particular, on the Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC). Briefly, this work shows that for samples with greater design effect, more parsimonious models are selected, given that
the design effect penalizes more strongly the incorporation of the covariates into the model. Coming back to our study, we have observed that the
greater the cluster effect, the greater the differences between the tuning parameters selected for fitting the models and the number of variables
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selected based on those methods. The w-SRSCV tends to select a larger number of variables than the dCV. Therefore, we recommend the use of
the dCV rather than the w-SRSCV, in order to select more parsimonious models when fitting LASSO regression models to complex survey data.
In addition, given the similarities of both works, we believe that the trace of the variance-covariance matrix (defined by means of the information
matrix and score vector) which is used to estimate the design-based AIC proposed by Lumley and Scott (2015) could be used to analyze the cluster
effect and thus diagnose whether there may be differences between the dCV and w-SRSCV. Some numerical results related to this issue are shown
as supporting information. However, the magnitude of the relationship between the trace of the variance-covariance matrix and the differences
between w-SRSCV and dCV on the variable selection by means of LASSO will be further analyzed as future work.

Another consequence of the abovementioned cluster effect, which is reflected in the differences between the dCV andw-SRSCV, is the so-called
“data leakage” (Kaufman et al. 2012). When the cluster effect is significant, splitting the clusters between training and test sets, (i.e., setting some
units of a cluster into the training set and others into the test set as w-SRSCV does), has two consequences. On the one hand, we fit the models
with more information than we should, given that all the clusters are considered in the process. The fact that all the clusters are considered when
fitting the training models means that the sampling variability will be underestimated across them. On the other hand, very similar information to
the one used when fitting the models is used to evaluate the error in the test sets given that, actually, the training and test sets are not independent
sets since units of the same cluster are in both of them. Thus, the true population error is also underestimated. These issues can be observed in the
figures added as supporting information. When applying the training models to the test sets, it can be observed that the w-SRSCV underestimates
the true population error in contrast to the dCV, particularly in the scenarios with cluster-level variables. It can also be observed that the variability
of the training models is greater when the dCV is applied compared to the w-SRSCV.

Note that the methods proposed and applied throughout this work can be extended in a very simple way to data obtained from a stratified
sampling design without clustering. However, the behavior of the methods in such a situation has not been analyzed in this simulation study. The
authors expect that the results may be similar to scenario 1, where cluster-level variables have not been incorporated, but this should be studied
in future work to be confirmed. Neither other types of sampling such as sampling probability proportional to sample size nor post-stratification
have been considered, so the conclusions obtained are limited to the schemes we have analyzed. Note also that other tries have been made by
changing the number of folds to K = 5, but no significant differences have been observed (results not shown). Also, cross-validation techniques
allow repeating the process of splitting the sample several times, which is usually known as cross-validation with replication. Those replicates have
not been considered in the results shown in this paper due to the same reason. Finally, the methods applied and proposed in this work could be
used for other purposes beyond LASSO to define partially independent subsets of the sample. However, the performance of the methods should
be previously checked in that context.

In summary, the methods that have performed the best in all the scenarios are the dCV and the JKn, which have shown a similar performance in
the scenarios that have been considered. It should also be noted the good performance of the Bootstrap, particularly in the scenarios with cluster-
level variables, being the best in terms of error but considerably less parsimonious than JKn and the dCV. In addition, in terms of computational
efficiency, the fastest has been the dCV beating JKn and Bootstrap, being twice as fast as JKn on average and between 15 and 20 times faster than
Bootstrap in the scenarios that have been considered. In particular, in the scenarios that have been analyzed, the dCV needs on average between
0.26-0.45 seconds in both linear scenarios (S2(G)-S1(G)) and 1.09-1.70 seconds in logistic scenarios (S2(B)-S1(B)), JKn needs between 0.48-0.72
and 2.18-3.43 seconds on average and the Bootstrap between 5.28-7.43 and 16.68-23.8 seconds on average, respectively, in the same scenarios.
In summary, this study shows that theK-fold cross-validation technique, which is commonly applied to select tuning parameters for fitting LASSO
regression models to simple random samples, can be extended to the dCVwhen working with complex survey data and it will provide parsimonious
regression models. For this reason, we recommend the use of this method for fitting LASSO regression models to complex survey data.
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