
Time-Varying Lyapunov Control Laws with Enhanced
Estimation of Distribution Algorithm for Low-Thrust
Trajectory Design

Abolfazl Shirazi, Harry Holt, Roberto Armellin and Nicola Baresi

Abstract Enhancements in evolutionary optimization techniques are rapidly growing in many
aspects of engineering, specifically in astrodynamics and space trajectory optimization and design.
In this chapter, the problem of optimal design of space trajectories is tackled via an enhanced
optimization algorithm within the framework of Estimation of Distribution Algorithms (EDAs),
incorporated with Lyapunov and Q-law feedback control methods. First, both a simple Lyapunov
function and a Q-law are formulated in Classical Orbital Elements (COEs) to provide a closed-loop
low-thrust trajectory profile. The weighting coefficients of these controllers are approximated with
various degrees of Hermite interpolation splines. Following this model, the unknown time series of
weighting coefficients are converted to unknown interpolation points. Considering the interpolation
points as the decision variables, a black-box optimization problem is formed with transfer time and
fuel mass as the objective functions. An enhanced EDA is proposed and utilized to find the optimal
variation of weighting coefficients for minimum-time and minimum-fuel transfer trajectories. The
proposed approach is applied in some trajectory optimization problems of Earth-orbiting satellites.
Results show the efficiency and the effectiveness of the proposed approach in finding optimal transfer
trajectories. A comparison between the Q-law and simple Lyapunov controller is done to show the
potential of the potential of the EEDA in enabling the simple Lyapunov controller to recover the
finer nuances explicitly given within the analytical expressions in the Q-law.
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List of Acronyms

� EA - Evolutionary Algorithm
� EDA - Estimation of Distribution Algorithm
� EEDA - Enhanced Estimation of Distribution Algorithm
� GA - Genetic Algorithm
� PSO - Particle Swarm Optimization
� Q-law - Proximity Quotient Control Law

1 Introduction

Low-thrust many-revolution trajectory design and orbit transfer are becoming increasingly impor-
tant with the development of high specific impulse, low-thrust engines such as electric propulsion
(EP) systems. Finding an optimal transfer trajectory is a challenging task due to the non-linearity of
the system’s dynamics and the problem complexity. Many approaches have been developed so far to
overcome the difficulty of finding optimal transfer trajectories of the space systems. In general, these
can be divided into one of two categories: indirect and direct methods. Direct methods convert a
continous optimal control problem into a parameter optimization problem, often via discretization
and subsequent transcription, to find an approximate solution to the original problem. Indirect
methods, on the other hand, use calculus of variation to reduce the optimal control problem to
the solution of a two-point boundary value problem [1–3]. Both techniques can be used to solve
low-thrust trajectory design problems, however, they are computationally intensive and still present
many challenges. Direct methods generate a large optimisation problem and result in approximate
solutions. Indirect methods can produce rigorously optimal solutions, but are intensive due to the
unbounded the need for a good initial guess and the difficulties in handling discontinuous controls.
Both methods provide point solutions, i.e. for the assumed initial condition, and cannot be used as
guidance laws due to time limitations and difficulties in ensuring convergence [3].

In recent years, advances in artificial intelligence and evolutionary computations has shifted the
attention of the aerospace community towards the employment of evolutionary algorithms (EAs)
in spacecraft trajectory optimization [3]. The motivation for utilizing EAs is based on their ability
in dealing with local optimal region of the solution domain and handling nonlinear constraints
that naturally appear in nonlinear optimal control problems. Development of novel EAs in this
applications covers the vast types of space missions. Such developments are mainly within the
framework of well-known EAs. For instance, in [4] a fuzzy goal programming-based is developed.
The proposed algorithm is a hybrid technique based on the combination of a gradient-based method
and Genetic Algorithm (GA). This algorithm is used to solve an optimal flight-path design for a
constrained multi-objective aero-assisted vehicle trajectory optimization problem. An improved
NSGA-II algorithm is developed in [5] for solving non-coplanar orbits transfers in multi-impulse
Lambert rendezvous problems. The proposed algorithm benefits from a self-adaptive differential
evolution technique to increase the efficiency of the algorithm. In another recent research by Pontani
[6], Particle Swarm Optimization (PSO) is utilized in an indirect approach based on Pontryagin
principle. This approach is used to solve low-thrust Earth to Mars trajectory optimization problem.
Englander and Conway [7] presented a modified GA, and incorporated it in low-thrust interplanetary
trajectory optimization problem. Algorithm modification in this research is towards the elitism
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operator within GA which preserves the best members of the population and encourages diversity
at the same time. Many other algorithm enhancements have been proposed for various type of space
applications including, satellite formation [8], mission planning [9], asteroid exploration [10], and
orbit determination [11].

Following the progress in evolutionary methods with application in astrodynamics, it can
be observed that the algorithm improvements are mostly based on the traditional evolutionary
algorithms. One of the frameworks that did not receive much attention in spacecraft trajectory
optimization is Estimation of Distribution Algorithms (EDAs) [12]. EDAs are a class of EAs. EDAs
are a class of EAs that work based on probabilistic models. In an EDA, a probabilistic model is
learned at each iteration and new solutions are sampled from that model. The obtained solutions
have similar characteristics as those used for learning the model. One of the characteristics of
EDAs is to have an explicit description of the promising solutions in terms of probabilistic models.
Due to this feature, they have a great potential for enhancement toward further improvements.
This characteristic is the main motivation in this research and the effort here is to enhance the
mechanisms of EDAs for obtaining higher quality solutions in spacecraft trajectory optimization.

The emergence of closed-loop feedback-driven (CLFD) controllers, particularly those based on
Lyapunov control theory, has allowed the computation of sub-optimal trajectories with minimal
computational cost [13–15]. The control profile is readily available as they only require knowledge
of the current and target spacecraft states to compute it, making them suitable as initial guesses for
indirect and direct methods [16,17]. However, as they treat the problem from a targeting perspective,
Lyapunov controllers are inherently sub-optimal and often have many user-defined parameters which
significantly affect their performance [18–20]. One method for improving their performance involves
EA. Both Lee et al. 2005 [18] and Varga et al. 2016 [19] used a multi-objective genetic algorithm
to optimise the Petropoulos’s Lyapunov-based Q-law design parameters for a variety of Earth orbit
transfers, with the design parameters remaining fixed throughout the transfer. Yang et al. [21] used
an artificial neural network and improved cooperative evolutionary algorithm optimiser to make
the design parameters of a Lyapunov-based Q-law state-dependent.

In this research, both a simple Lyapunov function and a Q-law are formulated in Classical Orbital
Elements (COEs) to provide a closed-loop low-thrust trajectory profile. Both control formulations
are considered in order to access whether the EEDA is capable of recovering the finer nuances
embedded within the analytical expressions in the Q-law when using a simple Lyapunov controller.
The optimal variations of weighting coefficients are interpolated via Hermite interpolation. The
time series of weighting coefficients are turned into decision variables and a black-box optimization
problem is formed. Having the transfer time and the fuel mass as the objective functions, an
enhanced EDA (EEDA) is proposed to find the unknown weighting coefficients. The proposed
optimizer benefits from a new learning mechanism based on mixture of Gaussian distribution. The
mechanism prevents diversity loss of the population during the optimization process of EDA .The
approach is tested in some time-optimal and fuel-optimal cases and the optimality of the obtained
solutions are analyzed.

The outline of the chapter is as follows. In Section 2, the two-body dynamical model is given and
the proposed simple Lyapunov Controller is presented alongside the Petropoulos Q-law. Section 3
is dedicated to the optimization process in finding the optimal weighting coefficients for minimum-
time and minimum-fuel transfer trajectories. Numerical simulations are provided in Section 4, where
several cases of the orbit transfer missions are considered as the benchmark problems. The problems
are solved using the proposed approach with variety of settings as algorithm parameters. Finally,
Section 5 contains the conclusions remarks and future works.
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2 Low-thrust Trajectory Design

2.1 Two-body Dynamics

The spacecraft’s motion about a central body is described in terms of the classical orbit element
(COEs) semi-major axis a, eccentricity e, inclination i, right ascension of the ascending node
(RAAN) Ω and argument of periapsis ω. If the perturbing acceleration ad is described in the
radial, transverse and normal (RTN) frame, then the set of variational equations in a, e, i, Ω, ω and
the true anomaly ν take Gauss’s form of the Lagrange Planetary Equations [22]. These can be
expressed as: �
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When examining Eq. (2), it is clear that singularities occur when i � 0 or e � 0. The modified
equinoctial elements (MEEs) p, f , g, h, k and fast variable L are used in the dynamical integrator
instead of COEs to avoid these issues [23]. However, the control remains in COEs in order to preserve
the physical interpretation of the variables and extract insights from the observed behaviour.

2.2 Lyapunov Control

Lyapunov functions offer a method for computing continuous-thrust trajectories with minimal
computational cost. Obtaining an estimate of the low-thrust profile required for the acquisition of
the different target orbits is straightforward thanks to the computation ease and closed-loop nature.
The most well known and widely used is perhaps the Petropoulos Q-law [14, 15]. We provide an
outline of this control law here, although the interested reader should refer [15] for full details. We
also propose a very simple Lyapunov feedback control law, formulated in Classical Orbital Elements
(COEs). Although the Q-law is a more optimal Lyapunov feedback control laws exist, the simplicity
gives the subsequent enhanced EDA more freedom and avoids potential singularity issues. As such
it is interesting to compare the performance of these two controllers.
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2.2.1 Simple Lyapunov Controller

The proposed simple Lyapunov control function can be written as

V �
¸
X

WXδpX,XT q2. (3)

where δpX,XT q � X �XT for X � a, e, i whilst δpX,XT q � arccospcospX �XT qq for X � Ω,ω.
The weights WX can be used to prioritise which elements to target. As written above, the control
law is a proportional function and as such W are normalised.

2.2.2 Proximity Quotient Controller (Q-law)

The Q-law is best thought of as a weighted, squared summation of the time required to change the
current state X � ra, e, i, Ω, ωsT to the target state XT � raT , eT , iT , ΩT , ωT sT. It can be written
as

V � Q � p1�WPP q
¸
X

SXWX

�
δpX,XT q
maxνp 9Xq

�2

, (4)

where Q and V can be used interchangable in the following formulas. Here WP and P form a
penalty function and SX are scaling functions. These are functions of the state and can be found
in Ref 15. Again, δpX,XT q � X �XT for X � a, e, i whilst δpX,XT q � arccospcospX �XT qq for
X � Ω,ω. The expressions maxνp 9Xq are the maximum rate of change of each COE over the current
osculating orbit and can be calculated analytically for all elements except ω. For a more detailed
breakdown of the components of the Q-law, the reader is encouraged to look at Refs. 15, 24 and 25.
All user-defined parameters aside from the weights WX (for instance, those in WP , P and SX) are
assumed constant, as these terms are only activated to prevent particular behaviour that we also
want to prevent. The values are given in Table 1.

Table 1: Table of standard Q-law parameters from Ref. 15

Parameter Value Parameter Value Parameter Value

r 2 k 100 b 0.01
rp-min 6,578 km m 3 n 4

2.2.3 Control Direction

Lyapunov’s second theorem states that for a system 9Z � fpZq, Z �X�XT, the equilibrium point
XT is asymptotically stable if there exists a scalar Lyapunov function V pZq such that V p0q � 0;
it is positive-definite (V pZq ¡ 0,@Z � 0); the derivative is negative-definite ( 9V pZq   0,@Z � 0);
and lim|Z|Ñ8, V pZq � 8 [26]. A very thorough discussion on the implications of this for trajectory
design using nonlinear control can be found in Ref. 27.
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A stable control is therefore one that ensures 9V   0 throughout the transfer. One way of doing
this is to select a controller that minimises the rate of change of the Lyapunov function (in this
case the most negative value).

9V � BV
BX

9X � BV
BXBu (5)

Given an engine thrust T and a spacecraft mass m, the control vector is computed as (using
f � T {m):

u � �fB
T
�
BV
BX

�T����� BV
BX

�
B
���� (6)

Coasting can be introduced using effectivity thresholds ηthresh. These attempt to quantify the
effectivity of changing an orbital parameter at a given point in an orbit compared to the optimum
point for changing the same orbital parameter. Definitions for both the absolute and relative
effectivity parameters exist. Studies [18] have also shown that, when varying other control law
parameters in addition to the effectivity, there is little difference in performance between relative
and absolute effectivity, and instead the specific transfer will determine which is more applicable.
Hence, in this work the absolute effectivity:

ηa � minα,β 9V

minνpminα,β 9V q (7)

is used. α and β are the in-plane and out-of-plane angles of the thrust vector, whilst minνpminα,β 9V q
is computed numerically by scanning through the possible true anomaly ν values to find the
maximum and minimum 9V for the particular osculating orbit. The authors note that an alternative
approach first found in Ref. 19 can be used which now avoids any numerical derivations thanks to
recent work in Ref. 25.

3 Optimization Approach

Following the proposed approaches including the Q-law and Lyapunov methods, achieving optimal
transfer trajectory lies upon finding a suitable set of values for unknown weighting coefficients of
the proposed techniques. In this research, the unknown weighting coefficients are defined as:

x⃗ � rηa Wa We Wi WΩ Wωs (8)

which include the normalized state weights WX � rWa We Wi WΩ Wωs and the absolute
effectivity threshold ηa. Tuning these parameters for a given orbit design problem yields time-
optimal or mass-optimal transfer trajectories. Basically, constant values are the primary choice for
these parameters. However in this research, these parameters are considered as functions of transfer
time. Therefore, the problem turns into finding proper time-series for the weighting coefficient to
achieve optimal transfer trajectories.
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3.1 Direct Interpolation

Parameterizing the unknown weighting coefficients has a significant impact on the convergence
of the optimization algorithm, and consequently, obtaining optimal transfer trajectories. In this
research, the time series of decision variables x⃗ is approximated by considering Np number of
interpolation points in the desired time of flight interval 0   t   tf . Noting the fact that all
weighting coefficients are normalized, the weights’ variation are in the limits of 0   x⃗   1. Having
Np number of uniformly discretized points, the overall time span is divided into Np�1 sub-intervals.
The interpolating polynomial for the time interval can be represented by:

x̂ptq �
Ņ

k�1

p
¹
j�k

t� tj
tk � tj

qpk (9)

where x̂ptq denotes any of the unknown weighting coefficients in x⃗, tk are the discretized times, and
pk are the discrete points within the time interval. Given the number of discrete points Np for each
decision variable, the time series of the corresponding weighting coefficient may be interpolated with
different shapes. One of the most popular methods is using piecewise cubic Hermite interpolating
polynomials [28]. Various types of splines can be obtained depending the choice of tangents in each
node. One type of spline from the family of Hermite splines, which is frequently used in many
applications, is illustrated in Fig. 1 for approximating the weighting coefficients. 
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Fig. 1: Weghting coefficient interpolating with piecewise cubic Hermite splines.

This interpolation represents Catmull Rom spline [29], which has a continuous first derivative.
The difference between this polynomial and other types of Hermite interpolation schemes is the
choice of tangents in the internal and end nodes. This spline has a balanced smoothness and the
slope of the spline at data points depends directly on the points before and after. The resulting
piecewise cubic does not have a continuous second derivative and it does not always preserve
shape. However, it can be evaluated quickly by a convolution operation. More details regarding the
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derivation of this spline and its difference from the other types of interpolations is beyond the scope
of this research and the reader is urged to refer to the provided references for details [29–31].

Regarding this explanation, the low-thrust trajectory design can be defined as an unconstrained
optimization problem. The general form of such an optimization problem is:

Minimize F pxq x � px1, x2, ..., xnq
Subject to xmin   xi   xmax

(10)

where n is the number of decision variables, and F pxq represents the objective function, which is
the actual transfer time for time-optimal transfers, and fuel mass of the spacecraft for mass-optimal
transfers. Based on the proposed formulation of the low-thrust space orbit transfer problem, the
decision variables x � px1, x2, ..., xnq are the interpolation points for unknown weighting coefficients
of the proposed controller:

x � pi pi � 1, ..., Nv �Npq (11)

where Nv is the number of unknown weighting coefficients (i.e. Nv � sizepx⃗q). As can be seen,
equal number of interpolation points are dedicated to every unknown variable in this research.
However, in a more general concept, one may consider different interpolation points for each of
the weighting coefficients. To deal with this unconstrained continuous optimization problem, an
EDA-based algorithm is proposed in the following section.

3.2 Enhanced Estimation of Distribution Algorithm

EDAs are a type of population-based optimization algorithms, designed for solving numerical
optimization problems. Based on machine learning techniques, at each iteration, EDAs learn a
probabilistic model from a subset of the most promising solutions, trying to explicitly express the
interrelations between the different variables of the problem. Then, by sampling the probabilistic
model learned in the previous iteration, a new population of solutions is created. In other words,
EDAs work based on two major key methods: learning and sampling, where a probabilistic model
that estimates the probability distribution of the selected solutions is learned and then utilized
for sampling new individuals [32]. In this work, an improved learning mechanism is presented and
applied to an EDA based on multivariate Gaussian distribution. It will be shown that the new
enhanced algorithm outperforms traditional EAs within the proposed optimization problem.

The overall pseudo code of the proposed algorithm is presented in Algorithm 1. Following
the pseudo code, the optimization process begins with N as the population size and M as the
maximum number of iterations. Initially, the SEEDINGmechanism is utilized to generate an initial
population. Having the initial feasible solutions, with corresponding objective values f obtained from
EVALUATION, the main optimization loop starts. At each iteration, the algorithm begins by
selecting the top promising individuals in the current population according to the SELECTION
method. Truncation selection method [32] is used in this research, with γ as the truncation factor.
In this method, the γ fraction γ P p0, 1s , of the best individuals are selected. All the individuals
have the same selection probability defined as:
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Algorithm 1: Overall pseudo code of EDA

Input: F pxq, xmin, xmax

Parameters: N,M, γ, α, λ,Nc

1 x Ð SEEDING(xmin,xmax,N)
2 f Ð EVALUATION(x,F pxq)
3 if i  M then
4 for iter Ð i to M do
5 [xsel, fsel] Ð SELECTION(x,f ,γ)
6 [Φ, ϕ] Ð LEARNING(xsel,fsel, α,λ,Nc)
7 xsam Ð SAMPLING(Φ,ϕ,N)
8 xrep Ð REPAIRING(xsam,xmin,xmax)
9 frep Ð EVALUATION(xrep,F pxq)

10 [x, f s Ð REPLACEMENT(xrep,frep,x,f)
11 EXTRACT [xbest, fbest] FROM [x, f ];
12 if stopping criteria are met then
13 BREAK;
14 end if

15 end for

16 else
17 EXTRACT [xbest, fbest] FROM [x, f ];
18 end if

Output: xbest, fbest

Pj �
$&
%

1

Ns
1   j   Ns

0 Nn   j   N

(12)

where Ns is the number of selected individuals as Ns � γN . Having the selected population xsel

and the corresponding objective values fsel, a probability model is learned via the LEARNING
mechanism. In the proposed learning mechanism, the selected population is divided into two types
of clusters. These clusters include parent clusters, denoted by Φ, and smart clusters denoted by ϕ.
The pseudo code of the learning mechanism is shown in Algorithm 2.

The main idea of the learning process is based on utilizing a mixture of Gaussian distributions
as a probabilistic model whose density function is formalized as:

P pxq �
Nç

k�1

πkfkpx|µk, Σkq (13)

where each fkpx|µk, Σkq component of the mixture is a multivariate Gaussian distribution, and µk

and Σk are the mean value (the centroid) and the covariance matrix of the k model for k � 1, . . . , Nc

respectively, with πk as the mixing coefficient for the kth component.
In the proposed learning stage, the Gaussian mixture model is constructed in two steps. The first

step consists of clustering the selected population according to Nc number of parent clusters. In
this research, k–means�� is chosen as the clustering method [33]. However, other methods could
also be considered. Following the clustering process, the mixture of Gaussian distributions model
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Algorithm 2: Pseudo code of the learning mechanism

Input: xsel, fsel, α,λ, Nc

1 [ι, µ] Ð kmeans(xsel,i);
2 CONSTRUCT Φ FROM rµ, xselpιqs
3 for iÐ 1 to Nc do

4 EXTRACT [x̂, f̂ , µ̂, σ̂] FROM Φpiq
5 [x̂sel, f̂sel] Ð SELECTION(x̂,f̂ ,α)
6 dÐ ||x̂sel � µ̂||
7 j Ð 0
8 if d ¡ λ� σ̂ then
9 j Ð j � 1

10 CONSTRUCT ϕ̂ FROM rµ̂, x̂sels
11 ϕpjq Ð ϕ̂

12 end for
Output: Φ, ϕ

is learned by calculating the maximum likelihood estimators of the parameters of the components
in this mixture, using the solutions in the respective clusters. This process is the first step of the
learning process. Finalizing the process, the components Φ, referred to as the parent clusters, are
extracted, which contain corresponding solutions x̂, objective values f̂ , centroids µ̂ and covariances
σ̂. In the next step of the learning process, more components are added to the model. This step is
to compensate the covariance loss during the optimization process after the sampling stage. In this
step, for each component Φi, first, the top α percentage of the best solutions (x̂sel and f̂sel) are
selected. Then, the selected set of solutions is analyzed to see if they have outliers using the Z-score
outlier detection method [34]. This method is represented as:

||x̂sel � µ̂||
σ̂

¡ λ (14)

where λ is the distance threshold from the centroids µ̂. According to this mechanism, if an outlier
solution is at the top α percentage of the best solutions, it will be considered as the centroid of
a new component in the mixture ϕ̂, referred to as an outlier-based cluster. For the newly formed
components, we assume an independent multivariate Gaussian distribution, where the variance of
each dimension is calculated as half of the distance from the initial centroid in each component.

By the end of the learning mechanism, a mixture of models is learned, one component on top
of each cluster, in such a way that the probability of sampling top quality solutions becomes
high. Having the mixture of models, new solutions are sampled via the SAMPLING method as
xsam. Then, the REPAIRING method simply refines the newly sampled solutions based on the
boundaries of the solution domain xmin and xmax. Following the repairing process, new individuals
will be obtained as xrep. After evaluating the objective value of the obtained solutions, frep, via the
EVALUATION process, the new individuals are combined with the individuals from the previous
population, and the REPLACEMENT mechanism is invoked to form the new population and the
corresponding objective values f in the current iteration. Population aggregation method is used
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for this mechanism in this research. The process mentioned continues until at least one stopping
criteria is met.

4 Numerical Simulations

The presented algorithm is incorporated with two aforementioned low-thrust trajectory optimiza-
tion schemes including Lyapunov and Q-law feedback control methods. In this section the presented
optimization approach is tested in two experiments, with respect to the orbit transfer missions from
the literature. Both time-optimal and mass-optimal trajectories are considered in each experiment
and the results are analyzed accordingly.

In the first experiment a low-thrust orbital maneuver from a Geostationary Transfer Orbit to
Geostationary Orbit (GTO to GEO) is considered [21, 35]. Owing to the almost circular nature of
the target orbit in this case, Ω and ω are free variables, and the algorithm needs to target only a, e
and i. In this experiment, EEDA is incorporated in both Lyapunov and Q-law control methods in
order to compare their performances. Results indicate that the proposed approach outperforms the
other method based on averaging technique and another Q-law based method from the literature.
Furthermore, we observe a similar performance between the EEDA+Lyapunov and EEDA+Q-law
approaches in some circumstances. This shows the potential the EEDA to extract nuances in the
behaviour that allows the simple Lyapunov controller to match the much more advance Q-law
controller performance.

The second experiment is a transfer from a Geostationary Transfer Orbit to a retrograde,
Molniya-type orbit (GTO to Molniya) [18,20,36]. In this case, the weighting coefficients correspond
to all slowly varying orbital elements are considered to be optimized. The Lyapunov feedback
control method incorporated with the proposed EEDA is implemented in this experiment. It will
be shown that the obtained solutions have higher quality in terms of fuel consumption and transfer
time in comparison to the results from other references based on nominal Q-law methods. Also, the
quality of the obtained solutions and the convergence of the algorithm is compared with other EAs.
However, when compared to other Genetic Algorithm Q-law solutions, there is a gap in performance
that can arise due to the use of a simple Lyapunov controller instead of the Q-law.

In the case of time-optimal transfers, the cost function provided to the optimiser is simply the
final time-of-flight. A penalty term is added for not converging to the target orbit, along with a
residual on the orbit elements. The mass-optimal transfers are more complex. It is unclear if truly
mass-optimal low-thrust transfers will converge to the target orbit within a practical time-frame
and thus it is necessarily to impose a time restriction. This can be done by fixing the arrival time
and incorporating this as a constraint in the optimisation process. However, relaxing this to a
maximum time constraint is easier to solve whilst ensuring the same mass-optimal solution as long
as the dynamics remain Keplerian. Hence, the cost function includes the propellant mass used and
a penalty term when the time-of-flight exceeds the desired maximum arrival time. Again a penalty
term on the residual is provided to encourage trajectories to converge.

In order to realize the best choice for the interpolation spline, several number of interpolation
points have been considered. It is possible to consider very high number of interpolation points.
However, increasing the number of interpolation points results in having more number of decision
variables to be optimized and an increase in the optimization problem complexity. Having this
insight, the number of interpolation points are considered as Np � 1 to Np � 5. The optimization
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has been run 10 times for each case. Therefore, total number of 50 optimization runs have been
processed, including 10 runs for each Np � 1, ..., 5. Some of the EEDA parameters are randomly
selected for each individual run, while some other settings have been set to constant values. The
algorithm settings is provided in Table 2.

Table 2: EEDA parameter settings

Parameter Value

Number of parent clusters 3 ¤ Nc ¤ 8
Truncation factor 0 ¤ γ ¤ 1
Outlier detection parameter 0.01 ¤ α ¤ 0.1
Distance threshold λ � 1
Number of iterations N � 100
Population size M � 100

According to the provided settings, the total number of decision variables x⃗ varies with the
number of interpolation points and the number of weights that are considered for the problem. In
GTO to GEO mission, we have 4 � Np decision variables to consider in the optimization, since
two orbital elements are considered free, along with the absolute effectivity threshold. However,
in GTO to Molniya mission, the number of decision variables is 6 � Np since all orbital elements
are considered in optimization. Also, the boundaries of the decision variables are xmin � 0 and
xmax � 1, since the weights are normalized as mentioned previously.

4.1 GTO to GEO

First, a GTO to GEO transfer with an inclination change is considered in Keplerian dynamics, the
details for which are provided in Table 3.

Table 3: Initial and final orbital parameters for GTO to GEO transfer

a (km) e i (deg) Ω (deg) ω (deg) ν (deg)

Initial orbit 24505.9 0.725 7 0 0 0
Final orbit 42165 0 0 free free free
Convergence 36.0 8.5e-4 0.1 - - -

The parameters are chosen to compare with [21] and [35]. The modeled spacecraft has the mass
of 2000kg, the thrust level of 0.35N and the specific impulse (Isp) of 2000s, giving an initial thrust-
to-mass ratio of 0.000175 ms�2. In the mass-optimal case, the upper bound on the time-of-flight
is 150 days. Following the insights from the previous experiment, the incorporation of EEDA with
Lyapunov method is competitive to Q-law methods. Therefore, in this experiment, the proposed
algorithm is implemented in both Lyapunov and Q-law control methods in this space mission and
time-optimal and fuel-optimal transfers are solved. The best obtained transfer trajectories for Q-law
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method are shown in Fig. 2a and Fig. 2b for fuel-optimal and time-optimal transfers respectively.
Also, Fig. 3a and Fig. 3b show the best obtained solutions for Lyapunov method, similarly for
fuel-optimal and time-optimal transfers respectively.
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(a) Fuel-optimal transfer.

Transfer Time (day)
100 110 120 130 140 150

F
ue

l 
M

as
s 

(k
g)

490

495

500

505

510

515

520

525

Transfer Time (day)
70.5 71 71.5 72 72.5 73 73.5 74

F
ue

l 
M

as
s 

(k
g)

610

615

620

625

630

635

640

645

650

655

X (km) 104
-4 -2 0 2 4

Y
 (

km
)

104

-4

-3

-2

-1

0

1

2

3

4
Transfer trajectory
Initial orbit
Final orbit

X (km) 104
-4 -2 0 2 4

Y
 (

km
)

104

-4

-3

-2

-1

0

1

2

3

4
Transfer trajectory
Initial orbit
Final orbit

X (km) 104
-4 -2 0 2 4

Y
 (

km
)

104

-4

-3

-2

-1

0

1

2

3

4
Transfer trajectory
Initial orbit
Final orbit

X (km) 104
-4 -2 0 2 4

Y
 (

km
)

104

-4

-3

-2

-1

0

1

2

3

4
Transfer trajectory
Initial orbit
Final orbit

104

0

X (km)

-2

-4-4

-2

Y (km)

0
104

-1

0

1

104

Z
 (

km
)

Transfer trajectory
Initial orbit
Final orbit

104

0

X (km)

-2

-4
-4

-2

Y (km)

0
104

0

1

-1

104

Z
 (

km
)

Transfer trajectory
Initial orbit
Final orbit

(b) Time-optimal transfer.

Fig. 2: 3D visualization of trajectories for GTO to GEO transfer based on Q-law method.
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(a) Fuel-optimal transfer.
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(b) Time-optimal transfer.

Fig. 3: 3D visualization of trajectories for GTO to GEO transfer based on simple Lyapunov method.

As the figures indicate, the transfer trajectories have small difference, mainly due to the very
low amount of thrust level. In order to realize the differences within the transfer trajectories, the
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Fig. 4: State variables for fuel-optimal and time-optimal transfers based on Q-law method in GTO
to GEO transfer

time variation of state variables are depicted in Fig. 4 and Fig. 5 for Q-law method and simple
Lyapunov method respectively.

The exact values of the transfer time and the actual fuel mass consumption for this problem are
provided in Table 4.

Table 4: Comparison of the obtained solutions for GTO to GEO transfer

Min-time Min-fuel
Time (day) Fuel mass (kg) Time (day) Fuel mass (kg)

Q-law+EEDA method 137.34 211.76 149.99 190.40
Lyapunov+EEDA method 137.5 212.01 149.70 192.34
Averaging method [35] 137.5 212 150 192
Q-law method [21] 137.3 211.72 150 187.97

Several observations can be made from Table 4. First, the implementation of the proposed
algorithm with Lyapunov method ends up in the solutions with almost the same quality of the
averaging method in [35]. However, the implementation of the proposed algorithm with Q-law
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Fig. 5: State variables for fuel-optimal and time-optimal transfers based on simple Lyapunov method
in GTO to GEO transfer

method results in a slightly better solutions in both time-optimal and fuel-optimal transfers.
Comparing the obtained results from the Q-law implementation with the results from [21] shows
that the proposed approach is able to find a solution close to the one presented in the literature
in the time-optimal problem. However, in fuel-optimal problem the amount of fuel-mass is a bit
higher than the solution from [21]. Overall, the proposed approach is shown to be competitive to the
recently developed methods for obtaining low-thrust transfer trajectory design and optimization.

The corresponding variation of the optimized weights for Q-law method are depicted in Fig. 6a
and Fig. 6b for fuel-optimal and time-optimal transfers respectively.

As shown in the figures, the variations of weights for semi-major axis, eccentricity, and inclination
start with the values which are close in fuel-optimal and time-optimal transfers. The significant
difference between the two is the mean value of the absolute threshold, which is higher in fuel-optimal
transfer in comparison to time-optimal transfer. Similarly, the optimized variation of weights for
Lyapunov method are illustrated in Fig. 7a and Fig. 7b

Analyzing the weighting coefficients in Lyapunov method reveals a noticeable difference.
According to the time variation of the weighting coefficients for Lyapunov method, the low-point
interpolation seems to be more beneficial for the optimizer to find high quality solutions in both
fuel-optimal and time-optimal transfers. In this regard, the best obtained solution for time-optimal
and fuel-optimal transfers for Lyapunov method are associated with Np � 2, leading to conclude
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(a) Fuel-optimal transfer.
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(b) Time-optimal transfer.

Fig. 6: Weighting coefficient profiles for GTO to GEO transfer based on Q-law method.
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(a) Fuel-optimal transfer.
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Fig. 7: Weighting coefficient profiles for GTO to GEO transfer based on simple Lyapunov method.

that the Lyapunov method requires less variation of weights for achieving optimal solutions, while
Q-law method is more sensitive to time-variation of weights.
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4.2 GTO to Molniya

In the second experiment a GTO to Molniya transfer is considered and the orbital elements of the
initial and final orbits are provided in 5.

Table 5: Initial and final orbital parameters for GTO to Molniya transfer

a (km) e i (deg) Ω (deg) ω (deg) ν (deg)

Initial orbit 24505.9 0.725 0.06 0 0 0
Final orbit 26500 0.7 116 270 180 free
Convergence 10.0 0.005 1.0 1.0 1.0 -

As is evident from the table, this case involves large changes. The required plane change is about
116�. The modeled spacecraft has the mass of � 2000 kg, the thrust level of T � 0.35N and the
specific impulse of Isp � 2000s , giving an initial thrust-to-mass ratio of 0.000175 ms�2. In the
mass-optimal case, the upper bound on the time-of-flight is 150 days.

For this case, the proposed algorithm is implemented in Lyapunov control method and time-
optimal and fuel-optimal transfers are solved. Fig. 8a and Fig. 8b show the initial and final orbits
along with the transfer trajectory, corresponding to the best obtained solution in min-fuel and
min-time problems respectively.

Transfer Time (day)
100 110 120 130 140 150

F
ue

l 
M

as
s 

(k
g)

490

495

500

505

510

515

520

525

Transfer Time (day)
70.5 71 71.5 72 72.5 73 73.5 74

F
ue

l 
M

as
s 

(k
g)

610

615

620

625

630

635

640

645

650

655

X (km) 104
-4 -2 0 2 4

Y
 (

km
)

104

-4

-3

-2

-1

0

1

2

3

4
Transfer trajectory
Initial orbit
Final orbit

X (km) 104
-4 -2 0 2 4

Y
 (

km
)

104

-4

-3

-2

-1

0

1

2

3

4
Transfer trajectory
Initial orbit
Final orbit

X (km) 104
-4 -2 0 2 4

Y
 (

km
)

104

-4

-3

-2

-1

0

1

2

3

4
Transfer trajectory
Initial orbit
Final orbit

X (km) 104
-4 -2 0 2 4

Y
 (

km
)

104

-4

-3

-2

-1

0

1

2

3

4
Transfer trajectory
Initial orbit
Final orbit

104

0

X (km)

-2

-4-4

-2

Y (km)

0
104

-1

0

1

104

Z
 (

km
)

Transfer trajectory
Initial orbit
Final orbit

104

0

X (km)

-2

-4
-4

-2

Y (km)

0
104

0

1

-1

104

Z
 (

km
)

Transfer trajectory
Initial orbit
Final orbit

(a) Fuel-optimal transfer.
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Fig. 8: 3D visualization of trajectories for GTO to Molniya transfer based on simple Lyapunov
method.

As can be seen, the time-optimal transfer trajectory significantly has more revolutions to reach
the final orbit relative to fuel-optimal transfer. The time variation of state variables for this example
are shown in Fig. 9.
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Fig. 9: State variables for fuel-optimal and time-optimal transfers based on simple Lyapunov method
in GTO to Molniya transfer

Details of the transfer time and the actual fuel mass consumption for this problem are provided
in Table 6.

Table 6: Comparison of the obtained solutions for GTO to Molniya transfer

Min-time Min-fuel
Time (day) Fuel mass (kg) Time (day) Fuel mass (kg)

Lyapunov+EEDA method 70.83 624.01 138.34 492.89
Lyapunov method [36] 96.6 677.2 N. A. N. A.
Q-law method [20] 84 734 150 580

Table 6 also includes the corresponding transfer time and fuel mass of the obtained solutions from
other methods in the literature. As can be seen, the obtained solutions by the proposed method in
this research significantly have higher quality than the Lyapunov method in [36] and even the Q-law
method in [20]. This comparison shows that the incorporation of the proposed optimizer within the
Lyapunov control method is competitive to the Q-law method, which is a more complicated control
technique. The variation of the weighting coefficients for the obtained transfers are illustrated in
Fig. 10a and Fig. 10b.

Following the variation of the optimized weighting coefficients, some remarks can be highlighted.
It can be observed that there are some small similarities between time-optimal and fuel-optimal
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(a) Fuel-optimal transfer.
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(b) Time-optimal transfer.

Fig. 10: Weighting coefficient profiles for GTO to Molniya transfer based on simple Lyapunov
method.

transfers. For instance, the absolute threshold ηa begins with a high value in both transfers. However,
it slightly changes based on the desired objective. The semi-major axis weight has similar variation,
and the weights of inclination is low in both problems.

It is noteworthy that the best obtained solution in both time-optimal and fuel-optimal cases
correspond to Np � 4 in this scenario. Other solutions have been obtained as well out of 50
optimization runs and they have more or less similar objective values. However, the absolute best
solutions (min-time and min-fuel) indicate that 4-points interpolation can interpret the optimal
variation of weights better than other number of interpolation points. In other words, a simple
increase in the number of interpolation points does not necessarily lead us to high quality solutions.
The spread of the obtained solutions, depicted in Fig. 11a and Fig. 11b confirms this fact.

Fig. 11a and Fig. 11b show the relative position of the obtained solution in each optimization
run. In these figures, solutions correspond to higher number of interpolation points are plotted with
bigger markers. As can be observed, it can be highlighted that in fuel-optimal transfer (Fig. 11a),
the optimizer did not find any high quality solutions with 5-points interpolation, and the majority
of the points with lower fuel mass correspond to 3-points and 4-points interpolation. The existence
of some of the points near the transfer time of 150 days (the maximum allowable simulation time),
with fuel mass less than 500 kg indicates that this region has the potential for finding better
solutions. Interesting remarks can be highlighted from the distribution of the obtained solutions in
time-optimal transfer (Fig. 11b) as well. Unlike the previous case, the distribution of the 5-points
interpolation shows that increasing the number of interpolation points leads the optimizer to find
solutions with better quality. As can be seen, the solution with the lowest fuel mass in time-optimal
solution belongs to Np � 5 with transfer time of 70.95 days and the fuel mass of 614.1 kg. This
solution can also be selected as a substitute for the absolute best solution provided in Table 6.
Other remark in this figure is the stock of the solutions for Np � 1 in a specific region far from the
the desired region. This is another observation which confirms the fact that increasing the number
of interpolation points eventually leads the optimizer to find high quality solutions.
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Fig. 11: Obtained solutions after optimization for GTO to Molniya transfer based on simple
Lyapunov method.

The other analysis in this space mission is the comparison of the performance of EEDA with
other well-known EAs. Such a comparison is shown in Fig. 12a and Fig. 12b.
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Fig. 12: Convergence of the algorithms for GTO to Molniya transfer based on simple Lyapunov
method.

In Fig. 12a and Fig. 12b the convergence of the proposed algorithm EEDA is compared with
normal EDA, PSO, and GA for fuel-optimal and time-optimal transfers. Comparing EEDA and
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EDA confirms the effectiveness of the proposed learning mechanism in enhancing the optimization
process. Also, it is evident that EDA-based algorithms outperform traditional EAs such as PSO
and GA in finding optimal transfer trajectories in this research.

5 Conclusion

In this chapter, the problem of optimal design of low-thrust Earth-orbiting trajectories for
space missions is considered. When considering complex trajectory optimization problems with
non-convexity and strong non-linearity, it has been demonstrated that intelligent optimization
algorithms are effective in optimal trajectory design. To tackle the extreme complexity of the
search space, an enhanced evolutionary algorithm within the framework of EDAs, named EEDA is
proposed and applied to an approach based on Lyapunov and Q-law methods. In both methods,
the unknown weighting coefficients are interpolated with Hermite polynomials and the optimizer
is implemented to optimize the variation of weights for minimizing the transfer time and the fuel
consumption. Simulation results are carried out to demonstrate the effectiveness of the proposed
approach. It has been realized that the implementation of EEDA with simple Lyapunov function
is competitive to the Q-law method. The comparison shows the potential of the EEDA in enabling
the simple Lyapunov controller to recover the finer nuances explicitly given within the analytical
expressions in the Q-law. Also, it has been discovered that increasing the number of interpolation
points does not necessarily increase the chance of achieving the optimal solution. In other words,
the choice of the proper number of interpolation points is problem-dependence and needs to be
adjusted according to the type of the orbit transfer mission.

Current research can be extended in various aspects. Regarding the algorithm enhancement,
various further improvements can be the aim for the future research. As for the seeding mechanism,
the improvement can be towards obtaining initial feasible population in a more efficient method.
For instance, the current mechanism does not use any information from the gradient of the solution
domain. Therefore, future works can be conducted in considering gradient-based methods within
the seeding mechanism to improve the process. Incorporation of such techniques, more specifically,
gradient-based stochastic operators, in minimization of the objective function is also a new area for
further research.
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