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Abstract
Most state-of-the-art Multi-Objective Evolutionary Algorithms (MOEAs) promote the
preservation of diversity of objective function space but neglect the diversity of de-
cision variable space. The aim of this paper is to show that explicitly managing the
amount of diversity maintained in the decision variable space is useful to increase
the quality of MOEAs when taking into account metrics of the objective space. Our
novel Variable Space Diversity based MOEA (VSD-MOEA) explicitly considers the di-
versity of both decision variable and objective function space. This information is used
with the aim of properly adapting the balance between exploration and intensifica-
tion during the optimization process. Particularly, at the initial stages, decisions made
by the approach are more biased by the information on the diversity of the variable
space, whereas it gradually grants more importance to the diversity of objective func-
tion space as the evolution progresses. The latter is achieved through a novel density
estimator. The new method is compared with state-of-art MOEAs using several bench-
marks with two and three objectives. This novel proposal yields much better results
than state-of-the-art schemes when considering metrics applied on objective function
space, exhibiting a more stable and robust behavior.

Keywords
Multi-objective Evolutionary Algorithms, Premature Convergence, Diversity Preser-
vation

1 Introduction

Multi-objective Optimization Problems (MOPs) involve the simultaneous optimization
of several objective functions that are usually in conflict with each other (Deb, 2001).
A continuous box-constrained minimization MOP, which is the kind of problem ad-
dressed in this paper, can be defined as follows:

min ~f = [f1(~x), f2(~x), ..., fm(~x)]

subject to x
(L)
i ≤ xi ≤ x(U)

i , i = 1, 2, ..., n.
(1)
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where n corresponds to the dimensionality of the decision variable space, ~x is a vector
of n decision variables ~x = (x1, ..., xn) ∈ Rn, which are constrained by ~x(L) and ~x(U), i.e.
the lower bound and the upper bound, and m is the number of objective functions to
optimize. The feasible space bounded by ~x(L) and ~x(U) is denoted by Ω. Each solution
is mapped to the objective space with the function F : Ω → Rm, which consists of m
real-valued objective functions, and Rm is called the objective space.

Given two solutions ~x, ~y ∈ Ω, ~x dominates ~y, which is mathematically denoted
by ~x ≺ ~y, iff ∀i ∈ 1, 2, ...,m : fi(~x) ≤ fi(~y) and ∃i ∈ 1, 2, ...,m : fi(~x) < fi(~y). The
best solutions of an MOP are those that are not dominated by any other feasible vector.
These solutions are known as the Pareto optimal solutions. The Pareto set is the set of
all Pareto optimal solutions, and the Pareto front is the image (i.e., the corresponding
objective function values) of the Pareto optimal set. The goal of multi-objective optimiz-
ers is to obtain a proper approximation of the Pareto front, i.e. a set of well-distributed
solutions that are close to the Pareto front.

One of the most popular meta-heuristics used to deal with MOPs is the Evolution-
ary Algorithm (EA). In single-objective EAs, it has been shown that taking into account
the diversity of decision variable space to properly balance between exploration and
exploitation is highly important to attain high quality solutions (Herrera and Lozano,
1996). Diversity can be taken into account in the design of several components, such
as in the variation stage (Herrera and Lozano, 2003; Mitchell, 1998), the replacement
phase (Segura et al., 2015) and/or the population model (Koumousis and Katsaras,
2006). The explicit consideration of diversity usually leads to improvements in terms
of avoiding premature convergence, meaning that taking into account diversity in the
design of EAs is especially important when dealing with long runs. Recently, some
diversity management algorithms that combine the information on diversity, stopping
criterion and elapsed generations have been devised. They have yielded a gradual loss
of diversity that depends on the time or evaluations granted to the execution (Segura
et al., 2015). Specifically, the aim of such a methodology is to promote exploration in
the initial generations and gradually alter the behavior towards intensification. These
schemes have provided highly promising results. For instance, new best-known solu-
tions for some well-known variants of the frequency assignment problem (Segura et al.,
2016), and for a two-dimensional packing problem (Segura et al., 2015) have been at-
tained using the same principles. Additionally, this principle guided the design of the
winning strategy of the Second Wind Farm Layout Optimization Competition (Wilson
et al., 2018) and of the extended round of Google Hash Code 2020 1 , with more than
100, 000 participants. Thus, the benefits of this type of design pattern have been shown
in several different single-objective optimization problems.

One of the goals when designing Multi-objective Evolutionary Algorithms
(MOEAs) is to obtain a well-spread set of solutions in objective function space. As a
result, most state-of-the-art MOEAs consider the diversity of the objective space explic-
itly. However, this is not the case for the diversity of decision variable space. Main-
taining some degree of diversity in objective space implies that full convergence is not
achieved in decision variable space (Kukkonen and Lampinen, 2009). In some way,
decision variable space inherits some degree of diversity due to the way in which ob-
jective space is taken into account. However, this is just an indirect way of preserving
diversity of decision variable space, so in some cases the level of diversity might not be
large enough to ensure a proper degree of exploration. For instance, it has been shown

1https://codingcompetitions.withgoogle.com/hashcode/
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that with some of the WFG test problems, in most state-of-the-art MOEAs the distance
parameters quickly converge, meaning that the approach focuses just on optimizing the
position parameters for a long period of the optimization process (Chacón Castillo et al.,
2017). Thus, while some degree of diversity is maintained, a situation similar to pre-
mature convergence occurs, meaning that genetic operators might no longer be able to
generate better trade-offs.

In light of the differences between state-of-the-art single-objective EAs and MOEAs,
this paper proposes a novel MOEA, the Variable Space Diversity based MOEA (VSD-
MOEA), which relies on explicitly managing the amount of diversity in decision vari-
able space. Similarly to the successful methodology applied in single-objective opti-
mization, the stopping criterion and the number of evaluations evolved are used to
vary the amount of diversity desired in decision variable space. The main difference
with respect to the single-objective case is that diversity of the objective function space
is simultaneously considered by using a novel objective space density estimator. Par-
ticularly, the approach grants more importance to the diversity of decision variable
space in the initial stages, and it gradually grants more importance to the diversity of
objective function space as the evolution progresses. In fact, in the last stage of exe-
cution, diversity of decision variable space is neglected. Thus, in the last phases, the
proposed approach is quite similar to current state-of-the-art approaches. To the best
of our knowledge, this is the first MOEA whose design follows this dynamic principle.

Since there currently exists quite a large number of different MOEAs (Tan et al.,
2005), three popular schemes have been selected to validate our proposal, including one
that promotes diversity in the variable space to deal with multi-modal multi-objective
optimization. This validation was performed using several well-known benchmarks
and proper quality metrics. This paper clearly shows the important benefits of properly
taking into account the diversity of decision variable space. In particular, the advan-
tages become more evident in the most complex problems. Note that this is consistent
with the single-objective case, where the most important benefits have been obtained
in complex multi-modal cases (Segura et al., 2016). It is also important to clarify that,
in spite of considering the variable-space diversity, our work is not a niche-based pro-
posal for multimodal optimization (Deb and Tiwari (2005), Zhou et al. (2009), Li et al.
(2016),Liang et al. (2016)). Instead, this work is oriented to show that managing ex-
plicitly the amount of diversity maintained in the decision variable space is useful to
increase the quality of MOEAs when taking into account metrics of the objective space.

The rest of this paper is organized as follows. Section 2 provides a review of the
previous related work. Additionally, some key components related to diversity and to
the VSD-MOEA design are discussed. The VSD-MOEA proposal is detailed in Section 3.
Section 4 is devoted to the experimental validation of the proposal. Finally, our con-
clusions and some lines of future work are given in Section 5. Note also that some
supplementary materials are also provided. They include details of the experimen-
tal results with additional performance measures and some additional experiments, as
well as an explanatory video.

2 Literature Review

This section is devoted to reviewing some of the most relevant works that are related
to our proposal. First, some of the most popular ways of managing diversity in EAs are
presented. Then, the state of the art in MOEAs is briefly summarized.
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2.1 Diversity Management in Evolutionary Algorithms

The proper balance between exploration and exploitation is one of the keys to design-
ing successful EAs. In the single-objective domain, it is known that properly man-
aging the diversity of decision variable space is a way to achieve this balance, and
as a consequence, a large number of diversity management techniques have been de-
vised (Pandey et al., 2014). Specifically, these methods are classified depending on the
component(s) of the EA that is modified to alter the way in which diversity is main-
tained. A popular taxonomy identifies the following groups (Črepinšek et al., 2013):
selection-based, population-based, crossover/mutation-based, fitness-based, and replacement-
based, among others. Additionally, the methods are referred to as uniprocess-driven
when a single component is altered, whereas the term multiprocess-driven is used to
refer to those methods that act on more than one component.

Among the previous proposals, the replacement-based methods have yielded very
high-quality results in recent years (Segura et al., 2016), so this alternative was selected
with the aim of designing a novel MOEA that explicitly incorporates a way to control
the diversity of decision variable space. The basic principle of these methods is to bias
the level of exploration in successive generations by controlling the diversity of the
survivors. Since premature convergence is one of the most common drawbacks in the
application of EAs, modifications are usually performed with the aim of slowing down
convergence. One of the most popular proposals belonging to this group is the crowding
method, which is based on the principle that offspring should replace similar individ-
uals from the previous generation (Mengshoel et al., 2014). Several replacement strate-
gies that do not rely on crowding have also been devised. In some methods, diversity
is considered as an objective. For instance, in the hybrid genetic search with adaptive
diversity control (HGSADC) proposed by Vidal et al. (2013), individuals are sorted by
their contribution to diversity and by their original cost. Then, the rankings of the in-
dividuals are used in the fitness assignment phase. A more recent proposal (Segura
et al., 2016) incorporates a penalty approach to gradually alter the amount of diversity
maintained in the population. Specifically, the initial phases preserve a higher amount
of diversity than the final phases of the optimization. This last method has inspired the
design of the novel proposal put forth in this paper for multi-objective optimization.

It is important to remark that in the case of multi-objective optimization, little work
related to maintaining the diversity of decision variable space has been done. The ex-
ception are those algorithms that aim to obtain diverse Pareto sets, instead of only
diverse and high-quality Pareto fronts. The following section reviews some of the most
important MOEAs and introduces some of the works that consider the maintenance of
diversity of decision variable space.

2.2 Multi-Objective Evolutionary Algorithms

In recent decades, several MOEAs have been successful in solving MOPs. Most of them
are designed with the goal of providing a set of solutions with good convergence and
diversity in objective space. Some representative MOEAs are the Non-Dominated Sort-
ing Genetic Algorithm II (NSGA-II) (Deb et al., 2002), the Multi-objective Evolutionary
Algorithm Based on Decomposition (MOEA/D) (Zhang and Li, 2007), the R2-Indicator-
Based Evolutionary Multi-objective Algorithm (R2-EMOA) (Trautmann et al., 2013)
and the S-Metric Selection Evolutionary Multi-objective Optimization Algorithm (SMS-
EMOA) (Beume et al., 2007). By contrast, Evolutionary Multi-modal Multi-objective
Algorithms (EMMAs) aim to identify high-quality solutions that are diverse in both the
objective space and the decision variable space. Interestingly, some authors (Liu et al.,
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2019) have identified that for particular problems, such as the Imbalanced Problems,
EMMAs aid in the location of broader fronts in objective space, meaning that the ad-
ditional exploration promoted in EMMAs yields higher-quality solutions in terms of
objective space metrics.

In spite of these findings, none of the most popular MOEAs introduces special
mechanisms to promote diversity in the decision variable space. It might be argued
that for those particular cases where more exploration is required, EMMAs might be
used. However, in the case of single-objective optimization, the recommended way
of managing diversity in the decision variable space is very different in multi-modal
optimization than in global optimization (Črepinšek et al., 2013). In order to illustrate
that this is also the case for multi-objective optimization, the experimental validation
presented in this paper takes into account both state-of-the-art MOEAs and a popular
EMMA. The efforts to consider the diversity in the decision space in MOEAs and EMMAs
are reviewed in the following. Note that in most cases, they are devoted to multi-modal
multi-objective optimization.

One of the first approaches to promote diversity in decision variable space is based
on the application of fitness sharing (Horn et al., 1994), in a way similar to single-
objective optimization. Distances have been considered both in terms of the decision
variable space and objective space. The main issue is that they are not taken into ac-
count simultaneously. One MOEA designed to promote diversity of both the decision
variable space and objective function space is the Genetic Diversity Evolutionary Algo-
rithm (GDEA) proposed by Toffolo and Benini (2003). In this case, each individual is
assigned a diversity-based objective which is calculated as the Euclidean distance in the
genotype space to the remaining individuals in the population. Then, a ranking that
considers both the original objectives and the diversity objective is used to sort indi-
viduals. More complex ways of integrating the information on both kinds of diversity
to alter the selection mechanisms have been devised (Deb and Tiwari, 2005; Shir et al.,
2009; Cuate and Schütze, 2019). Another related method involves modifying the hy-
pervolume to integrate the decision variable space diversity into a single metric (Ulrich
et al., 2010). In this approach, the proposed metric is also used to guide the selection.

Other strategies also alter the selection mechanism but following a different path.
In Chan and Ray (2005), two selection operators of different nature are considered si-
multaneously. The first one promotes diversity and quality in the objective function
space, whereas the second one promotes diversity in decision variable space. The appli-
cation of mating restrictions during the selection phase has also been used to indirectly
alter the amount of diversity (Ishibuchi and Shibata, 2003; Chiang and Lai, 2011).

Finally, some methods alter several components simultaneously (Shi et al., 2019;
Liu et al., 2019; Zadorojniy et al., 2012). Among them, the Convergence Penalized Den-
sity EA (CPDEA) (Liu et al., 2019) is one of the most recent and effective approaches. In
this case, two different variation operators are used. The first-one is devoted to explo-
ration and is applied in the first half of the run, whereas the second one is applied in the
second half and is devoted to intensification. Moreover, the replacement considers both
quality and diversity in the objective space, and the density in decision variable space.
Given the high-quality results reported by CPDEA, this is the EMMA used to validate
our proposal.

In light of the results of the approaches described above, it is clear that consider-
ing the diversity of the decision variable space in the design phase yields benefits for
decision makers, since the final solutions obtained by these methods exhibit a higher
decision variable space diversity than those obtained by traditional approaches (Deb
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Algorithm 1 Main Procedure of VSD-MOEA
1: Initialization: Generate an initial population P0 with p individuals.
2: Evaluation: Evaluate all individuals in the population.
3: Assign t := 0
4: while (not stopping criterion) do
5: Mating selection: Fill the mating pool by performing binary tournament selection on Pt,

based on the non-dominated ranks (ties are broken randomly).
6: Variation: Apply SBX and Polynomial-based mutation to the mating pool to create an

offspring population Qt with p individuals.
7: Evaluation: Evaluate all individuals in Qt.
8: Survivor selection: Generate Pt+1 by applying the replacement scheme described in Al-

gorithm 2, using Pt and Qt as inputs.
9: t := t+ 1

and Tiwari, 2005; Rudolph et al., 2007). Thus, while clear improvements are obtained
when metrics related to the decision variable space are taken into account, the benefits
in terms of the objective function space are not as clear, and until now, they have only
been attained in certain specific MOPs (Liu et al., 2019). We claim that one of the reasons
for this behavior might be that the diversity of the decision variable space is considered
in the whole optimization process. However, in a similar way as in the single-objective
domain, reducing the importance allocated to the diversity of the decision variable
space as the generations progress (Segura et al., 2015) might be truly important for ob-
taining better approximations of the Pareto front. Currently, no MOEA considers this
idea, and this was the motivation for the design of the novel MOEA proposed in this
paper.

3 Proposal

This section provides a full description of our proposal called Variable Space Diversity
based MOEA (VSD-MOEA) 2. The novelty of VSD-MOEA appears in the replacement
phase, which incorporates the use of variable space diversity and a novel objective
space density estimator. The main principle behind the design of the novel replace-
ment is to use the stopping criterion and elapsed generations with the aim of gradually
moving from exploration to exploitation during the search process. In this paper, our
decision was to incorporate it into a dominance-based approach. Note that this cate-
gory has been particularly suitable for problems with two and three objectives. Thus,
some of our design decisions might not be suitable for dealing with many-objective
optimization problems.

The general framework of VSD-MOEA is quite standard. Algorithm 1 shows the
pseudo-code of VSD-MOEA. Parents are selected using a binary tournament selection
based on dominance ranking with ties broken randomly. The variation stage is based
on applying the well-known Simulated Binary Crossover (SBX) and polynomial-based
mutation operators (Deb et al., 1995; Deb and Goyal, 1996). Thus, the contribution
appears in the replacement phase. Note that t is used to denote the number of the cur-
rent generation. The rest of this section is devoted to describe the replacement phase,
including the novel objective space density estimator.

2The source code in C++ of our approach is freely available at https://github.com/
carlossegurag/VSD-MOEA
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3.1 Replacement Phase of VSD-MOEA

The replacement phase of EAs is in charge of deciding, for each generation, which mem-
bers of the previous population together with their corresponding offspring will sur-
vive. The novel replacement scheme presented here promotes a gradual movement
from exploration to exploitation, which has been a highly beneficial principle in the
design of single-objective optimizers (Segura et al., 2015). Specifically, the replacement
phase operates as follows. First, the members of the previous population and offspring
are merged in a multi-set with 2× p individuals. Then, an iterative process that selects
an additional individual sequentially is used to pick the p survivors. In order to take
into account the diversity of decision variable space, the Distance to Closest Survivor
(DCS) of each individual is calculated at each iteration. Thus, the DCS of an individ-
ual ~y ∈ Ω is calculated as min

~s∈S
Distance(~y,~s), where S is the multi-set containing the

currently selected survivors. Normalized Euclidean distances are considered (Barrett,
2005), so in order to calculate distances between any two individuals ~a,~b ∈ Ω, Eq. (2) is
applied. Note that each variable is normalized and the sum is divided by the number
of variables. Thus, this measure is expected to be less sensitive to the dimensionality of
the decision variable space and to the domain of the variables (Ning et al., 2008). In the
first iteration, the S multi-set is empty, so the DCS of each individual is infinity.

Distance(~a,~b) =

√√√√ 1

n

n∑
i=1

(
ai − bi

x
(U)
i − x(L)i

)2

(2)

Note that individuals with larger DCS values are those that contribute more signif-
icantly to promoting exploration. In order to avoid an excessive decrease in the degree
of exploration, individuals with a DCS value below a certain threshold are penalized.
Then, among the non-penalized individuals, an objective space density estimator is
used to select the additional survivor of the iteration. In our case, the novel density
estimator described in the next subsection is used. Note that it might happen that all
individuals are penalized, in which case the individual with the largest DCS is selected
to survive.

In order to better understand the penalty method, it can be visualized in the follow-
ing way. After selecting each survivor, a hyper-sphere centered at a candidate solution
— in decision variable space — is created. Then, all the individuals that are inside the
hyper-sphere are penalized, with the objective space density estimator only taking into
account the survivors and the non-penalized individuals. This is illustrated in Fig. 1,
which represents a state where three individuals have been selected to survive and an
additional survivor must be picked. The left side shows individuals in decision variable
space. Current survivors are marked with a red border. Each of them is surrounded
by a dashed blue circle of radius Dt. In this scenario, the penalized individuals are the
ones with numbers 4, 5, and 6. In objective function space — right side — the penalized
individuals are shown in gray, indicating that the objective space density estimator is
not considering them.

Since using a large radius for the hyper-spheres induces a large degree of ex-
ploration, it makes sense to alter this value during the optimization process. This is
precisely one of the key elements of our proposal. The sizes of the hyper-spheres are
modified dynamically by taking into account the stopping criterion and elapsed gen-
erations. Specifically, the radius is decreased linearly starting from an initial distance.
This means that in the initial phases, exploration is promoted. However, as the size
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Figure 1: Penalty Method of the Replacement Phase - The left side represents the deci-
sion variable space, and the right side the objective function space.

Algorithm 2 Replacement Phase of VSD-MOEA
1: Input: Pt (Population of current generation), Qt (Offspring of current Generation), p (Popu-

lation Size) and ITV (Initial Threshold Value)
2: Output: Pt+1

3: Rt := Pt ∪Qt

4: Pt+1 := ∅
5: Penalized := ∅
6: Dt := ITV − ITV × GElapsed

0.5×GEnd

7: while |Pt+1| ≤ p do
8: Compute DCS of individuals in Rt, using Pt+1 as a reference set
9: Move the individuals in Rt with DCS < Dt to Penalized

10: if Rt is empty then
11: Compute DCS of individuals in Penalized, using Pt+1 as a reference set
12: Move the individual in Penalized with the largest DCS to Rt

13: Identify the first front (F ) in Rt ∪ Pt+1 with at least one individual ~y ∈ Rt

14: Use the novel density estimator (Algorithm 3) to select a new survivor from F and move
it from Rt to Pt+1

15: return Pt+1

of the radius decreases, only very close individuals are penalized, meaning that more
exploitation is allowed. Note that this method requires a parameter that is the initial
radius of the hyper-spheres or initial threshold value. This parameter is denoted by
ITV . Assigning a large value to this parameter might result in many individuals being
penalized, which might thus maintain non-useful diversity. However, a value that is
too small might not prevent fast convergence, meaning the approach might behave as
a traditional non-diversity based MOEA. The robustness of the proposal with respect to
this additional parameter is studied in our experimental validation.

Algorithm 2 formalizes the replacement phase of VSD-MOEA. First, the population
of the previous generation (Pt) and the offspring (Qt) are merged in Rt (line 3). At
each iteration, the multi-set Rt contains the remaining non-penalized individuals that
might be selected to survive. The population of survivors (Pt+1) and the set contain-
ing the penalized individuals are initialized to the empty set (lines 4 and 5). Then, the
threshold value (Dt) that is used to penalize individuals that are too close is calculated
(line 6). Note that ITV denotes the initial threshold value, GElapsed is the number of
generations that have evolved, and GEnd is the stopping criterion, i.e., the number of
generations that are to be evolved during the execution of the VSD-MOEA. The linear
decrease is calculated such that after 50% of the total number of generations, the Dt
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value is below 0, meaning that no penalties are applied. This means that in the first half
of the algorithm run, more exploration is induced than in traditional MOEAs. Please
refer to the Supplementary Material for the sensitivity analysis of the final moment of
diversity promotion. Then, an iterative process that selects an individual sequentially
is executed until the survivor set contains p individuals (line 7). The iterative process
works as follows. First, the DCS value of each remaining non-penalized individual is
calculated (line 8). Then, those individuals with a DCS value lower than Dt are moved
to the set of penalized individuals (line 9). If all the remaining individuals are penalized
(line 10), it means that the amount of exploration is lower than desired. Thus, the indi-
vidual with the largest DCS value is recovered, i.e., moved to the set of non-penalized
individuals (lines 11 and 12), and thus survives. Finally, the objective function space
is considered. Specifically, candidate non-penalized individuals and current survivors
are merged. Then, the well-known non-dominated sorting procedure proposed in Deb
et al. (2002) is executed on this set, stopping as soon as a front with at least one can-
didate individual is found, i.e., with an individual of Rt (line 13). Then, taking the
identified front as an input, a novel objective space density estimator is used to select
the next survivor, which is moved from Rt to Pt+1 (line 14). The specific way in which
each individual’s contribution to the diversity of the objective space is measured is de-
scribed in the next section.

It is important to note that the pseudo-codes presented in this paper are designed
for explanatory purposes, and their corresponding implementations are not necessarily
straightforward. For instance, in order to calculate the DCS values in line 11, there is no
need to iterate over all solutions in Pt+1. Instead, when Pt+1 is updated by including
an additional individual, the distances are updated.

3.2 A Novel Density Estimator for Objective Function Space

Since the dominance definition is not related to the preservation of diversity in objec-
tive function space, dominance-based MOEAs usually incorporate objective-space den-
sity estimators to promote the survival of diverse individuals. As previously described,
our density estimator selects a new survivor from the front identified in line 13 of Al-
gorithm 2. This front (referred in Algorithm 3 as F ) contains at least one individual
belonging to Rt, and it might also contain some elements of Pt+1. The aim behind the
selection of the next survivor is to pick an individual of the input front that contributes
significantly in terms of the quality and diversity of the objective space.

Algorithm 3 describes the selection of the next survivor. First, the sets FP and
FR are identified (lines 3 and 4). FP contains the current survivors that are in F (al-
ready selected to the next generation Pt+1), whereas FR contains the remaining non-
penalized individuals that are in F . Then, similarly to most state-of-the-art algorithms,
a step to promote the selection of extreme-points is included (Sun et al., 2018). Note that
selecting the extreme-points following the criteria of the best solution for each objective
might cause some drawbacks related to accepting a small improvement in one objective
at the expense of significant degradation in other objectives. This issue can be solved by
applying augmented functions (Deb and Abouhawwash, 2016; Sun et al., 2018), which
was our design choice. Particularly, and similarly to Sun et al. (2018), the m extreme
points are selected by decomposing the m-objective MOP into m single-objective prob-
lems. Specifically, the kth extreme point is the one that minimizes Eq. (3). The second
term, which is multiplied by the penalization parameter ρ, is a measure of the overall
quality and it is used to avoid extreme points that exhibit very poor qualities in some
of the objectives. Obviously, the setting of the parameter ρ is problem-dependent, but

Evolutionary Computation Volume x, Number x 9



J. Chacón Castillo, C. Segura, C.A. Coello Coello

Algorithm 3 Density Estimator
1: Input: Pt+1 (Survivors), Rt (Candidates), F (Current front)
2: Output: ~y ∈ Rt

3: FP := Pt+1 ∩ F
4: FR := Rt ∩ F
5: Extreme points := ∅
6: for k ∈ Number of objectives (m) do
7: Select the best individual ~y ∈ F according to the k objective using Eq. 3.
8: if ~y ∈ FR then
9: Extreme points = Extreme points ∪ ~y

10: if |Extreme points| > 0 then
11: ~s∗ := a random individual from Extreme points
12: return ~s∗

13: MaxID := 0
14: for ~y ∈ FR do
15: Improvement := min

~s∈FP

ID(~y,~s) (Eq. 4)

16: if Improvement > MaxID then
17: MaxID := Improvement
18: ~s∗ := ~y
19: return ~s∗

for benchmark problems where the objective functions are between 0 and some units,
the suggested value is 10−4 (Deb and Abouhawwash, 2016), so this was the value used
in our validation. Lines 6 to 9 identify, for each objective k, the candidate solutions that
minimize the Augmented Function (AF). If some of the extreme points belong to the
non-penalized candidates (FR), then one of them is randomly selected as a survivor
and the process ends (lines 10 to 12).

AFk(~x) = fk(~x) + ρ×
m∑
j=1

fj(~x) (3)

In cases where the individuals that optimize each AF are already in Pt+1, a contri-
bution to objective-space diversity and quality is calculated for each individual in FR
(lines 13 to 19). This contribution is calculated by taking into account the current sur-
vivors of the front (FP ). Specifically, the Improvement Distance (ID) defined for the
indicator IGD+ (Ishibuchi et al., 2015) is used. The ID of an individual ~x with respect
to an individual ~y is calculated by taking into account only the objectives where ~x is
better. Specifically, Eq. (4) is used.

ID(~x, ~y) =

√√√√ m∑
i=1

(max{0, fi(~y)− fi(~x)})2 (4)

The contribution of each member ~y ∈ FR is calculated as min
~s∈FP

ID(~y,~s). Then,

the individual with the highest contribution is selected as the next survivor (lines 16
to 18). Note that the process of selecting the individual with the best contribution (~s∗)
is defined in Eq. (5).

~s∗ = arg max
~y∈FR

min
~s∈FP

ID(~y,~s) (5)
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Finally, note that ID has not been used earlier as a density estimator. The logic is
to avoid the selection of individuals that are far from the remaining ones, just because
there is a worsening in some of the objective functions. As it will be shown in the
experimental validation, this novel density estimator provides important benefits when
compared to more traditional density estimators.

4 Experimental Validation

This section describes the experimental validation carried out to study the performance
and gain a clear understanding of the specifics of our proposed VSD-MOEA. Our results
clearly show that controlling the diversity of decision variable space provides a way to
further improve the results obtained by state-of-art MOEAs. First, we discuss some tech-
nical specifications involving the benchmark problems and algorithms implemented.
We then present a comparison between VSD-MOEA and state-of-the-art algorithms for
long runs. Then, four additional experiments to fully validate VSD-MOEA are included.
These analyses are designed to test the scalability in decision variable space, the per-
formance with different stopping criteria, the novel diversity management mechanism
in the objective space, and the implications of the initial penalty threshold.

This work takes into account some of the most popular and widely used bench-
marks in the multi-objective field. These problems are the WFG (Huband et al., 2005,
2006), DTLZ (Deb et al., 2005), and UF (Zhang et al., 2008) test suites configured in a
standard way. The WFG test problems were used with two and three objectives and
were configured with 24 parameters, 20 of them corresponding to distance parameters
and 4 to position parameters. In the DTLZ test problems, the number of variables was
set to n = m + r − 1, where r = {5, 10, 20} for DTLZ1, DTLZ2 to DTLZ6 and DTLZ7,
respectively. The UF benchmark comprises seven problems with two objectives (UF1-
7) and three problems with three objectives (UF8-10). All of them were configured
with 30 variables. Note that the experiment used to analyze scalability considers dif-
ferent numbers of variables. The experimental validation includes three well-known
state-of-the-art MOEAs and VSD-MOEA. The MOEAs that are considered are MOEA/D 3,
R2-EMOA 4, and CPDEA 5. Note that CPDEA is the only method that includes an archive,
thus the final results are obtained from the archive. In the remaining methods, fol-
lowing the original implementations, solutions are taken from the last population. In
every case, the maximum size of the solution set is equal to the population size. Note
that in the Supplementary Material some results considering the incorporation of pas-
sive archives (Schütze and Hernández, 2021) in all the methods are discussed. Sim-
ilar conclusions are attained, so the performance is more dependent on the selection
and replacement phases, which are the main distinguishing features of each algorithm,
than in the specific way of selecting the final solution set. Also note that, in the case
of MOEA/D, several variants have been devised. The MOEA/D implementation con-
sidered is the one that obtained first place in the 2009 IEEE Congress on Evolutionary
Computation’s MOP Competition (Zhang et al., 2009).

Given that all the algorithms considered are stochastic, each execution was re-
peated 35 times with different seeds in all the experiments. The hypervolume indicator
(HV) is used to compare results. Note that in the supplementary material, the results
are also compared in terms of IGD+, with the conclusions being quite similar. The ref-

3https://github.com/P-N-Suganthan/CEC2009-MOEA/blob/master/
Codes-of-Accepted-Papers.rar

4http://inriadortmund.gforge.inria.fr/r2emoa/
5https://github.com/yiping0liu/CPDEA
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Table 1: Crossover probability applied in each MOEA
2 objectives 3 objectives

VSD-MOEA 0.4 0.4
CPDEA 1.0 0.6

MOEA/D 1.0 1.0
R2-EMOA 1.0 0.2

erence point used to calculate the HV is chosen to be a vector whose values are sightly
larger (ten percent) than the Nadir point, as suggested in Ishibuchi et al. (2017). The
normalized HV is used to facilitate the interpretation of the results (Li et al., 2014), and
the value reported is computed as the ratio between the normalized HV obtained and
the maximum attainable normalized HV. In this way, a value equal to one means a
perfect approximation. Note that a value equal to one is not attainable because MOEAs
yield a discrete approximation. In order to statistically compare the HV ratios attained
by the different algorithms, the guidelines proposed in del Amo and Pelta (2013); Der-
rac et al. (2011) are followed. Given a set of approaches and their corresponding results,
first, the Kruskal-Wallis is used as an Omnibus test to detect if there are any significant
differences. In cases where there are significant differences, pair-wise statistical test
are used to detect them; specifically, the Mann-Whitney post-hoc test with Hommel’s
correction of p-values. An algorithm X is said to beat algorithm Y when the differ-
ences between them are statistically significant, and the mean HV ratio obtained by X
is higher than the mean achieved by Y . Note that in both tests, a significance level of
5% was considered.

The common configuration in all the experiments was as follows: the population
size was set to 100, the stopping criterion was set to 2.5× 106 function evaluations, and
the genetic operators were Simulated Binary Crossover (SBX) and polynomial-based
mutation (Deb et al., 1995; Deb and Goyal, 1996). The crossover and mutation dis-
tribution indexes were fixed to 2 and 50, respectively. The mutation probability was
set to 1/n. In order to select the crossover probabilities, five parameterizations were
tested ({0.2, 0.4, 0.6, 0.8, 1.0}). These configurations were executed with all the afore-
mentioned benchmarks in each algorithm. Then, the mean HV ratios were calculated
independently for the problems with two and three objectives, and the parameteri-
zation that attained the largest mean was selected for the validation. Table 1 shows
the crossover probability selected for each algorithm, whereas the specific parameter-
ization required for each algorithm is included in Table 2. Note that for the specific
parameterizations, the default values provided by the authors are maintained. In the
case of VSD-MOEA, the initial threshold value (ITV ) was set to 0.4, which is the rec-
ommended value for single-objective optimization (Chacón Castillo and Segura, 2020).
In subsequent experiments, the implications of the ITV on the quality of the results
are analyzed. Also note that scalarization functions are required in MOEA/D and R2-
EMOA. In both cases, the Tchebycheff approach is used. The procedure for generating
the weight vectors differs in MOEA/D and R2-EMOA. R2-EMOA was applied with 501
and 496 weight vectors for two and three objectives, respectively (Trautmann et al.,
2013). In contrast, MOEA/D requires the same number of weight vectors as the popu-
lation size. They were generated using the uniform design (UD) and the good lattice
point (GLP) method (Ma et al., 2014; Berenguer and Coello, 2015).
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Table 2: Parameterization applied in each MOEA
Algorithm Configuration

MOEA/D
Max. updates by sub-problem (ηr) = 2,
tour selection = 10, neighbor size = 10,

period utility updating = 30 generations,
local selection probability (δ) = 0.9

VSD-MOEA Initial threshold value (ITV ) = 0.4
R2-EMOA Equally distributed weight vectors (ρ) = 1, offspring by iteration = 1

CPDEA Nearest neighbors (K) = 3, weight of standard deviation (η) = 2

Table 3: Summary of the hypervolume ratio results attained for problems with two
objectives. The higher the normalized hypervolume value, the better the algorithm.

VSD-MOEA CPDEA MOEA/D R2-EMOA
Mean Median Std Mean Median Std Mean Median Std Mean Median Std

WFG1 0.993 0.994 0.002 0.963 0.965 0.013 0.993 0.993 0.001 0.980 0.989 0.018
WFG2 0.996 0.998 0.008 0.993 0.996 0.009 0.965 0.965 0.000 0.966 0.966 0.005
WFG3 0.992 0.992 0.000 0.973 0.973 0.002 0.992 0.992 0.000 0.991 0.991 0.000
WFG4 0.990 0.990 0.000 0.964 0.964 0.003 0.988 0.988 0.000 0.991 0.991 0.000
WFG5 0.880 0.881 0.003 0.862 0.862 0.002 0.877 0.876 0.003 0.882 0.882 0.002
WFG6 0.884 0.884 0.012 0.787 0.788 0.003 0.918 0.919 0.020 0.914 0.914 0.015
WFG7 0.990 0.990 0.000 0.973 0.974 0.002 0.988 0.988 0.000 0.991 0.991 0.000
WFG8 0.904 0.947 0.053 0.875 0.881 0.026 0.808 0.808 0.007 0.803 0.804 0.005
WFG9 0.946 0.961 0.027 0.791 0.791 0.002 0.912 0.949 0.070 0.894 0.953 0.079
DTLZ1 0.992 0.992 0.000 0.991 0.991 0.000 0.993 0.993 0.000 0.992 0.992 0.000
DTLZ2 0.990 0.990 0.000 0.983 0.983 0.001 0.989 0.989 0.000 0.992 0.992 0.000
DTLZ3 0.990 0.990 0.000 0.988 0.988 0.000 0.989 0.989 0.000 0.992 0.992 0.000
DTLZ4 0.990 0.990 0.000 0.979 0.980 0.003 0.989 0.989 0.000 0.678 0.991 0.362
DTLZ5 0.990 0.990 0.000 0.983 0.983 0.001 0.989 0.989 0.000 0.992 0.992 0.000
DTLZ6 0.990 0.990 0.000 0.807 0.820 0.088 0.989 0.989 0.000 0.685 0.667 0.088
DTLZ7 0.996 0.996 0.000 0.995 0.995 0.000 0.996 0.996 0.000 0.997 0.997 0.000

UF1 0.989 0.990 0.003 0.976 0.976 0.003 0.980 0.981 0.005 0.881 0.881 0.030
UF2 0.987 0.988 0.004 0.968 0.968 0.001 0.986 0.986 0.004 0.979 0.979 0.003
UF3 0.876 0.878 0.014 0.755 0.757 0.049 0.616 0.609 0.065 0.556 0.557 0.040
UF4 0.891 0.891 0.003 0.850 0.849 0.004 0.883 0.884 0.005 0.900 0.901 0.003
UF5 0.589 0.579 0.050 0.676 0.671 0.070 0.294 0.206 0.247 0.306 0.332 0.152
UF6 0.854 0.852 0.030 0.839 0.848 0.043 0.526 0.538 0.143 0.558 0.545 0.113
UF7 0.985 0.985 0.002 0.967 0.968 0.004 0.957 0.979 0.121 0.756 0.944 0.225

Mean 0.943 0.945 0.009 0.910 0.912 0.014 0.896 0.895 0.030 0.855 0.880 0.050

4.1 Comparison Against State-of-the-art MOEAs for Long Runs

Our first experiment aims to compare the performance for long runs of VSD-MOEA
against state-of-the-art proposals. Long runs (2.5 × 106 function evaluations) are con-
sidered because this is the kind of execution where diversity-based EAs have been more
successful. Experiments with shorter and longer runs are discussed in Section 4.3.

Table 3 shows the HV ratio obtained for the benchmark functions with two objec-
tives. Specifically, the mean, median and standard deviation of the HV ratio is shown
for each method and problem tested. The last row shows the results considering all
the test problems together. For each test problem, the data for the method that yielded
the largest mean is shown in boldface. Additionally, all the methods that were not sta-
tistically inferior than the method with the largest mean are also shown in boldface.
From here on, the methods shown in boldface for a given problem are referred to as
the winning methods. Based on the number of test problems where each method is
in the group of the winning methods for the cases with two objectives, the best meth-
ods are VSD-MOEA and R2-EMOA with 13 and 10 wins, respectively. Thus, VSD-MOEA
is the most competitive method in terms of this measure. More impressive is the fact
that the mean HV ratio attained by VSD-MOEA, when all the problems are considered
simultaneously, is much higher than the one attained by R2-EMOA. Note that the de-
cision variable space diversity-aware methods (CPDEA and VSD-MOEA) reported the
largest total mean. However, there is a huge difference between VSD-MOEA and CPDEA,
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Table 4: Statistical Tests and Deterioration Level of the HV ratio for problems with two
objectives

↑ ↓ ↔ Score Deterioration
VSD-MOEA 51 11 7 40 0.147

CPDEA 16 51 2 -35 0.911
MOEA/D 27 34 8 -7 1.290
R2-EMOA 31 29 9 2 1.643

Table 5: Summary of the hypervolume ratio results attained for problems with three
objectives. The higher the normalized hypervolume value, the better the algorithm.

VSD-MOEA CPDEA MOEA/D R2-EMOA
Mean Median Std Mean Median Std Mean Median Std Mean Median Std

WFG1 0.785 0.789 0.017 0.430 0.428 0.033 0.968 0.968 0.001 0.928 0.926 0.009
WFG2 0.988 0.989 0.001 0.923 0.924 0.006 0.967 0.976 0.034 0.905 0.962 0.070
WFG3 0.989 0.989 0.000 0.906 0.905 0.013 0.993 0.992 0.000 0.992 0.992 0.000
WFG4 0.920 0.920 0.001 0.795 0.796 0.013 0.861 0.861 0.003 0.906 0.905 0.001
WFG5 0.834 0.832 0.004 0.801 0.801 0.004 0.795 0.795 0.001 0.842 0.843 0.002
WFG6 0.837 0.835 0.007 0.766 0.767 0.005 0.811 0.810 0.012 0.860 0.860 0.007
WFG7 0.919 0.919 0.001 0.774 0.778 0.021 0.865 0.865 0.000 0.905 0.905 0.001
WFG8 0.863 0.864 0.035 0.672 0.682 0.039 0.779 0.779 0.002 0.820 0.820 0.002
WFG9 0.822 0.824 0.038 0.727 0.727 0.005 0.810 0.837 0.047 0.804 0.772 0.048
DTLZ1 0.965 0.965 0.001 0.964 0.964 0.001 0.950 0.950 0.000 0.940 0.940 0.001
DTLZ2 0.930 0.930 0.001 0.864 0.864 0.017 0.899 0.899 0.000 0.915 0.915 0.001
DTLZ3 0.930 0.930 0.001 0.830 0.916 0.239 0.899 0.899 0.000 0.912 0.915 0.004
DTLZ4 0.930 0.930 0.001 0.859 0.858 0.006 0.899 0.899 0.000 0.652 0.577 0.257
DTLZ5 0.986 0.986 0.000 0.977 0.977 0.002 0.978 0.978 0.000 0.986 0.986 0.000
DTLZ6 0.986 0.986 0.000 0.660 0.643 0.115 0.978 0.978 0.000 0.775 0.760 0.082
DTLZ7 0.965 0.965 0.001 0.940 0.941 0.004 0.914 0.914 0.000 0.852 0.852 0.014

UF8 0.918 0.920 0.011 0.699 0.711 0.045 0.778 0.777 0.006 0.853 0.905 0.104
UF9 0.962 0.965 0.011 0.784 0.793 0.053 0.792 0.747 0.071 0.844 0.783 0.076
UF10 0.602 0.581 0.095 0.122 0.121 0.060 0.309 0.270 0.150 0.268 0.209 0.132
Mean 0.902 0.901 0.012 0.763 0.768 0.036 0.855 0.852 0.017 0.840 0.833 0.043

showing the benefits of decreasing the importance given to the decision variable space
diversity as the evolution progresses. Inspecting the data carefully, it is clear that in
the cases where VSD-MOEA loses (attains lower HV), the difference with respect to the
best method is not very large. For instance, the difference between the mean HV ra-
tio attained by the best method and by VSD-MOEA was never larger than 0.1. How-
ever, all the other methods exhibited a deterioration greater than 0.1 in several cases.
Specifically, it happened in 4, 3 and 6 problems for CPDEA, MOEA/D and R2-EMOA,
respectively. This means that even if VSD-MOEA loses in some cases, its deterioration is
always small, exhibiting a much more robust behavior than any other method.

In order to better clarify these findings, pair-wise statistical tests were done among
each method tested in each test problem. For the two-objective cases, Table 4 shows the
number of times that each method won (column ↑), lost (column ↓) and tied (column
↔), as well as a Score that is calculated as the difference between the number of times
that each method won and the number of times that each method lost. Additionally,
for each methodA, we calculated the sum of the differences between the mean HV ratio
attained by the best method (the ones with the highest mean) and method A, for each
problem where A was not in the group of winning methods. This value is shown in the
Deterioration column. The data confirms that although VSD-MOEA loses in some cases,
the overall numbers of wins and losses favors VSD-MOEA. More importantly, the total
deterioration is quite lower in the case of VSD-MOEA, confirming that when VSD-MOEA
loses, the deterioration is not that large.

Tables 5 and 6 show the same information for the problems with three objectives.
In this case, the superiority of VSD-MOEA is even clearer. Taking into account the mean
of all the test problems, VSD-MOEA again obtained a much larger mean HV ratio than

14 Evolutionary Computation Volume x, Number x



Multi-objective Evolutionary Algorithm with Explicit Variable Space Diversity Managment

Table 6: Statistical Tests and Deterioration Level of the HV ratio for problems with three
objectives

↑ ↓ ↔ Score Deterioration
VSD-MOEA 47 6 4 41 0.231

CPDEA 5 46 6 -41 2.752
MOEA/D 24 29 4 -5 1.158
R2-EMOA 27 22 8 5 1.522

the other methods. Specifically, VSD-MOEA obtained a value of 0.902, whereas the sec-
ond ranked algorithm (MOEA/D) obtained a value of 0.855. In this case, the difference
between the mean HV ratio obtained by the best method and by VSD-MOEA was larger
than 0.1 in only one problem (WFG1). Since WFG1 is a uni-modal and biased problem,
a large balance towards intensification is required, so promoting further exploration is
not helpful. In contrast, all the other methods exhibited a deterioration greater than
0.1 in several cases. In particular, this happened in 3, 5 and 9 problems for MOEA/D,
R2-EMOA and CPDEA, respectively. Interestingly, CPDEA attained the worst results in
the three-objective case. As the number of objectives increases, more individuals are
required to attain proper discrete approximations. The aim of attaining high diversity
in decision variable space seems to significantly affect the quality attained in objective
space, probably indicating that, as the number of objectives increases, EMMAs might
be less adequate6. Thus, as the number of objectives increases, the dynamic balance
promoted by VSD-MOEA seems more important to improve performance. VSD-MOEA
is much superior to the other methods both in terms of total deterioration and of total
wins and losses (see Table 6 and the data shown in boldface in Table 5). Particularly,
VSD-MOEA was in the group of winning methods for 15 out of 19 test problems, whereas
the second best-ranked algorithm (MOEA/D) was in the group of winning methods for
only 4 test problems.

Regarding the kind of problem where VSD-MOEA yields the most impressive im-
provements, it is clear that this happens in the MOPs that exhibit some features that
hinder the optimization process. VSD-MOEA excelled in problems with a strong non-
separability (e.g., WFG8, WFG9, UF1-3), high multi-modality (e.g., WFG9, UF6, UF7),
irregular Pareto geometries (e.g., WFG2, UF6, UF7, UF9) and complicated Pareto set
shapes (e.g., UF6, UF8, UF10). Conversely, the most important decay in performance
(in fact, the only one) appeared in the WFG1 problem. Promoting further intensifica-
tion is normally useful in unimodal problems, and this is specially the case for biased
problems, where small perturbations in decision space provoke large movements in ob-
jective function space. Thus, methods that promote the maintenance of further decision
variable space diversity do not contribute positively in such kinds of problems.

4.2 Decision Variable Scalability Analysis

In order to study the scalability of VSD-MOEA in terms of the number of decision vari-
ables, all of the algorithms already described were tested with the same benchmark
problems, but considering 50, 100, and 250 variables. Note that in the WFG test prob-
lems, the number of position parameters (k) and distance parameters (l) must be spec-
ified. The ratio between the number of each kind of variable was kept as in the default
configuration. Thus, the number of distance parameters was set to 42, 84, and 210 when
using 50, 100 and 250 variables, respectively. The rest of the decision variables were

6Four additional EMMAs were tested with a similar behaviour, but some additional analyses are required
to draw more general conclusions.
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Figure 2: Box-plots of the HV ratio for 35 runs for the two-objective (left side) and three-
objective (right side) problems, considering different numbers of variables

position parameters, meaning that they were 8, 16 and 40, respectively. The stopping
criterion was also set to 2.5× 106 function evaluations. Figure 2 shows the box-plots of
the mean HV ratios attained with the four algorithms for the problems with two objec-
tives and three objectives and the different dimensionalities. As expected, the HV ratio
decreases as the number of variables increases in every algorithm; however, the superi-
ority of VSD-MOEA is maintained in every case. Additionally, the variability in the case
of VSD-MOEA is quite low, which is a typical feature of diversity-aware methods (Se-
gura et al., 2016). One negative aspect regarding the performance of VSD-MOEA is that,
as the number of decision variables increases, closer HV ratios are attained by other al-
gorithms. This is especially true in the three-objective problems, where the advantages
with respect to R2-EMOA are not as significant.

In order to better understand the reasons for this behavior, we selected problems
WFG1 to WFG7. The WFG test problems divide the variables into two kinds of pa-
rameters (this framework uses the term parameter instead of variable): the distance
parameters and the position parameters. Note that a parameter i is a distance param-
eter when modifying xi ∈ ~x results in a new solution that dominates ~x, is equivalent
to ~x, or is dominated by ~x. However, if i is a position parameter, modifying xi always
results in a vector that is incomparable or equivalent to ~x (Huband et al., 2005). Addi-
tionally, note that we selected problems WFG1-WFG7 because their distance parameter
values associated to all Pareto optimal solutions have exactly the same values:

x{i=k+1:n} = 2i× 0.35 (6)

This is very important because it has been shown that for these cases, state-of-the-art
MOEAs might provoke a quick convergence in the distance parameters, resulting in an
effect that is similar to premature convergence in the single-objective case (Kukkonen
and Lampinen, 2009; Chacón Castillo et al., 2017).

For each algorithm, the average (mean) Euclidean distance among individuals
(ADI) in the population was calculated by considering only the distance parameters.
Figure 3 shows how the ADI evolves for the two-objective (left side) and three-objective
(right side) problems. The behavior of MOEA/D — which is not included — is similar
to that of R2-EMOA in terms of how the ADI evolves. Moreover, to avoid saturating
these figures, only the information for VSD-MOEA, CPDEA and R2-EMOA with 50 and
250 variables is shown. The first finding is that, as expected, the decision variable space
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Figure 3: Evolution of ADI for problems WFG1-WFG7 with two and three objectives
considering only the distance variables
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Figure 4: Performance of MOEAs for the problems with two objectives (left side) and
three objectives (right side) considering three values for the stopping criterion: short-
term (first row), medium-term (second row) and long-term (third row).

diversity-aware MOEAs converge much slower than the remaining algorithms. Accord-
ingly, the difference between the diversity maintained in the first generation and that
maintained after 10% of the execution, is much larger in R2-EMOA than in VSD-MOEA
and CPDEA. In the case of VSD-MOEA, the decrease in ADI is quite linear until the
halfway point of the execution. This is due to the way in which the threshold distance
value (Dt) is calculated. Differently, in CPDEA the decrease in ADI is abrupt because it
operates in two differentiated stages.

A closer inspection of the data reveals other important aspects. In the two-objective
case, increasing the number of variables causes the diversity in the R2-EMOA to increase
slightly. However, the amount of diversity is low even when using 250 variables, mean-
ing that incorporating mechanisms to increase diversity might be very helpful. In the
three-objective case, increasing the number of variables yields a significant increase in
the resulting ADI, meaning that in this case, fast convergence is not an important issue.
These results show that, as the number of objectives and variables increases, MOEAs
tend to maintain a higher variable space diversity in an implicit way, meaning that
explicitly controlling the variable space diversity is probably not as important.
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Table 7: Final mean of HV ratio attained for the three stopping criteria reported in
Figure 4.

Two objectives Three objectives
VSD-MOEA CPDEA MOEA/D R2-EMOA VSD-MOEA CPDEA MOEA/D R2-EMOA

2.5× 105 0.854 0.820 0.861 0.826 0.809 0.632 0.819 0.775
2.5× 106 0.943 0.910 0.896 0.855 0.902 0.763 0.855 0.840
2.5× 107 0.962 0.932 0.915 0.881 0.923 0.788 0.863 0.853

4.3 Analysis of the Stopping Criterion

Decision variable space diversity-aware methods usually excel in long runs. As a result,
a large stopping criterion was used in our previous experiments. This section considers
the performance of the algorithms with several stopping criteria, i.e., maximum num-
ber of function evaluations. Additionally, the trend in the HV during the execution is
inspected with the aim of better understanding the optimization process.

Three different values were explored for the stopping criterion. The values consid-
ered were: 2.5× 105, 2.5× 106 and 2.5× 107. These values are referred to as short-term,
middle-term and long-term executions, respectively. Figure 4 plots the mean HV ratio
obtained with each MOEA with two and three objectives versus the number of evalu-
ations. Each figure is divided into three graphs corresponding to short-term, middle-
term and long-term. Additionally, Table 7 shows the final mean HV attained by each
model for the different stopping criteria.

The gradual shift from exploration to exploitation attained by VSD-MOEA is clear
in the plots. Instead of attaining a very fast increase in HV, the increase is quite linear in
the first half of the run due to the large degree of exploration promoted in this phase.
In short-term executions this does not yield important benefits, so the HV ratio attained
by VSD-MOEA is similar to those attained by state-of-the-art algorithms. However, as
the stopping criterion is increased, the benefits of VSD-MOEA become clear. Thus, as in
the single-objective case, variable space diversity-aware methods are especially useful
for relatively long-term executions. However, since a faster decrease in diversity is pro-
moted when using short-term executions, the performance is not degraded, meaning it
can be used in quite different environments. Thus, the performance in the short-term
is similar to current state-of-the-art algorithms, whereas in the long-term, truly signifi-
cant advances are attained. Finally, note that in the case of CPDEA, there is no significant
improvement in the long-term case. Thus, the lower gradual shift from exploration to
exploitation promoted in CPDEA is not as helpful.

4.4 Analysis of the Novel Density Estimator for the Objective Space

This section considers the impact on the performance of the novel density estimator
for the objective space that is proposed in VSD-MOEA. For this analysis, three different
density measurements are integrated in VSD-MOEA. Particularly, in addition to the
Improvement Distance (ID) (Ishibuchi et al., 2015) already described, the Euclidean
distance(L2) (Kukkonen and Deb, 2006a,b) and the NSGA-II crowding distance (CD)
are also taken into account. Note that in order to incorporate L2 and CD, the only
modification appears in Eq.(5), where ID is modified by the corresponding distance.
VSD-MOEA was executed 35 times to solve the whole benchmark, configured as in the
first experiment. Table 8 shows the mean and median of the HV ratios obtained for
the whole benchmark with the three measurements. In the two-objective problems, L2

and ID yield quite similar results, whereas CD attains lower values. Note, however,
that VSD-MOEA attained a higher mean HV ratio than the remaining state-of-the-art
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Table 8: Summary of the hypervolume ratio results attained with VSD-MOEA using
three density estimators

ID L2 CD
Mean Median Std Mean Median Std Mean Median Std

Two objectives 0.943 0.945 0.091 0.939 0.940 0.095 0.917 0.915 0.099
Three objectives 0.902 0.901 0.096 0.848 0.848 0.167 0.795 0.797 0.186

Table 9: Statistical Tests of the HV ratio of the state-of-the-art algorithms and VSD-
MOEA with three density estimators (ID, L2 and CD)

Two-objectives Three-objectives
↑ ↓ ↔ score ↑ ↓ ↔ score

ID 74 14 27 60 80 7 8 73
L2 70 13 32 57 60 26 9 34
CD 20 74 21 -54 10 66 19 -56

CPDEA 21 77 17 -56 8 70 17 -62
MOEA/D 43 54 18 -11 38 38 19 0
R2-EMOA 50 46 19 4 45 34 16 11

methods with all the density estimators (see Table 3), so even with density estimators
that are not as adequate, VSD-MOEA excels. The case of three-objective problems is
different. In this case, the results attained with ID are quite superior to the remaining
ones. This might indicate that the benefits appear in these problems only because of the
application of ID; however, this is not the case. In fact, VSD-MOEA with L2 also exhibits
a very good performance in most problems. However, in the case of WFG1, it presents
a huge degradation that greatly affects the overall results.

In order to better illustrate the benefits of VSD-MOEA, pair-wise statistical tests
were applied by considering VSD-MOEA with the three density measurements and the
state-of-the-art methods for the whole benchmark. Table 9 shows the number of wins
and loses, as well as the score. The benefits of VSD-MOEA are clear when using both ID
and L2. However, the additional advantages provided by ID are remarkable, especially
for the problems with three objectives.

4.5 Analysis of the Initial Threshold Value

One of the disadvantages of including a strategy for controlling diversity is that this
is usually done at the expense of incorporating additional parameters in the EA de-
signed. In the case of VSD-MOEA, the Initial Threshold Value (ITV ) must be set. The
higher this value is, the greater the exploration of the decision variable space. Note
that in all the previous experiments, ITV = 0.4 was used. This is the value sug-
gested in Chacón Castillo and Segura (2020) for a single-objective optimization strat-
egy that was designed with principles similar to those applied in VSD-MOEA. This
section is devoted to analyzing the performance of VSD-MOEA when using differ-
ent ITV values. Note that, since normalized distances are used, the maximum at-
tainable difference is 1. Additionally, when ITV is set to 0, no individual is penal-
ized on the basis of its contribution to diversity in the decision variable space, so
VSD-MOEA would behave like a more traditional MOEA, meaning that there is no
explicit promotion of diversity in decision variable space. As a result, the values
ITV = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} were tested. As in previous ex-
periments, the whole set of benchmark problems was used and the stopping criterion
was set to 2.5× 106 function evaluations.

Figure 5 shows the box-plots of the mean HV ratios obtained for both the two-
objective and the three-objective cases. In comparison to state-of-the-art algorithms,
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Figure 5: Box-plots of the HV ratio for 35 runs for the two-objective (left side) and three-
objective (right side) problems, considering different initial threshold values

when ITV is set to 0, VSD-MOEA yielded competitive results in the two-objective case
and the best results in the three-objective case (see Tables 3 and 5). Specifically, the
mean values were 0.884 and 0.880 for two and three objectives, respectively. This means
that the novel density estimator put forth in this paper is also helpful for methods that
do not explicitly take into account the variable space diversity. However, the increase
in performance when using other ITV values is clear. The HV ratio obtained quickly
increases as higher ITV values up to 0.4 are used. Then, with values in the range
[0.5, 1.0], the performance decreases slightly. There is a large range of values where the
performance is very good (e.g. ITV ≥ 0.2), meaning that the behavior of VSD-MOEA is
quite robust. Thus, properly setting this parameter is not a complex task.

5 Conclusions and Future Work

EAs have been one of the most popular approaches for dealing with complex optimiza-
tion problems. Their design is a highly complex task that requires defining several com-
ponents. Looking at the differences between single-objective and multi-objective opti-
mizers, it is worth noting that several state-of-the-art single-objective optimizers explic-
itly consider the diversity of the variable space, particularly when dealing with long-
term executions, whereas this is not the case for MOEAs. Moreover, single-objective op-
timizers that take diversity into account to induce a gradual shift between exploration
and intensification have been particularly successful.

This paper proposes a novel MOEA, called VSD-MOEA, that takes into account the
diversity of both decision variable space and objective function space. The main nov-
elty is that the importance given to the different diversities is adapted during the opti-
mization process. In particular, in VSD-MOEA more importance is given to the diversity
of the decision variable space in the initial stages, but as the evolution progresses, it
assigns more importance to the diversity of the objective function space, meaning that
a gradual shift between exploration and intensification is promoted. This is performed
using a penalty method that is integrated into the replacement phase. Also included is
a novel density estimator based on IGD+ that is used to select from the non-penalized
individuals.

The experimental validation carried out shows a remarkable improvement in
VSD-MOEA when compared to state-of-the-art MOEAs both in two-objective and three-
objective problems. Moreover, our proposal not only improves the state-of-the-art algo-
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rithms in long-term and medium-term executions, but it also offers a competitive per-
formance in short-term executions. The scalability analyses show that as the number
of objectives and decision variables increases, the implicit variable space maintained
by state-of-the-art MOEAs also increases. Thus, for a large number of objectives and
decision variables, explicitly considering the diversity of decision variable space is less
helpful. Additionally, the analysis of the initial threshold value, which is an additional
parameter required by VSD-MOEA, shows that finding a proper value for this parameter
is not a difficult task. Finally, the analysis shows that the novel density estimator has
a significant impact on performance, especially in the problems with three objectives.
The main conclusion is that state-of-the-art solvers can be significantly improved by
explicitly taking into account the diversity of decision variable space, and by reducing
the importance given to this kind of diversity as the evolution progresses.

In the future, we plan to apply the principles studied in this paper to other cate-
gories of MOEAs. For instance, including the diversity management put forth in this
paper in decomposition-based and indicator-based MOEAs seems plausible. Addition-
ally, we would like to develop an adaptive scheme to avoid setting the initial threshold
value, as well as to integrate the design principles studied in this paper with multi-
objective memetic algorithms. Finally, we should mention that integrating the design
principles put forth in this paper with interactive approaches (Deb, 2001), where the de-
cision maker guides the search, is complex because the stopping criterion is usually not
known a priori. Similarly, applying the principles studied in this paper to cases where
the stopping criterion is set by quality, seems complex. Thus, developing strategies to
allow for the integration of the design principle studied in this research in such settings
seems a worthwhile area of research.
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