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Abstract

In evolutionary multi-objective optimization (EMO), the pair-potential energy functions (PPFs) have been used to construct diversity-
preserving mechanisms to improve Pareto front approximations. Despite PPFs have shown promising results when dealing with
different Pareto front geometries, there are still some open research questions to improve the way we employ them. In this paper,
we answer three important questions: 1) what is the effect of a crucial parameter of some PPFs?, 2) how do we set the optimal
parameter value?, and 3) what is the best PPF in EMO? To solve these questions, we designed a brand-new fast algorithm to
generate an approximate solution to a PPF-based subset selection problem and, then, we conducted a comprehensive parametrical
study to predict the optimal parameter values using a deep neural network. To show the effectiveness of the PPF-based diversity-
preserving mechanisms, we selected two application cases: the generation of reference point sets of benchmark problems (DTLZ,
WFG, IDTLZ, IWFG, IMOP, and Viennet) with different Pareto front shapes, and the definition of a PPF-based archive that can
be coupled to any multi-objective evolutionary algorithm to construct well-diversified Pareto front approximations. Using several
diversity indicators, it is shown that the utilization of PPF-based mechanisms lead to good Pareto front approximations regardless
of the Pareto front shape.
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1. Introduction

In physics, a pair-potential energy function (PPF)K : Rm×

Rm → R measures the interaction between two objects located
in the Euclidean space Rm. A well-known PPF is the Coulomb’s
law that measures the potential energy between two stationary5

electrically charged particles located at positions u⃗, v⃗ ∈ Rm. In
addition to its utilization in physics, PPFs have been used in
mathematics to tackle the problem of distributing N pointsA =
{a⃗1, . . . , a⃗N}, a⃗i ∈ Rm on a manifold [1]. The underlying idea
is to find a configuration of the N candidate points all over the10

manifold to minimize the total K-energy (UK ) that sums all
the pair-potential interactions using K . Reaching the optimal
N-point configuration (or state of minimal energy) leads to a
proper discretization of the manifold [1, 2].

Due to the good properties of PPFs to discretize manifolds,15

they have recently been used in evolutionary multi-objective
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optimization (EMO) to discretize a Pareto front, aiming to im-
prove the spread and uniformity1. It is worth noting that a
Pareto front is a manifold of dimension (at most) m − 1, where
m ≥ 2 represents the number of objective functions. In EMO,20

the discrete Riesz α-energy function (KRSE) [2] has been the
most popularly used PPF. KRSE has been used to design a den-
sity estimator [3] and an archiving strategy [4], to measure the
diversity of an approximation to the Pareto front, i.e., as a qual-
ity indicator (QI2) [4], to define a combined QI [8], to man-25

age a set of weight vectors [9–11], and to construct a reference
point set [12, 13]. In addition to KRSE, other PPFs have been
empirically analyzed in the EMO field [14]: Gaussian α-energy
(KGAE), Pöschl-Teller potential (KPTP), Modified Pöschl-Teller
potentialKMPT), Kratzer potential (KKRA), and Coulomb’s law30

(KCOU). Similarly to KRSE, these PPFs have shown promis-
ing results as diversity-preserving mechanisms regardless of the
Pareto front geometry.

Despite the promising results on the utilization of PPFs in
EMO, there are still some open research questions. First, most35

diversity-preserving mechanisms involve solving an optimal sub-
set selection problem which is computationally expensive [15].

1From this point onwards, we will call diversity when both properties,
spread and uniformity, are present.

2The fundamental difference between PPFs and QIs such as the hypervol-
ume indicator (HV) [5], R2 [6], or the degree of approximation QI [7] is that
these QIs reward convergence towards the Pareto front. In contrast, PPFs do
not consider convergence.

Preprint submitted to Journal of LATEX Templates March 25, 2023



PPF-based diversity-preserving mechanisms are not the excep-
tion. Therefore, it is mandatory to design efficient algorithms
to approximate the solution to the PPF-based subset selection40

problem (PPFSS) [12]. Secondly, some PPFs such as KRSE,
KGAE, KMPT, KPTP, and KKRA are parameter-dependent. It
has been shown that different parameter values generate a dif-
ferent solution set to the PPFSS [12, 14]. However, we do
not exactly known how to set the parameter values to obtain45

well-diversified Pareto front approximations for every PPF and
test instance. Currently, we only have some fixed-value rec-
ommendations but they do not lead to good Pareto front ap-
proximations in all cases [14]. Last but not least, we should
identify what is the best PPF, among all the available ones, that50

allows an MOEA to generate well-diversified Pareto front ap-
proximations. Addressing these open questions is primordial to
correctly integrate PPFs into MOEAs to construct high-quality
discretizations.

In consequence, in this paper, we focus on studying six55

PPFs (namely, KRSE, KGAE, KMPT, KPTP, KKRA, and KCOU)
to exploit their advantages to generate well-diversified Pareto
front approximations regardless of the geometry of the corre-
sponding manifold. As a result, we aim to improve their uti-
lization in EMO. It is worth noting that this paper presents a60

comprehensive extension of our previous works [12, 14]. The
two applications of PPFs that we highlight are:

1. The design of a standard mechanism to generate well-
diversified reference point sets for benchmark problems
in EMO, varying the geometry, dimension, and cardinal-65

ity. These reference point sets are critical for the calcu-
lation of some QIs [7, 16–18] and to construct selection
mechanisms of multi-objective evolutionary algorithms
(MOEAs) [19–21].

2. The design of a PPF-based diversity-preserving archive70

that can be coupled to any MOEA. The archive aims
to take advantage of all the solutions generated through-
out the evolutionary process although some of them are
dropped by the main selection mechanism of the MOEA [13,
14]. The archive aims to maintain a well-diversified Pareto75

front approximation in comparison with the main popu-
lation of an MOEA.

To show the properties of PPFs in EMO, we first provide a
comprehensive parametrical study where we show that a single
parameter (denoted as α) is critical to generating Pareto front80

approximations with high diversity. We approximate the opti-
mal value of α using Newton’s method and a genetic algorithm
(GA). As a result of this study, we show that the optimal value
of α depends on the geometry, dimensionality, and cardinality
of the Pareto front approximation. In consequence, we pro-85

pose a deep neural network that approximates the best value of
α so that a brand-new fast algorithm (that we propose) gener-
ates a good approximate solution to a PPFSS. Using this fast
algorithm and the neural network, we can utilize the PPFs on
the construction of reference point sets related to well-known90

benchmark problems and increasing the diversity of solutions
in MOEAs via an archiving strategy. In summary, the contribu-
tions of this paper are as follows:

1. A comprehensive study of a critical parameter associated
with the selected PPFs.95

2. A deep neural network model that predicts an appropriate
value of α taking into account the geometry, dimension-
ality, and cardinality of a Pareto front approximation.

3. A fast greedy removal algorithm to approximately solve
a PPFSS which is fed by the neural network to generate100

well-diversified discretizations.
4. A parameterless mechanism to generate reference point

sets with high diversity properties.
5. An analysis that shows that a PPF-based archive can store

well-diversified Pareto front approximations taking ad-105

vantage of the solutions generated by an MOEA.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a brief introduction to some basic terms to make
this paper self-contained. Section 3 briefly describes some state-
of-the-art diversity-preserving mechanisms. Section 4 outlines110

our fast greedy removal algorithm to approximate the solution
to PPFSS. Section 5 describes the analysis of parameters of
PPFs to generate well-diversified Pareto front approximations
using the fast greedy removal algorithm. In Section 6, we show
the utilization of PPFs to construct reference point sets and an115

archiving strategy. Finally, our main conclusions and future
work are highlighted in Section 7.

2. Background

In this section, we present some basic mathematical defini-
tions for the understanding of this paper. First, we define an120

unconstrained multi-objective optimization problem. Then, we
provide the mathematical definitions of the selected PPFs.

2.1. Multi-objective optimization

According to Coello Coello et al. [22], and without loss of
generality, an unconstrained multi-objective optimization prob-125

lem, for minimization, is defined as follows:

min
x⃗∈Ω

f (x⃗) = ( f1(x⃗), f2(x⃗), . . . , fm(x⃗)) (1)

where x⃗ = (x1, . . . , xn) is a vector of n decision variables and
Ω ⊆ Rn is the decision space. f (x⃗) is a vector of m ≥ 2, conflict-
ing, objective functions where for i = 1, 2, . . . ,m, fi : Ω → R.
Due to the conflict among the objective functions, there is no130

single solution that simultaneously minimizes all the objective
functions. Hence, the goal is to find a set of optimal solutions
that represent the best-possible trade-offs among the objective
functions. In consequence, it is first necessary to introduce the
Pareto dominance relation to establish a general notion of opti-135

mality, i.e., Pareto optimality.

Definition 1 (Pareto dominance relation). Given x⃗, y⃗ ∈ Ω, we
say that x⃗ Pareto-dominates y⃗ (denoted as x⃗ ≺ y⃗) if and only if
fi(x⃗) ≤ fi (⃗y) for i = 1, 2, . . . ,m and there exists at least an index
j ∈ {1, 2, . . . ,m} such that f j(x⃗) < f j(⃗y).140
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Based on the Pareto dominance relation, we can define the
notion of Pareto-optimal solutions. Pareto optimality does not
take into account any preferences, thus, it is a general notion
of optimality and it has been commonly employed in multi-
objective optimization [22, 23].145

Definition 2 (Pareto optimality). We say that x⃗∗ is a Pareto-
optimal solution if there is no other vector of decision variables
x⃗ such that x⃗ ≺ x⃗∗.

The solution to a MOP is the set of all Pareto-optimal solu-
tions. This set is also known as the Pareto set and its image in150

the objective space is called the Pareto front.

Definition 3 (Pareto set). The Pareto set (P∗) is defined as fol-
lows:

P∗ = {x⃗∗ | x⃗∗ is a Pareto-optimal solution}. (2)

Definition 4 (Pareto front). The Pareto front (PF∗) is the im-
age of the Pareto set, i.e., PF∗ = { f (x⃗∗) | x⃗∗ ∈ P∗}.155

Since Pareto fronts can be continuous, it is not possible to
have their complete representations. Hence, it is necessary to
have a finite representation denoted as Pareto front approxima-
tion (or approximation set).

Definition 5 (Pareto front approximation). A Pareto front ap-160

proximation is a finite set A = { f (x⃗i) | x⃗i ∈ Ω, i = 1, . . . ,N},
consisting of N objective vectors, where neither x⃗i ≺ x⃗ j nor
x⃗ j ≺ x⃗i for all i and j.

2.2. Definition of PPFs
According to Borodachov et al. [1], the total potential K-165

energy (UK ) that measures the interaction between points in
any N-point configuration (or system) is defined as follows:

UK (A) =
N∑

i=1

N∑
j=1
j,i

K(a⃗i, a⃗ j) (3)

where A = {a⃗1, . . . , a⃗N} is an N-point configuration and a⃗i ∈

Rm, i = 1, . . . ,N. Additionally,K : Rm ×Rm → R is a PPF that
models the interaction between two points. This interaction can170

be characterized as repulsive or attractive. A PPF is repulsive
when as long as the distance between two points increases, the
PPF value strictly decreases. On the other hand, if the PPF
value strictly increases, the PPF is denoted as attractive.

In the specialized literature [1, 24], there are several PPFs,175

but we only focus on six repulsive ones that we empirically ana-
lyzed in our previous work [14]. A repulsive PPF penalizes two
points close to each other, which helps to break up crowded re-
gions. Moreover, a PPF rewards a pair of distant points, which
encourages the diversification of A. This behavior has been180

taken into accout to create diversity-preserving mechanisms in
EMO [3, 12].

For all cases, let u⃗ and v⃗ be two m-dimensional vectors, ∥·∥
represents the Euclidean distance, and α,V1,V2 > 0 are user-
defined parameters.185

Definition 6 (Riesz α-energy [1]). Given a parameter α3, this
PPF is defined as follows:

KRSE(u⃗, v⃗) =
1∥∥∥u⃗ − v⃗
∥∥∥α . (4)

Definition 7 (Gaussian α-energy [1]).

KGAE(u⃗, v⃗) = e−α∥u⃗−v⃗∥
2

. (5)

Definition 8 (Pöschl-Teller potential [25, 26]).

KPTP(u⃗, v⃗) =
V1

sin2(α
∥∥∥u⃗ − v⃗

∥∥∥) + V2

cos2(α
∥∥∥u⃗ − v⃗

∥∥∥) . (6)

Definition 9 (Modified Pöschl-Teller potential [25, 26]).

KMPT(u⃗, v⃗) =
V1

cosh2(α
∥∥∥u⃗ − v⃗

∥∥∥) . (7)

Definition 10 (Kratzer potential [26, 27]).

KKRA(u⃗, v⃗) = V1


∥∥∥u⃗ − v⃗

∥∥∥ − 1/α∥∥∥u⃗ − v⃗
∥∥∥
2 + V2. (8)

Definition 11 (Coulomb’s law [28]). The Coulomb’s law is given
by:

KCOU(u⃗, v⃗) =
q1q2

4πϵ0
·

1∥∥∥u⃗ − v⃗
∥∥∥2 , (9)

where we set q1 =
∥∥∥u⃗∥∥∥ = √∑m

i=1 u2
i and q2 =

∥∥∥v⃗∥∥∥ = √∑m
i=1 v2

i ,190

and 1
4πϵ0

is the Coulomb’s constant, being ϵ0 ≈ 8.85418781762039×
10−12[F/m] as the vacuum permittivity.

By replacing each of these PPFs in Equation 3, we define six
K-energy functions, denoted as UK

RSE
, UK

GAE
, UK

MPT
, UK

PTP
,

UK
KRA

, and UK
COU

. Regardless of the PPF utilized, we are in-195

terested in searching for an optimal N-point configuration A∗

over a finite representation M of an m-dimensional manifold,
where |M| >> N. To this aim, it is mandatory to solve the
following subset selection problem whereM is a candidate set:

Definition 12 (PPF-based subset selection problem (PPFSS)).

A∗ = arg min
A⊂M
|A|=N

UK (A), (10)

200

provided that such a minimum exists.

3Although in the literature the parameter is usually denoted by s, for the
sake of homogeneity, we interchange s by α.
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3. Diversity-preserving mechanisms: a brief review

Even though convergence is the most critical aspect that
an MOEA should first ensure, spread and uniformity also take
a relevant place to produce good Pareto front approximations205

[29–34]. When an MOEA has mechanisms that allow reach-
ing both properties, the resulting finite Pareto front approxi-
mation is more likely to better discretize the continuous multi-
dimensional manifold associated with the Pareto front. A diver-
sity-preserving mechanism is essential in a posteriori methods210

(e.g., MOEAs) to avoid the convergence of the entire population
to a single point and to provide a wider range of possibilities to
the decision maker [23].

Since the early days of MOEAs, diversity preservation has
been a challenging task [22, 29, 30]. One of the first approaches215

to obtain well-diversified Pareto front approximations was nich-
ing [35]. Niching methods rely on distance calculation to select
a few solutions within a specific region of the objective or de-
cision space [36, 37]. Similar to niching, crowding defines a
function that measures how crowded is a region in the objec-220

tive space. Crowding is implemented as the density estimator
of the Nondominated Sorting Genetic Algorithm II (NSGA-
II) [38]. In a similar way to crowding, clustering techniques
have been applied to increase the diversity of a population [39].
Although niching and crowding/clustering boosted the devel-225

opment of MOEAs, the resulting Pareto front approximations
presented poor diversity in some cases. To overcome this issue,
decomposition-based [40, 41], reference point-based [42, 43],
and indicator-based MOEAs (IB-MOEAs) [44, 45] are able to
generate Pareto front approximations with better diversity4. Re-230

garding decomposition-based MOEAs, the aim is to search for
the intersection points between the Pareto front and a set of
weight vectors5, using a scalarizing function which in turn de-
fines a single-objective optimization problem (SOP). A well-
known representative of this class is the MOEA based on De-235

composition (MOEA/D) [46]. On the other hand, some MOEAs
such as NSGA-III [20] use a reference point set to push the
population towards the Pareto front. In this regard, a reference
point set is composed of objective vectors that represent the de-
sires of a decision maker [23] or, in general, it approximates240

the geometry of the Pareto front. In EMO, reference point sets
have been employed in three main directions: 1) to decompose
a MOP into multiple SOPs as in MOEA/D, 2) to guide the evo-
lution of a population toward the Pareto front, and to calcu-
late QIs [19]. A reference point set may be fixed (using a set245

of weight vectors) or it can change to better adapt itself to the
shape of the Pareto front. Last but not least, IB-MOEAs exploit
the preferences of their baseline QIs to generate Pareto front
approximations with specific diversity properties. For exam-
ple, theS-Metric Selection Evolutionary Multi-Objective Algo-250

rithm (SMS-EMOA) [47] produces solutions emphasizing the

4It is worth noting that the main focus of these MOEAs is to increase the
convergence ability when solving MOPs with four or more objective functions
(i.e., the so-called many-objective optimization problems) but they also im-
prove the diversity as a collateral effect.

5Given w⃗ ∈ Rm, we say that w⃗ is a weight vector if
∑m

i=1 wi = 1 and wi ≥ 0
for all i ∈ {1, . . . ,m}.

Pareto front’s knee due to the preferences of the hypervolume
indicator (HV) [5].

Even though the above-mentioned classes of MOEAs have
significantly improved the diversity of Pareto front approxima-255

tions, they still have some issues. For instance, SMS-EMOA
produces uniform distributions when the Pareto front is lin-
ear but in concave ones, it leaves some regions without solu-
tions6. More recently, this problem has been tackled by design-
ing multi-indicator-based MOEAs [4]. Regarding MOEA/D,260

NSGA-III, and some other MOEAs that use weight vectors, it
has been pointed out that not all the weight vectors intersect
the Pareto front [49], e.g., when dealing with disconnected or
degenerate geometries. In consequence, MOEAs face a great
challenge to generate well-diversified Pareto front approxima-265

tions due to a large class of possible geometries of Pareto fronts.

4. Fast greedy removal algorithm

Most of the mechanisms in EMO involve solving a sub-
set selection problem. However, finding an optimal solution is
computationally challenging due to the large number of possi-270

ble subsets. Hence, approximation algorithms using heuristics
are a possible way to overcome this issue. In this section, we
describe a fast greedy removal algorithm to approximate the so-
lution of PPFSS (defined in Equation 12). This algorithm is the
key component to utilize PPFs in EMO for selection purposes275

at a low computational cost in Section 6.
Given a setM of size |M| >> N, there are

(
|M|

N

)
subsets A

of size N. Hence, findingA∗ for the PPFSS is computationally
expensive. To overcome this issue, we propose a fast greedy
removal algorithm (see Algorithm 1) to construct an approxi-280

mation to A∗. The core of this approximation algorithm is a
greedy heuristic decision based on the concept of contribution
to the overall UK value. Given a⃗ ∈ A, its individual contribu-
tion C to UK is defined as follows:

C(a⃗,A) = UK (A) − UK (A \ {a⃗}). (11)

The greedy decision relies on deleting at each iteration the worst-285

contributing point a⃗worst = maxa⃗∈AC(a⃗,A). The reason to delete
the solution with the maximum contribution is simply because
PPFSS minimizes the value of UK . The removal of the maxi-
mum contributing solution implies the deletion of a solution in
a crowded region of the manifold as shown in Figure 1.290

Algorithm 1 is an improved version of the one proposed
in our previous work [12]. The goal is to produce an N-point
subset A from an initial candidate solution set M that repre-
sents an m-dimensional manifold with N << |M|. First, we
set A = M and a matrix KKK ∈ R|A|×|A| is calculated where295

KKKi j = K(a⃗i, a⃗ j), i , j, using the given value of α. The el-
ements in the diagonal are equal to zero since

∥∥∥a⃗i − a⃗i

∥∥∥ = 0.
Line 3 initializes a memoization structure r⃗ = (r1, r2, . . . , r|A|),
where ri =

∑|A|
j=1 KKKi j. Thus, we can rewrite UK (A) =

∑|A|
j=1 r j.

6This can be controlled by the problem-dependent specification of the ref-
erence point required by the hypervolume indicator [48].
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The while-loop in lines 4 to 10 describes the iterative process300

to eliminate the solution a⃗worst fromA. In Line 5, we obtain the
index jworst of the maximum value in r⃗ to identify a⃗worst. The
justification for doing this is as follows. Since PPFs internally
employ the Euclidean distance, it follows that KKKi j = KKK ji and we
can write Ui = UK (A\{a⃗i}) =

∑|A|
j=1

(
r j − KKKi j

)
. In consequence,305

C(a⃗i,A) = UK (A) − Ui =
∑|A|

j=1 r j −
∑|A|

j=1(r j − KKKi j) = ri. The
next step is to update all the components of the memoization
structure by substracting KKKi jworst . Then, we delete the jthworst col-
umn and row from KKK and r jworst from r⃗. Finally, a⃗ jworst is dropped
fromA. The process continues until |A| = N.310

Algorithm 1 Fast greedy removal algorithm

Input: Candidate solution setM; subset size N(<< |M|); ini-
tial α value

Output: N-point setA
1: A =M
2: Calculate matrix KKK, using the given α value
3: Calculate ri =

∑|A|
j=1 KKKi j,∀i = 1, . . . , |A|

4: while |A| > N do
5: jworst = arg max j=1,...,|A| r j

6: for i = 1 to |A| do
7: ri = ri − KKKi jworst

8: Delete the jthworst column and row of KKK
9: Delete the jthworst component of r⃗

10: A = A \ {a⃗ jworst }

11: return A

Figure 1 exemplifies the effect of the fast greedy removal
algorithm. A 11-point subset A is obtained from a candidate
solution setM, |M| = 14, using the individual contributions to
UK

RSE
. At iteration 1, we can see two crowded regions in the

Pareto front approximation, involving points a⃗3, a⃗4, and a⃗5 in315

the top and a⃗11, a⃗12, a⃗13, and a⃗14 in the bottom. According to
line 5 of Algorithm 1, the point with the maximum contribu-
tion to UK

RSE
is deleted, begining with a⃗12 whose contribution

is r12 = C(a⃗12,A) ≈ 69.72 at iteration 1. In the following two
iterations, points a⃗4 and a⃗13 are deleted until |A| = 11. The final320

subset shows that the fast greedy removal algorithm generates
a well-diversified Pareto front approximation, due to the prop-
erties of KRSE that penalizes solutions close to each other and
rewards distant solutions.

The computational cost of the fast greedy removal algo-325

rithm is given as follows. At the beginning |A| = |M| = M >>
N, thus, calculating KKK and r⃗ takes O(M2) and O(M), respec-
tively. The overall cost of the while-loop is

∑M−N−1
i=0 M − i =

Θ
(
M2
)

since the cost of each iteration is Θ(M − i) where i rep-
resents the number of the current deleted solutions (the cost of330

lines 8 to 10 is O(1)). Hence, the overall complexity of Algo-
rithm 1 is Θ

(
M2
)
.

In contrast to the naı̈ve greedy removal algorithm [3] and
our previous work [12], the brand-new fast greedy removal al-
gorithm has the lowest computational cost. This is due to the335

use of the memoization structure r⃗ that stores all the individual
contributions C(a⃗i,A) and facilitates the identification of the
worst-contributing solution in line 5 in Θ(M) time. In contrast,

Figure 1: Effect of the fast greedy removal algorithm (see Algorithm 1) to gen-
erate a subset of size 11 from the original Pareto front approximation A = M
with 14 elements. At each iteration the solution with the maximum contribu-
tion C to UK

RSE
is deleted from A until the desired subset size N = 11 is

reached. The deleted solution is highlighted using a red hexagon. All the val-
ues ri = C(a⃗i,A) are shown per iteration.

the naı̈ve greedy removal algorithm [3] calculates each value
C(a⃗,A) using Equation (11) in Θ

(
M2
)

time. Hence, the overall340

cost of calculating all the individual contributions in a single
iteration is Θ

(
M3
)
. On the other hand, the fast greedy removal

algorithm and our previous work [12] are similar to each other.
The difference between the two algorithms is how to determine
the worst-contributing solution. The previous algorithm recal-345

culates all the contribution values which takes Θ
(
M2
)

but in our
improved version this is done in Θ(M) time.

To analyze the practical effect of our fast greedy removal
algorithm in comparison with the implementations of the naı̈ve
greedy removal algorithm [3] and the one proposed in [12], we350

implemented them in the C language and we measured their
computational time (in seconds). These experiments (and the
remaining ones of the paper) were executed using the GCC
compiler version 9.4.0 and the following environment: Intel(R)
Core(TM) i7-6700 CPU 3.40 GHz (4 cores), having 16 GB355

RAM and Ubuntu 20.04.1 as the operating system. In Table 1,
we show the results of the three greedy removal algorithms ap-
plied to Pareto front approximations, of at most 10,000 points,
corresponding to the DTLZ1 problems with 2-10 objective func-
tions, to select subsets of size 100 using KRSE with α = m − 1,360
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Table 1: Execution times (in seconds) of the three greedy removal algorithms
applied to the Pareto fronts of the DTLZ1 problems with 2-10 objective func-
tions. In each case, each algorithm searches for a subset of size 100 from a can-
didate set with at most 10,000 points. The best results are shown in grayscale.

MOP Dim.
Naı̈ve greedy

removal algorithm [3]

Greedy removal

algorithm [12]

Fast greedy

removal algorithm

DTLZ1

2 154.175 40.562 0.269

3 170.885 39.493 0.307

4 182.323 39.327 0.316

5 184.481 37.934 0.347

6 193.756 38.282 0.339

7 201.422 38.170 0.354

8 205.331 39.181 0.361

9 215.957 40.146 0.380

10 225.494 39.518 0.404

where m is the number of objective functions. Our fast greedy
removal algorithm obtains the fastest execution times in all the
cases. Moreover, we can observe that the effect of m (i.e., the
number of objective functions) on the computation time is small
in all algorithms. It is worth noting that we obtained the se-365

lected Pareto fronts of at most 10,000 points from the PlatEMO
platform [50].

5. Analysis of parameters

With the exception of KCOU, the other five PPFs described
in Section 2.2 depend on at least one parameter. Falcón-Cardona et370

al. [12] showed that as long as α → 0, the greedy removal al-
gorithm based on UK

RSE
produces a subset of points only on

the boundary of the Pareto front. Furthermore, in [14], it was
pointed out that the parameters of KGAE, KMPT, KPTP, and
KKRA also change the final discretization. (i.e., the finally se-375

lected subset). However, we exactly know neither the effect
of each parameter of the selected PPFs on the selected sub-
set nor how to specify the parameter values to generate well-
diversified Pareto front approximations. In this section, we an-
alyze the effect of each parameter in all the selected PPFs except380

for KCOU (which is parameterless). We will use KCOU later in
Sections 6.1 and 6.2.

It is important to adjust the rate of decrease of K and the
position of the minima by appropriately specifying the param-
eters in each PPF. These two aspects influence the amount of385

reward or penalization assigned to a pair of points, thus, affect-
ing the diversity of the subset that Algorithm 1 produces. After
a number of experiments, we found that only a single param-
eter (parameter α) has a dominant effect on these two aspects.
α is a common parameter in KRSE, KGAE, KMPT, KPTP, and390

KKRA. Figure 2 supports the importance of α to alter the rate
of change of K and the position of the minima for the five α-
dependent PPFs. For each PPF, we plot the value of K as a
function of the Euclidean distance between a pair of points for
different values of α. We set α ∈ {0.1, 0.5, 1, 2, 3, 5, 7, 10} for395

KRSE; α ∈ {0.1, 0.5, 1, 2, 64, 256, 1024, 2048} for KGAE, KMPT,
andKKRA; and α ∈ {0.001, 0.01, 0.1, 0.25, 0.5, 1, 2, 8} forKPTP.
The reasons to use distinct sets of values are twofold: 1) to see

the effect of α in each PPF based on the analytical definition
of the function, and 2) to clearly visualize the variation of the400

functions (e.g., setting α >> 8 for KPTP significantly increases
its frequency, worsening the visualization). SinceKRSE,KGAE,
and KMTP are strictly monotonically decreasing functions, a
different value of α only alters their rate of decrease as shown
in the figure. It is worth noting that as α→ 0, the value ofKRSE

405

rapidly decreases; whereas forKGAE andKMPT, the behavior is
inverse. On the other hand, α changes the rate of decrease and
the position of the minima of KPTP and KKRA. For both func-
tions, a value of α close to zero slows their rate of decrease,
pushing the position of the minima to greater distance values.410

Figure 2: Each plot shows the variation of a PPF for different values of the
parameter α, varying the Euclidean distance between two points. The set of
values for α changes for KRSE, KGAE, KMPT, KPTP, and KKRA to get a rep-
resentative sample of their behavior. KCOU does not require parameters but we
show how it changes for different distance values.

Despite α is the most critical parameter as shown in Fig-
ure 2, it is worth emphasizing why we did not consider the other
parameters of KMPT, KPTP, and KKRA. Regarding KMPT, V1
defines the maximum value that it takes when the distance of
two points is zero. Hence, it does not alter the rate of change of415

the PPF value. As shown in Figure 2, KPTP is a discontinuous
and periodic function due to its trigonometric nature. However,
to facilitate the discussion of its parameters V1 and V2, we fo-
cus on the interval [0,T ] that contains a single fragment of the
function with vertical asymptotes at 0 and at T . If V1 = V2,420
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the position of the minimum does not change regardless of the
magnitude of the parameters but they only change the rate of de-
crease of the function. If V1 > V2, the location of the minimum
approaches to T , and the decrease of the function is smoother.
On the other hand, if V2 > V1, the position of the minimum ap-425

proaches to 0, and the decrease of the function is more abrupt.
Despite V1 and V2 alter the position of the minimum and the
rate of decrease, α also controls both aspects. Hence, we set
V1 = V2 = 1 for the sake of simplicity and we only let the
values of α to vary. In the case of KKRA, V1 does not change430

the location of the minimum but it only changes the rate of de-
crease of the function value. In this PPF, V2 translates the graph
vertically but does not change its shape. In consequence, since
V1 and V2 do not completely influence the rate of decrease of
the function as α does, they will be discarded from our analysis.435

Hence, we set V1 = V2 = 1 as in KMPT.

5.1. Approximating the optimal value of α

As mentioned in the previous section, the parameter α is
the most critical for KRSE, KGAE, KMPT, KPTP, and KKRA. To
emphasize its effect on finding A∗ in PPFSS, we parameterize440

UK and K by α as follows: UKα and Kα. In consequence, we
can define the following optimization problem:

α∗ = arg min
α>0

min
A⊂M
|A|=N

UKα (A). (12)

Calculating α∗ is crucial to generate well-diversified Pareto front
approximations according to our previous results [12, 14]. How-
ever, Equation 12 is a computationally expensive optimization445

problem that simultaneously involves solving PPFSS. In conse-
quence, in this section, we propose two methods to approximate
the optimal value of α for each one of the five α-dependent PPFs
and their corresponding UKα energy functions. It is worth noting
that the approximate value of α is for UKα that measures all the450

pair-potential interactions among the points inA. Finding such
an approximate optimal value of α leads to the construction a
Pareto front approximationAwith good diversity, regardless of
the manifold geometry, dimension, and cardinality ofM. The
first approximation algorithm is based on the Newton’s method455

(Algorithm 2) and the second one uses a GA (Algorithm 3)
to direct the search for α∗. Both methods depend on the fast
greedy removal algorithm to approximate A∗ in PPFSS. The
Newton-based α approximation algorithm tackles PPFSS with
KGAE
α andKMPT

α while the genetic-based α approximation deals460

with the other three instances of PPFSS (i.e., KRSE
α , KPTP

α , and
KKRA
α ). The reason to use the two methods is described in the

next section, using numerical results.
In the next two sections, we use the following common

settings to analyze the performance of the two approximation465

methods. We obtained each candidate setMwith |M| ≈ 10, 000
uniformly sampled points from the PlatEMO platform [50]. Each
M represents the Pareto front of some selected problems in the
benchmark test suites Deb-Thiele-Laumanns-Zitzler (DTLZ) [51]
and Walking-Fish-Group (WFG) [52]. Specifically, we focused470

on DTLZ1, DTLZ2, DTLZ5, DTLZ7, WFG1, WFG2, and WFG3

test problems with 2-10 objective functions (i.e., 7 × 9 test prob-
lems) because they all exhibit different Pareto front geometries,
namely, linear, concave, degenerate, disconnected, and mixed.
Moreover, we considered 8 specifications of the subset size475

N ∈ {25, 50, 75, 100, 150, 200, 250, 300}. Hence, we have
a total of 504 configuration instances (7 × 9 test problems ×
8 specifications of N) where we will calculate an approximate
value of α∗ for each configuration using Algorithms 2 and 3,
considering the five α-dependent PPFs.480

5.1.1. Newton-based α approximation for UKα
Algorithm 2 outlines the Newton-based α approximation.

The inputs of the algorithm are a candidate set M and a sub-
set size N << |M|. The loop of the algorithm encompasses
two steps. In line 4, the fast greedy removal algorithm is exe-485

cuted to obtain a subsetA of size N fromM, using the current
value of α (which was randomly initialized in line 1). Then,
line 5 sketches the fixed-point iteration to calculate the value of
α for the next iteration, using the current value, DαUKα (A), and
D2
αUKα (A). The while-loop continues if |DαUKα (A)| ≥ 1× 10−6;490

otherwise, line 6 returns the approximate value of α∗.

Algorithm 2 Newton-based α approximation

Input: Candidate setM; subset size N << |M|
Output: Best found α value

1: Randomly initialize α
2: A =M
3: while |DαUKα (A)| ≥ 1 × 10−6 do
4: A = Fast greedy removal algorithm(M,N, α)
5: α = α − DαUKα (A)/D2

αUKα (A)
6: return α

Before discussing the approximate values of α, it is worth
indicating that Algorithm 2 only produces meaningful results
for UK

GAE

α and UK
MPT

α . In Table SM-1 in the Supplementary
Material, we present the numerical results of the Newton-based495

α approximation for UK
GAE

α applied on the Pareto front of the 3-
objective DTLZ1. We can see how |DαUK

GAE

α (A)| approaches
to zero while the value of α approaches to promising values
according to the experimental results in [14]. However, when
Algorithm 2 uses UK

RSE

α , the numerical results shown in Ta-500

ble SM-2 in the Supplementary Material (using the same set
M) show that α approaches to negative values which is not pos-
sible by definition. If we do not allow α to take negative values,
Algorithm 2 pushes α to zero which encourages the genera-
tion of Pareto front approximations with almost all solutions in505

the boundary as shown in [12]. Regarding UK
PTP

α and UK
KRA

α ,
Algorithm 2 exhibits an oscillatory behavior of DαUKα . In con-
sequence, the generated values of α encourages the selection of
subsets that represent a very small region of the overall Pareto
front. These observations suggest minimizing UK

RSE

α , UK
PTP

α ,510

and UK
KRA

α does not necessarily implies a high-diversity dis-
cretization. Hence, we utilize a GA to alleviate this problem
(see Algorithm 3).

We executed Algorithm 2 for UK
GAE

α and UK
MPT

α , using the
504 configuration instances (defined in the previous section).515
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Figure 3: m-vs-α plots: value of α as a function of the dimension of the Pareto front for UK
GAE

α . The first row shows the approximation of α using the Newton-based
α approximation for DTLZ1 and WFG2 whereas the second row shows the corresponding predictions of α using the DNN model hKGAE . The m-vs-α plots illustrate
that the value of α depends on the geometry, dimension, and cardinality of the subset.

We analyze the behavior of α as a function of the number of
objective functions for each Pareto front. Moreover, we study
the variation of α for different subsets of size N ∈ {25, 50, 75,
100, 150, 200, 250, 300} to emphasize the effect of the cardinal-
ity. In the first row of Figure 3, we show two m-vs-α plots for520

the Pareto fronts of DTLZ1 and WFG2, using UK
GAE

α
7. These

two subplots show that the values of α follow a similar pat-
tern. As long as the number of objective functions increases,
the value of α decreases regardless of the subset size. In con-
trast, for a given number of objective functions, the value of525

α increases as long as the subset size increases. This behav-
ior is also visible in other MOPs with both KGAE and KMPT.
On the other hand, when comparing m-vs-α plots for DTLZ1
and WFG2, we can observe that the range of α changes. This
is a general behavior observed in the rest of test instances for530

both KGAE and KMPT. Hence, these observations lead us to
conclude that the value of α depends on the geometry of the
Pareto front, its dimensionality, and the subset size, i.e., there is
a hidden nonlinear function ψ such that α = ψ(g,m,N), where
g ∈ {degenerate, disconnected, linear, concave,mixed, convex} .535

5.1.2. Genetic-based α approximation for UKα
We utilized a GA to approximate the value of α∗ for UK

RSE
,

UK
PTP

, and UK
KRA

, (see Algorithm 3). To design this GA, we
used HV as the fitness function. This decision is based on an
empirical analysis where we also employed UKα (whereK is set540

accordingly), the Pure Diversity indicator (PD) [53], and the
Solow-Polasky Diversity (SPD) indicator [29] as fitness func-
tions. However, minimizing UKα and maximizing PD and SPD
produces Pareto front approximations focused on small regions
of the whole Pareto front. In contrast, the maximization of HV545

7The rest of the figures are included in the Supplementary Material and at
https://github.com/jguillermofc/Pair-Potential-Energy/.

overcomes this issue since it rewards Pareto front approxima-
tions with a high spread. Algorithm 3 shows the genetic-based
α approximation that evolves a population P = {α1, . . . , αµ} us-
ing a (µ + λ)-selection scheme. Each αi ∈ P is used to generate
a subset S αi using the fast greedy removal in Lines 2-5 and 9-550

12. These approximation sets are later evaluated using HV in
Line 13. Since a larger HV value represents a better approx-
imation set, only the µ individuals with the largest HV values
survive the selection process. When the maximum number of
generations Gmax is reached, the value α associated to the max-555

imum HV value is returned.

Algorithm 3 Genetic-based α approximation

Input: Candidate setM; subset size N(<< |M|)
Output: Best found α value

1: Randomly initialize population P = {α1, . . . , αµ}, αi > 0
2: S = ∅
3: for all αi ∈ P do
4: S αi = Fast greedy removal algorithm(M,N, αi)
5: S = S ∪ {S αi }

6: t = 0
7: while t < Gmax do
8: Generate offspring solutions Q = {α1, . . . , αλ}
9: R = ∅

10: for all α j ∈ Q do
11: Rα j = Fast greedy removal algorithm(M,N, α j)
12: R = R ∪ {Rα j }

13: Calculate HV(S αk )∀S αk ∈ S ∪ R
14: Sort HV(S αk ) in descending order
15: Let the µ individuals that produce the greatest HV values

survive in order to generate the next population P and its
set of subsets S .

16: t = t + 1
17: return α = arg maxα∈P HV(S α)

8
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We performed a single execution of Algorithm 3 to produce
an approximation to α∗ for each one of the 504 configuration in-
stances for each UKα , K ∈ {KRSE,KPTP,KKRA}. We employed
the simulated-binary crossover and polynomial-based mutation560

as our genetic operators [38]. The crossover and mutation dis-
tribution indexes were set to 20, and the crossover and mutation
probabilities were set to 1.0 and 0.1, respectively. Finally, we
set µ = λ = 20 and Gmax = 100 due to the high computational
cost of the overall execution of the GA.565

To analyze the behavior of α using the genetic-based α ap-
proximation, we also generate m-vs-α plots. In the first row
of Figure 4, we show two m-vs-α plots for the Pareto fronts of
DTLZ2 and WFG1, for UK

RSE
. Unlike the Newton-based α ap-

proximation in Figure 3, the plots for DTLZ2 and WFG2 in the570

first row of Figure 4 are chaotic. However, it is still possible to
extract a pattern. The chaotic behavior is also visible for other
MOPs such as DTLZ1, DTLZ7, and WFG1, which are shown
in the Supplementary Material. Both subplots (in the first row
of Figure 4) show that the value of α depends on the geometry575

of the MOP. Furthermore, as in the case of the Newton-based α
approximation, there is a tendency for the value of α to increase
as the subset size increases, and the value also varies depend-
ing on the number of objective functions. On the other hand,
there is a critical aspect that should be pointed out. In Figure 4580

and in those in the Supplementary Material, the value of α for
UK

RSE

α is similar to the empirical value that has been utilized, i.e,
α = m − 1 [12]. Regarding both UK

PTP

α and UK
KRA

α , α tends to
be in the interval (0, 1) which contradicts the empirical values
found in [14]. Taking into account UK

GAE

α and UK
MPT

α using the585

Newton-based α approximation, the values of α are larger than
1, but the values associated to UK

MPT

α are considerably smaller
than those of UK

GAE

α which correspond to the empirical values
found in [14].

The analysis of the results of Algorithms 2 and 3 indicates590

that the value of α depends on some unknown function ψ(g,m,N).
This function needs a categorical parameter g that indicates the
geometry of the Pareto front, the number of objectives (i.e.,
m) objective functions, and the cardinality of the subset (i.e.,
N). Hence, establishing a fixed value of α as a general recom-595

mendation for every kind of instance is not possible to gener-
ate well-diversified Pareto front approximations, using the fast
greedy removal algorithm. Moreover, approximating the opti-
mal value of α (using either Algorithm 2 or 3), for every in-
stance is not realistic since for a real-world MOP we do not600

know in advance the Pareto front. Consequently, we need a
method (e.g., a machine learning technique) that approximates
the function ψ and, thus, predicts the value of α, especially for
unknown instances, taking into account the data generated in
the study of the approximation of the value of α.605

5.2. Predicting the optimal value of α
In this section, we propose to use a deep neural network

(DNN) to define five prediction models: hKRSE , hKGAE , hKMPT ,
hKPTP , and hKKRA . The core idea of this proposal is to utilize the
prediction models in practical cases instead of a fixed value of α610

for each UKα . The generation of the five hK predictors is neces-
sary because the variation of the value of α is different for each

UKα . Each model hK receives as input an instance (g,m,N) and
outputs a value of α for the corresponding UKα . The common
DNN architecture consists of a sequence of densely connected615

layers (also called fully connected neural layers). The model
comprises four dense layers and three dropout layers. As a de-
fault configuration, the first dense layer has 1024 neurons, and
the second and third ones have 512 neurons, with a rectifier lin-
ear unit activation each. All dropout layers are defined with620

a dropout rate equal to 0.5. The model uses an Adam opti-
mizer and minimum squared error (MSE) for loss calculation.
The graphical representation of this model is shown in Figure 5.
The last part of the model contains a dense layer with a single
output neuron (its output is the predicted value) with no activa-625

tion. This architecture was selected because it has been used for
similar regression applications [54, 55]. The prediction models
were implemented in the deep-learning framework Keras [56],
and using the open-source deep learning library TensorFlow
(version 2.3.0) [57].630

For each prediction model hK , we generated a 504-instance
dataset, using the information from Algorithms 2 and 3 as indi-
cated in Sections 5.1.1 and 5.1.2, respectively. It is worth em-
phasizing that we executed these algorithms on some known in-
stances (i.e., MOPs for which we have sufficiently dense Pareto635

fronts) to obtain a training set. Without executing these algo-
rithms on some known instances and getting the correspond-
ing α values, it would be impossible to construct a dataset to
train the DNN model. Moreover, we try to generate input-
output pairs of ψ as many as possible to train the DNN for640

approximating ψ. It is worth noting that the domain of ψ is
large. Each dataset has 504 instances because we calculated
the α values for 7 test problems with 2-10 objective functions,
and 8 different specifications of the cardinality as described in
Section 5.1. To ease the treatment of the categorical feature645

g ∈ {degenerate, disconnected, linear, concave, mixed, convex},
this one was converted into a numerical value using the follow-
ing integer encoding: degenerate: 1, disconnected: 2, linear: 3,
concave: 4, mixed: 5, convex: 6. In addition, we implemented
Min-Max scaling and standardization. Min-Max was selected650

due to its well-known use in machine learning, and standardiza-
tion was chosen since it is much less affected by outliers, and
for comparison reasons with Min-Max.

At this point of the investigation we would like to point out
several observations related to our prediction work-flow and the655

architecture of the DNN. First, we recognize that it is possi-
ble for Pareto fronts to have one or multiple geometries. That
is why, in this first study, it is our intention to test the util-
ity of the prediction models with a static definition of the ge-
ometry. A possible improvement could consider the addition660

of more categories, or the construction of a multiclass classi-
fication model that determines the associated geometry of an
N-point set A. Other ideas include the introduction of other
machine/deep learning regression models. Second, we do not
claim that the current DNN architecture from Figure 5 is the665

best for the present problem. Nevertheless, as we will see later
in this paper, the current prediction models are able to produce
α values that promote well-diversified N-point sets A. Proba-
bly, a smaller architecture could achieve better or equal results.
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Figure 4: m-vs-α plots: value of α as a function of the dimension of the Pareto front for UK
RSE

α . The first row shows the approximation of α using the genetic-based
α approximation for DTLZ2 and WFG1 whereas the second row shows the corresponding predictions of α using the DNN model hKRSE . The m-vs-α plots illustrate
that the value of α depends on the geometry, dimension, and cardinality of the subset.
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Figure 5: General DNN architecture used for the five prediction models: hKRSE ,
hKGAE , hKMPT , hKPTP , and hKKRA . Each DNN model consists of four dense
layers and three dropout layers. The first layer has 1024 neurons, the second
and third layers have each one 512 neurons, and the last layer has one neuron.
All dropout layers are defined with a dropout rate equal to 0.5. The output of
the model is a prediction of the value of α for an instance (g,m,N).

Thus, it seems better to err on the side of choosing a large DNN670

rather than too small. Since all these ideas require a more ex-
haustive analysis, and are out of the scope of the present inves-
tigation, we leave them for future work.

Since this is the first time (to the best of our knowledge) that
a prediction model is used to generate an appropriate value of675

α for UKα , several experiments were performed to assess the ca-
pability of the DNN models. We performed the following anal-
ysis for the five prediction models. First, the DNN model was
trained using the raw data, i.e., only the geometry categorical
value was changed to a numerical value, with no feature scaling680

and no K-fold cross validation. The reason for this was to have
a baseline in which we could compare the effect of the feature
scaling and K-fold cross-validation. Second, two feature scal-
ing techniques (Min-Max and standardization) with no K-fold
cross validation were introduced to observe if they helped the685

DNN model to improve the predictions and decide which of
them is more suitable for the present analysis. Finally, for each
experimental setup with raw data and feature scaling, K-fold

cross-validation was introduced to validate the performance of
the model.690

The instances for each dataset were divided (uniformly at
random) into training, validation and testing sets, as 322, 81,
and 101, respectively. Then, the model was trained, using the
training set, for 200 epochs, and the best-performing models for
each dataset on the validation set were selected for prediction695

on the test set. When K-fold cross-validation is used, K is set to
10, with 362 and 41 samples for training and validation, respec-
tively, chosen uniformly at random. For each of the K models,
with K−1 training partitions, and the remaining evaluation par-
tition were trained also for 200 epochs.700

As in the case of the experiments to approximate the value
of α using Algorithms 2 and 3, the prediction models generate
numerous values of α. Hence, to summarize the results, we also
provide m-vs-α plots where most of the figures are shown in
the Supplementary Material and at the GitHub repository. Fig-705

ure 3 presents in its second row the m-vs-α plots for DTLZ1 and
WFG2 using hKGAE . In comparison with the two corresponding
subplots in the first row of the same figure, we can see that hKGAE

have learned in a good way the behavior of the Newton-based
α approximation for UK

GAE

α since the ranges of the vertical axes710

in the four m-vs-α plots are very similar. In contrast to Fig-
ure 3, the m-vs-α plots associated with hKRSE in the second row
of Figure 4 are not very similar to those in the first row. In these
cases, hKRSE presents some difficulties to follow the values of
α generated by the genetic-based α approximation. However,715

if we focus on the ranges of the vertical axes in the first and
second rows, they are very similar. This implies that the values
of α are in the expected range. Thus the difference between the
first and second rows in Figure 4 is not a serious issue because
it is expected to have some prediction errors in furtherance of720

gaining generalization power.
So far, we have performed experiments to approximate the
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Figure 6: SPD landscape for Pareto front approximations (A) of DTLZ1,
DTLZ2, WFG1, and WFG2 with 3, 5, and 10 objective functions. Each point
represents the value SPD(A). EachA is constructed via the fast greedy removal
algorithm with UK

RSE
α and α ∈ {−4,−3, . . . , 3, 4}. We calculate the value of α

using the genetic-based α approximation and hKRSE . For these two values, we
generate the corresponding A sets and we show their SPD values using mark-
ers.

best value of α and we have created a DNN to predict this pa-
rameter. However, we have not examined information about the
diversity of the resulting Pareto front approximations using the725

α values from the approximation and from the prediction mod-
els. Here, we analyze the diversity of the Pareto front approxi-
mations induced by different values of α, considering the values
obtained by either the Newton-based or the genetic-based α ap-
proximation methods and the prediction models hK . Figure 6730

shows the SPD landscape for Pareto front approximations A
constructed via the fast greedy removal algorithm with UK

RSE

α .
We used the Pareto fronts of the DTLZ1, DTLZ2, WFG1, and
WFG2 problems with 3, 5, and 10 objective functions. To get an
insight of the SPD landscape, we sampled α ∈ {−4,−3, . . . , 3, 4}735

and for each value we constructed an approximate setA to cal-
culate SPD(A). The two markes in the figure show the SPD
values of the subsets associated with the values of α obtained
by the genetic-based approximation and the prediction model
hKRSE . The individual plots show how the SPD value changes740

over the different values of α, which suggests the promising
regions of the parameter. From Figure 6, we can see that the
two markers lie in the promising regions of α. That is, Fig-
ure 6 shows that the genetic-based α approximation and hKRSE

appropriately specify the value of α to find well-diversified sets.745

Figure 7, which is similar to Figure 6, shows the SPD landscape
associated with UK

GAE
. Since KGAE

α accepts larger values of α

Figure 7: SPD landscape for Pareto front approximations (A) of DTLZ1,
DTLZ2, WFG1, and WFG2 with 3, 5, and 10 objective functions. Each point
represents the value SPD(A). EachA is constructed via the fast greedy removal
algorithm with UK

GAE
α and α ∈ {−4,−3, . . . , 18}. We calculate the value of α

using the genetic-based α approximation and hKGAE . For these two values, we
generate the corresponding A sets and we show their SPD values using mark-
ers.

than KRSE
α (see Figure 2), we sampled α ∈ {−4,−3, . . . , 18}. In

the plots, we show the special SPD values associated with the
Newton-based α approximation and hKGAE . In these plots, the750

promising regions of α are clear thanks to a large number of
samples and a wide range of sampled values. We can observe
that the markers are always inside the promising region of α,
which evidences a good performance of the approximation and
prediction methods.755

Figure 8 shows 100-point subsets generated by the fast greedy
removal algorithm for three test problems of the Irregular MOPs
(IMOPs) [58] test suite (namely, IMOP4, IMOP6, and IMOP7).
It is worth noting that IMOPs were not used in Section 5.1, thus,
they represent unknown instances for the prediction models. To760

generate each subset, we first used the corresponding hK model
to produce a value of α that Algorithm 1 requieres to construct
the subset. Despite the irregularity of the Pareto front shapes
of these MOPs, each prediction model produces a value of α
that promotes good diversity as shown in each plot of the fig-765

ure. Hence, Figure 8 supports the generalization power of the
prediction models and encourages their utilization in practical
cases in EMO as we show in the next section.
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Figure 8: 100-point Pareto front approximations for the three-objective IMOP4,
IMOP6, and IMOP7 problems. The fast greedy removal algorithm is applied to
each problem using values of α provided by hKRSE , hKPTP , hKKRA , hKGAE , and
hKMPT . IMOP problems represent unknown instances for the prediction models
since we did not use them to construct the datasets.

6. On the utilization of PPFs in multi-objective optimiza-
tion770

Based on the analysis of the parameter α and the proposal of
the DNN models to predict its value, in this section we propose
the utilization of PPFs to construct well-diversified Pareto front
approximations in EMO. Figure 9 shows a block diagram that
represents the general framework for the utilization of PPFs.775

Once each DNN model hK is trained, we can use it to calculate
α = hK (g,m,N). The predicted value of α will be used in the
following two application cases of PPFs in EMO:

1. Construction of reference point sets: the fast greedy
removal algorithm uses the value of α to produce a subset780

A ⊂ M of size N. The reference point sets are employed
to calculate quality indicators to compare the Pareto front
approximations of MOEAs [17]. Currently, there is no
standard method to construct well-diversified reference
point sets regardless of the Pareto front geometry.785

2. Archiving. Every time an MOEA generates a new can-
didate solution y⃗ ∈ Ω, y⃗ is unidirectionally sent to a PPF-
based archive for its insertion (if possible). The PPF-
based archive aims to maintain a Pareto front approxi-
mation with better diversity, using the predicted value of790

α, than that of the MOEA’s main population. It is worth
noting that the PPF-based archive does not alter the per-
formance of the MOEA (measured by the final popula-
tion) due to the lack of a bidirectional connection be-
tween them.795

In the following sections, we completely describe the two ap-
plication cases to show the practical effect of the utilization of
PPFs in EMO.

6.1. PPF-based reference point sets

A common approach to generate reference point sets (RPSs)800

in EMO is based on the use of weight vectors and scalariz-
ing functions to define multiple SOPs [20, 46, 59]. However,
it has been shown that this methodology cannot deal with all

Figure 9: General framework to predict a value of α using a DNN model hK .
The predicted value α = hK (g,m,N) can be employed in either the generator
of reference point sets and a PPF-based archive unidirectionally connected to
an MOEA.

kinds of Pareto front shapes since some weight vectors may not
intersect the associated manifold [49]. Currently, an open is-805

sue is how to generate N-point reference sets exhibiting good
diversity regardless of the Pareto front geometry. In conse-
quence, we propose to exploit the properties of PPFs to gen-
erate well-diversified RPSs, using the fast greedy removal al-
gorithm (i.e., Algorithm 1), for benchmark problems whose810

Pareto front is represented by the set M. Figure 9 sketches
the proposed methodology. First, if Kα , K

COU, we calculate
α = hK (g,m,N) to be used in the fast greedy removal algorithm
to choose N points from the candidate setM. The output will
be an N-point reference set A. In case KCOU is used, we di-815

rectly execute the fast greedy removal algorithm because this
PPF does not depend on any parameter.

Table 2: Pareto front geometries of the MOPs used in the generation of ref-
erence point sets. Additionally, the reference point for the HV calculation is
given.

MOP Geometry Simplex-like Reference point
DTLZ1 Linear ✓ (1, 1, . . . , 1)
DTLZ2 Concave ✓ (2, 2, . . . , 2)
DTLZ5 Degenerate ✗ (2, 2, . . . , 2)
DTLZ7 Disconnected ✗ (1, 1, . . . , 1, 21)
WFG1 Mixed ✓ (3, 5, . . . , 2m + 1)
WFG2 Disconnected ✓ (3, 5, . . . , 2m + 1)
WFG3 Degenerate8 ✗ (3, 5, . . . , 2m + 1)

IDTLZ1 Linear ✗ (1, 1, . . . , 1)
IDTLZ2 Convex ✗ (2, 2, . . . , 2)
IWFG1 Mixed ✗ (1, 1, . . . , 1)
IMOP1 Convex ✗ (1.2, 1.2)
IMOP2 Concave ✓ (1.2, 1.2)
IMOP3 Disconnected ✗ (1.5, 1.2)
IMOP4 Degenerate ✗ (1.2, 1.2, 1.2)
IMOP5 Disconnected ✗ (1, 1, 2)
IMOP6 Linear ✗ (1.2, 1.2, 1.2)
IMOP7 Concave ✗ (1.2, 1.2, 1.2)
IMOP8 Mixed ✗ (1.2, 1.2, 3.2)
VIE1 Convex ✗ (4, 5, 4)
VIE2 Mixed ✗ (5,−15,−11)
VIE3 Degenerate ✗ (10, 18, 1)
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To analyze the advantages of PPF-based RPSs in compar-
ison with weight vector-based RPSs, we use the following ex-
perimental setup. It worths highlighting that the core idea is to820

measure with QIs the diversity of RPSs.

• Methods to generate RPSs. We couple the six selected
PPFs in Algorithm 1 to generate RPSs. We utilize three
strategies to design weight vectors: simplex-lattice de-
sign (SLD) [61], uniform design using the Hammersley825

method (UDH) [59], and random-based design (RDD).
For each weight vector, we define a SOP via the achieve-
ment scalarizing function (ASF) [23]. The underlying
idea is to look for the objective vector in M that pro-
duces the minimum value of ASF. In this way, for a set830

of N weight vectors, we will produce a RPS of the same
cardinality.

• Pareto fronts. In addition to the Pareto fronts of the se-
lected DTLZ and WFG problems, we also use the in-
verted versions of these two suites, denoted as IDTLZ835

and IWFG, respectively [49]. We also considered Pareto
fronts of the test suites Viennet (VIE) [62] and IMOP.
The reason to use these benchmark problems is to have
a wide variety of Pareto front shapes for low- and high-
dimensional objective spaces. In Table 2, we introduce840

the selected MOPs, emphasizing their Pareto front shape
and indicating if the geometry is correlated to the shape
of an m-dimensional simplex.

• Cardinalities. In our experiments, we aim to generate
RPSs of cardinality N ∈ {25, 50, 75, 100, 150, 200,845

250, 300}. The fast greedy removal algorithm and both
UDH- and RDD-based methods can generate RPSs of
any cardinality. However, SLD is restricted to gener-
ate a combinatorial number of weight vectors given by
N = CH+m−1

m−1 , where H ∈ N is a user-supplied parame-850

ter. Consequently, it is not always possible to generate
N-point reference sets of any cardinality via SLD. To ap-
proximate the desired cardinalities N1 ≈ 25, N2 ≈ 50,
N3 ≈ 75, N4 ≈ 100, N5 ≈ 150, N6 ≈ 200, N7 ≈ 250, and
N8 ≈ 300, we use a two-layer SLD approach, where the855

number of weight vectors is given by: CH1+m−1
m−1 +CH2+m−1

m−1 ,
H1,H2 ∈ N. Table 3 shows the approximated cardinali-
ties Ni, i = 1, . . . , 8, emphasizing the H1 and H2 values
for 2 to 10 objective functions that we employ for all the
methods to construct RPSs.860

• QIs: To compare diversity of RPSs, we adopted the fol-
lowing QIs: inverted generational distance (IGD) [63],
IGD+ [18], the Pareto-compliant IGD+ (IGD++) [64], PD
and SPD. We set the parameter θ to 10 to calculate SPD.
IGD++ involves the calculation of HV that requires a ref-865

erence point, which is shown in Table 2. To calculate
IGD, IGD+, and IGD++, we use a RPS provided for each
MOP in the PlatEMO platform [50]. It is worth noting

8Strictly speaking, WFG3 does not have a degenerate Pareto front. The
Pareto front of WFG3 is partially degenerate [60].

that each RPS in PlatEMO has at most 10,000 points. Al-
though IGD, IGD+, and IGD++ are convergence-diversity870

QIs, we do not aim to measure convergence since all
points inM are Pareto optimal.

Table 3: Cardinalities of the reference point sets for each specification of the
number of objective functions (i.e., “Dim.” in the table). The number of points
is restricted by the two-layer SLD. For each case, it is shown the subset size
and the values of H1 and H2. NA is placed when an approximated cardinality
cannot be generated.

Dim. N1 ≈ 25 N2 ≈ 50 N3 ≈ 75 N4 ≈ 100 N5 ≈ 150 N6 ≈ 200 N7 ≈ 250 N8 ≈ 300

2 25H1=24
H2=0 50H1=49

H2=0 75H1=74
H2=0 100H1=99

H2=0 150H1=149
H2=0 200H1=199

H2=0 250H1=249
H2=0 300H1=299

H2=0

3 21H1=5
H2=0 45H1=8

H2=0 66H1
1 0

H2=0 91H1=12
H2=0 136H1=15

H2=0 190H1=18
H2=0 231H1=20

H2=0 300H1=23
H2=0

4 24H1=3
H2=1 35H1=4

H2=0 56H1=5
H2=0 84H1=6

H2=0 120H1=7
H2=0 165H1=8

H2=0 220H1=9
H2=0 286H1=10

H2=0

5 20H1=2
H2=1 50H1=3

H2=2 75H1=4
H2=1 85H1=4

H2=2 126H1=5
H2=0 210H1=6

H2=0 NA NA

6 21H1=2
H2=0 42H1=2

H2=2 62H1=3
H2=1 77H1=3

H2=2 147H1=4
H2=2 182H1=4

H2=3 NA 273H1=5
H2=2

7 14H1=1
H2=1 35H1=2

H2=1 56H1=2
H2=2 91H1=3

H2=1 112H1=3
H2=2 168H1=3

H2=3 238H1=4
H2=2 294H1=4

H2=3

8 16H1=1
H2=1 44H1=2

H2=1 72H1=2
H2=2 NA 128H1=3

H2=1 156H1=3
H2=2 240H1=3

H2=3 NA

9 18H1=1
H2=1 45H1=2

H2=0 54H1=2
H2=1 90H1=2

H2=2 NA 174H1=3
H2=1 210H1=3

H2=2 NA

10 20H1=1
H2=1 NA 65H1=2

H2=1 NA 110H1=2
H2=2 NA 230H1=3

H2=1 275H1=3
H2=2

We performed a single execution of each method to gener-
ate a RPS for all the selected MOPs. It worths emphasizing that
only the Pareto fronts of DTLZ, IDTLZ, WFG, and IWFG test875

suites are scalable in objective space. In every case, we gen-
erated RPSs of cardinality N ∈ {N1,N2,N3,N4,N5,N6,N7,N8}.
All the RPSs were evaluated using the selected QIs. To sum-
marize the numerical results, Tables SM-3, SM-4, SM-5, SM-
6, and SM-5 in the Supplementary Material show the average880

ranking values for IGD++, IGD+, IGD, SPD, and PD, respec-
tively. Each average ranking denotes the average place in the
comparison that each approach obtained, considering a MOP
for all the objective functions and specifications of cardinality.
It is worth noting that for the construction of RPSs based on885

KRSE,KPTP,KKRA,KGAE, andKMPT, we used the correspond-
ing prediction models to generate the values of α.

According to the average ranking results of IGD++, IGD+,
IGD, SPD, and PD, the PPF-based RPSs exhibit better diversity
than those generated by the weight vector-based RPSs. How-890

ever, it is worth mentioning that the performance of the UDH-
based methodology is better than that of the SLD- and RDD-
based methods. Moreover, if we consider the method with
the minimum average ranking for each MOP in Tables SM-
3, SM-4, SM-5, SM-6, and SM-7 in the Supplementary Ma-895

terial, UDH encourages the generation of RPSs with better di-
versity for DTLZ1 and it also has a competitive performance
for DTLZ2, WFG1, and WFG2. The reason for this behavior is
that the Pareto fronts of these MOPs are highly correlated with
the shape of an m-dimensional simplex on which weight vectors900

are generated. In contrast, SLD, UDH, and RDD have difficul-
ties to promote well-diversified RPSs for MOPs with irregular
Pareto front shapes (e.g., DTLZ7, IMOP1-IMOP8, and VIE1-
VIE3). This is because some of these weight vectors cannot
intersect the whole shape the Pareto front [49]. Figure 10 sup-905

ports these numerical results. This figure shows RPSs, induced
by KRSE, KGAE, KCOU, SLD, UDH, and RDD for the three-
objective IDTLZ2, DTLZ7, IMOP7, and IWFG1 (which have
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Figure 10: 91-point reference sets for the three-objective IDTLZ2, DTLZ7,
IMOP7, and VIE3 problems. We compared the RPSs generated using weight
vector-based approaches (SLD, UDH, and RDD) with KRSE-, KGAE-, and
KCOU-RPSs.

irregular Pareto front geometries). The weight vector-based
methods have difficulties to generate well-diversified RPSs in910

contrast to PPF-based methods. However, weight vector-based
approaches can be a good alternative for Pareto front shapes
correlated with the shape of an m-dimensional simplex.

Regarding PPF-based RPSs, KRSE induces well-diversified
RPSs for DTLZ2, DTLZ5, WFG3, IDTLZ2, IMOP3, IMOP6,915

VIE1, VIE2, and VIE3. That is, KRSE obtains the best average
ranking for most of the selected QIs. Another important PPF
is KCOU that produces RPSs with good diversity for DTLZ7,
WFG1, IMOP1, IMOP7, IMOP8, and VIE3. We should point
out that for some MOPs such as VIE3 a different PPF can be920

evaluated as the best by a different QI. IGD++ and IGD+ prefer
KCOU whereas IGD and SPD prefer KRSE. This is an impor-
tant observation because IGD++ and IGD+ have bias to prefer
distributions where points are in the Pareto front’s knee regions
and along the Pareto front’s boundary due to the Pareto com-925

pliance property [64]. On the other hand, IGD and SPD pre-
fer points more uniformly distributed due to the lack of Pareto
compliance. Hence, this result let us know that PPFs have dif-
ferent preferences which could be exploited to compensate the
weaknesses of a PPF with the strengths of others. Finally, Fig-930

ure 10 shows that PPF-based mechanisms can generate well-
diversified Pareto front approximations. Furthermore, this fig-
ure also serves to argue that the regression models generate ad-
equate α values for the fast greedy removal algorithm.

6.2. PPF-based archiving935

As clearly pointed out in [65], the final population of any
MOEA is not the best subset of the examined solutions during
its execution. This means that the quality of the final Pareto
front approximation generated by an MOEA can be improved
by using an external archive. The usefulness of an external940

archive depends on the difference between the final population
and the best subset of the examined solutions. In consequence,
in this section, we propose a bounded PPF-based archive (de-
noted as K-Archive) that can be coupled to any MOEA. The

core idea is to examine all the solutions that an MOEA gener-945

ates to be inserted into the K-Archive, aiming to store a Pareto
front approximation with better diversity than that of the MOEA’s
main population. Figure 9 shows the proposed configuration
where an MOEA unidirectionally sends every newly created so-
lution y⃗ ∈ Ω to the K-Archive (A) of maximum size N. The950

archiving strategy also receives the value α = hK (g,m,N) (it is
not necessary if KCOU is employed). It is worth emphasizing
that due to the unidirectional connection from an MOEA toA,
the K-Archive does not influence at all the performance of the
selected MOEA. In our previous study [14], we showed that an955

MOEA is likely to delete some diversity-promising solutions
due to its design principles. Hence, a K-Archive aims to keep
these diversity-promising solutions.

Algorithm 4 shows a generic MOEA to which a K-Archive
can be coupled. We should emphasize that any MOEA can be960

combined with a K-Archive in Algorithm 4. An MOEA is uni-
directionally connected to a K-Archive, which is based on a
user-supplied Kα and its corresponding (if necessary) value of
α predicted by hK . Every time an MOEA produces a new solu-
tion y⃗ j in Line 7, y⃗ j is sent to A to be inserted. In other words,965

theK-Archive is used in a steady-state (or (µ+1)) scheme. It is
worth noting that some previous experiments indicated us that a
(µ + 1)-K-Archive promotes Pareto front approximations with
better convergence and diversity properties than a (µ + λ)-K-
Archive. However, using a (µ+ 1)-K-Archive implies a greater970

computational overhead. This is permissible due to the better
convergence and diversity properties. Regardless of whether
the MOEA keeps y⃗ j in the main population or not, y⃗ j has the
possibility to survive in the K-Archive as long as it helps to in-
crease its diversity. Furthermore, it is worth emphasizing that975

the K-Archive does not alter the optimization performance of
the MOEA (i.e., the K-Archive has no effect on the search be-
havior of the MOEA) because it never sends any stored solu-
tions to the main population of the MOEA. In Line 8, y⃗ j is tested
to be stored in theK-ArchiveA, using Algorithm 5. This algo-980

rithm updates A, and the standard evolutionary process of the
MOEA continues until a stopping criterion is satisfied. Finally,
both the main population P andA are returned so that they can
be compared.

Algorithm 5 describes the steady-state update of a K-Ar-985

chive (A) by examining the insertion of a solution y⃗. It is
worth emphasizing that A is a bounded archive of maximum
size given by Amax. The update strategy involves two phases. In
the first stage (Lines 1 to 5), y⃗ is compared with all the solutions
inA using the Pareto dominance relation. This comparison al-990

lows for maintaining selection pressure toward the Pareto front.
If y⃗ is mutually non-dominated with every solution in A, y⃗ is
temporarily added to the archive. Secondly, in line 8, our fast
greedy removal algorithm is executed, using Kα and the given
value of α. The execution of the fast greedy removal algorithm995

promotes diversity in A and ensures that the cardinality of the
archive is at most of size Amax.

In our experiments, we couple aK-Archive to four state-of-
the-art MOEAs, namely, MOEA/D [46], AdaW [66], A-NSGA-
III [67], and RVEA∗ [68]. It is worth mentioning that AdaW,1000

A-NSGA-III, and RVEA∗ have adaptive mechanisms to gener-
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Algorithm 4 Generic MOEA

Input: µ: population size; λ: offspring population size; Kα:
PPF; Amax: maximum archive size; value of α

Output: Main population and K-Archive as Pareto front ap-
proximations

1: Initialize the main Population P = {x⃗1, . . . , x⃗µ}
2: Initialize K-ArchiveA equals to P
3: while Stopping criterion is not satisfied do
4: Q = ∅
5: for j = 1 to λ do
6: Select mating parents from P
7: Generate a new solution y⃗ j by using variation opera-

tors
8: A = Update K − Archive(A, y⃗ j,K , Amax, α)
9: Q = P ∪ {⃗y j}

10: Select µ survival solutions from Q to shape the next pop-
ulation P

11: return {P,A}

Algorithm 5 Update K-Archive

Input: A: K-Archive; y⃗: solution to be inserted; Kα: PPF;
Amax: maximum archive size; α value

Output: Updated K-ArchiveA
1: for all a⃗ ∈ A do
2: if y⃗ ≺ a⃗ then
3: A = A \ {a⃗}
4: else if a⃗ ⪯ y⃗ then
5: return A
6: A = A∪ {⃗y}
7: NormalizeA
8: A = Fast greedy removal algorithm(A, Amax, α)
9: return A

Table 4: Parameters settings for MOEA/D, AdaW, A-NSGA-III, and RVEA∗.
N50, N100, and N200 denote three values of population size. GN50

max , GN100
max , and

GN200
max indicate the maximum number of generations for each population size

specification. nWFG and kWFG denote the number of variables and the position-
related parameter for the WFG and IWFG instances.

Dim. N50 GN50
max N100 GN100

max N200 GN200
max nWFG kWFG

2 50 1000 100 500 200 250 24 2

3 45 1111 91 549 190 263 26 4

4 56 892 120 416 220 227 28 6

5 50 1000 126 396 210 238 30 8

6 42 1428 147 408 273 219 32 10

7 56 1250 112 625 238 294 34 12

8 44 1818 128 625 240 333 36 14

9 54 1666 90 1000 210 428 38 16

10 65 1538 110 909 230 434 40 18

ate well-diversified Pareto front approximations regardless of
the geometry of the manifold. We employ problems from the
DTLZ, IDTLZ, WFG, IWFG, IMOP, and VIE test suites as de-
fined in Table 2 since they have different Pareto front shapes.1005

This is to demonstrate the usefulness of theK-Archive for main-
taining a well-distributed solution set regardless of the Pareto
front geometry. Since our computational experiments are not to
compare the performance of different MOEAs, most test prob-
lems do not have challenging search difficulties. If we compare1010

the performance of different MOEAs, it is needed to use more
challenging test problems such as mDTLZ1-mDTLZ4 [69] and
WOSGZ1-WOSGZ16 [70] in addition to the selected test prob-
lems in this paper. Problems from the DTLZ, WFG, IDTLZ,
and IWFG suites were used for 2 to 10 objectives. We set the1015

number of decision variables as n = m + K − 1 for the DTLZ
and the IDTLZ problems, where m is the number of objectives
and K = 5 for DTLZ1 and IDTLZ1, K = 10 for DTLZ2 and
IDTLZ2 and DTLZ5, and K = 20 for DTLZ7. The number of
decision variables and position-related parameters for WFG and1020

IWFG instances is shown in the last two columns of Table 4.
Regarding the IMOP and VIE problems, we followed their de-
fault specification about the number of decision variables. For
each test problem, we examine three specifications of the pop-
ulation size, which are shown in the three columns labeled as1025

N50, N100, and N200 of Table 4. The archive size Amax is the
same as the population size. For each specification, the termi-
nation condition is shown as the maximum number of genera-
tions in the columns labeled as GN50

max, GN100
max , and GN200

max . We set
the neighborhood size T to 20 and ASF was used in MOEA/D.1030

We set the parameters of AdaW, A-NSGA-III, and RVEA∗ as
specified by their authors. All the MOEAs use the simulated
binary crossover and polynomial-based mutation as genetic op-
erators.We set the crossover and mutation probabilities to 1.0
and 1/n, respectively. The crossover distribution index was set1035

to 20 for two- and three-objective problems and to 30 for MOPs
with four or more objectives. The mutation distribution index
was set to 20 for all cases. For each instance, we performed 30
independent executions of each MOEA unidirectionally con-
nected to six K-Archives, considering the six selected PPFs in1040

this paper. Hence, we compared, using HV and SPD, the main
population of each MOEA with the Pareto front approximation
stored in each ofKRSE-Archive, KPTP-Archive, KKRa-Archive,
KGAE-Archive, KMPT-Archive, and KCOU-Archive. The value
of α was calculated using the corresponding prediction model1045

hK , when necessary. We employed the one-tailed Wilcoxon
rank-sum test to obtain statistical confidence, using a signifi-
cance level of 0.05.

Due to space limitations, the complete numerical results for
HV and SPD comparisons are shown in Tables SM-8 - SM-151050

in the Supplementary Material. Those Tables show the HV and
SPD values when comparing the MOEA’s main population with
the K-Archives using N100 cardinality as defined in Table 4.
Table 5 shows a summary of the numerical results by empha-
sizing the percentage of problems in which each K-Archive is1055

better than the MOEA’s main population according to HV and
SPD. Regarding HV, the archives based onKRSE,KGAE,KMPT,
KKRA, and KCOU contain better Pareto front approximations in
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Table 5: Percentage of MOPs on which each K-Archive obtains better HV or
SPD values than the main population of an MOEA.

QI MOEA K
RSE

K
GAE

K
MPT

K
PTP

K
KRA

K
COU

HV

MOEA/D 91.43% 85.72% 85.72% 94.29% 94.29% 88.58%

AdaW 51.43% 42.86% 40.00% 40.00% 42.86% 57.15%

A-NSGA-III 68.58% 60.00% 62.86% 31.43% 45.72% 80.00%

RVEA∗ 88.58% 77.15% 80.00% 37.15% 62.86% 85.72%

SPD

MOEA/D 100.00% 100.00% 97.15% 100.00% 100.00% 100.00%

AdaW 88.58% 82.86% 88.58% 42.86% 62.86% 82.86%

A-NSGA-III 94.28% 94.29% 97.15% 57.15% 74.29% 91.43%

RVEA∗ 88.58% 88.58% 91.43% 45.72% 74.29% 91.43%

60% to 94.29% of the selected MOPs for MOEA/D, A-NSGA-
III, and RVEA∗. In contrast, theKPTP-Archive exhibits poor re-1060

sults. For AdaW, A-NSGA-III, and RVEA∗, it can only produce
better Pareto front approximations in 31.43% to 40% of the test
problems. This behavior could be explained by a bad value of
α predicted by hPTP

K
. For AdaW, it is not easy to find better so-

lution sets using the K-Archives than the main population with1065

respect to HV values. In this regard, KCOU-Archive is the best
one among the archives with 57.15% of better Pareto front ap-
proximations. However, we should emphasize that the prefer-
ences of HV depend on the specification of its reference point.
The reference points for the calculation of HV, that we defined1070

in Table 2, are close to the Pareto fronts. In consequence, HV
rewards Pareto front approximations with more points in the
interior part of the Pareto front and with fewer solutions in the
boundary.

However, if we analyze the percentages for SPD, we can1075

observe that the K-Archives produce Pareto front approxima-
tions with better diversity in more than 80% of the MOPs for all
the selected MOEAs. These results support our claim that the
PPF-based archives would take advantage of some diversity-
promising solutions deleted that are deleted by the baseline MOEA1080

due to its design principles. Hence, theK-Archives promote the
preservation of well-diversified and convergent Pareto front ap-
proximations in MOEAs. Figure 11 shows a comparison of the
SPD values throughout the evolutionary process of MOEA/D’s
main population and theK-Archives. These plots for the three-1085

, five-, and ten-objective DTLZ1 and IWFG1 indicate that the
K-Archives maintain a Pareto front approximation with better
diversity than the one represented by MOEA/D’s main popu-
lation. This behavior is present even since the early stages of
the evolutionary process which implies that K-Archives take1090

advantage of some solutions deleted by MOEA/D. Finally, it is
worth discussing why the SPD values increase and, then, de-
crease as shown in the left-hand column of Figure 11. SPD
is a diversity QI and unlike convergence QIs, it is not always
expected a monotonically increasing behavior as in the case1095

of HV. Depending on the configuration of the points and the
separation between them, the value of SPD can increase. In
the case of the SPD plots related to DTLZ1 (which is a multi-
frontal MOP), a possible reason for the increase of the values
of SPD is that MOEA/D found some local fronts far away from1100

the true Pareto front where the points are very well separated.

Some generations later, MOEA/D escaped from the local Pareto
front which produced a reduction in the separation between the
points, i.e., a loss of diversity as detected by SPD. Despite this,
the SPD values related to the PPF-based archives remain better1105

than that of the MOEA/D’s main population.
HV-based comparison results in Tables SM-8 - SM-11 in the

Supplementary Material indicate that KCOU-Archive maintains
on average the best Pareto front approximations. The reason
for the high performance of KCOU-Archive can be explained as1110

follows. Based on the distributions of obtained solutions, we
can categorize the examined PPFs into two groups. The first
group encompasses KRSE, KGAE, and KMPT. These PPFs have
the tendency to generate Pareto front approximations with more
solutions in the boundary and not so dense interior parts. On the1115

other hand, the three PPFs in the other group (i.e.,KCOU,KPTP,
and KKRA) reward Pareto front approximations with more so-
lutions in the interior part of the manifold and fewer solutions
in the boundary. Hence, HV rewards this second group due
to the configuration of points when the reference point for HV1120

calculation is not too far from the nadir point [71]. In this as-
pect, we should emphasize the properties of KCOU. This PPF
does not depend on α but it requires the definition of q1 and q2.

In Section 2, we defined q1 =

√∑m
i=1 u2

i and q2 =

√∑m
i=1 v2

i .

We think that the good properties of KCOU are related to these1125

two values, allowing it to penalize dominance-resistant solu-
tions which are present during the evolutionary process. The
two other best PPFs according to HV are KPTP and KKRA that
belong to the same group. In contrast to HV, SPD rewards the
group of archives using KRSE, KGAE, and KMPT as shown in1130

Tables SM-12 - SM-15 in the Supplementary Material. Further-
more, Figure 11 shows that the K-Archives store Pareto front
approximations with a better SPD value than that of MOEA/D’s
main population for almost all the evolutionary process. HV
and SPD values indicate that there is not a single K-Archive1135

that outperforms the other ones in all kind of problems.
In conclusion, the use of a PPF-based archive is a promis-

ing option to help MOEAs to construct Pareto front approxi-
mations with good diversity. However, we should discuss the
following aspects. First, the results show that there is no single1140

PPF that promotes well-diversified sets for all problems due to
the No-Free Lunch theorem. Among the examined PPFs, we
can say that KCOU and KRSE are good PPFs due to their sim-
plicity. Especially, KCOU is parameterless. Secondly, the final
Pareto front approximation stored in a K-Archive strictly de-1145

pends on the ability of the MOEA to explore the search space.
If an MOEA cannot produce solutions on a specific region of
the Pareto front, theK-Archive is unable to compensate the ex-
ploration/exploitation ability of the MOEA.

6.3. Limitations on the use of PPFs1150

Regarding our experimental results, the utilization of PPFs
in multi-objective optimization is promising to generate well-
diversified Pareto front approximations. However, there are
some limitations in our study that should be outlined. First
of all, it is worth emphasizing that the amount of manifolds1155

on which we can test our methods is infinite. For the study of
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Figure 11: For each plot, the SPD values of the MOEA/D’s main population
and the six PPF-based archives at different generations. The goal is to observe
the difference in diversity between the current population and the six archives
over the execution of MOEA/D. From the plots, we observe that the PPF-based
archives consistently maintain a better Pareto front approximation than the cur-
rent population for DTLZ1 and IWFG1 with 3, 5, and 10 objectives.

α, we selected benchmark problems whose Pareto fronts rep-
resent different geometries (e.g., linear, concave, convex, dis-
connected, degenerate, or mixed), aiming to (hopefully) get a
good sample of the universe of manifolds. At this point, a good1160

question that would condition our results is how to selecte a
representative sample of the infinite universe of manifolds.

Using the selected sample of Pareto fronts, we aim to ap-
proximate the optimal value of α for each manifold using two
heuristic methods: the Newton- and genetic-based α approxi-1165

mations in Algorithms 2 and 3, respectively. Due to the heuris-
tic nature of the methods, we expect to have an error in the
approximation of α∗ that collaterally impacts the quality of the
datasets to train the DNN models. Furthermore, another as-
pect that conditions the quality of the datasets is the number of1170

sampled manifolds as we previously emphasized. Despite these
conditions, our experimental results showed that the DNN mod-
els have a good generalization power when tackling unknown
manifolds as depicted in Figures 6, 7, and 8. A possible path
path to increase the generalization power of the DNN models1175

is to create a database of candidate setsM associated to Pareto
fronts, varying the geometries, dimensions, and cardinalities.
Moreover, it is still open the design of new heuristic methods to
approximate the solution of PPFSS that could increase the per-
formance of the Newton- and genetic-based α approximation1180

methods.
Considering the two use-cases of the utilization of PPFs,

we have the following observations. For the generation of ref-
erence point sets, it is necessary to have a discretization M
with a large number of points for every Pareto front. How-1185

ever, there is not a setM for some benchmark problems (e.g.,
IDTLZ and IWFG suites), especially when the number of ob-
jective functions is greater than 3. On the other hand, if we fo-

cus on the PPF-based archive embedded into MOEA/D, AdaW,
A-NSGA-III, and RVEA∗, there is a clear limitation. In our ex-1190

periments, we assumed that the geometry and dimension of the
Pareto front of each MOP are known. Due to this assumption,
we can consult the corresponding DNN model to obtain the α
value that feeds the PPF-based archive during the execution of
each MOEA. It is worth noting than when solving a real-world1195

MOP, the characteristics of the Pareto front are unknown. How-
ever, the goal of the related experiments is to demonstrate that
the PPF-based archive can take advantage of some solutions
that an MOEA could delete due to the design of its selection
mechanism. Our results support this goal in Tables SM-8 - SM-1200

15 in the Supplementary Material. To overcome the need of
prior knowledge of the Pareto front, a DNN could identify the
geometry and dimension of the current Pareto front approxima-
tion at each iteration of an MOEA to send these values to our
prediction model of α.1205

7. Conclusions and future work

In this paper, we analyzed six pair-potential energy func-
tions to be employed as a mechanism to generate reference
point sets and to improve the final Pareto front approximation of
an MOEA. To this aim, we first studied the effect of a parameter1210

that controls how these energy functions select a subset of solu-
tions to lead to an N-point equilibrium configuration. We also
proposed a DNN-based regression model to provide good pa-
rameter values that promote the generation of well-diversified
Pareto front approximations. Based on our experimental re-1215

sults, we showed that the utilization of pair-potential energy
functions leads to the generation of Pareto front approxima-
tions with high diversity values regardless of the Pareto front
shape. This encourages the a posteriori nature of an MOEA
that should provide Pareto front discretizations with good con-1220

vergence, distribution, and spread properties. Among the six
pair-potential energy functions, we found that KRSE and KCOU

are promising PPFs that ensure convergence and diversity. As
part of our future work, we aim to exploit the properties of the
two groups of pair-potential energy functions to generate ap-1225

proximation sets with better diversity properties. Moreover, we
aim to design new heuristic methods to approximate the pair-
potential energy-based subset selection problem.
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