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Abstract—In recent years we have seen a handful of work
on inference algorithms over non-stationary data streams. Given
their flexibility, Bayesian non-parametric models are a good can-
didate for these scenarios. However, reliable streaming inference
under the concept drift phenomenon is still an open problem for
these models. In this work, we propose a variational inference
algorithm for Dirichlet process mixture models. Our proposal
deals with the concept drift by including an exponential forgetting
over the prior global parameters. Our algorithm allows to adapt
the learned model to the concept drifts automatically. We perform
experiments in both synthetic and real data, showing that the
proposed model outperforms state-of-the-art variational methods
in density estimation, clustering and parameter tracking.

Index Terms—Dirichlet process mixtures, variational inference,
streaming data, concept drift, exponential forgetting

I. INTRODUCTION

Bayesian non-parametric (BNP) models have become a
successful approach for dealing with increasingly complex
data, and when it comes to density estimation and clustering,
Dirichlet process mixture (DPM) models are the best known
BNP models [1], [2]. In contrast with finite mixture models or
standard clustering methods, in DPMs the number of mixture
components (or clusters) adjusts to the complexity of available
data. Apart from avoiding model selection problems, this
property makes them specially suited for working with data
streams, where data batches arrive sequentially and models
need to adapt to the characteristics of the new data.

Given the ubiquity of non-stationary phenomena in real life
data streams, concept drift adaptation has seen great progress
in the last decade [3]. However, advances in that area have
been rarely combined with BNP models, hindering their real
life applications [4]. Even if there are effective streaming
inference algorithms for DPMs, the majority of them implicitly
assumes that the data stream is stationary. In order to fill this
gap, we propose a new streaming variational inference (VI)
algorithm for DPMs that can deal with concept drift.

Contributions

In this work, we propose a streaming VI algorithm for DPM
models, which, for the first time, extends Bayesian paramet-
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ric forgetting methods [5] to the non-parametric case. This
approach combines flexible adaptation to drifts of different
magnitudes with the data-driven model complexity of BNPs.

We perform experiments on both synthetic and real data
streams. The experiments evaluate the learned Dirichlet pro-
cess Gaussian mixtures from the density estimation and clus-
tering points of view. We also analyze our model’s ability
to track the underlying parameters. The experimental results
show that our model outperforms the state-of-the-art varia-
tional algorithms, especially in non-stationary environments.

II. RELATED WORK

The main challenge when working with DPMs and BNP
models is to find efficient learning methods. Markov chain
Monte Carlo (MCMC) methods have been the basic approach
for inference in DPMs [6], but they have scalability problems
for big datasets [7], [8]. In [9] and [10] the authors introduced
VI algorithms, which conceived posterior inference as an opti-
mization problem [11], providing faster approximate inference.
This framework was adapted for DPMs by [12]. Since then,
streaming versions of VI have been widely studied.

Two main paradigms exist to tackle the problem of stream-
ing VI: Streaming variational inference (SVB) [13] and
stochastic variational inference (SVI) [14]. SVB updates the
priors for batch t with the posterior obtained from batch
t − 1. By initializing priors with the previous variational
distribution, SVB implicitly assumes data interchangeability
and is not adequate for non-stationary streams. The same lim-
itation hinders the performance of more recent SVB methods
such as [15]. SVI, on the other hand, extends gradient based
optimization to VI. It is not exactly a streaming algorithm,
but assumes we can access a fixed data set in an online
fashion using minibatches. This requires to know the size of
the dataset, N , beforehand, which is not feasible in a streaming
scenario. However, this problem can be partially circumvented
by manually selecting a value for N . More recently, sampling-
based inference methods have been proposed for DPMs, which
can deal with non-stationary data streams [16], but there is still
room for improvement among VI methods.

In order to obtain an effective VI algorithm for non-
stationary DPMs, we propose a version of SVB with a
forgetting mechanism. The global prior distribution for batch t
is a combination of i) the initial uniformative prior and ii) the



global variational distribution obtained after observing batch
t−1. In the proposed procedure, the forgetting parameter con-
trols how much we forget or retain from previous batches. This
forgetting parameter is automatically learned in a Bayesian
manner with the hierarchical power priors method [5]. We
propose a flexible learning approach with a hierarchical power
prior for each component of the mixture model. By doing so,
each component in the mixture has its own unique dynamic.

III. PRELIMINARIES

A. Dirichlet process mixtures

Dirichlet processes (DP) are distributions over probability
measures, hence draws from a DP are random distributions.
Let G0 be a distribution over the sample space Θ and let
α be a positive scalar. A random distribution G with the
same support as G0 is distributed according to a DP with
the concentration parameter α and the base distribution G0,
i.e., G ∼ DP(α,G0), if for any finite measurable partition
{B1, . . . , Bk} of Θ,

(G(B1), . . . , G(Bk)) ∼ Dir(αG0(B1), . . . , αG0(Bk)). (1)

DPs were introduced by Ferguson in [1]. G0 is known
as base distribution because, for any measurable B ⊆ Θ
and any G ∼ DP(α,G0), we have E[G(B)] = G0(B).
The concentration parameter α controls the probability mass
around the mean, as G→ G0 pointwise when α→∞.

The discreteness and clustering properties of any G ∼
DP(α,G0) uphold the Dirichlet process as a non-parametric
prior for the global parameters of infinite mixture models [2],
[17]. The stick-breaking construction of DPs given by [18]
takes this intuition further. For k ≥ 1, we define

βk ∼ B(·|1, α), θk ∼ G0,

πk = βk

k−1∏
t=1

(1− βt), G =

∞∑
k=1

πkδθk , (2)

where B(·|1, α) is a Beta distribution with parameters 1 and
α > 0. Then G ∼ DP(α,G0). We can understand this with
the stick-breaking metaphor: we break a stick of length 1 in
two parts, β1 and 1− β1. We define π1 with β1 as in (2) and
continue breaking 1− β1 to obtain β2, β3, . . . and π2, π3, . . ..
This upholds the interpretation of G as an infinite mixture of
point masses with normalized weights πk.

Now, assume we have data x = {x1, . . . , xN} drawn
from some unknown distribution. We conceive the unknown
distribution as a mixture model so that each xi has distri-
bution p(·|θi), where the mixing distribution over the θi is
G ∼ DP(α,G0). Formally, the resulting mixture model has
the following hierarchical form:

G ∼ DP(α,G0)

θi ∼ G

xi ∼ p(·|θi).

If we introduce a new latent variable zn that indicates the
mixture component to which xn belongs, our model can now
be described by the following generative process:

Draw βk ∼ B(·|1, α) for k = 1, 2, . . .

Draw θk ∼ G0 for k = 1, 2, . . .

For the n-th data point: (3)
Draw zn ∼ Mult(π)
Draw xn ∼ p(·|θzn),

where zn takes value i with probability πi and π = (πi)
∞
i=1 is

computed using β = (βi)
∞
i=1 as in (2). The joint probability

density of the DPM model is then

p(x,β, z,θ) =

N∏
n=1

p(xn|θzn)p(zn|π)
∞∏
k=1

G0(θk)B(βk|1, α).

(4)
The DP prior over mixture parameters leads to an infinite

mixture model. However, since πk decreases exponentially as
k increases, only a finite number of clusters, K, are actually
involved when we deal with finite datasets. This solves the
problem of determining the number of components of the
mixture model, as we let the DPM infer it from the data.

B. Variational inference

From now on, we assume that all distributions considered
are conditionally exponential, and we consider only conjugate
priors as in [14].

VI has been the fundamental learning procedure for DPMs
since the seminal paper [12]. Given observed data x =
{x1, . . . , xN} and a model with global variables η =
{η1, . . . , ηK} and local variables z = {z1, . . . , zN}, VI con-
ceives the approximation of the intractable posterior p(η, z|x)
as a continuous optimization problem [11]. More precisely, VI
indirectly solves

argmin
q∈Q

KL
[
q(η, z)||p(η, z|x)

]
(5)

by solving the equivalent

argmax
q∈Q

L(q),

where L(q) is called Evidence Lower BOund (ELBO) and
takes the form

L(q) :=
∫
η,z

q(η, z) log
(p(x,η, z)

q(η, z)

)
dηdz. (6)

In this paper, we consider mean-field VI, where the varia-
tional distributions q(η, z) ∈ Q factorize as follows:

q(η, z|ϕ, λ) =
N∏

n=1

q(zn|ϕn)

K∏
k=1

q(ηk|λk), (7)

where {ϕ1, . . . , ϕN , λ1 . . . , λK} are the variational parame-
ters. We refer to [8] for a survey of VI methods.



In our case, after marginalizing the mixture weights in
(4) following [19], we obtain the following update equations,
where η = θ:

q∗(θk|λk) ∝ p(θk) exp
( N∑

n=1

q(zn = k) log p(xn|θk)
)
,

(8)

q∗(zn|ϕk) ∝ exp
(
Eqzn

[log p(zn|z−n)]
)

× exp
(
Eqθzn

[log p(xn|θzn)]
)
,

(9)

where we write qzn to denote q(zn) and so on.
The solutions (8) and (9) are updated iteratively using a

coordinate ascent algorithm [11] to obtain the solution to
(5). From now on, we write the ELBO as L(λ, ϕ|x,λ0) to
emphasize its dependency on the variational parameters and
the data; λ0 refers to the natural parameters of G0.

IV. STREAMING VI FOR NON-STATIONARY DPMS

A data stream can be represented as a sequence of batches
of points xt ∈ Rd×N for t > 0, where t corresponds to the
time stamp of the batch, d is the dimensionality of each point
and N is the size of every batch. We say that a concept drift
occurs when the underlying distribution of data changes.

Streaming variational Bayes (SVB) is the best known adap-
tation of VI to the streaming scenario [13]. At time t ≥ 1 we
receive the data batch xt, and we have to solve

arg max
λt,ϕt

L(λt,ϕt|xt,λt−1), (10)

where λt−1 are the variational global parameters inferred in
the previous batch. Thus, the global posterior for batch t −
1, q(·|λt−1), is used as a prior for batch t. This approach
assumes data interchangeability and it is not appropriate for
non-stationary data streams.

A. SVB with power priors

In this work, following [20] and [21], we propose as a prior
for batch t the combination of the uninformative prior G0(θt)
and q(θt|λt−1) using an exponential forgetting mechanism:

p̂(θt|λt−1, ρt) ∝ q(θt|λt−1)
ρtG0(θt)

1−ρt , (11)

where ρt ∈ [0, 1] is the forgetting parameter for batch t. Hence
when ρt = 1, we recover standard SVB in (10) and when ρt =
0 we simply carry out batchwise VI. Intermediate values of ρt
emphasize either preserving previous information or reseting
the prior. By taking G0(θt) from the same exponential family
as q(θt|λt−1), we have that p̂(θt|λt−1, ρt) remains in that
family, with natural parameters ρtλt−1 + (1 − ρt)λ0, where
λ0 is the natural parameter of the prior G0(θ) [22].

To wrap up, using the power priors method and choosing
proper exponential family distributions, we introduce a for-
getting parameter in our inference framework. We will solve
the following VI problem in each batch, where only the prior
differs from (10):

λt,ϕt = arg max
λt,ϕt

L(λt,ϕt|xt, ρtλt−1 + (1− ρt)λ0). (12)

B. SVB with hierarchical power priors

The forgetting parameter ρt in (12) is selected by the user
and, in practice, its optimal value can be difficult to find.
Moreover, ideally, this parameter should change over the time
in order to have a quick response to a concept drift.

To overcome these limitations, we automatically learn the
value of the forgetting parameter ρt with a technique based
on [5]: we introduce prior and variational distributions for
ρt in the variational inference mechanism. This means that
our approximation to the optimal ρt will automatically change
from batch to batch depending on the magnitude of the drift.
Thus, this approach allows to detect the drifts by inspecting
the values of ρt.

We use as a prior a truncated exponential distribution with
natural parameter γ:

p(ρt|γ) =
γ exp(−γρt)
1− exp(−γ)

. (13)

The variational distribution q(ρt|ωt) will also be a truncated
exponential with parameter ωt, where

Eq[ρt] = 1/(1− e−ωt)− 1/ωt. (14)

The variational parameter ωt has a natural interpretation in
terms of forgetting: if ωt < 0, then Eq[ρt] < 0.5 and the model
favours G0(θt) as a better fit, hence forgetting more past data.
Conversely, if ωt > 0, Eq[ρt] > 0.5 and more emphasis is
given to past data [23].

Plugging the prior over ρt in our collapsed DPM model we
obtain an ELBO in which we cannot work directly, because ρt
breaks the exponential conjugacy conditions for VI. To solve
this problem, we work over the surrogate ELBO proposed in
[5]. In this case, the update rules for λt,ϕt are the same as in
(8) and (9). In order to update ωt, we use the natural gradient
[24] of the surrogate ELBO with respect to ωt. This results in

ω∗
t = KL

(
q(θt|λt)||G0(θt)

)
−KL

(
q(θt|λt)||q(θt|λt−1)

)
+γ.
(15)

C. Multiple hierarchical power priors for DPMs

The procedure above uses a single forgetting parameter ρt.
This approach can be extended by considering one indepen-
dent power prior ρt,k for each global parameter θt,k of the
mixture model. This can be easily done by assuming that
the ρt,k are pairwise independent. With this assumption, we
implicitly consider that the components of a non-stationary
infinite mixture have different dynamics. The update rule for
each ωt,k associated to the parameter of the mixture θt,k is:

ω∗
t,k =KL

(
q(θt,k|λt,k)||G0(θt,k)

)
− KL

(
q(θt,k|λt,k)||q(θt,k||λt−1,k)

)
+ γ

(16)

This extension allows the model to have different forgetting
mechanisms for each global parameter, and will be crucial for
our DPM model, since the concept drift does not necessarily
affect every mixture component equally. We refer to this model
as multiple hierarchical power priors (MHPP). The inference
mechanism of MHPP is shown in Algorithm 1.



Algorithm 1: MHPP-DPM
Input: Data batch xt and variational posterior λt−1

Output: λt,ϕt,ωt

λt ← λt−1

Eq[ρt,k] = 1/2 for 1 ≤ k ≤ K
Initialize ϕt

repeat
for 1 ≤ k ≤ K:

Compute p̂(·|λt−1,k,Eq[ρt,k]), (Eq. 11).
Compute q(θt,k), (Eq. 8) with
p̂(θt,k|λt−1,k,Eq[ρt,k]) instead of p(θt,k).
Compute wt,k, (Eq. 16).
Update Eq[ρt,k], (Eq. 14).

for 1 ≤ n ≤ |{xt}|:
Update q(zt,n), (Eq. 9).

until convergence
return λt,ϕt,ωt

V. EXPERIMENTS

In this section we empirically evaluate the three proposed
models: PP, where the single forgetting parameter has to been
hand-tuned beforehand; HPP, which automatically learns the
forgetting parameter; and MHPP-DPM (Algorithm 1), which
learns a forgetting parameter for each global parameter of the
mixture model. For the PP methods, in each experiment we
choose the best forgetting parameter in ρ ∈ {0.9, 0.99}. We
compare their performance against the following baselines:

• Streaming variational bayes DPM (SVB) of [13].
• Stochastic variational inference (SVI) of [14] as imple-

mented by [25].
• Privileged-DPM (Privileged), a version of SVB-DPM

discarding previous information when a drift happens.
SVB and SVI are the state-of-the-art procedures for DPM
inference over data streams. Privileged represents the gold
standard, however, it can not be used in practice because it
requires to know when each concept drift occurs. Our Python
implementations of SVB, SVI, Privileged, PP, HPP and MHPP
are available online. 1

In HPP and MHPP, the inference step for ρt is simultaneous
to that of θ and z, hence the computational complexity of the
proposed algorithms will be the same as the standard VI. We
evaluate the ability to adapt to drifts in the following tasks:

• Density estimation: we measure the quality of the learned
DPMs using the log-likelihood in test data.

• Clustering: we evaluate the obtained clusters using four
popular metrics: Silhouette score, Normalized Mutual
Information (NMI), Adjusted Rand Index (ARI) and
Purity. We have reported the mean values across all the
batches of the data stream. All the measures have been
computed using the implementations in scikit-learn [26].

• Model parameter tracking: using the synthetic data, we
compare the parameters of the mixture model obtained by

1https://github.com/IoarCT/DPM-for-non-stationary-streams

the different algorithms with respect to the parameters of
the true model.

Every algorithm implements collapsed Dirichlet process
(isotropic) Gaussian mixtures with truncation K, hence in our
case the global parameters are the means and covariances of
each component: θ = {µ1, τ1, . . .µK , τK}. We use uninfor-
mative conjugate priors N (µ;0, I), Gamma(τ ; 1, 1).

A. Synthetic data

We generate four 2D isotropic Gaussians, and randomly
vary their mean and covariance for 20 batches in order to
simulate drift. We set α = 2, truncation parameter K = 10
and run all the algorithms for 100 iterations. We use 1000
training points and 500 test points per batch. In the case of
SVI, we work as if each batch was the full dataset and warm-
start the model for the next batch. This can bias the results
towards SVI. We fix its learning parameters rhoexp = 0.55
and rhodelay = 1.

1) Density estimation: Figures 1a and 1b compare the algo-
rithms according to the log-likelihood (higher is better) of test
data using the obtained Gaussian mixture. In 1a, where concept
drift occurs every 4 batches, the performance of MHPP is
remarkably similar to that of Privileged, both in response to
drifts and in the stationary phase. MHPP outperforms the state-
of-the-art procedures.

Figure 1b shows the same experimental framework with
drift in every batch. Again, MHPP obtains results remarkably
similar to Privileged. This shows that MHPP is able to
address density learning in scenarios with very frequent drifts.
Conversely, PP, SVB and SVI methods perform worse with
frequent drifts. Note that, in both Figures 1a and 1b, HPP and
0.9-PP show high numerical instability, justifying the need for
multiple forgetting parameters as in MHPP.

2) Clustering: Table I summarizes the results of different
metrics under the two drift frequencies studied. When the drift
occurs every 4 batches MHPP and SVB obtain the best results.
In the scenario where the drift occurs at every batch, MHPP
obtains the best results, and they are remarkably better than the
state-of-the-art. This suggests that MHPP is the best algorithm
addressing the concept drift in clustering problems.

3) Parameter tracking: To analyze the ability of the algo-
rithms to learn the parameters of the true Gaussian mixture
model, we show the evolution of the estimated means and
standard deviations of the four most populated clusters in
each batch. In order simplify the visualization of the results,
we have selected MHPP, SVB and SVI, and we have con-
sidered the scenario with drifts every 4 batches. Figures 2a
and 2b show the evolution of the standard deviations and
means respectively. In Figure 2b the numbers represent the
order of drifts. MHPP is able to recover the parameters of
the underlying Gaussian mixture adapting to concept drift
immediately, while the time of response of SVI and SVB
is higher and less accurate. The experiments also show that
the forgetting parameters of MHPP tend to 0.5 when their
component is not active in the DPM, while capturing different
dynamics for means and covariances.

https://github.com/IoarCT/DPM-for-non-stationary-streams
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Fig. 1. log-likelihood per test data point from 2D Gaussians. We consider different drift frequencies.

Privileged SVB SVI 0.9-PP HPP MHPP
Drift every 4 batches

Silhouette score 0.83± 0.05 0.81± 0.07 0.68± 0.12 0.55± 0.29 0.71± 0.15 0.80± 0.10
NMI score 1 0.99± 0.01 0.83± 0.19 0.87± 0.16 0.96± 0.05 0.99± 0.01
ARI score 1 0.99± 0.01 0.95± 0.07 0.75± 0.27 0.81± 0.24 0.99± 0.02

Purity score 1 1 0.98± 0.04 0.84± 0.19 0.83± 0.21 1

Drift every batch
Silhouette score 0.84± 0.03 0.74± 0.10 0.57± 0.23 0.46± 0.28 0.78± 0.08 0.82± 0.06

NMI score 0.99± 0.04 0.94± 0.07 0.95± 0.06 0.79± 0.03 0.91± 0.09 0.99± 0.03
ARI score 0.97± 0.09 0.92± 0.11 0.94± 0.09 0.67± 0.27 0.84± 0.15 0.98± 0.06

Purity score 0.97± 0.07 0.96± 0.09 0.86± 0.6 0.77± 0.19 0.86± 0.15 0.99± 0.05
TABLE I

RESULTS FOR DIFFERENT CLUSTER METRICS IN 2D GAUSSIANS.
WE DO NOT CONSIDER Privileged WHEN HIGHLIGHTING THE BEST ALGORITHM
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Fig. 2. Global parameter tracking for different algorithms. We represent data of the 4 most populated components. Ground truth is indicated by black lines.

B. Real data

In order to test our algorithm with real data, we use the
MNIST [27] and the noisy MNIST (n-MNIST) [28] datasets.
The first is the standard digit recognition dataset, while the
second includes three datasets, each of them created by
adding a different kind of noise to the digits: additive white
Gaussian noise, motion blur, and a combination of additive
white Gaussian noise and reduced contrast. The transition from
MNIST to n-MNIST data and the addition or removal of type
of digits will simulate the concept drifts.

The experimental framework is as follows: we consider all
four data sources and for each batch we first randomly select

the number of digits we consider in a range from 6 to all 9.
Then we sample those from one of the data sources randomly.
This will create a data stream where the number of cluster
varies and the source of those clusters can change from batch
to batch. Every dataset is preprocessed with minmax scaling
and the 764 (28 × 28) dimensions are reduced to 50 using
PCA. For this experiment we set truncation parameter K = 30,
α = 3, 1000 training points and 500 test points.

1) Density estimation: Figure 3 shows test log-likelihood
for different algorithms in the n-MNIST experiment. The
performances of SVI, SVB, PP and MHPP are very similar.
HPP provides the worst results. Overall, all the likelihoods



Privileged SVB SVI 0.99-PP HPP MHPP
Silhouette score 0.06± 0.03 0.02± 0.03 0.17± 0.04 0.01± 0.04 0.03± 0.03 0.05± 0.02

NMI score 0.67± 0.03 0.64± 0.04 0.24± 0.08 0.67± 0.02 0.67± 0.04 0.69± 0.04
ARI score 0.45± 0.05 0.43± 0.05 0.08± 0.04 0.45± 0.04 0.48± 0.10 0.50± 0.07

º Purity score 0.78± 0.04 0.75± 0.06 0.25± 0.03 0.76± 0.05 0.70± 0.06 0.79± 0.06
TABLE II

RESULTS FOR DIFFERENT CLUSTER METRICS IN N-MNIST DATA SET.
WE DO NOT CONSIDER Privileged WHEN HIGHLIGHTING THE BEST ALGORITHM
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Fig. 3. log-likelihood per data point of different algorithms for held-out data
from n-MNIST.

remain comparable. However, we have observed that SVI and
SVB requires more components in the mixture model to reach
the results of MHPP.

2) Clustering: Table II shows the results of each model in
the four clustering metrics considered. MHPP is superior in 3
out of 4 metrics, followed by 0.99-PP. The different perfor-
mance with respect to density estimation can be explained by
the fact that the log-likelihood does not penalize the use of
too many mixture components.

Overall, the experimentation upholds MHPP as the most
competitive method for DPM density estimation and clustering
in non-stationary streaming scenarios.
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