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Abstract—Crowdsourcing is a popular cheap alternative in machine learning for gathering
information from a set of annotators. Learning from crowd-labelled data involves dealing with its
inherent uncertainty and inconsistencies. In the classical framework, each annotator provides a
single label per example, which fails to capture the complete knowledge of annotators. We
propose candidate labelling, that is, to allow annotators to provide a set of candidate labels for
each example and thus express their doubts. We propose an appropriate model for the
annotators, and present two novel learning methods that deal with the two basic steps (label
aggregation and model learning) sequentially or jointly. Our empirical study shows the advantage
of candidate labelling and the proposed methods with respect to the classical framework.

Introduction
Recently, crowdsourcing has spread in ma-

chine learning for labelling data [1] as a cheap
alternative to expert labelling. As the reliability of
the contributors is unknown, several labels, which
are usually inconsistent, are gathered per example
to reduce the associated uncertainty.

Learning from crowds [2] aims to learn clas-
sifiers from crowd-labelled data. There are two
basic tasks to solve: to estimate the ground
truth labels by aggregating the inconsistent labels

provided by the annotators, and to learn the
model. These are approached either sequentially
or jointly. Sequential approaches deal with the
label uncertainty in the aggregation task. Majority
voting [3] (the label chosen by most annotators
is assigned to each instance) or weighted vot-
ing [4] (the choice of the annotators is weighted
according to their reliability) are basic strategies
to do so. Many methods, starting from [5], rely
for aggregation on the Expectation-Maximisation
(EM) strategy [6] due to its ability to deal with
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missing data or uncertainty. It estimates both the
reliability of the annotators and the ground truth
labels, through an iterative procedure where one
estimate helps compute the other. Nevertheless,
EM-based methods can also follow the joint ap-
proach to directly learn a classifier [2].

Traditionally, each annotator provides a single
label for each example, a scheme we call full
labelling. However, a single class label might not
capture the doubts of the annotators. For example,
if two labels are equally plausible in the mind of
an annotator and we force them to select a single
one, we lose all the information about the not
chosen class. Thus, our working hypothesis is that
providing annotators with the flexibility to return
all the labels among which they doubt allows
to extract more information from the labellers.
Previous attempts to soften full labelling rigidity
include to provide a “don’t know” option to the
annotators [7], or ask them to return also how
sure they are about their answer [8].

We propose to use candidate labelling as an
alternative to full labelling, inspired by the partial
labels (PL) problem [9]. PL is a weakly super-
vised problem where each instance is associated
to a set of candidate labels, and it is assumed that
the ground truth label is in that set. Analogously,
in our proposal for crowd annotation, candidate
labelling allows annotators to select more than
one label for each example. We do not assume
that annotators provide always the true label. But
the flexibility of candidate labelling raises the
probability that the true label is selected, help us
to gather more information about annotator doubt,
and optimise the label gathering process.

We also present an annotator reliability model
for candidate labelling in crowds. We propose two
novel learning procedures from this type of data,
one that performs sequential learning (SL-C), and
another one that performs joint learning (JL-C).
They are inspired by the proposals of [5] and [2]
respectively, and can be seen as their general-
isation from the full labelling to the candidate
labelling context.

The paper continues with the review of the re-
lated work and the background description. Then,
we formulate the framework, we propose our an-
notator model, and present our learning methods.
Next, we analyse an extensive empirical study.
Finally, the main conclusions are summarised.

Related work
Many crowd learning methods are based on

the EM strategy [6], which iteratively maximises
the likelihood of the parameters of an annotator
model that usually accounts for their reliability.
The key idea is to realise that annotator reliability
can be used to improve label aggregation, and,
in turn, the aggregated labels can help us to
measure annotator reliability. EM is guaranteed
to converge to a local maximum through the
iteration of two steps: (i) Expectation (E-step),
where the expected value of the uncertain ground
truth is computed using the current model fit,
and (ii) Maximisation (M-step), new maximum
likelihood estimates (MLE) of the model param-
eters are obtained given the previously completed
data. The key work by Dawid and Skene [5] uses
an EM-based method and models each annotator
with a conditional probability distribution over
the classes given the real label. It solves the label
aggregation task, and classifier learning is left as a
subsequent step (sequential scheme). We use this
method as a baseline method to compare with, as
it is the equivalent to our method SL-C in the full
labelling context.

EM-based methods can also implement a joint
learning scheme, where both the parameters of
the annotator model and those of the classifi-
cation model are estimated simultaneously. One
of them is Raykar et al. [2]’s method, that in
binary problems uses an annotator model with
only two parameters per annotator which repre-
sent the probability that the annotator correctly
labels instances of true class 1 (sensitivity) and
instances of true class 0 (specificity). In multi-
class problems, their annotator model becomes
similar to that of Dawid-Skene [5]. This joint
learning method is used in this work as a baseline,
as it is the equivalent to our method JL-C in
the full labelling framework. Sheng et al. [15]
presented a set of methods for joint learning
that weigh each instance and then use a cost-
sensitive classifier to learn from the weighted
examples. Rodrigues et al. [16] proposed an EM-
based method for learning deep neural networks
from crowds. They use of a crowd layer, so
that the network can be trained directly from the
crowdsourced labels using backpropagation.

All the approaches discussed so far in this
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section consider full labelling. Preliminary results
with the presented candidate labelling [10] show
that it leads to enhanced performance with simple
voting methods, especially in scenarios with high
uncertainty. Besides, this flexibility can also lead
to faster and less costly labelling [11].

In social sciences, approval voting [12], a
labelling system similar to candidate labelling,
has been extensively studied. Each user provides
a set of labels per instance, but their goal is to
aggregate the choices assuming that there exists
no ground truth. They usually assign to each
instance the label that is selected by most an-
notators. Thus, annotators who provide large sets
have more influence on the outcome. In contrast,
we assume that large sets indicate greater doubts
about labelling, which usually implies that its
impact is reduced.

Background
Learning from crowds deals with a supervised

classification problem with data incompleteness:
true labels are not provided. Several noisy labels
are collected for each example from non-expert
contributors to face uncertainty.

Formally, let us define the (multivariate) ran-
dom variable X as the descriptive feature of
the problem, taking values x in the space ΩX .
The class variable C takes values c from the
set of labels ΩC = {1, . . . , r}, where r ≥ 2.
We assume that the random vector (X,C) is
distributed according to a probability distribution
p(X,C), and that each instance x is related to
a single true class label cx, i.e. p(cx|x) = 1. In
supervised classification, we aim to infer from a
set of instance-label pairs {(xi, ci)}ni=1 a map-
ping (classifier) from ΩX to ΩC with a good
performance in unseen instances.

In learning from crowds, the real class la-
bels are not available, i.e., instances are given
alone: D = {xi}ni=1. The only information of
supervision available is provided by a set of
annotators, A. In the standard framework (full
labelling), each annotator a ∈ A provides a
label lax ∈ ΩC of their choice. Without loss
of generality, we assume that every annotator
a ∈ A annotates every instance x ∈ D. The
labelling for instance x is the set of labels
Lx = {lax}a∈A, and L = {Lx}x∈D is the set
of crowdsourced labels for the whole training

set. Given D and L, the goal is the same as
in supervised classification. A table summarising
all the symbols used in the paper is available
in a document with supplementary material at
https://github.com/IK3R/EM-candidate-learning.

Framework: Crowd learning with
candidate labelling

This work builds on top of standard learning
from crowds assuming that better access and
modelling of the uncertainty of the annotators can
lead to enhanced performance.

The main novelty is that annotators a ∈ A
are allowed to provide a set of labels La

x ⊆ ΩC ,
called candidate set, for instances x ∈ D (we as-
sume |ΩC |> 2). The candidate set La

x is expected
to include any class that annotator a considers
plausible. Thus, fine-grained information about
their doubts is available. Instance x has asso-
ciated multiple candidate sets Lx = {La

x}a∈A,
and the whole labelling is L = {Lx}x∈D. Given
D and L, the goal remains that of supervised
classification.

Probably the most basic approach to this
learning problem would be, as discussed in our
preliminary work [10], to aggregate candidate sets
using the candidate voting estimate. It gener-
ates a probabilistic labelling proportional to the
weighted sum of annotators that assign label c to
instance x, with weights inversely proportional to
their candidate set size, |La

x|:

wx(c) =
1

|A|
∑
a∈A

1(c ∈ La
x)

|La
x|

. (1)

We can apply a winner-takes-all strategy tak-
ing the label that maximises the candidate voting
estimate to obtain a deterministic labelling:

ω(Lx) = argmaxcwx(c), (2)

which can be seen as a natural generalisation
of majority voting [3] for candidate labelling.
Indeed, it reduces to majority voting when all
annotators provide a single label.

Learning a classifier from the (probabilistic)
labelling given by Equation 1 or 2 is possible.
However, these implicitly assume that annotators
show homogeneous reliability, which is usually
not the case. Modelling their reliability can imply
an enhanced classification performance.
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A reliability-aware aggregation of
candidate-set annotations

First of all, we present our annotator model
that will allow us to aggregate the candidate sets
considering annotator reliability.

Annotator model for candidate labelling

We assume that annotators produce candidate
sets according to the following unspecified prob-
ability model over a set of labels: each annotator
deals with an independent binary choice for each
class label to decide whether to include it in
the candidate set. This corresponds to a latent-
scale model [13] that represents a probability
distribution over sets of elements.

Formally, let αa
ck ∈ [0, 1] denote the prob-

ability that annotator a includes label k in the
candidate set for an instance with true class
label c. Then, the probability of the candidate
set provided by annotator a for instance x, La

x,
corresponds to:

Pr[La
x] =

∏
k∈ΩC

(αa
cxk

)1(k∈La
x)

· (1− αa
cxk

)(1−1(k∈La
x))

where ΩC is the set of possible class labels. The
annotator with complete knowledge would show
αa

ck = 1 when k = c, and αa
ck = 0 in other

cases. We denote by α = {αa
ck : c, k ∈ ΩC , a ∈

A} the set of parameters for all the annotators.
Take into account that, unlike the models of
Dawid-Skene [5] or Raykar et al. [2], our αa

ck

parameters do not form conditional probability
distributions given a fixed c (

∑
k α

a
ck is not nec-

essarily 1). An annotator who usually includes
k and k′ when the real label is c could show
αa

ck = αa
ck′ ≈ 0.9. This behaviour, derived

from our use of candidate labelling, represents
the main novelty of our model regarding fully
labelling models (e.g., [2], [5]). α parameters
can be understood as annotator reliability: an
annotator is reliable when the true class has the
highest probability (c = argmaxk∈ΩC

αc,k) and,
on average, it tends to appear in the candidate
set (αc,c > 0.5). We assume that annotators
are conditionally independent given the true class
label, Pr[{La

x, L
a′

x }] = Pr[La
x] · Pr[La′

x ].
This model implicitly assumes that (i) the

behaviour of an annotator only depends on the

true class, Pr[La
x] = Pr[La

x′ ] for La
x = La

x′ if
cx = cx′ , and (ii) for each annotator the probabil-
ity of including two labels in the candidate set is
conditionally independent given the actual class.

Now, we can define the likelihood given can-
didate set Lx for instance x of real class c:

Pr(Lx|cx = c,α) =
∏
a∈A

∏
k∈ΩC

(αa
ck)

1(k∈La
x)

· (1− αa
ck)

(1−1(k∈La
x)).
(3)

SL-C: An EM method for aggregation of
candidate sets

We are interested in learning the annotator
model parameters, α, and aggregating the can-
didate sets taking them into account. We do not
need the descriptive information x to calculate the
MLE of these parameters as we assume that the
candidate sets only depend on the real class cx.

The likelihood given a dataset (D,L) is:

Pr (L;α) =
∏
x∈D

∑
c∈ΩC

(Pr(Lx|cx = c;α)

· Pr(cx = c)).

(4)

As the real label cx of each example x is as-
sumed to be unique, Pr(cx|x) = 1, the marginal-
isation of C can be re-expressed as a product
raised to the indicator function, and combined
with Eq. 3:

Pr (L;α) =
∏
x∈D
c∈ΩC

[Pr(Lx|cx = c;α)]
1(cx=c)

=
∏
x∈D
c∈ΩC

[ ∏
a∈A
k∈ΩC

(αa
ck)

1(k∈La
x)·

· (1− αa
ck)

(1−1(k∈La
x))

]1(cx=c)

.

(5)

Computing the derivative of the log-likelihood
with respect to αa

ck, and setting it to zero, we
obtain the MLE of αa

ck:

α̂a
ck =

∑
x∈D 1(cx = c) · 1(k ∈ La

x)∑
x∈D 1(cx = c)

, (6)

which is the proportion of instances x of real class
cx = c for which annotator a included label k in
their candidate set, k ∈ La

x.
To compute Equation 6, the real labels cx are

required, precisely the information which is miss-
ing in crowd learning. Alternatively, using the
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Algorithm 1 Method SL-C
1: procedure EM-SL-C
2: α̂← α(0)

3: while α̂ not converged do
4: q ← Pr (c|L; α̂)
5: α̂← argmaxαEc∼q logPr(L|c;α)
6: end while
7: return q, α̂
8: end procedure

Bayes rule and Eq. 3, we estimate the probability
of the true class as:

Pr (cx = c|Lx;α) ∝
∝ Pr(cx = c) · Pr (Lx|cx = c;α)

∝ Pr(cx = c) ·
∏
a∈A
k∈ΩC

(αa
ck)

1(k∈La
x)·

· (1− αa
ck)

(1−1(k∈La
x)),

(7)

where Pr(cx = c) is calculated as the relative
frequency of label c. Note that the rest of the class
labels (k ∈ ΩC : k ̸= c) intervene through the
use of the α parameters: it accounts for the usual
confusions of the annotators; i.e., the probability
that an annotator introduces a wrong label k when
the real one is c.

To compute Equation 7, the model parameters
α are required. Note the mutual requirements of
Equations 6 and 7. This naturally leads to an
EM method that iterates over two steps: (i) E-
step, where the expected value of the ground truth
labels is obtained with Equation 7 for every in-
stance x (given the current α̂ estimation), and (ii)
M-step, where the annotator reliability parameters
α are updated with Equation 6 (given the ground
truth estimations of the previous E-step). If we
define the computation of E-Step as:

qα̂(c|x) = Pr (cx = c|Lx; α̂) ,

these qα̂(c|x) estimates can substitute the indica-
tor function 1(cx = c) in Equation 6, accounting
for all the possible values of cx probabilistically,
since the real class label is unknown.

Algorithm 1 describes our EM-based method
named SL-C, which stands for sequential learning
with candidate labelling. The complexity of the
initialisation (line 2 in Algorithm 1) is O(nmr2)
with respect to the numbers of instances (n),
annotators (m) and classes (r). For each iteration,

the complexity of both the E-step (line 4 in Algo-
rithm 1) and the M-step (line 5 in Algorithm 1)
is also O(nmr2). Thus, the overall complexity
of each iteration is O(nmr2).

The E and M-step are iteratively interleaved
until convergence. In our implementation, con-
vergence is reached when the difference between
the α̂a

ck in two consecutive iterations falls below
a threshold. The likelihood is enhanced in each
EM iteration until a local maximum is reached
at convergence [6]. Thus, our algorithm stops
when the MLE α̂ cannot be further improved.
The result of SL-C is an estimate of the ground
truth. To complete the goal of learning from
crowds, a classifier can be learned using standard
supervised classification techniques (sequential
approach).

Reliability-aware joint aggregation and
learning from candidate sets

In crowd learning, the final objective is to
learn a classifier. The previous method, SL-C,
only performs label aggregation, and classifier
learning is performed in a subsequent step. Our
second method includes the classifier learning
step into the loop.

JL-C: An EM method for jointly aggregating
candidate sets and learning

We assume the same annotator reliability
model described above. Let us also consider a
probabilistic classifier that models the probability
that instance x belongs to class c, expressed as
h(c|x; θ), where θ represents the classification
model parameters.

The likelihood is now:

Pr (D,L|α, θ) =

=
∏
x∈D

∑
c∈ΩC

Pr (Lx|cx = c,α)Pr (cx = c|x, θ)

=
∏
x∈D

∑
c∈ΩC

Pr (Lx|cx = c,α)h(c|x; θ)

=
∏
x∈D

∑
c∈ΩC

[
h(c|x; θ)

∏
a∈A
k∈ΩC

(αa
ck)

1(k∈La
x)·

· (1− αa
ck)

(1−1(k∈La
x))

]
.

(8)
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Using the same trick as for Equation 5, we
re-express Equation 8 as a product of factors to
the power of the indicator function:

Pr (D,L|α, θ) =
∏
x∈D
c∈ΩC

[
h(c|x; θ)·

·
∏
a∈A
k∈ΩC

(αa
ck)

1(k∈La
x)(1− αa

ck)
(1−1(k∈La

x))

]1(cx=c)

,

(9)

From this, we derive the MLE α̂a
ck, which

turns out to have exactly the same expression of
Equation 6. Thus, we face again the need of the
real class labels cx for estimating the α parame-
ters, and also to learn the classifier h. However,
as aforementioned, this piece of information is
missing in crowd learning. Thus, we resort again
to an EM method to obtain the MLE for our
model parameters (α̂, θ̂).

In the E-step, we estimate the probability
of label c for instance x given the parameter
estimates α̂ and θ̂ as:

Pr(cx = c|Lx, x; α̂, θ̂) =

=
Pr(Lx|cx = c; α̂, θ̂) · Pr(cx = c|x; α̂, θ̂)

Pr(Lx; α̂, θ̂)
,

(10)

making use of the Bayes rule, where Pr(cx =
c|x; α̂, θ̂) = h(c|x; θ) is given by the classifier.
We denote:

qα̂,θ̂(c|x) = Pr
(
cx = c|Lx, x; α̂, θ̂

)
,

the probabilistic estimate of the ground truth of
x, which is obtained as:

qα̂,θ̂(c|x) ∝ h(c|x; θ̂)
∏
a∈A
k∈ΩC

(α̂a
ck)

1(k∈La
x)·

· (1− α̂a
ck)

(1−1(k∈La
x)),

(11)

where α̂ and θ̂ are the parameter estimates found
in the previous EM iteration. As before (in Eq. 7,
for SL-C), the probability estimate qα̂,θ̂(c|x) de-
pends on all the labels other than c through the
α̂ parameters, and it is also proportional to the
probability predicted by classifier h. Note that,
in this case, x is taken into account through the
classifier to soften the assumption of the annotator

Algorithm 2 Method JL-C
1: procedure EM-JL-C
2: θ̂, α̂← θ(0),α(0)

3: while α̂ not converged do
4: q ← Pr

(
c|L,D; α̂, θ̂

)
5: θ̂ ← argmaxθEc∼q logPr(c|D; θ)
6: α̂← argmaxαEc∼q logPr(L|c;α)
7: end while
8: return q, θ̂, α̂
9: end procedure

model that the behaviour of the annotators only
depends on the real label.

The M-step uses the distributions qα̂,θ̂(c|x)
to fit the model parameters α̂ and θ̂. As be-
fore, since the real labels are missing, we find
the α̂ estimates that maximise the expectation
Ec∼q logPr(L|c;α), which implies substituting
the indicator functions in Eq. 6 with qα̂,θ̂(c|x).

The qα̂,θ̂(c|x) estimates are also used for
learning the classification model parameters θ̂ us-
ing a training dataset with probabilistic labelling:
the pair (x, c) has weight qα̂,θ̂(c|x).

Algorithm 2 describes the method named JL-
C, which stands for joint learning with candidate
labelling. The computational complexity of the
initialisation (line 2 in Algorithm 2) is O(f +
nmr2), where f represents the complexity of fit-
ting the chosen classifier h. For each iteration, the
complexity of the E-step (line 4 in Algorithm 2)
is O(gnmr2), where g represents the complexity
of the prediction using the chosen classifier h.
The complexity of the M-step (lines 5 and 6 in
Algorithm 2) is O(f +nmr2). Thus, the overall
complexity of each iteration is O(f + gnmr2).

The rest of details of the JL-C method are
implemented in the same way as for SL-C.

Model selection and initialisation
As aforementioned, EM methods are guar-

anteed to converge to a local optimum of the
likelihood that depends on the initialisation. To
better explore the space of solutions, perform-
ing multiple runs with different initialisation is
usually advised to try to reach different local
maxima (and keeping the model with the highest
likelihood).

For SL-C, we need to set initial values for
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α̂ (line 2 at Alg. 1), and for JL-C we need to
fill in θ̂ too (line 2 at Alg. 2). We use random
initialisations as follows: First, (i) obtain the
candidate voting estimate as in Equation 1 for
every (x, c) ∈ (D,ΩC). Then, (ii) sample the
probability distributions provided by the candi-
date voting estimates for each x ∈ D to obtain
initial deterministic guesses. In the last step (iii),
we use these initial guesses as the ground truth
to compute α̂ using Eq. 6. For JL-C, we also
use the initial guesses as labelling for training
the classification model parameters θ̂.

Regarding the evaluation of the models ob-
tained with different runs, we keep the model that
maximises the expected log-likelihood. For SL-C,
the expected log-likelihood is:

Eqα̂ [log (Pr (L|α̂))] =
∑
x∈D
c∈ΩC

qα̂(c|x)·

·
∑
a∈A
k∈ΩC

(
1(k ∈ La

x) · log(α̂a
ck)+

+ (1− 1(k ∈ La
x)) · log(1− α̂a

ck)
)
,

(12)

using the qα̂(c|x) estimates computed in the last
E-step.

Analogously, for JL-C, we use the correspond-
ing qα̂,θ̂ estimates for calculating the expected
log-likelihood:

Eqα̂,θ̂

[
log

(
Pr

(
D,L|α̂, θ̂

))]
=

∑
x∈D
c∈ΩC

qα̂,θ̂(c|x) ·
[
log

(
h(c|x; θ̂)

)
+

∑
a∈A
k∈ΩC

(
1(k ∈ La

x) log(α̂
a
ck)

+ (1− 1(k ∈ La
x)) log(1− α̂a

ck)
)]

.

(13)

Experiments
We have carried out an empirical analysis of

both presented methods: SL-C and JL-C. The
main hypothesis of this work is that candidate
labelling provides more information about the
true classes than the classical full labelling, which
can lead to classifiers with better performance. To
check this hypothesis, we test the performance
of our methods against that of Dawid-Skene [5]

(DS), as the sequential approach analogous to SL-
C in the full labelling context, and that of Raykar
et al. [2] (RAY), as the joint learning method
analogous to JL-C in full labelling.

Besides, the experiments are designed to anal-
yse relative differences of behaviour between SL-
C and JL-C, as a way to compare the sequen-
tial and joint learning approaches. Unfortunately,
there are not real crowdsourced datasets that make
use of candidate labelling, so we have resorted
to generating synthetic data, which allows us to
explore a wider range of experimental scenarios.

Synthetic label generation
Crowdsourced data is simulated departing

from standard supervised data and weakly super-
vised data with partial labels. A general procedure
that allows generating both full and candidate
crowdsourced labels synthetically is used.

The synthetic label generation procedure for
standard supervised datasets is as follows. We
have a set of m annotators A, and each anno-
tator a ∈ A is simulated by means of a set
of probability distributions with support in ΩC ,
{ga(·|c)}c∈ΩC

. The annotators are sampled from
a Dirichlet distribution with r hyperparameters,
all equal to 1 except for the c-th one, which is
equal to β ≥ 1. This experimental parameter
allows us to control the expertise of the annotator:
the greater the β value is, the higher tends to be
the probability of the c-th class. Note that when
β = 1 annotators are generated such that, on
average, their labels are uniformly selected, and
thus they not provide useful information about the
true class.

Given an instance x ∈ D with an associated
class label cx ∈ ΩC , the labelling is generated
by sampling the probability distribution ga(·|cx).
That probability distribution is sampled once to
perform full labelling (annotators express no
doubt), or ⌈prop · r⌉ times with replacement to
perform candidate labelling (annotators provide
multiple labels to express their doubts). In the
case that prop ≤ 1/r, there will be only one
label in the candidate set and it will be equivalent
to full labelling, and when prop > 1/r, the size
of the candidate set is in [1, ⌈prop · r⌉].

When we use weakly supervised data with
partial labels, where each instance x ∈ D is
associated with a partial label set Cx ⊆ ΩC , the
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procedure is the same as above with a single ex-
ception. Instead of ga(·|cx), we sample the proba-
bility distribution ga(·|x) =

∑
c∈Cx

(ga(·|c)/|Cx|
to generate the labelling for instance x ∈ D.

We would like to highlight that this generative
model is more complex than the models under-
lying SL-C, JL-C, DS and RAY. None of them
is in an advantageous position in the following
experimental design with that respect.

Experimental design
We use 6 fully labelled datasets from UCI

repository (http://archive.ics.uci.edu/ml): Der-
matology (366, 6), Glass (214, 6), Segment
(2310, 7), Svmguide4 (612, 6), Vehicle (846, 4),
and Vowel (990, 11), and 3 partially labelled
datasets [14]: Birdac (3718, 13), Lost (1122, 14)
and MSRCv2 (1758, 23), with numbers meaning
number of instances n, and number of classes r.
We simulate different numbers of annotators m ∈
{3, 5, 7, 9}, and different degrees of expertise for
them β ∈ {1, 3, 5, 7}. For candidate labelling
generation, the proportion of sampled labels takes
values prop ∈ {0.1, 0.3, 0.5, 0.7}. We have used
two classifiers from very different families from
sklearn 0.22.1 with default parameters: 5-Nearest
Neighbour (5NN) and Random Forest (RF).

The models are evaluated using the area under
the ROC curve (AUC). It is estimated using
stratified 5-fold cross-validation, where the test
sets are fully supervised.

Results
Figure 1 shows the impact of the expertise (β

parameter) of the annotators on the performance
of the methods.

As expected, all methods consistently show
better performance as the expertise of the anno-
tators increases. As the annotator expertise de-
creases and gets closer to β = 3 (the scenario that
is expected to be closest to reality, as annotators
are non-expert), the performance difference of
our methods relative to that of RAY and DS
tends to become larger. When β = 1, the AUC
scores are always near 0.5 (virtually, random
classifiers). This is coherent with the fact that,
with β = 1, annotators provide random labels
without any information about the true class. Note
that this is not the usual case, but gives us a
reference to compare with. Overall, JL-C and

SL-C outperform RAY and DS. There are cases
where RAY or DS are competitive regarding our
methods, usually when there is little growth in
the AUC score from β = 3 values on. This
might be due to limited problem difficulty, as
little information of supervision leads to the best
performance that the specific classifier type can
reach.

Figure 2 shows the impact of the number
of annotators (m) on the performance of the
methods. As expected, the performance tends to
improve as the number of annotators increases.
The steepest performance increases are most
commonly observed between m = 3 and m = 5
(clearly with JL-C and 5NN), and less commonly
between m = 5 and m = 7. Usually, the degree
of improvement of RAY and DS as the number of
annotators increases is smaller than that of SL-C
and JL-C. With fewer annotators, a realistic setup,
our methods have advantage in most scenarios,
except for JL-C with 5NN.

Figure 3 shows the effect of the maximum
candidate set size (prop) in the performance.
Although RAY and DS are not affected by this
parameter, they are included as a reference. Over-
all, as prop increases the results get better, except
in the glass dataset with RF classifier (Fig. 3b).

When prop = 0.1, most of the times annota-
tors provide a single label for each instance, as in
full labelling. In that case, our models for SL-C
and JL-C become virtually equivalent to those of
DS and RAY, respectively. Thus, the results of
SL-C and DS are similar, as well as those of JL-
C and RAY (random labelling generation might
explain occasional small divergences). In general,
as the value of prop increase, the performance
of our methods improves with respect to the
baselines. These results indicate that annotators
should be encouraged to provide candidate sets
large enough to ensure that they contain the real
class label. In some cases, providing too many
labels (prop = 0.7) could also lead to poorer
results, although they would still perform better
than the baselines.

To assess significant differences for each data
set and each parameter configuration, we have
performed a two-sample t-test with α = 0.05
to compare the four methods pairwise. SL-C
significantly outperforms DS in 58.54% of the
configurations, while the opposite never happens
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(a) Dataset dermatology
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(b) Dataset glass
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0.6
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0.8
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(c) Dataset segment

(d) Dataset svmguide4

1 3 5 70.4
0.5
0.6
0.7
0.8
0.9
1.0

(e) Dataset vehicle

1 3 5 70.4
0.5
0.6
0.7
0.8
0.9
1.0

(f) Dataset vowel

(g) Dataset birdac (h) Dataset lost (i) Dataset MSRCv2

Figure 1. Experimental results throughout different values of the parameter β (annotator expertise), in terms
of AUC metric, within different datasets (subplots). Results with classifiers RF and 5NN are displayed in dark
blue and light blue colour, respectively. A different line style and marker is used for each method (SL-C, JL-C,
RAY, DS). The rest of generative parameters are fixed to m = 5 and prop = 0.5.

(when comparing against RAY, SL-C has a better
performance in 67.08% of the configurations,
and the opposite occurs in only 0.83%). JL-C
performs significantly better than RAY in 40% of
configurations while RAY never obtains a signifi-
cant advantage (it significantly outperforms DS in
50.41% of configurations, and the opposite never
happens). JL-C outperforms SL-C in 17.45% of
configurations, and SL-C outperforms JL-C in
20.57%.

Additional figures with alternative datasets
and configurations are available in the supple-
mentary material. Similar behaviours to those
displayed here are observed.

To sum up, our methods (SL-C and JL-C) out-
perform the baselines (RAY and DS), in most of
the configurations. Their performance is enhanced
as the number of annotators and level of expertise
are increased (differently depending on the clas-
sifier used). In general, by allowing annotators to
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(a) Dataset dermatology
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0.5
0.6
0.7
0.8
0.9
1.0

(b) Dataset glass

3 5 7 90.4
0.5
0.6
0.7
0.8
0.9
1.0

(c) Dataset segment

(d) Dataset svmguide4

3 5 7 90.4
0.5
0.6
0.7
0.8
0.9
1.0

(e) Dataset vehicle

3 5 7 90.4
0.5
0.6
0.7
0.8
0.9
1.0

(f) Dataset vowel

(g) Dataset birdac (h) Dataset lost (i) Dataset MSRCv2

Figure 2. Experimental results throughout different values of the parameter m (number of annotators), in terms
of AUC metric, within different datasets (subplots). Results with classifiers RF and 5NN are displayed in dark
blue and light blue colour, respectively. A different line style and marker is used for each method (SL-C, JL-C,
RAY, DS). The rest of generative parameters are fixed to β = 3 and prop = 0.5.

provide more classes (prop), both SL-C and JL-C
show a performance improvement. Between SL-C
and JL-C, it seems they mutually outperform each
other depending heavily on the classifier and the
dataset, with virtually no preference among them.

Discussion

Based on this empirical study, we can put
forward several ideas.

Candidate labels seem to gather more dis-
criminative information than the classic full la-
belling: SL-C and JL-C outperform RAY and
DS in a vast majority of experimental scenarios.
Using candidate labels we can produce classifiers
with at least equal performance than using full
labelling, with fewer annotators or with lower-
expertise annotators. Using candidate labelling
would be a way to further reduce the cost of
labelling data.
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(a) Dataset dermatology
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(f) Dataset vowel

(g) Dataset birdac (h) Dataset lost (i) Dataset MSRCv2

Figure 3. Experimental results throughout different values of the parameter prop (flexibility of the annotators),
in terms of AUC metric, within different datasets (subplots). Results with classifiers RF and 5NN are displayed
in dark blue and light blue colour, respectively. A different line style and marker is used for each method (SL-C,
JL-C, RAY, DS). The rest of generative parameters are fixed to β = 3 and m = 5.

The ability to express doubts about the
labelling provides extra information about the true
class. The two presented methods consistently
improve with annotators that on average provide
a larger number of labels (Figure 3). This ev-
idence should at first motivate practitioners to
allow annotators to provide sets of labels and
encourage them to be as flexible as needed. A fair
instruction would be to indicate to annotators that
including the correct answer in the candidate set

is preferred rather than filtering incorrect answers
out. However, we need to be careful with these
instructions: a set with too many labels might be-
come uninformative and reduce the performance
of the methods.

Other features used in the design of the
empirical study do not show any light on the
comparison between methods or labelling ap-
proaches. Sometimes, the same performance is
reached by our candidate labelling-based methods
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with smaller features values. However, all of them
show the already-known trend of enhancement.

The computational complexity of our meth-
ods is similar to that of the baselines they were
inspired by. We tested the scalability of our
methods and the results suggest that, with an
increasing number of instances, the running time
of SL-C is always similar to that of the employed
classifier, meanwhile for JL-C it seems to grow
exponentially when employing RF and linearly
in the case of 5NN. The variable that affects
most the running time seems to be the number of
classes, while increasing the number of annotators
seems to cause just a small increase. The figures
that graphically summarise the scalability test are
available in the supplementary material.

Sequential or joint. Arguably any crowd
learning method could be categorised as: (i)
methods that first estimate the ground truth and
then use standard machine learning to learn from
it, and (ii) methods that learn a model as the
ground truth labels are estimated. We presented,
for candidate labelling, a method from each
category. Our empirical study does not show
relevant performance differences between them.
This suggests that practitioners should test both
approaches and empirically select the most ap-
propriate one for their problems.

Finally, the annotator model for candidate la-
belling is one of our contributions. Both proposed
methods use it, and their enhanced performance
regarding that of DS and RAY validates it. Nev-
ertheless, these methods could be easily adapted
to work with other annotator models. Similarly,
this empirical study is influenced by the type of
classifier learned (5NN and RF). Nevertheless,
our methods are completely abstracted from the
classifier type and could work with any proba-
bilistic classifier.

Conclusions

In crowd learning, our proposal to allow an-
notators to provide sets of candidate labels for
each instance instead of a single label facilitates
extracting more discriminative information from
the crowd. We propose an annotator model and
two methods which can be seen as extensions
of two state-of-the-art works to the candidate
labelling framework. They learn classifiers more

robustly (or at least equal) than state-of-the-art
methods [2], [5] using fewer annotators and/or
lower quality annotators. This might involve a
cost reduction of the labelling process.

It remains an open question whether sequen-
tial or joint learning approaches can be proved
to be consistently better, or at least to describe
the experimental scenarios where one of them
is preferred. An answer to this question would
be useful for practitioners. The promising exper-
imental results support the development of la-
belling platforms that allow annotators to provide
more than a label per instance. Practitioners could
benefit from substantial savings in the cost of
annotating large databases.
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