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Abstract. For the Landau-de Gennes functional on 3D domains,

Iε(Q,Ω) :=

ˆ
Ω

{
1

2
|∇Q|2 +

1

ε2

(
−a2

2
tr(Q2)− b2

3
tr(Q3) +

c2

4
[tr(Q2)]2

)}
dx,

it is well-known that under suitable boundary conditions, the global minimizer Qε converges strong-
ly in H1(Ω) to a uniaxial minimizer Q∗ = s+(n∗ ⊗ n∗ − 1

3
Id) up to some subsequence εn → ∞

, where n∗ ∈ H1(Ω, S2) is a minimizing harmonic map. In this paper we further investigate the
structure of Qε near the core of a point defect x0 which is a singular point of the map n∗. The
main strategy is to study the blow-up profile of Qεn(xn+ εny) where {xn} are carefully chosen and
converge to x0. We prove that Qεn(xn + εny) converges in C2

loc(Rn) to a tangent map Q(x) which
at infinity behaves like a “hedgehog” solution that coincides with the asymptotic profile of n∗ near
x0. Moreover, such convergence result implies that the minimizer Qεn can be well approximated
by the Oseen-Frank minimizer n∗ outside the O(εn) neighborhood of the point defect.

1. Introduction

Nematic liquid crystals (NLC) are composed of rigid rod-like molecules which exhibit a locally
preferred direction. Sharp variations in the alignment direction of NLC are known as defects,
which are generally observed, in experiments, to exist as isolated points or disclination lines in
experiments. There are several continuum theories used to describe the local orientation of NLC
molecules at equilibrium. In these theories, NLC materials are assumed to occupy a region Ω ∈
Rd (d = 2, 3) and their locally preferred directions are described by functions taking values in some
order parameter spaces. The study of variational problems for energy-minimizing configuration of
NLC (especially the configuration near defects) within these theories provides many fascinating
mathematical problems. Readers are referred to survey articles [3, 33, 51] and references therein
for more details.

Among these theories, the simplest one is the Oseen-Frank theory [18]. In the Oseen-Frank
theory, the local orientation of NLC is represented by a unit-vector field n : Ω → S2, which
minimizes an elastic energy. In the simplest setting, the free energy reduces toˆ

Ω

1

2
|∇n|2 dx,

which is the energy functional for harmonic maps. The singular set of a minimizing harmonic map
is very well understood. In particular, in three dimensional space, the singular set contains at most
finitely many points [45]. Near each singularity x0, the field n behaves like the rotated “hedgehog”
map ±R x−x0

|x−x0| with some rotation R [7]. We recall that the major limitations of the Oseen-Frank
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2 UNIFORM PROFILE NEAR POINT DEFECTS

model are that it only accounts for uniaxial nematic states and does not allow for line defects of
finite energy (see [24]).

In the physically more realistic Landau-de Gennes theory[14], the order parameter is a 3 × 3
symmetric traceless matrix Q (the so-called Q-tensors), which can be interpreted as the renor-
malized second moment of the (formal) probability distribution of the local molecular orientation.
The total free energy contains two parts, namely the elastic energy and the bulk potential, whose
simplified form reads

Iε(Q,Ω) :=

ˆ
Ω
{fe(Q,∇Q) + fb(Q)} dx

=

ˆ
Ω

{
1

2
|∇Q|2 +

1

ε2
(−a

2

2
tr(Q2)− b2

3
tr(Q3) +

c2

4
[tr(Q2)]2 + C)

}
dx,

where ε, a, b, c are material dependent constants, C is a constant that ensures fb(Q) ≥ 0. The
Landau-de Gennes theory can predict richer and more complicated local behaviors of the NLC
medium because it accounts for both uniaxial and biaxial phases (Q is called biaxial when it has
three distinct eigenvalues, uniaxial when it has only two equal eigenvalues and isotropic when all the
three equal eigenvalues are zero)). In particular it allows biaxiality in the cores of point defects and
disclination lines. Interested readers can refer to [4, 27, 28, 22, 8, 1, 15, 29, 30, 9, 12, 25, 17, 16, 2, 49]
for various studies on solutions and defect patterns of the Landau-de Gennes model.

When ε→ 0, the Landau-de Gennes energy will enforce the uniaxial constraint Q = s+(n⊗ n−
1
3 Id) (so that the potential function takes its minimal value, see (2.6)) and one can recover the Oseen-
Frank model. Such convergence, which is usually referred to as the vanishing elasticity limit (see
[19]), was first analysed in [40] and refined later on in [43]. Their results can be briefly summarized as
follows: under suitable assumptions on the domain Ω and the boundary condition Q|∂Ω, the global
minimizers Qε converges strongly in H1 to a limiting uniaxial minimizer Q∗ = s+(n∗⊗n∗− 1

3 Id) up

to a subsequence, where n∗ ∈ H1(Ω, S2) is a minimizing harmonic map. Moreover, the convergence
is strong in Ckloc(Ω\S(n∗)) for any non-negative integer k, where S(n∗) denotes the singular set of n∗.
Similar limiting problems for Landau-de Gennes model have also been explored in [4, 22, 23, 8, 9, 13]
under various settings. The study of vanishing elasticity limits is influenced by similar analyses of
the Ginzburg-Landau model for superconductors [5, 6], while the higher dimension of the target
space generates greater complexity in analysis for Q-tensors.

The main purpose of this paper is to further investigate the structure of minimizers Qε in the
core of a point defect x0 ∈ S(n∗) by studying the blow-up profile of Qεn(xn + εny) where xn will
be carefully chosen and converge to x0. We summarise our main results in the following theorem:

Theorem 1.1. Suppose Qεn is a sequence of global minimizers of Iεn(·,Ω) subjected to the Dirichlet
boundary condition (2.2) and Qεn converges to the vanishing elasticity limit Q∗ in the sense of
[40, 43]. Let x0 ∈ S(n∗). There exists a subsequence of Qεn, denoted as itself, and a sequence
xn → x0 such that the following holds

• (Proposition 3.5)Qεn(xn + εnx) → Q(x) in C2
loc(R3) and Q(x) is a local minimizer of the

functional I(Q) =
´
{1

2 |∇Q|
2 + fb(Q)} dx.

• (Theorem 4.2, Theorem 4.4 )Q(x)→ s+(n(x)⊗n(x)− 1
3 Id) as |x| → ∞, where n(x) = T ( x

|x|)

with T ∈ O(3) is determined by the asymptotic profile of n∗ near x0.
• (Theorem 5.1)Let Br(x0) be a small neighborhood of x0 that doesn’t contain other singular-

ities of n∗. Then for any sequence Rn ↑ ∞ and satisfying Rnεn < r, there holds

lim
n→∞

(
sup

Rnεn≤|x|≤r
|Qεn(xn + x)−Q∗(x0 + x)|

)
= 0,
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which implies the uniform convergence of Qεn to Q∗ outside shrinking domains.

Our results further improve the convergence results in [40, 43] by showing that the minimizer
Qεn of the Landau-de Gennes model can be well approximated by the Oseen-Frank minimizer Q∗
outside the O(εn) neighborhood of the point defect (such neighborhood can be regarded as the
defect core). The blow-up limit Q contains the information of the uniform structure of the defect
core and its asymptotic behavior at infinity is inherited from the profile near the singularity of
Q∗. The arguments essentially follow [41] by Millot-Pisante, which focuses on the similar problem
concerning local minimizers for 3-D Ginzburg-Landau functional. However, there are several major
differences from our arguments and those of [41]. On the one hand, the tensor structure gives
rise to significant difficulty in our analysis. On the other hand, in [41] the quantification results
of the defect measure from [35, 36] play a crucial role in the proof of strong H1 convergence (see
[41, Proposition 3.1, Proposition 4.1]), while in this paper we rule out the possible defect measure
and obtain strong H1 convergence of blow-up/blow-down sequences in a more direct way by simply
using minimality and the Luckhaus’ Lemma (see the proofs of Lemma 3.3, Theorem 4.1 and Lemma
4.5).

Our study was motivated by [31] where numerical investigations indicated that the behaviour
near the singularity of the limiting harmonic maps has a universal profile, that is independent
of the boundary conditions or the geometry of the domain. This universal profile has an outter
part, resembling a so-called hedgehog pattern, and an inner part that has axial symmetry. Our
investigation is capable of providing a rigorous interpretation of the studies in [31] in what concerns
the outter part. Stuyding analytically the universal features in the inner part seems to be a
significant analytical challenge.

A complete characterization for the behavior of a global minimizer Qε inside the defect core is
still open. Many research works focus on several typical configurations of the defect core and their
stability. Among them, the radial hedgehog solution with the form Q(x) = r(x)( x

|x| ⊗
x
|x| −

1
3Id) is

most extensively studied (see for example [46, 20, 39, 32, 27, 28]). This configuration is uniaxial
everywhere and vanishes at the origin. However, in certain parameter regime the radial hedgehog
becomes unstable and biaxiality has to appear near the defect core. Such phenomenon is called
“biaxial escape” and one can refer to [28, 12, 25] for rigorous interpretations of this phenome-
non within Landau-de Gennes theory at low temperature regime. There are mainly two types of
biaxial core structure: the half-degree ring disclination and the split-core solution. These two bi-
axial configurations have been discovered and studied numerically [42, 26] and recently rigorously
constructed in [50, 16, 49] in the axially symmetric setting.

The article is organized as follows. In Section 2, we introduce the basic mathematical setting
of our problem and recall some previous results and estimates that will be used in the rest of the
paper. In Section 3, we study the properties of Qεn near a small neighborhood Brn(x0) of the
singular point x0 and establish the existence of the blow-up limit Q in Proposition 3.5. In Section
4 we study the behavior of the blow-up limit Q(x) when |x| → ∞ by proving its tangent map
at infinity is just the asymptotic profile of Q∗ at x0. The proof is separated into several steps.
We first show that there exists a homogeneous degree-1 tangent map of Q at infinity; then we
prove the uniqueness of the tangent map; for the last step we show this unique tangent map has
to coincide with the hedgehog configuration of Q∗ near x0. Finally in Section 5 we establish the
uniform convergence of Qεn(xn + x) to Q∗(x0 + x) in varing domains Br \BRnεn for any Rn →∞.
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2. Mathematical formulation and preliminary estimates

Let Ω be an open bounded simply-connected domain in R3. We denote by Q0 the set of traceless
symmetric 3× 3 matrices, i.e.

Q0 := {Q ∈M3×3, Q = QT }.

Consider a Landau-de Gennes functional of the form

(2.1) Iε(Q,Ω) =

ˆ
Ω

[
1

2
|∇Q|2 +

1

ε2
fb(Q)

]
dx, Q ∈ H1(Ω,Q0),

with the Dirichlet boundary condition

(2.2) Q|∂Ω = Qb = s+(nb ⊗ nb −
1

3
Id), nb ∈ C∞(∂Ω, S2).

That is to say, Qb is a smooth function taking values in N which is defined later in (2.6).
When ε = 1, we write

(2.3) I(Q,Ω) :=

ˆ
Ω

[
1

2
|∇Q|2 + fb(Q)

]
dx

The bulk potential is of the form

(2.4) fb(Q) = −a
2

2
tr(Q2)− b2

3
tr(Q3) +

c2

4
[tr(Q2)]2 + C.

where C is the constant that ensures inf
Q∈Q0

fb(Q) = 0.

We introduce the notion of local minimizers of the energy in the following sense.

Definition 2.1. Let Q ∈ H1
loc(D0,Q0) for some domain D0 ⊆ R3 (D0 could be R3). Q is said to

be a local minimizer of I(·, D0) if

I(Q,D) ≤ I(V,D)

for any bounded open set D b D0 and V ∈ H1
loc(Ω,Q0) such that Q− V ∈ H1

0 (D,Q0).

The Euler-Lagrange equation for the functional Iε is given by

(2.5) ∆Qε =
1

ε2
(−a2Qε − b2[Q2

ε −
1

3
tr(Qε)

2 Id] + c2tr(Qε)
2Qε),

where the term 1
3ε2
b2tr(Qε)

2 Id is a Lagrange multiplier that accounts for the tracelessness con-
straint.

It is well-known that the bulk potential fb takes its minimum value on a sub-manifold of Q0

defined by

(2.6) N = {Q = s+(n⊗ n− 1

3
Id), n ∈ S2}, s+ =

b2 +
√
b4 + 24a2c2

4c2
.
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In [40, 43], it was shown that subjected to the Dirichlet boundary condition (2.2), up to some
subsequence, the minimizers Qε of Iε converge to the minimizer Q∗ of the functional

(2.7) I∗[Q] =

ˆ
Ω
|∇Q|2 dx, Q ∈ H1(Ω,N ), Q = Qb on ∂Ω

By direct calculation, we have |∇Q|2 = 2s2
+|∇n|2 for Q = s+(n ⊗ n − 1

3 Id). It follows that on

the simply-connected domain Ω this Q∗ can be written as Q∗(x) = s+(n∗(x)⊗ n∗(x)− 1
3 Id) where

n∗(x) ∈ H1(Ω, S2) is a minimizing harmonic map. More precisely, the following results was proved
in [40, 43].

Theorem 2.2. Let Ω be an open bounded simply-connected subset of R3 and Qε be a minimizer of
the minimization problem (2.1)–(2.2). For any sequence εk → 0, there exists a subsequence, still
denoted by εk, such that Qεk converges strongly in H1-norm to a minimizer Q∗ of the (2.7). Let
Sing(Q∗) denote the singular set of Q∗, then

Qεk → Q∗ in Cjloc(Ω\Sing(Q∗),Q0), ∀j ≥ 1.

The above theorem gives a nice convergence result of Qεk to Q∗ away from the singular set
Sing(Q∗). In this note we would like to investigate the behavior of Qεk near Sing(Q∗).

For the limiting harmonic map Q∗ = s+(n∗ ⊗ n∗ − 1
3 Id), we recall the classical result of Schoen-

Uhlenbeck [45] and Brezis-Coron-Lieb [7, Theorem 1.2] that the singular set Sing(Q∗) = Sing(n∗)
is a set of finitely many isolated points, and near each singular point x0, one has

lim
r→0

n∗(r(x− x0)) = T
x− x0

|x− x0|
,

for some T ∈ O(3). The convergence is strongly in H1(B1) and uniformly in any compact subset
of B1\{0}. Moreover, using the technique of integrability of a Jacobi field ( see for instance [48,
Theorem 6.3]), the convergence rate can be controlled by a positive power of r,

(2.8)

∣∣∣∣n∗(x0 + x)− T x

|x|

∣∣∣∣ ≤ C|x|α, ∀|x| < r0.

Here C > 0, r0 > 0, α ∈ (0, 1) are all positive constants depending just on n∗ and x0.
Also there are two basic ingredients in our analysis, which are the monotonicity formula and the

small energy regularity estimate, which are both established in [40]. We list them below.

Lemma 2.3. (Monotonicity lemma, [40, Section 4, Lemma 2]) Let Qε be a global minimizer of Iε,
then

(2.9)
∂

∂R
(

1

R

ˆ
BR

1

2
|∇Qε|2 +

1

ε2
fb(Qε) dx) =

1

R

ˆ
∂BR

∣∣∣∣∂Qε∂r

∣∣∣∣2 dσ +
2

R2

ˆ
BR

fb(Qε)

ε2
dx

Now we define

(2.10) eε(Q) :=
1

2
|∇Q|2 +

1

ε2
fb(Q),

which denotes the energy density of the Landau-de Gennes functional (2.1) for Q ∈ H1(Ω,Q0).
The following small energy argument holds.

Lemma 2.4. (Small energy regularity, [40, Section 4, Lemma 7]) Let Ωεk be global minimizers
of (2.1)–(2.2) with coefficient εk and suppose Qεk → Q∗ in H1(Ω). Let K ⊂ Ω be a compact set
which contains no singularity of Q∗. There exists C1 > 0, C2 > 0, ε0 > 0 such that for a ∈ K,
0 < r < dist(a, ∂K), εk < ε0 we have

1

r

ˆ
Br(a)

eεk(Qεk) dx ≤ C1,
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then
r2 sup

Br/2(a)
eεk(Qεk) ≤ C2.

3. Convergence of blow-up maps

Take εk → 0 to be the sequence in Theorem 2.2, satisfying Qεk → Q∗ in Cjloc(Ω\Sing(Q∗)).
Assume Sing(Q∗) = {0}, and n∗(x) ∼ x

|x| near the singular point 0. We write the hedgehog map as

(3.11) Φ(x) := s+

(
x

|x|
⊗ x

|x|
− 1

3
Id

)
Now we first fix a sequence of radiuses rn such that

(3.12) rn → 0 as n→∞.
According to [7, Corollary 7.12] and [47, Section 8], it holds that

‖Q∗(rnx)− Φ(x)‖C2(B3/2\B1/2) + ‖Q∗(rnx)− Φ(x)‖H1(B1) → 0, as n→∞.

Once we fix {rn}, we can then choose a subsequence of {εn}, still denoted by {εn}, such that

(3.13)
rn
εn
→∞ as n→∞,

and

‖Qεn(x)−Q∗(x)‖C2(Ω\Brn ) → 0, as n→∞,(3.14)

‖Qεn(rnx)− Φ(x)‖C2(B3/2\B1/2) + ‖Qεn(rnx)− Φ(x)‖H1(B1) → 0, as n→∞.(3.15)

Here the existence of such {εn} is guaranteed by Theorem 2.2. In the rest of this paper, for
convenience we will always work with {(rn, εn)} that satisfying (3.12), (3.13), (3.14) an (3.15).

We would like to study the convergence property of the sequence of blow-up maps Qεn(εnx). Set

Rn :=
rn
εn
.

We first look at the rescaled functions

(3.16) Un(x) := Qεn(rnx) on B1(0).

Obviously Un is a local minimizer, in the sense of Definition 2.1, of the following functional:ˆ
B1

{
1

2
|∇Q|2 +R2

nfb(Q)

}
dx

and satisfies ‖Un(x)−Φ(x)‖L∞(∂B1) → 0 as n→∞ due to (3.15). Then the following lemma holds.

Lemma 3.1. lim
n→∞

´
B1
R2
nfb(Un) dx = 0.

Proof. Since Q∗ is an admissible map for Iεn , we haveˆ
Ω

1

2
|∇Qεn |2 +

1

ε2
n

fb(Qεn) dx ≤
ˆ

Ω

1

2
|∇Q∗|2 dx.

On the other hand, Qεn converges to Q∗ strongly in H1, therefore we have

lim
n→∞

ˆ
Ω

1

ε2
n

fb(Qεn) dx = 0

A straightforward calculation shows that Φ(x) satisfies

1

r

ˆ
Br

1

2
|∇Φ|2 dx = 8s2

+π, ∀r > 0.
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Then using the strong convergence of Qεn(x) to Q∗(x), we infer that for any δ > 0, there exists a
rδ > 0 such that

lim
n→∞

1

rδ

ˆ
Brδ

1

2
|∇Qεn |2 +

1

ε2
n

fb(Qεn) dx ≤ 8s2
+π + δ.

Combining the definition of Un and the monotonicity formula (2.9), we deduce that

lim
n→∞

ˆ
B1

1

2
|∇Un|2 +R2

nfb(Un) dx

= lim
n→∞

1

rn

ˆ
Brn

1

2
|∇Qεn |2 +

1

ε2
n

fb(Qεn) dx

≤ lim
n→∞

1

rδ

ˆ
Brδ

1

2
|∇Qεn |2 +

1

ε2
n

fb(Qεn) dx

≤8s2
+π + δ

Letting δ → 0 yields

(3.17) lim
n→∞

ˆ
B1

1

2
|∇Un|2 +R2

nfb(Un) dx ≤ 8s2
+π.

On the other hand, by the H1 convergence of Un to Φ (3.15) we have

lim
n→∞

ˆ
B1

1

2
|∇Un|2 dx =

ˆ
B1

1

2
|∇Φ|2 dx = 8s2

+π,

which together with (3.17) implies that

lim
n→∞

ˆ
B1

R2
nfb(Un) dx = 0.

�
Now we have the following proposition which says that when n is sufficiently large, the set of

points where Un(x) leaves N has small measure and concentrates near the origin.

Proposition 3.2. For any δ > 0, there exist constants Cδ and nδ such that

(3.18) sup{|x|, x ∈ {dist(Un,N ) ≥ δ}} = o(1) as n→∞,

(3.19) diam({dist(Un,N ) ≥ δ}) ≤ CδR−1
n ∀n ≥ nδ.

Proof. We follow closely the proof of [41, Proposition3.2]. First recall that (3.15) gives the strong
H1 convergence of Un to Φ(x) in B1. Now we fix δ ∈ (0, 1) and first prove (3.18). Define

(3.20) Dδ
n := {x ∈ B̄1 : dist(Un(x),N ) ≥ δ}

It suffices to show for any given r < 1, the set Dδ
n ⊂ Br for every n sufficiently large. Note that

according to (3.15), (B1\B1/2) ∩Dδ
n = ∅ as n→∞, so we only need to focus on (B1/2\Br) ∩Dδ

n.
Since Φ(x) is smooth outside the origin, we can find a r0 <

r
8 such that

1

r0

ˆ
Br0 (x)

|∇Φ(x)|2 dx ≤ 1

2
C3 ∀x ∈ B1/2\Br

Here C3 is a small number to be determined. The strong convergence of Un to Φ in H1 implies that

1

r0

ˆ
Br0 (x)

|∇Un|2 dx ≤ C3 ∀x ∈ B1/2\Br, ∀n ≥ N1
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where N1 is a large constant. Then we infer from the Lemma 2.4 and Lemma 3.1 that, if C3 is
chosen to be suitably small,

r2
0 sup
Br0/2(x)

eR−1
n

(Un) ≤ C4, ∀x ∈ B1/2\Br

where C4 is another constant independent of n. By Arzela-Ascoli lemma the sequence {Un} is
compact in L∞(B̄1/2\Br), and therefore dist(Un(x),N ) → 0 uniformly in B1\Br. In particular,

Dδ
n ⊂ Br for sufficiently large n.
Next we show that there exists a Cδ such that diam(Dδ

n) ≤ CδR
−1
n for large enough n. First

we choose a small constant δ0 > 0 such that, there exists a smooth orthogonal projection of Nδ0
onto N . Here Nδ0 ⊂ Q0 denotes the δ-neighborhood of N in Q0. We denote P as the orthogonal
projection from Nδ0 onto N . It suffices to show (3.19) for all δ < δ0.

We fix δ < δ0 and argue by contradiction. Let dn := diam(Dδ
n) and suppose µn := dnRn ↑ ∞.

We take an, bn ∈ Dδ
n such that |an − bn| = dn. By (3.18) we have max{|an|, |bn|} → 0. Define

cn :=
an + bn

2
, sn := sup{|x− cn| : x ∈ Dδ

n}.

One can easily verify that sn ∈ [dn2 , dn) from definitions.
We perform the following rescaling

Vn(x) := Un(dnx+ cn), x ∈ B2.

Note that Vn is well-defined for all large enough n due to the fact that B2dn(cn) ⊂ B1 when n is
sufficiently large. By the relationship of sn and dn, we have

Vn(x) ∈ Nδ, ∀x ∈ B2 \ B̄1, n sufficiently large.

Moreover, Vn(x) minimizes the energyˆ
B2

1

2
|∇Q|2 + µ2

nfb(Q) dx.

By the definition of Vn, Un, (3.17) and the monotonicity formula, for every x0 ∈ B2, R ∈ (0, 2−|x0|),
we have

lim
n→∞

1

R

ˆ
BR(x0)

eµ−1
n

(Vn) dx

≤ lim
n→∞

1

1− |dnx0 + cn|

ˆ
B1−|dnx0+cn|(dnx0+cn)

eR−1
n

(Un) dx(3.21)

≤ lim
n→∞

8s2
+π

1− |dnx0 + cn|
= 8s2

+π.

Denote Pn1 := an−cn
dn

and Pn2 := bn−cn
dn

. Up to a rotation we assume

Pn1 = P1 = (
1

2
, 0, 0), Pn2 = P2 = (−1

2
, 0, 0).

It is well known, via Chen-Struwe[11] and Chen-Lin[10], that up to a subsequence, Vn converges
weakly in H1(B2,Q0) and strongly in L2(B2,Q0) to a weakly harmonic map V ∈ H1(B2,N ).
Moreover, there exists a nonnegative Radon measure ν on Ω such that

eµ−1
n

(Vn) dx→ 1

2
|∇V |2 dx+ ν in B2.

Here we note that even though Vn is a locally rescaled function of Qεn , the strong H1 convergence
and the minimality of the limiting weak harmonic map V cannot be derived directly from Theorem
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2.2 because Theorem 2.2 requires that all Qε satisfy the same boundary data (2.2), which is not
the case for Vn. We can apply the Luckhaus-type construction to overcome such deviation of the
boundary data and prove the following improvement of the convergence.

Lemma 3.3. ν(B2) = 0, Vn → V strongly in H1
loc(B2,Q0) and V is a minimizing harmonic map.

We first admit Lemma 3.3 and proceed with the proof of Proposition (3.2). A direct consequence
of Lemma 3.3 is

(3.22) lim
n→∞

ˆ
B2

µ2
nfb(Vn) dx = 0

For the limiting map V , first we claim that

lim
R→0

1

R

ˆ
BR(Pi)

|∇V |2 > 0, for i = 1, 2.

Otherwise if lim
R→0

1
R

´
BR(Pi)

∇|V |2 = 0 for i = 1 or 2 (we assume i = 1 without loss of generality),

then by strong H1 convergence and (3.22) we infer that there exist R0 > 0 and N0 such that for
any n ≥ N0, ˆ

BR0
(P1)

eµ−1
n

(Vn) dx ≤ C

for some suitably small constant C. Invoking Lemma 2.4, we conclude that the there exists a
constant, still denoted by C, such that

R2
0 sup
BR0/2

(P1)
eµ−1

n
(Vn) ≤ C, ∀n ≥ N0

Again by Arzela-Ascoli lemma we have Vn converges uniformly to V in BR0/2(P1), which contradicts
with the assumption dist(Vn(P1),N ) = δ > 0. So we get the claim.

On the other hand, since V is a stationary harmonic map, by the quantization results in [34,
Corollary 1],

lim
R→0

1

R

ˆ
BR(Pi)

|∇V |2 dx = 16s2
+kiπ, i = 1, 2; ki is a positive integer.

Recall that from (3.21) we have

1

R

ˆ
BR(Pi)

1

2
|∇V |2 dx ≤ 8s2

+π.

It follows that k1 = k2 = 1. And by monotonicity formula we have

(3.23)
1

R

ˆ
BR(Pi)

|∇V |2 dx ≥ 16s2
+π, i = 1, 2; R ∈ (0, 1).

For every R ∈ (0, 1), denote QR := (R− 1
2 , 0, 0). By (3.21) and (3.22) we have

16s2
+π ≥

ˆ
B1(QR)

|∇V |2 dx ≥

(ˆ
BR(P1)

+

ˆ
B1−R(P2)

)
|∇V |2 dx ≥ (R+ (1−R))16s2

+π = 16s2
+π.

It follows that |∇V | ≡ 0 on B1(QR)\(BR(P1) ∪B1−R(P2)) for every R ∈ (0, 1). Note that

B1\{(x, 0, 0) : −1 < x < 1} =
⋃

R∈(0,1)

B1(QR)\(BR(P1) ∪B1−R(P2)),
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we therefore deduce that ˆ
B1

|∇V |2 dx = 0

which clearly contradicts with (3.23). The proof of (3.19) is thus complete. �

Proof of Lemma 3.3. Fix any radius ρ0 ∈ (1, 2). By Fatou’s lemma and Fubini’s theorem, there is
a radius ρ ∈ (ρ0, 2) and a subsequence of {Vn}, which still denoted by {Vn}, such that
(3.24)

lim
n→∞

ˆ
∂Bρ

|Vn − V |2dH2 =: lim
n→∞

εn = 0,

ˆ
∂Bρ

(eµ−1
n

(Vn) + |∇V |2)dH2 ≤ C(ρ0) <∞, ∀n ∈ N.

In order to construct an energy competitor, we need the following extension Lemma which was first
proved by [45] and later by Luckhaus [38]. Here we present the version in [37, Lemma 2.2.9].

Lemma 3.4. For n ≥ 2, suppose u, v ∈ H1(Sn−1,N ). Then for ε ∈ (0, 1) there is w ∈ H1(Sn−1 ×
[1− ε, 1],RL) such that w|Sn−1×{1} = u, w|Sn−1×{1−ε} = v,ˆ

Sn−1×[1−ε,1]
|∇w|2 ≤ Cε

ˆ
Sn−1

(|∇Tu|2 + |∇T v|2) + Cε−1

ˆ
Sn−1

|u− v|2,

and

dist2(w(x), N) ≤ Cε1−n
(ˆ

Sn−1

(|∇Tu|2 + |∇T v|2)

) 1
2
(ˆ

Sn−1

|u− v|2
) 1

2

+ Cε−n
ˆ
Sn−1

|u− v|2

for a.e. x ∈ Sn−1 × [1 − ε, 1]. Here ∇T is the gradient on Sn−1 and RL is the space in which the
manifold N is embedded.

let W ∈ H1(B2,N ) satisfying W = V on B2 \ B2−ρ0 . We define the energy competitor Wn ∈
H1(B2,Q0) as

(3.25) Wn(x) :=



Vn(x), x ∈ L1 := B2 \Bρ,
|x|−ρ+

√
εn√

εn
Vn( ρx|x|) + ρ−|x|√

εn
P(Vn( ρx|x|)), x ∈ L2 := Bρ \Bρ−√εn ,

P(Kn(x)), x ∈ L3 := Bρ−√εn \Bρ−√εn−ε1/6n
,

W ( ρ

ρ−√εn−ε1/6n

x), x ∈ L4 := B
ρ−√εn−ε1/6n

.

Here Kn(x) is the connecting function obtained by applying Lemma 3.4 to P(Vn|∂Bρ) and V |∂Bρ .
To be more precise, Kn(x) satisfies

Kn(x) = P(Vn(
ρx

ρ−√εn
)) on ∂Bρ−√εn ,

Kn(x) = V (
ρx

ρ−√εn − ε1/6
n

) on ∂B
ρ−√εn−ε1/6n

,

dist(Kn(x),N ) ≤ Cε1/6
n ,

ˆ
L3

|∇Kn(x)|2 ≤ Cε1/6
n .(3.26)

Here we usedˆ
∂Bρ

|P(Vn)− V |2 ≤ 2

ˆ
∂Bρ

(|P(Vn)− Vn|2 + |Vn − V |2) ≤ 4

ˆ
∂Bρ

|Vn − V |2 = 4εn

and applied Lemma 3.4 with n = 3 and ε = ε
1
6
n in order to get (3.26).
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Since εn ↓ 0 we know that Kn(x) ∈ Nδ0 when n is large enough. Therefore P(Kn) is well-defined
on L3. Direct calculation implies that∣∣∣∣∣

ˆ
Bρ

eµ−1
n

(Wn) dx−
ˆ
Bρ

1

2
|∇W |2 dx

∣∣∣∣∣
=

∣∣∣∣∣
√
εn + ε

1/6
n

ρ

ˆ
Bρ

1

2
|∇W |2 dx

∣∣∣∣∣+

∣∣∣∣ˆ
L2

eµ−1
n

(Wn) dx

∣∣∣∣+

∣∣∣∣ˆ
L3

1

2
|∇Wn|2 dx

∣∣∣∣
= : In + IIn + IIIn.

For the first term In since εn → 0 we have lim
n→∞

In = 0. For the second term we calculate using

polar coordinates:

ˆ
L2

eµ−1
n

(Wn)dx

=

ˆ ρ

ρ−√εn
r2

ˆ
S2

{
1

2
|∇Wn(rθ)|2 + µ2

nfb(
|x| − ρ+

√
εn√

εn
Vn(

ρx

|x|
) +

ρ− |x|
√
εn

P(Vn(
ρx

|x|
)))

}
dθ dr

≤
ˆ ρ

ρ−√εn
r2

ˆ
S2

{
1

2

∣∣∣∣∇(Vn(ρθ) +
r − ρ
√
εn

(Vn(ρθ)− P(Vn(ρθ)))

)∣∣∣∣2 + Cµ2
nfb(Vn(ρθ))

}
dθ dr

≤
ˆ ρ

ρ−√εn
r2

ˆ
S2

{
(1 + C

(r − ρ)2

εn
)|∇TVn(ρθ)|2 +

|Vn(ρθ)− P(Vn(ρθ))|2

εn
+ Cµ2

nfb(Vn(ρθ))

}
dθ dr

≤
ˆ ρ

ρ−√εn
r2

ˆ
S2

{
C|∇TVn(ρθ)|2 +

|Vn(ρθ)− V (ρθ)|2

εn
+ Cµ2

nfb(Vn(ρθ))

}
dθ dr

≤C
ˆ ρ

ρ−√εn

r2

ρ2

ˆ
∂Bρ

|∇TVn(x)2|+ |Vn(x)− V (x)|2

εn
+ µ2

nfb(Vn(x)) dx dr

≤C
√
εn.

(3.27)

From the second line to the third line we used the fact that fb(Q) is comparable to dist(Q,N )2

when Q ∈ Nδ with small enough δ. From the third line to the fourth line we utilized d
drVn( ρx|x|) = 0

and |∇TP(Vn(ρθ))|2 ≤ Lip(P)2|∇TVn(ρθ))|2. The final estimate comes from (3.24). Taking n→∞
in (3.27) we get lim

n→∞
IIn = 0.

Finally, by (3.25) and (3.26) we have

IIIn =

ˆ
L3

eµ−1
n

(Wn) dx =

ˆ
L3

1

2
|∇P(Kn(x))|2 dx ≤ Lip(P)2

ˆ
L3

|∇Kn|2 dx ≤ Cε1/6
n .

When n→∞, we obtain lim
n→∞

IIIn = 0. Then by minimality of Vn we conclude that

ˆ
Bρ

1

2
|∇W |2 dx = lim

n→∞

ˆ
Bρ

eµ−1
n

(Wn) dx ≥ lim
n→∞

ˆ
Bρ

eµ−1
n

(Vn) dx ≥
ˆ
Bρ

1

2
|∇V |2 dx.

Hence V ∈ H1(B2,N ) is an energy minimizing harmonic map. Moreover, if we take W ≡ V in B2,
then the calculation above implies thatˆ

Bρ

|∇V |2 dx ≥ lim
n→∞

ˆ
Bρ

eµ−1
n

(Vn) dx,

which further implies the strong H1
loc convergence of Vn to V and ν = 0.
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�
Now we claim that there is a N ∈ N large enough such that for any n ≥ N , the set Dδ0

n defined
in (3.20) is not empty, where δ0 is defined in the proof of Proposition 3.2. Indeed, suppose the
claim is wrong and we can find nj →∞ such that for every j,

Unj (x) ∈ Nδ0 , ∀x ∈ B̄1.

Then P(Unj ) are smooth maps from B̄1 to N , and therefore deg(P(Unj ), ∂Br) = 0 for any r ∈ (0, 1).
On the other hand, using (3.15) we know that when j is large enough,

deg(P(Unj ), ∂Br) = 1, ∀r ∈ (
1

2
, 1),

which yields a contradiction. The claim is proved.
Now we can define an ∈ B1 such that

(3.28) an ∈ Dδ0
n and dist(Un(an),N ) = sup

x∈B1

dist(Un(x),N ).

According to Proposition 3.2, we have an → 0 as n→∞ and Dδ0
n ⊂ Brn(an) for some rn ≤ Cδ0R−1

n .
When Un(∂Br) ⊂ Nδ0 , we also define the topological degree of Un|∂Br as

deg(Un, ∂Br(x)) = deg(P(Un), ∂Br(x)),

By the condition (3.15), the smoothness of the map Un and the smallness of an, we infer that

(3.29) deg(Un, ∂Br(an)) = 1 for every r ∈ [Cδ0R
−1
n , 1− |an|].

Then we define

(3.30) Qn(x) = Un(
x

Rn
+ an) = Qεn(εnx+ rnan) for |x| ≤ Rn := Rn(1− |an|).

Proposition 3.5. Let Qε be a global minimizer of the minimization problem (2.1)–(2.2). For {Qn}
defined as in (3.30) with {(rn, εn)} as in (3.12), (3.13) (3.14) and (3.15), there exists a subsequence,
still denoted by {Qn}, such that Qn(x)→ Q in C2

loc(R3,Q0), where the limiting map Q satisfies

(1) Q locally minimizes the functional I(·,R3) (see (2.3)) in the sense of Definition 2.1.
(2) dist(Q(x),N )→ 0 as |x| → ∞, deg∞(Q) = 1 and 1

RI(Q,BR)→ 8s2
+π as R→∞.

Proof. Note that Qn satisfies the Euler-Lagrange equation

∆Qn = −a2Qn − b2[Q2
n −

1

3
tr(Qn)2 Id] + c2tr(Qn)2Qn in BRn .

Also (3.17) implies that

(3.31) lim
n→∞

1

Rn
I(Qn, BRn) ≤ 8s2

+π.

Using standard elliptic regularity theory, we can extract a subsequence, still denoted by Qn, that
converges to Q in C2

loc(R3,Q0). Here Q solves the same equation as Qn and also inherits the local
minimality from Qn.

By the definition of Qn and (3.29), we have

deg(Q, ∂Brδ) = lim
n→∞

deg(Qn, ∂Brδ) = 1, ∀rδ > Cδ.

Hence

deg∞(Q) = lim
r→∞

deg(Q, ∂Br) = 1.



UNIFORM PROFILE NEAR POINT DEFECTS 13

Similarly, by (3.18) and (3.19) we deduce that dist(Q(x),N ) → 0 as |x| → ∞. It only remains to
prove the energy estimate 1

RI(Q,BR) → 8s2
+π as R → ∞. On the one hand, by the monotonicity

formula and (3.31) we have

1

R
I(Q,BR) = lim

n→∞

1

R
I(Qn, BR) ≤ 8s2

+π.

On the other hand, dist(Q(x),N ) → 0 as |x| → ∞ implies that for any ε > 0 there exists a Rε
such that for all R > Rε,

1

R
I(Q,BR) ≥ (1− ε) 1

R
I(P(Q), BR).

We recall the well-known fact (see e.g. [7, Section VII]) that for g : S2 → S2 with deg(g) = 1, it
holds that

´
S2

1
2 |∇g|

2 ≥ 4π. Due to deg∞(Q) = 1, we get

lim
R→∞

1

R
I(Q,BR) ≥ (1− ε)8s2

+π.

Take ε→ 0 and we complete the proof of Proposition 3.5. �

4. Behavior of the limiting map Q at infinity

In order to understand the limiting map Q in Proposition 3.5, we study its tangent map at
infinity. A tangent map for Q is a map Ψ : R3 → Q0 obtained as a weak H1

loc(R3,Q0) limit of
QRn(x) := Q(Rnx) for some sequence Rn →∞. Let T∞ denote the set of all possible tangent maps
of Q at infinity. T∞ can be characterized by the following theorem.

Theorem 4.1. Let Q be the map defined in Proposition 3.5, then T∞(Q) is not empty. Let
Ψ ∈ T∞(Q) and assume QRn(x) → Ψ weakly in H1

loc(R3,Q0). Then QRn(x) → Ψ strongly in
H1
loc(R3) and

eR−1
n

(QRn) dx→ 1

2
|∇Ψ|2 dx

as convergence of Radon measures. Moreover, there exists T ∈ O(3) such that

(4.32) Ψ(x) = s+(n(x)⊗ n(x)− 1

3
Id), n(x) = T (

x

|x|
).

Proof. Fix a sequence Rn ↑ ∞. For any R > 0, by Proposition 3.5 we have

lim
Rn→∞

1

R

ˆ
BR

eR−1
n

(QRn) dx = lim
Rn→∞

1

RRn
I(Q,BRRn) = 8s2

+π.

Thus QRn is bounded in H1
loc(R3) and up to a subsequence, QRn → Ψ weakly in H1

loc(R3) and
strongly in L2

loc(R3). Since for any R, lim
n→∞

´
BR

fb(QRn) dx = 0, using Fatou’s lemma we obtain

Ψ(x) take values in N . Also, Q satisfies the monotonicity formula (2.9) because Q locally minimizes
the functional I(Q,R3). Then (2.9) and 1

RI(Q,BR)→ 8s2
+π imply that

lim
R→∞

ˆ
R3\BR

1

|x|

∣∣∣∣∂Q(x)

∂r

∣∣∣∣2 dx = 0.

It follows that for any 0 < ρ < R <∞,ˆ
BR\Bρ

1

|x|

∣∣∣∣∂Ψ(x)

∂r

∣∣∣∣2 dx ≤ lim
n→∞

ˆ
BR\Bρ

1

|x|

∣∣∣∣∂QRn(x)

∂r

∣∣∣∣2 dx
= lim
n→∞

ˆ
BRRn\BρRn

1

|x|

∣∣∣∣∂Q(x)

∂r

∣∣∣∣2 dx = 0.
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This implies that Ψ(x) = Ψ( x
|x|) for x 6= 0. Also the topological degree of Ψ on S2 is 1 since

deg∞(Q) = 1. Moreover, dist(Q(x),N )→ 0 as |x| → ∞ implies that

lim
n→∞

sup
x∈BR\BR/2

dist(QRn(x),N ) = 0

All these properties above enable us to exploit the same argument, as in the proof of Lemma
3.3, to obtain that QRn → Ψ strongly in H1

loc(R3) where Ψ ∈ H1
loc(R3,N ) is a homogeneous energy

minimizing harmonic map with degree 1.
Now by the classical result of Brezis-Coron-Lieb [7, Theorem 7.3] 1, Ψ = s+(n(x)⊗ n(x)− 1

3 Id)
for n(x) = T ( x

|x|), for some T ∈ O(3).

�
For the limiting map Q in Proposition 3.5, let’s define Q] := P(Q) as the orthogonal projection

of Q onto N , i.e.
|Q(x)−Q](x)| = dist(Q(x),N )

By Proposition 3.5 we know that Q(x) will stay in a small neighborhood of N when |x| is sufficiently
large. Consequently, Q](x) is well-defined for large |x|. We also denote

D(x) := Q(x)−Q](x).

Then we have the following two lemmas, which mostly rely on the estimates in [43].

Lemma 4.1. For any positive integer k, there exists a positive constant Ck such that

|∇kQ| ≤ Ck
|x|k

, for all x ∈ R3.

Proof. We argue by contradiction. Assume the statement is false, then there would be an integer
k and a sequence of points xn such that

Rn := |xn| → ∞ as n→∞

Rkn|∇kQ| → ∞ as n→∞.
For each n, we consider Qn = Q(Rnx) as a local minimizer in the sense of Definition 2.1 of the
following functional ˆ

B2

1

2
|∇Q|2 +R2

nfb(Q) dx

in the ball B2(0). Thanks to Proposition 3.5 and Theorem 4.1, we have that up to a subsequence,
xn
Rn
→ x for some x ∈ ∂B1,

Qn → Ψ strongly in H1(B2) for Ψ = s+((T
x

|x|
)⊗ (T

x

|x|
)− 1

3
Id), T ∈ O(3).

The strong H1 convergence implies, as in [40, Proposition 4] the uniform convergence of fb(Qn) to
0, which allows to use [40, Lemma 6.7] to get a uniform gradient bound on Qn which is updated
to convergence in the interior in arbitrarily high norms in [43, Theorem 1]. Thus we have

Qn → Ψ in Ck+1(B3/2\B1/2).

Then we can derive

∞ = lim
n→∞

Rkn|∇kQ(xn)| = lim
n→∞

|∇kQn(
xn
Rn

)| = |∇kΨ(x)| <∞,

1[7, Theorem 7.3] is proved for S2-valued maps, however it also holds for the case of RP2-valued maps, see the
discussion in [7, Section VIII-B-c].
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which yields a contradiction. The proof is complete. �

Remark 4.1. As a consequence of Lemma 4.1, we can improve the strongH1 convergence in Theorem
4.1 to Ckloc convergence, i.e. assume Ψ ∈ T∞(Q) and QRn → Ψ weakly in H1

loc(R3,Q0), then

QRn → Ψ strongly in Ck(K,Q0) for any integer k and compact set K ⊂ R3\{0}.

Lemma 4.2. There exist positive constants R0 and C such that for any |x| > R0,

|∇Q](x)| ≤ C

|x|
, |∇(Q])−1(x)| ≤ C

|x|
,(4.33)

|D(x)| ≤ C

|x|2
, |∇D(x)| ≤ C

|x|3
.(4.34)

Proof. The proof follows the same strategy of the proof of Lemma 4.1. The key is to show for any
sequence Rn →∞ such that QRn → Ψ in H1(B2), the following estimates holds in B3/2\B1/2:

|∇Q]Rn(x)| ≤ C, |∇(Q]Rn)−1(x)| ≤ C,(4.35)

|DRn(x)| ≤ C

|Rn|2
, |∇DRn(x)| ≤ C

|Rn|2
,(4.36)

for some constant C. Here DRn = QRn −Q
]
Rn

.
For the estimates in (4.35), we note that it suffices to prove the first estimate, while the second

follows from differentiating the identity Q]Rn(Q]Rn)−1 = Id. For the first one, note that since

Q]Rn = P ◦QRn for some smooth projection map P,

(4.37) |∇Q]Rn(x)| ≤ C̃|∇QRn(x)|,

∣∣∣∣∣∂Q
]
Rn

∂r

∣∣∣∣∣ ≤ C̃
∣∣∣∣∂QRn∂r

∣∣∣∣ , in B3/2\B1/2.

with the constant C̃ independent of n, and depending only on the distance between QRn(x) and
the manifold N . Also, thanks to the proof of Lemma 4.1, we have

(4.38) |∇QRn | ≤ C in B3/2\B1/2.

(4.38) and (4.37) together imply the first estimate in (4.35).
For the estimate (4.36), we recall the definition for the matrix X in [43]:

Xn := R2
n(Q2

Rn −
1

3
s+QRn −

2

9
s2

+Id).

According to [43, Proposition 4], we know that there exists a constant C such that

‖Xn‖C1(B3/2\B1/2) ≤ C,(4.39)

1

CR2
n

|Xn| ≤ |DRn | ≤
C

R2
n

|Xn|,(4.40)

which yields the first estimates in (4.36). For the estimate of |∇DRn |, we will utilize the estimate
for |∇Xn| to derive an upper bound.

For the sake of convenience, in the rest of the proof we simply write QRn , DRn as Qn, Dn. We
also denote

Yn :=
Xn

R2
n

.

Note that Qn has the decomposition

Qn = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3,
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where λ1 ≥ λ2 ≥ λ3 are three eigenvalues and e1, e2, e3 are the corresponding unit eigenvectors
where are orthogonal with each other. Note that λi, ei, i = 1, 2, 3 also depend on n and on the
location x where Qn is evaluated. For the sake of convenience, we do not indicate this dependence
explicitly here. Since Qn is very close to N when n is large (and we only care about the case for
large n), we can assume roughly λ1 ≈ 2

3s+ and λi ≈ −1
3s+ for i = 2, 3. In particular, one can

identify the orthogonal projection of Qn onto N , which is denoted by Q]n, as

Q]n = s+(e1 ⊗ e1 −
1

3
Id).

For the validity of this expression, one can refer to [21, Lemma C.1]. Note that since λ1 is an
isolated eigenvalue of Qn, it is well-known, see for instance [44], that e1 is as smooth as Qn and we
have

(4.41) |∇e1| ≤ C|∇Qn| ≤ C in B3/2\B1/2.

By the definitions of Yn and Xn, we compute

Yn = Q2
n −

1

3
s+Qn −

2

9
s2

+Id

= (Q]n +Dn)(Q]n +Dn)− 1

3
s+(Q]n +Dn)− 2

9
s2

+Id

= Q]nDn +DnQ
]
n +D2

n −
1

3
s+Dn

= s+(2e1 ⊗ e1 − Id)Dn +D2
n

where for the third equality we used that Q]n is a root of the polynomial equation Q2− s+
3 Q−

2s2+
9 Id =

0, see for instance [43, Lemma 1]. For the fourth equality we used that Dn and Q]n commute (as

they have a common eigenbases), together with the definition of Q]n.

|∇Yn|2 =

3∑
α=1

∣∣∂α(s+(2e1 ⊗ e1 − Id)Dn +D2
n

)∣∣2
=

3∑
α=1

∣∣s+(2e1 ⊗ e1 − Id)∂αDn + 2s+∂α(e1 ⊗ e1)Dn + ∂α(D2
n)
∣∣2

=
3∑

α=1

{
s2

+|∂αDn|2 + 4s2
+|∂α(e1 ⊗ e1)Dn|2 + |∂α(D2

n)|2

+ 4s2
+(2e1 ⊗ e1 − Id)∂αDn : ∂α(e1 ⊗ e1)Dn + 4s+∂α(e1 ⊗ e1)Dn : ∂α(D2

n)

+ 2s+(2e1 ⊗ e1 − Id)∂αDn : ∂α(D2
n)

}
=
(
s2

+|∇Dn|2 + 4s2
+|∇(e1 ⊗ e1)Dn|2 + |∇(D2

n)|2
)

+ Sn.

(4.42)

Here Sn is defined to be the sum of all the cross terms. Also in passing from the second line to
the third line we have used the fact that

|(2e1 ⊗ e1 − Id)∂Dn|2

=(2e1 ⊗ e1 − Id)∂Dn : (2e1 ⊗ e1 − Id)∂Dn

=(2e1 ⊗ e1 − Id)2 : (∂Dn)2 = |∂αD|2.
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By (4.39), (4.40) and (4.41), there is a constant C such that for n large enough and x ∈ B3/2\B1/2,
we have

(4.43) |Sn| ≤
C

R2
n

|∇Dn|+
C

R2
n

|∇Dn|2.

We obtain

(4.44)
C

R4
n

≥ |∇Yn|2 ≥ (s2
+ −

C

R2
n

)|∇Dn|2 −
C

R2
n

|∇Dn|,

where the first inequality is obtained out of (4.39) and the definition of Yn in terms of Xn. The
second inequality is obtained combining (4.42) and (4.43) for n large enough. We point out that
the constants C in (4.44) may represent different values, but they are all independent of x and n.
Finally, it is straightforward to deduce from (4.44) that, there exist N and a constant C such that,

|∇Dn| ≤
C

R2
n

, ∀n ≥ N, ∀x ∈ B3/2\B1/2,

and we conclude the proof.

�
Now we are in the position to establish a decay estimate for the radial derivative of Q. The

argument and the proof are presented in the same spirit as [41, Proposition 5.3], and will also
frequently utilize the results from [43].

Proposition 4.3. There exist positive constants R0 and C such that for any R ≥ R0,

(4.45)

ˆ
|x|>R

1

|x|

∣∣∣∣∂Q∂r
∣∣∣∣2 dx ≤ C

R2
.

Remark 4.2. We note that a stronger decay estimate of the radial derivative (see (4.69)) can be
derived using the blow-up technique. However, we still want to present the following more explicit
proof utilizing the asymptotic properties of Q at infinity, which we believe to be of independent
interest.

Proof. Firstly we point out that it suffices to prove (4.45) for Q] since |∇D(x)| ∼ |x|−3 as |x| → ∞
thanks to Proposition 4.2. By Proposition 3.5, there exists R0 such that Q](x) is well defined and
deg(Q], ∂BR) = 1 whenever R ≥ R0. Recall that Q satisfies the Euler-Lagrange equation in R3,

∆Q = −a2Q− b2[Q2 − 1

3
tr(Q)2 Id] + c2tr(Q)2Q

We also have the equation for Q] by [43, Proposition 2],

∆Q] =− 2

s2
+

|∇Q]|2Q] +
2

s+

[ 3∑
α=1

(∇αQ])2 − 1

3
|∇Q]|2 Id

]
2

−
[
T−1

( 1

s+
Q] − 2

3
Id
)
W −W

( 1

s+
Q] − 2

3
Id
)
T−1

]
,

(4.46)

where

W = 2∇Q]∇[(Q])−1Q]Q] − 2Q]∇[(Q])−1Q]∇Q]

− 1

s+
Q

3∑
α=1

(∇αQ])2 +
1

s+

3∑
α=1

(∇αQ])2Q,
(4.47)

2In reference [43] a different form is used for the first line, namely the expression in (iv) Corollary 1, which is just
the equation for the limit harmonic map. The form we use is an equivalent one, which is the form (ii) in Corollary 1.
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(4.48) T = Q− 2

9
s+ tr[(Q])−1Q] Id + β

[ 1

s+
Q] +

1

3
Id
]
,

and β is an arbitrary nonzero real number.
We note that because Q is bounded in L∞ and close to N when |x| > R0, we have that there

exists a constant C̃ depending only on a2, b2, c2 and how close the Q is to N such that

(4.49) |T−1
( 1

s+
Q] − 2

3
Id
)
|, |
( 1

s+
Q] − 2

3
Id
)
T−1| ≤ C̃

Recall the following decomposition

(4.50) Q = Q] +D

and then we have:

W = 2∇Q]∇[(Q])−1D]Q] − 2Q]∇[(Q])−1D]∇Q]

− 1

s+
D

3∑
α=1

(∇αQ])2 +
1

s+

3∑
α=1

(∇αQ])2D

− 1

s+
Q]

3∑
α=1

(∇αQ])2 +
1

s+

3∑
α=1

(∇αQ])2Q].

We claim that the last two terms vanish. Indeed, for any α = 1, 2, 3, we have ∇αQ] ∈ TQ]N ,
see for instance [43, Lemma 2] for a characterization of the tangent space and the normal space to
N at a point Q, which are denoted by TQN and (TQN )⊥ respectively. And then by [43, Lemma

3] we get that
∑3

α=1(∇αQ])2 ∈ ((TQ])N )⊥. On the other hand the characterization of the space

((TQ])N )⊥ in [43, Lemma 2] shows that the elements in this space commute with matrices Q],
hence the last two terms vanish as claimed.

We rewrite the equation (4.46) as

(4.51) ∆Q] = − 2

s2
+

|∇Q]|2Q] +
2

s+

[ 3∑
α=1

(∇αQ])2 − 1

3
|∇Q]|2 Id

]
+H(x)

where

(4.52) H(x) := −
[
T−1

( 1

s+
Q] − 2

3
Id
)
W −W

( 1

s+
Q] − 2

3
Id
)
T−1

]
= O(|x|−4), as |x| → ∞

where the last estimate results from Lemma 4.2 and relation (4.51) (without the last two terms

that vanish). We multiply (4.51) by ∂Q]

∂r . It is straightforward to verify that{
− 2

s2
+

|∇Q]|2Q] +
2

s+

[ 3∑
α=1

(∇αQ])2 − 1

3
|∇Q]|2 Id

]}
· ∂Q

]

∂r
= 0.

Thus we have

(4.53) 0 = (∆Q] −H(x)) · ∂Q
]

∂r
=

1

|x|

∣∣∣∣∂Q]∂r

∣∣∣∣2 + div

(
∇Q] · ∂Q

]

∂r
− 1

2
|∇Q]|2 x

|x|

)
−H(x) · ∂Q

]

∂r
.
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Integrating (4.53) on an annulus BR2\BR1 for some R2 > R1 > R0 and then performing inte-
gration by parts leads to

ˆ
BR2
\BR1

1

|x|

∣∣∣∣∂Q]∂r

∣∣∣∣2 dx− 1

2

ˆ
∂BR1

∣∣∣∣∂Q]∂r

∣∣∣∣2 dσ
=

1

2

ˆ
∂BR2

|∇TQ]|2 dσ −
1

2

ˆ
∂BR1

|∇TQ]|2 dσ −
1

2

ˆ
∂BR2

∣∣∣∣∂Q]∂r

∣∣∣∣2 dσ(4.54)

+

ˆ
BR2
\BR1

H(x) · ∂Q
]

∂r
dx,

where ∇T means the tangential gradient on the sphere. Note that by the second inequality of
(4.37) and the monotonicity formula (2.9) we have

ˆ ∞
0

(
1

R

ˆ
∂BR

∣∣∣∣∂Q]∂r

∣∣∣∣2 dσ
)
dR ≤ C̃

ˆ ∞
0

(
1

R

ˆ
∂BR

∣∣∣∣∂Q∂r
∣∣∣∣2 dσ

)
dR <∞.

So we can find a sequence {rk}∞k=1 such that

(4.55) rk →∞,
ˆ
∂Brk

∣∣∣∣∂Q]∂r

∣∣∣∣2 dσ → 0 as k →∞

Now we use the compactness property of Qrk (see Theorem 4.1 and Remark 4.1) and the closeness

between Qrk and Q]rk (see (4.34)) to derive that, up to a subsequence,

(4.56) Q]rk |S2 → Ψ(x)|S2 in C1(S2,N ).

Combining (4.55), (4.56) and the fact that Ψ is energy-minimizing among all degree-1 map from
S2 to N , we get

lim
k→∞

1

2

ˆ
∂Brk

|∇TQ]|2 dσ −
1

2

ˆ
∂BR1

|∇TQ]|2 dσ −
1

2

ˆ
∂Brk

∣∣∣∣∂Q]∂r

∣∣∣∣2 dσ ≤ 0

Substituting the above inequality into (4.54) gives

(4.57)

ˆ
|x|>R1

1

|x|

∣∣∣∣∂Q]∂r

∣∣∣∣2 dx− 1

2

ˆ
∂BR1

∣∣∣∣∂Q]∂r

∣∣∣∣2 dσ ≤ ˆ
|x|>R1

H(x) · ∂Q
]

∂r
dx ∀R1 ≥ R0

Note that by Young’s inequality and (4.52) we have
ˆ
|x|>R1

H(x) · ∂Q
]

∂r
dx ≤ 1

4

ˆ
|x|>R1

|x|2H(x) dx+

ˆ
|x|>R1

1

|x|2

∣∣∣∣∂Q]∂r

∣∣∣∣2 dx
≤ CR−3

1 +
1

R1

ˆ
|x|>R1

1

|x|

∣∣∣∣∂Q]∂r

∣∣∣∣2 dx, for some constant C > 0.

(4.58)

Combine (4.58) and (4.57) and write R1 = r to obtain

(4.59) (1− 1

r
)

ˆ
|x|>r

1

|x|

∣∣∣∣∂Q]∂r

∣∣∣∣2 dx− 1

2

ˆ
∂Br

∣∣∣∣∂Q]∂r

∣∣∣∣2 dσ ≤ Cr−3.

Multiplying the above inequality by 2r implies

(4.60)
d

dr

(
(r2 − 2r)

ˆ
|x|>r

1

|x|

∣∣∣∣∂Q]∂r

∣∣∣∣2 dx
)
≤ 2

ˆ
∂Br

∣∣∣∣∂Q]∂r

∣∣∣∣2 dσ + Cr−2.
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Denote

f(r) := (r2 − 2r)

ˆ
|x|>r

1

|x|

∣∣∣∣∂Q]∂r

∣∣∣∣2 dx.
Then the above inequality implies

f ′(r) ≤ 2
d

dr

(
− f

r2 − 2r

)
· r + Cr−2

⇒(1 +
2

r − 2
)f ′(r) ≤ 4(r − 1)

(r − 2)2r
f(r) + Cr−2

⇒ f ′(r)

f(r) + 1
≤ Cr−2

⇒ ln
f(r) + 1

f(R0) + 1
≤ C

R0
⇒ f(r) ≤ C,

(4.61)

for any r > R0 with R0 sufficiently large. The estimate (4.45) follows immediately from (4.61).

�
Now we are ready to prove the uniqueness of the tangent map for Q.

Theorem 4.2. Let Q be the limiting map defined in Proposition 3.5. Then the tangent map at
infinity is unique, i.e. there exists a Ψ which is of the form (4.32), such that

lim
R→∞

‖QR −Ψ‖H1
loc(R3) = 0(4.62)

lim
R→∞

‖QR|S2 −Ψ|S2‖Ck(S2) = 0, ∀k ∈ N+(4.63)

Proof. It suffices to prove (4.62), since (4.63) is a direct consequence of (4.62) and Remark 4.1. We
prove by contradiction. Assume the statement is false, then there would be two harmonic maps Ψ1

and Ψ2 and two sequences of radiuses {r1
i }∞i=1 and {r2

j}∞j=1 satisfying

lim
i→∞

r1
i = lim

j→∞
r2
j =∞,

Qr1
i
→ Ψ1, Qr2

j
→ Ψ2 in the sense of C2

loc.

We take i0 and j0 be the integers such that for any i ≥ i0 and j ≥ j0,

‖Qr1
i
−Ψ1‖L2(S2) ≤

1

8
‖Ψ1 −Ψ2‖L2(S2),

‖Qr2
j
−Ψ2‖L2(S2) ≤

1

8
‖Ψ1 −Ψ2‖L2(S2),

‖Qr1
i
−Qr2

j
‖L2(S2) >

1

2
‖Ψ1 −Ψ2‖L2(S2).(4.64)

We fix the R0 as in Proposition 4.3. For any R0 ≤ R1 < R2 ≤ 2R1, we compute
ˆ
S2

|QR1(σ)−QR2(σ)|2 dσ ≤
ˆ
S2

(
(R2 −R1)

ˆ R2

R1

∣∣∣∣∂Q(rσ)

∂r

∣∣∣∣2 dr
)
dσ

≤
ˆ
S2

(ˆ R2

R1

r

∣∣∣∣∂Q∂r
∣∣∣∣2 dr

)
dσ

=

ˆ
R1<|x|<R2

1

|x|

∣∣∣∣∂Q∂r
∣∣∣∣2 dx ≤ C

R2
1
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Now we fix R1, and assume R2 be an arbitrary large radius such that 2kR1 < R2 ≤ 2k+1R1 for
some non-negative integer k. Then we have

‖QR1 −QR2‖L2(S2) ≤
k−1∑
i=0

‖Q2iR1
−Q2i+1R1

‖L2(S2) + ‖QR2 −Q2kR1
‖L2(S2)

≤
k∑
i=0

C

2iR1
<

C

R1

As a consequence, we have that

lim
i,j→∞

‖Qr1
i
−Qr2

j
‖L2(S2) = 0

which yields a contradiction with (4.64). The proof is complete.

�
Recall our assumption (3.15) at the very beginning, which says

lim
n→∞

‖Qεn(x)− s+(
x

|x|
⊗ x

|x|
− 1

3
Id)‖L∞(B 3

2 rn
\B 1

2 rn
) = 0

After a change of variable (making rnan as the “central point”), we have

lim
n→∞

‖Qεn(x+ rnan)− s+(
x+ rnan
|x+ rnan|

⊗ x+ rnan
|x+ rnan|

− 1

3
Id)‖L∞(B 4

3 rn
\B 2

3 rn
) = 0,

where an is defined in (3.28). Note that when 2
3rn ≤ |x| ≤

4
3rn, x+rnan

|x+rnan| is very close to x
|x| given

|an| sufficiently small (see the remark of an → 0 after (3.28)). As n→∞, we obtain

(4.65) lim
n→∞

‖Qεn(x+ rnan)− s+(
x

|x|
⊗ x

|x|
− 1

3
Id)‖L∞(B 4

3 rn
\B 2

3 rn
) = 0

On the other hand, by Theorem 4.1 and Theorem 4.2, we have that

(4.66) lim
R→∞

‖Q(x)− s+(n⊗ n− 1

3
Id)‖L∞(B2R\BR) = 0

where n(x) = T ( x
|x|) for some T ∈ O(3). Since Q is obtained by taking a C2

loc limit of Qn(x) (see

(3.30)), for any fixed R it holds that

(4.67) lim
rn
2εn
≥R,

n→∞

‖Qεn(x+ rnan)−Q(
x

εn
)‖L∞(B2Rεn\BRεn ) = 0

(4.66) and (4.67) together imply that

(4.68) lim
R→∞

 lim
rn
2εn
≥R,

n→∞

‖Qεn(x+ rnan)− s+(n(x)⊗ n(x)− 1

3
Id)‖L∞(B2Rεn\BRεn )

 = 0.

Comparing (4.65) and (4.68) we knows that Qεn(x+ rnan) is close to s+( x
|x| ⊗

x
|x| −

1
3 Id) at |x+

rnan| ∼ rn, but when |x+rnan| ∼ Rεn for large enough R, it is asymptotically s+(n(x)⊗n(x)− 1
3 Id)

as n → ∞. A natural question would be whether or not n(x) = x
|x| , so that the behavior of Qεn

on the outer sphere ∂Brn(rnan) will match that of the inner sphere ∂BRεn(rnan). The answer is
positive.
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Theorem 4.4. Let Q be the limiting map in Proposition 3.5 and Ψ is its unique tangent map at
infinity. Then Ψ = Φ, i.e.

Ψ = s+(
x

|x|
⊗ x

|x|
− 1

3
Id).

To prove the theorem, we need the following lemma, which gives crucial estimates on the decay
rate of the radial derivatives.

Lemma 4.5. Let Qεn be the sequence of minimizers such that Qεn(εnx + rnan) → Q in C2
loc(R3)

with rn, εn satisfying (3.12), (3.13), (3.14) and (3.15), an as defined in (3.28). Then there is a
positive constant C, such that for any εn and R ≤ rn

2εn
, it holds that

(4.69)

ˆ
{Rεn≤|x|≤2Rεn}

1

|x|

∣∣∣∣∂Qεn(x+ rnan)

∂r

∣∣∣∣2 dx ≤ C

R4
.

Proof. Without loss of generality, we can assume an = 0 for every n, since we only need the property
|an| → 0 as n→∞ and the exact location of an won’t affect our proof.

Assume such constant C does not exist. Then we can find a sequence εk, Rk ≤ rk
2εk

(in this

sequence, one εk can appear repeatedly) such that

(4.70) R4
k

ˆ
{Rkεk≤|x|≤2Rkεk}

1

|x|

∣∣∣∣∂Qεk∂r

∣∣∣∣2 dx→∞, as k →∞.

In order that (4.70) holds, we must have

(4.71) lim
k→∞

εk = 0, lim
k→∞

Rk =∞.

Here we briefly justify these two limits. Firstly if lim sup
k→∞

εk > 0, then there exists an integer i0

such that εk = εi0 > 0 holds for infinitely many k. For all such k, Rk is uniformly bounded

since we require Rk ≤ rk
2εk

=
ri0
2εi0

. Then R4
k

´
{Rkεk≤|x|≤2Rkεk}

1
|x|

∣∣∣∂Qεk∂r

∣∣∣2 dx is also bounded, which

contradicts with (4.70). Secondly, if Rk doesn’t go to infinity, then we assume lim inf
k→∞

Rk = R0 <

∞. By monotonicity formula (2.9) we know
´
Rkεk≤|x|≤2Rkεk

1
|x|

∣∣∣∂Qεk∂r

∣∣∣2 dx is uniformly bounded.

And this will remain bounded after multiplying bounded R4
k, which also contradicts with (4.70).

Therefore Rk has to go to infinity.
Now we define

Pk := Qεk(Rkεk · x).

Then Pk satisfies the following properties.

(1) Pk minimizes the functional
´
B3
{1

2 |∇Q|
2 +R2

kfb(Q)} dx.

(2) For any r ∈ (0, 3), we have

lim
k→∞

1

r

ˆ
Br

1

2
|∇Pk|2 +R2

kfb(Rk) = 8s2
+π.

The fact that the limit on the left-hand side is bounded from above by 8s2
+π comes from

(3.17) and the monotonicity formula; the lower bound by 8s2
+π follows from the C2

loc con-
vergence of Qεn(εnx) to Q(x), the asymptotic behavior of Q(x) for large |x|, and the mono-
tonicity formula as well.

(3) For any 0 < r1 < r2 ≤ 3, we have

(4.72) lim
k→∞

ˆ
{r1≤|x|≤r2}

1

|x|

∣∣∣∣∂Pk∂r
∣∣∣∣2 dx = 0
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This property follows from Property 2 and the monotonicity formula (2.9).
(4) For any r > 0, it holds that

lim
k→∞

sup
x∈B3\Br

dist(Pk(x),N ) = 0.

This follows from (3.19) and Rk →∞.

All these properties enable us to exploit similar arguments as in the proofs of Lemma 3.3 and
Theorem 4.1 to get the strong H1

loc convergence of Pk to P , where P ∈ H1
loc(B3,N ) is a homogeneous

minimizing harmonic map of degree 1. In addition P has the form

P = s+(m(x)⊗m(x)− 1

3
Id), m = Tm

(
x

|x|

)
for some Tm ∈ O(3).

We now apply [43, Proposition 9] to get

‖Pk − P‖C2(B2\B1) ≤
C

R2
k

, for some constant C.

Consequently, we calculate

R4
k

ˆ
{Rkεk≤|x|≤2Rkεk}

1

|x|

∣∣∣∣∂Qεk∂r

∣∣∣∣2 dx = R4
k

ˆ
B2\B1

1

|x|

∣∣∣∣∂Pk∂r
∣∣∣∣2 dx

= R4
k

ˆ
B2\B1

1

|x|

∣∣∣∣∂(Pk − P )

∂r

∣∣∣∣2 dx ≤ C,
which contradicts with (4.70). The proof is complete.

�

Proof of Theorem 4.4. We prove by contradiction. Assume the conclusion is false, then

(4.73) ‖Ψ− s+(
x

|x|
⊗ x

|x|
− 1

3
Id)‖L2(S2) = σ > 0.

Because Ψ is the tangent map of Q, we can find a large enough r0, such that

r0 >
2C1/4

σ1/2
, C is the constant in (4.69)

‖Q(r0x)−Ψ‖L2(S2) <
σ

16
.

Also, recall that Q is obtained by taking limit of Qn (see (3.30) and Proposition 3.5), we can find
a large integer N0, such that for any n ≥ N0,

‖Qεn(r0εnx+ rnan)−Ψ(x)‖L2(S2) <
σ

8
,(4.74)

‖Qεn(rx+ rnan)− s+

(
x

|x|
⊗ x

|x|
− 1

3
Id

)
‖L2(S2) <

σ

8
∀r ∈ [

1

2
rn,

3

2
rn],(4.75)

where for (4.75) we used (3.15) and the fact that an → 0, see the definition (3.28) of an and the
discussion right after (3.28). Using (4.73), (4.74) and (4.75) we have for n ≥ N0, r ∈ [1

2rn,
3
2rn],

(4.76) ‖Qεn(rx+ rnan)−Qεn(r0εnx+ rnan)‖L2(S2) ≥
3δ

4
.
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We define kn to be the largest integer such that kn ≤ | log2( rn
r0εn

)| Following the same argument as
in the proof of Theorem 4.2, we have

‖Qεn(r0εnx+ rnan)−Qεn(2knr0x+ rnan)‖L2(S2)

≤
kn∑
j=0

‖Qεn(2jr0εnx+ rnan)−Qεn(2j+1r0εnx+ rnan)‖L2(S2)

≤
kn−1∑
j=0

(ˆ
{2jr0εn≤|x|≤2j+1r0εn}

1

|x|

∣∣∣∣∂Qεn∂r

∣∣∣∣2 dx
)1/2

≤
kn−1∑
j=0

C1/2

4jr2
0

≤ 2C1/2

r2
0

<
σ

2
.

Here we have used Lemma 4.5 and r0 >
2C1/4

σ1/2 . Note that the result of the calculation above already

contradicts (4.76), which completes our proof of Theorem 4.4.

�

5. Uniform convergence outside shrinking regions

Using all the characterizations of the limit map Q, we can further prove the following convergence
result.

Theorem 5.1. Let Ω be an open bounded subset of R3 and Qε be a minimizer of the energy
functional Iε[Q](2.1) with the boundary condition (2.2). For any sequence εn → 0, one can find a
subsequence, still denoted by {εn}, and a sequence of points {xn}, such that

(1) Qεn → Q∗ in H1(Ω), where Q∗ is a minimizer of (2.7);

(2) xn → x0 as n→∞, where x0 ∈ Sing(Q∗);

(3) Let Br(x0) be a small neighborhood of x0 that doesn’t contain other singularities of Q∗.
Then for any sequence of radiuses Rn such that lim

n→∞
Rn =∞ and Rnεn < r, there holds

lim
n→∞

(
sup

Rnεn≤|x|≤r
|Qεn(x+ xn)−Q∗(x+ x0)|

)
= 0.

Proof. The proof will use compactness arguments similar to those that haven been applied several

times before. Without loss of generality, we assume x0 = 0 andQ∗(x) ∼ Φ(x) = s+

(
x
|x| ⊗

x
|x| −

1
3 Id
)

when x approaches 0. First the existence of H1 convergent subsequence Qεk is given in [40] (see
Theorem 2.2). Taking up to a subsequence, we can find a sequence of radii {rn} such that {rn, εn}
satisfy (3.12), (3.13), (3.14) and (3.15). Let an be as defined in (3.28) and we simply take xn = rnan.
Then xn → 0 is guaranteed by the definition and Proposition 3.2.

Now we are ready to verify the Property (3) in the theorem. We argue by contradiction. Suppose
there exists a subsequence of {εn}, still denoted by {εn}, and a sequence of points {yn} such that

lim
n→∞

|yn|
εn

=∞, |yn| ≤ r

|Qεn(yn + xn)−Q∗(yn)| ≥ δ > 0, for some constant δ(5.77)
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First it is obvious that (5.77) implies |yn| → 0, otherwise it will conflict with the uniform
convergence result of Qεn to Q∗ on any compact set K that doesn’t contain any point in Sing(Q∗).
Thus we get

(5.78) lim
n→∞

|Q∗(yn)− Φ(yn)| = 0.

Next by (3.14) we only need to consider the case yn + xn ∈ Brn . Now we define

Zn(x) := Qεn(|yn|x+ xn).

Then by exactly the same argument as in the proof of Lemma 4.5 to derive the convergence of
{Pk}, we can extract a subsequence, still denoted by {Zn}, such that

Zn(x)→ Ψ(x) in H1(B2) ∩ C2(B3/2\B1/2),

Ψ(x) = s+(n⊗ n− 1

3
Id), n = T

(
(
x

|x|

)
) for some T ∈ O(3).

Using Lemma 4.5 and arguing in the same way as in the proof of Theorem 4.4, one can easily verify
that

T

(
x

|x|

)
=

x

|x|
, i.e. Ψ(x) = Φ(x).

Therefore we have

(5.79) lim
n→∞

|Qεn(yn + xn)− Φ(yn)| = 0.

Combining (5.78) and (5.79) yields a contradiction with (5.77), which completes our proof.

�

6. Data availability statements

Data sharing not applicable to this article as no datasets were generated or analysed during the
current study.
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