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Abstract—Wireless propagated signals encapsulate rich infor-
mation for high-accuracy localization and environment sensing.
However, the full exploitation of positional and environmental
features as well as their correlation remains challenging in
complex propagation environments. In this paper, we propose
a methodology of variational inference over deep neural net-
works for concurrent distance estimation and environmental
identification. The proposed approach, namely inter-instance
variational auto-encoders (IIns-VAEs), conducts inference with
latent variables that encapsulate information about both distance
and environmental labels. A deep learning network with instance
normalization is designed to approximate the inference concur-
rently via deep learning. We conduct extensive experiments on
real-world datasets and the results show the superiority of the
proposed IIns-VAE in both distance estimation and environmen-
tal identification compared to conventional approaches.

Index Terms—Wireless signals, variational inference, deep
learning, distance estimation, environmental identification.

I. INTRODUCTION

W IRELESS propagated signals can offer rich informa-
tion, such as positional and environmental features,

related to the situation awareness of a user equipment [1]–[4].
Situational awareness is targeted to obtain accurate and reliable
information for enhanced localization [5]–[8] and environment
sensing [9]–[12]. Such techniques can enable a wide range of
wireless applications, including autonomous driving [8], crowd
sensing [13], environmental monitoring [14], and smart cities
[15]. Hence, effective methods for high-accuracy localization
and environmental sensing in complex propagation environ-
ments are increasingly important for wireless applications,
promising to open a new paradigm for beyond fifth-generation
(B5G) network requirements [16].
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Fig. 1. Illustration of the proposed method. Distance and environmental
features can be exploited from signals via variational inference on a graphical
model. The latent variable for different environmental features can lead to
different signal characteristics.

Localization algorithms are commonly based on range-
related measurements, where the first estimated delay is
adopted as the line-of-sight (LOS) path to perform distance
estimation [17]. Though easy to implement, such method tend
to introduce a positive bias in distance estimation caused
by non-line-of-sight (NLOS) propagation [18], as well as a
cluttering noise due to the multi-path effect [7], [19]. Multiple
distance estimation techniques have been proposed to improve
the estimation performance via the exploration of information
in signal measurements. Conventional methods are mostly
model-based, with a simplified model for signal propagation
mechanism [20]–[22]. Such modeling leads to a transparent
interpretation, but often does not fully extract the wireless
signal information. Existing learning-based methods, based
on Support Vector machine (SVM) [9], [23], and Gaussian
process regression (GPR) [24], formulate estimation as a re-
gression problem from physical features (PFs) of signals [25].
These features, however, may still lose information inherent
in the high-dimensional signal measurements [25], [26].

The environmental identification problem is often conducted
separately to distance estimation in existing works. Such tech-
niques mostly utilize statistical features for coarse LOS and
NLOS detection [9]. As in distance estimation, these features
are either hand-crafted conducted by SVM [10], relevance
vector machine (RVM) [11], or data-driven conducted by
neural networks [12]. It has seldomly been addressed that
more detailed identification tasks can also be conducted via
propagated signals. For example, the detection of different
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obstacles and geometric layouts of the room are essential
for advanced wireless applications. Such advanced tasks can
be enabled by the exploitation of high-level environmental
semantics.

Recently, several deep learning (DL) methods have been
proposed for location-related tasks. These methods take raw
high-dimensional signal measurements as input and directly
learn the mapping between these measurements and the cor-
responding distances [27]–[29]. Benefiting from a more thor-
ough exploitation of signals, these methods show significant
improvements compared to conventional methods [28], [29].
However, such methods assume an oversimplified one-to-
one mapping between the distance and the measurements,
neglecting other freedom in the signal propagation mechanism
[30], [31]. Such deficiency in methodology tends to cause
overfitting, where algorithms trained on data from one site
could hardly generalize to a different site. Therefore, it is
essential for DL-based methods to develop algorithms that can
take environmental features into consideration and generalize
well to different environmental settings.

In this paper, we propose a methodology of variational
inference over deep neural networks for concurrent distance
estimation and environmental identification, as depicted in
Fig. 1. The methodology is further implemented by a novel
variational auto-encoder (VAE). The inferred distance and
environmental scenario can hence benefit further use in lo-
calization and environmental sensing. The main contributions
of the paper are as follows.

• We propose a method for concurrent inference of distance
and environmental scenario together with the correspond-
ing latent variable model (LVM). The model accounts
for both distance and environmental features in wireless
signals and their inter-relations.

• We design a VI-driven DL algorithm, namely Inter-
Instance VAE (IIns-VAE), for the concurrent distance
estimation and environmental identification. Integrated
with learning techniques, the algorithm can conduct infer-
ence on raw signals with effective generalization across
different scenarios.

• We conduct extensive experiments that show the superior-
ity of the proposed approach in both distance estimation
and environmental identification compared to ML and DL
approaches.

The remaining sections are organized as follows. Section II
describes the problem of concurrent distance estimation and
environmental identification. Section III formulates the prob-
lem as concurrent inference in a LVM. Section IV proposes
the variational learning method for the inference and presents
IIns-VAE, a DL network structure to conduct the inference.
The performance of the approach is evaluated in Section VI.
Finally, Section VII concludes the paper.

Notations: random variables (RVs) are displayed in sans
serif, upright fonts and their realizations in serif, italic fonts;
vectors are denoted by bold lowercase letters; a RV and its
realization are denoted by x and x; a random vector and
its realization are denoted by x and x; x[j] denotes the jth
component of the vector x; p(x|y) denotes the conditional
distribution of x given y = y; N (x;µ,Σ) denotes the PDF of

Fig. 2. Illustration of triangulation-based localization. The position of the
target agent is inferred to be at the intersection of circles defined by the
estimated distances. The NLOS condition can lead to a biased distance
estimate that results in inaccurate localization.

a Gaussian RV x with mean µ and covariance matrix Σ; E{·}
denotes the expectation of the argument, and Ex{·} denotes
the expectation with respect to RV x; sets are denoted by
calligraphic fonts, e.g., D.

II. PROBLEM STATEMENT

In this section, we introduce the distance estimation and
environmental identification problem as well as the evaluation
metrics.

A. Signal Model in Complex Environments

Complex propagation environments refer to wireless envi-
ronments with NLOS conditions, multipath effects, and heavy
scattering of signals [7], [32], such as indoor scenarios [33],
[34]. A widely-adopted model of the received signal for range-
based localization is as an aliased version of multiple replicas
of transmitted signal plus additional noise, given by

x(t) =
L∑

l=1

αls(t− τl) + n(t), t ∈ [0, Tob] (1)

where s(t) is the transmitted signal, L is the number of multi-
path components, αl and τl are the amplitude and propagation
delay of the lth component, respectively, n(t) is an additive
white Gaussian noise (AWGN), and [0, Tob] is the observation
interval. The signal after sampling can be represented as a
random vector x ∈ RM , where M denotes the length of the
signal.

The relationship between the true distance d and delays of
the propagation path is given by

τl =
1

c
(d+ bl) (2)

where c is the propagation speed of the signal, and bl > 0
is the range bias of the l−th path. The associated signal
component with l = 1 is called the first path (FP) component,
while components with l > 1 are called multipath components
(MPCs). The agent can compute its position from distance
estimates by means of trilateration, via the intersection of
circles determined by the estimated distances from anchors.
The bias of distance estimation would deteriorate localization
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performance and results in an inaccurate position estimation,
as depicted in Fig. 2.

B. Concurrent Distance Estimation and Environmental Iden-
tification

We consider concurrent distance estimation and environ-
mental identification problem, based on the received signal
measurements. We denote the real distance between an anchor
and an agent as d, and the label of environmental scenarios
where the signal is measured as k, with d ∈ [0, dmax] and
k ∈ K = {0, 1, . . . ,K−1}. The meaning of the environmental
scenario label set K can be different depending on the case.
For example, in a roughly labeled case, the environmental label
denotes LOS and NLOS conditions, i.e., k ∈ KLOS = {0, 1}
with k = 0 for LOS and k = 1 for NLOS conditions. The
environmental label set can have more elaborated versions, in-
cluding Kobs for different blocking obstacles, as well as Kroom
for different room geometric characteristics. In this paper, we
develop techniques to concurrently estimate distance d and
identify environmental scenario k given signal measurements
x. Moreover, we take both rough and elaborated label sets into
consideration in experiments.

C. Evaluation Metrics

We introduce the evaluation metrics utilized for the estima-
tion and identification problem. For distance estimation, we
adopt two metrics for performance evaluation: the root mean
square error (RMSE) and the mean absolute error (MAE).
Specifically, the RMSE and MAE measured for N instances
are defined as

RMSE =

√√√√ 1

N

N∑
i=1

(d̂(n) − d(n))2 (3)

MAE =
1

N

N∑
i=1

∥d̂(n) − d(n)∥ (4)

where n is the index of instances with real distance d(n) and
estimated distance d̂(n), n = 1, 2, . . . , N .

For environmental identification, we utilize averaged iden-
tification accuracy for performance evaluation. Specifically,
suppose the estimated label of the environmental scenario is
k̂ and the real environmental label is k, the accuracy for N
instances is defined as

ACC =
1

N

N∑
n=1

1(k̂(n) = k(n)) (5)

where k, k∗ ∈ {1, 2, ...,K}, 1(k(n) = k(n)∗) is the indicator
function and equal to one if the the nth prediction k(n) equals
to the true environmental label k∗.

We further consider the execution time, the floating point
operations (FLOPs), and the total parameter number to evalu-
ate the computational efficiency and complexity of the DL
network. These metrics provide insights for the potential
employment in different real-world devices.

(a) (b)

Fig. 3. Graphical models for the inference of distance d and propagation
environment k based on signal measurements x. Solid lines denote the
generative process and dashed lines denote the inference process. (a) The
graphical model for conventional approaches, where inference problems are
considered separately. (b) The graphical model for concurrent inference of
distance d and propagation environment k.

III. LATENT VARIABLE MODEL FOR CONCURRENT
INFERENCE

In this section, we formulate the concurrent distance estima-
tion and environmental identification as an inference problem
on an LVM. We first introduce the model motivations driven by
experimental observations and describe the LVM with latent
variables for distance and environmental features. Then the VI
method is introduced to conduct inference on an LVM. Note
that though the method is formulated with distance-related
signal measurements, it is applicable to signal measurements
related to any positional metrics (such as angle, velocity, and
acceleration).

A. Domain Knowledge of Environment

Complex propagation environments have a critical influence
on signal measurements, and in turn on the distance estimate.
We analyze their effects from the perspectives of both physical
mechanisms and observations. We also conducted empirical
analysis on real-world data in Section VI to further validate
such impacts.

The NLOS condition is a most dominant environmental
aspect for signal measurements in complex propagation envi-
ronments. Generally, the NLOS condition can be detected from
the signal distortion, including delay increase and reduced
power in the first path (FP). More specific environmental
features associated with NLOS condition can be analyzed
in terms of the material of blocking obstacles. Since the
propagated signals are electromagnetic waves, the reflection
and transmission effects depend mainly on the electromagnetic
properties of the obstacle materials. Specifically, the blocking
materials in NLOS path can be classified into two categories:
insulators and conductors. The insulators are relatively trans-
parent to signals, resulting in less severe NLOS impact to
signals. The conductors, on the other hand, will reflect most
of the signal and cause significant excess delay and power
reduction.

The multipath effect is another essential environmental
aspect, especially in complex propagation environments like
indoors. For example, rooms with larger size and sparser
obstacles tend to have fewer MPCs from the walls. Distance
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estimate in such cases can benefit from the usage of MPCs as
side information.

NLOS condition and multipath effect directly impact the
received signals, causing distortion in FP and MPCs. There-
fore, such received signals can be used for the identification of
different environmental scenarios. Specifically, the NLOS path
in observed signals can be used for obstacle-level environmen-
tal identification. The signal measurements with MPCs can
be used for room-level environmental identification. Several
works have modeled mathematically the relationship between
wireless propagated signals and different environmental sce-
narios [33], [35]–[37]. In particular, the additional position-
related information yielded by geometrically modeled MPC
is quantified in signal-to-interference-plus-noise ratio (SINR)
values in [35].

Signal measurements contain both distance features and
environmental features. The former can be used for distance
estimation with accuracy influenced by the latter, whereas the
latter can be used for the identification of different environ-
mental scenarios. Motivated by these observations, we propose
a methodology to conduct variational inference over deep
neural networks for distance estimation and environmental
identification. Such concurrent inference can be conducted
jointly, and the usage of complementary information can
improve inferences.

B. LVM for Concurrent Inference

Let x denote the RV for signal measurements. According
to the analysis above, we define two latent variables for the
generation of x. These variables are related to distance and
environmental features inherent in x, denoted as positional
variable zd and environmental variable ze, respectively. The
LVM contains the signal measurements variable x, latent
variables zd, ze, label variable d for distance, and label variable
k for propagation environment.

Assumption 1. (Distance and Environmental Latent Vari-
ables) In the following we use the assumptions:

1) In the absence of measurements, the distance d and
environmental scenario k are independent,

p(d, k) = p(d)p(k) (6)

2) The latent variable zd is independent of k and ze given
distance d, and the latent variable ze is independent of
d and zd given environmental label k,

p(zd, ze|d, k) = p(zd|d)p(ze|k) (7)

3) The signal measurement x is independent of d and k
given zd and ze,

p(x|zd, ze, d, k) = p(x|zd, ze) (8)

Such assumptions describe the generative process of signal
measurements x in the LVM, graphically shown as solid lines
in Fig. 3b. The process implies the decomposition

p(x, zd, ze, d, k) = p(d)p(k)p(zd|d)p(ze|k)p(x|zd, ze) . (9)

Therefore, the inference for distance and environmental sce-
nario can be conducted by the following sequential steps:

i) Estimate latent variables zd and ze based on signal mea-
surements x; ii) Estimate the distance d based on distance
features zd; iii) Estimate the propagation environment k based
on environmental features ze.

C. Variational Inference Method

According to the LVM above, the inference for distance
and propagated environment is conducted by first estimating
latent variables zd and ze, and then labels d and k from latent
variables. Based on the VI method, we construct the variational
distribution q(zd, ze|x;ϕ) to approximate the intractable pos-
terior p(zd, ze|x). Specifically, we take q(zd, ze|x;ϕ) from a
parametric family satisfying (10) with its PDF differentiable
almost everywhere with respect to x and ϕ.

In the offline step, we first estimate the distribution
p(zd, ze|x) given x as observed data. We then estimate distri-
butions p(d|zd) and p(k|ze). In the online step afterwards, the
estimation of latent variables zd, ze, and target variables d, k
can be achieved by maximum a posterior (MAP) estimation
given the distributions. In order to specify the VI method,
we further make the following assumptions for algorithm
derivation.

Assumption 2. (Parametric Variational Distributions) In the
following we use the assumptions:

1) According to the mean-field assumption in VI [38], we
assume that the variational distributions of the two latent
variables are independent as follows

q(zd, ze|x;ϕ) = q(zd|x;ϕd)q(ze|x;ϕe) (10)

with ϕ = {ϕd,ϕe} for convenience.
2) For network parameter learning, we assume that

the conditional distribution on measurements variable
p(x|zd, ze;θ) is from a parametric family of distribu-
tions with parameters θ. The conditional distributions
on label variables p(d|zd;φd) and p(k|ze;φe) are from
parametric families with φd and φe. Likewise, their
PDFs are assumed to be differentiable almost every-
where with respect to both conditioned variables and
parameters.

The estimation of unknown distributions can be conducted
by VI technique. The following proposition gives the evidence
lower bound (ELBO) that enables such estimation.

Proposition 1: If Assumptions 1-2 are satisfied, we have that
for each instance-labels pair (x, d, k),

LELBO(x, d, k;ϕ,θ,φ) = Eq(zd,ze|x;ϕ)

{
log p(x|zd, ze;θ)

}
−DKL

(
q(zd, ze|x;ϕ)

∣∣∣∣p(zd, ze)
)

+ Eq(zd|x;ϕ)

{
log p(d|zd;φ)

}
+ Eq(ze|x;ϕ)

{
log p(k|ze;φ)

}
≤ log p(x, d, k) .

(11)
In addition, the bound in (11) holds with equality if and only
if q(zd, ze|x, d, k) matches the true posterior p(zd, ze|x, d, k)
perfectly, i.e., q(zd, ze|x, d, k) = p(zd, ze|x, d, k) for the
instance-labels pair (x, d, k).

Proof: See Appendix A.
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Fig. 4. Network structure of the proposed IIns-VAE for concurrent distance estimation and environmental identification. The received signal x is disentangled
to distance feature zd and environment feature ze by the encoder, and reconstructed by the decoder. The estimator net utilizes zd for distance estimation, while
the identifier net utilizes ze for environmental identification. The network parameters are trained on data under the guidance of the ELBO in the proposed
LVM.

The ELBO described above is a lower bound on the log-
likelihood of the observed data, with the gap being the
KL divergence of the approximate from the true posterior.
Therefore, maximum likelihood (ML) estimation can be ap-
proximated by maximizing the ELBO with respect to the
unknown parameters. Suppose we are given a dataset D =
{x(n), d(n), k(n)}Nn=1 with N i.i.d. data instances of signal
measurements x, real distance d, and environmental label k for
parameters learning. The ELBO can be approximated by the
sampling average on the instances in D, denoted as LELBO,D.
Such empirical ELBO can then be used as the objective
function to approximate ML estimation on the dataset D with
respect to the intractable distributions. The estimation problem
is then transformed to an optimization problem on distribution
parameters, given as follow,

ϕ∗,θ∗,φ∗ = arg max
ϕ,θ,φ

LELBO,D(x, d, k;ϕ,θ,φ). (12)

Once the parameters ϕ∗, θ∗ and φ∗ are obtained in the
offline phase, the concurrent inference are conducted by the
following steps:

1) Estimate distance and environmental features zd and ze
from x based on q(zd, ze|x;ϕ∗).

2) Estimate distance d based on p(d|zd;φ
∗
d) with distance

feature zd;
3) Estimate environmental scenario k based on p(k|ze;φ

∗
e )

with environmental feature ze.

In the following, we describe the process to obtain optimal
parameters ϕ, θ and φ for the unknown distributions via deep
learning.

IV. IINS-VAE NETWORK STRUCTURE

This section proposes a DL network, namely the Inter-
Instance VAE (IIns-VAE), to implement the concurrent infer-
ence of distance and environmental scenario based on raw
signal measurements. We first transfer the objective function
of VI to a parametric form, serving as the loss function for
network training. Then a task-specific network structure is
designed to conduct the inference, with instance normalization
(IN) layers [39].

A. VAE-Based Network Structure

The VI method is targeted to estimate the variational poste-
rior distribution q(zd, ze|x;ϕ), as well as the intractable condi-
tional distributions for likelihoods p(x|zd, ze;θ), p(d|zd;φd),
and p(k|ze;φe). We learn a deep generative network to
approximate VI.

The network structure is presented in Fig. 4. The overall
structure consists of four modules: a variational encoder with
network parameters ϕ, a variational decoder with θ, a distance
estimator network with φd, and an environment identifier
network with φe. Note that the general framework proposed
for variational learning can be utilized with general network
structures. In particular, the approach proposed could also be
implemented using other types of neural networks includ-
ing residual network (ResNet) and long-short term memory
(LSTM) networks.

In the offline training phase, the encoder takes in signal
measurements x and disentangles features zd and ze via
network parameters ϕ, i.e., zd, ze ∼ q(zd, ze|x;ϕ). The
decoder samples features zd and ze as inputs and produces
the reconstructed x via network parameters θ, i.e., x̂ ∼
p(x|zd, ze;θ). The estimator net samples distance features zd

and estimates d with parameters φd, i.e., d̂ ∼ p(d|zd;φd).
The identifier, similarly, samples environment feature ze and
produces estimates of propagation environment k via φe, i.e.,
k̂ ∼ p(k|ze;φe). The network learn these parameters with a
loss derived from ELBO to guide training as described in the
following.

B. Loss Function from Empirical ELBO

The following shows the specific loss function used to train
a deep neural network shown in Fig. 4. Such loss function
is obtained from the ELBO in (11) using the following
approximations.

1) The prior over each latent variable is modeled by an
isotropic multivariate Gaussian:

p(zd) = N (zd;0, ϵdI)

p(ze) = N (ze;0, ϵeI)
(13)
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where ϵd and ϵe are small values arbitrarily given to
interpret randomness.

2) The distributioons of latent variables given received
signals are modeled by Gaussian distributions, with
means and variances learned by the encoder parameters
ϕ:

qϕd(zd|x) = N (zd; µ̂d, σ̂
2
dI)

qϕd(ze|x) = N (ze; µ̂e, σ̂
2
e I)

(14)

where ϕ = {ϕd,ϕd}, µ̂d = µ̂(x;ϕd), σ̂
2
d = σ̂2(x;ϕd)

denote prediction functions for distribution parameters
of distance feature zd learned by the encoder, similar
for µ̂e and σ̂2

e of environment feature ze.

We then derive the loss function for network training. We
first define the encoder loss term, denoted as Lenc(x;ϕ),
introduced by the second KL divergence term in ELBO in
(11). Given the assumptions in (10) and models in (13)-(14),
the encoder loss can be calculated analytically from the KL
term in (11), presented as follows:

Lenc(x;ϕ) = EpD(x) DKL
(
N (µ̂d, σ̂

2
dI)

∣∣∣∣N (0, ϵdI)
)

+ EpD(x) DKL
(
N (µ̂e, σ̂

2
e I)

∣∣∣∣N (0, ϵeI)
) (15)

We then define the decoder loss term, denoted as
Ldec(x;ϕ,θ), introduced by the first expectation term in (11).
This can be approximated by the mean square error (MSE)
between signal instance x from D and the corresponding x̂
reconstructed by the VAE, given as follows:

Ldec(x;ϕ,θ) = EpD(x)∥x− x̂(x;ϕ,θ)
∥∥2 (16)

where x̂(x;ϕ,θ) denotes the signal instance reconstructed by
the VAE based on x with parameters ϕ and θ.

The last two expectations terms in the ELBO contribute
to loss terms for the estimator and identifier networks. In
particular, the estimator loss term Lreg(x, d;ϕ,φd) derived
from the second expectation can be achieved by the MSE loss.
The identifier loss term Lcls(x, k;ϕ,φe) derived from the third
expectation term can be achieved by the cross-entropy (CE)
loss. These loss terms are given as follows

Lreg(x, d;ϕ,φd) = EpD(x,d)

∥∥d− d̂(x;ϕ,φd)
∥∥2 (17)

Lcls(x, k;ϕ,φe) = −EpD(x,k) log q(ye|x;ϕ,φe) (18)

where d̂(x;ϕ,φd) denotes the distance estimated by the
encoder and the estimator network with parameters ϕ and
φe. Note that the reparameterization trick [40] is utilized in
sampling features of latent variables zd or ze for Ldec(x;ϕ,θ),
Lreg(x, d;ϕ,φd), and Lcls(x, k;ϕ,φe). If ϵ(l) ∼ N (0, I),
z
(l)
d , z

(l)
e are constructed by the learned mean and variance

terms combined with sampling the additional distribution to
form the estimation, i.e., z

(l)
d = µ̂d + σ̂2

d ⊙ ϵ(l), z
(l)
e =

µ̂e + σ̂2
e ⊙ ϵ(l), where ⊙ denotes the element-wise product. In

this case, we can compute and differentiate the KL divergence
without estimation, as suggested in [40].

Therefore, the total loss function on dataset D with network
parameters ϕ, θ and φ is the combination of the above loss

terms as follows,

L(D;ϕ,θ,φ) =
N∑

n=1

Lenc(x
(n);ϕ) + Ldec(x

(n);ϕ,θ)

+ Lreg(x
(n), d(n);ϕ,φd) + Lcls(x

(n), k(n);ϕ,φe)

(19)

Hence, the inference on LVM is conducted by addressing
the optimization problem minϕ,θ,φ L(D;ϕ,θ,φ) by means
of stochastic gradient descent algorithm.

C. Instance Normalization for Disentanglement

The VI approximation presented above is versatile and
allows to be plugged in general neural networks, with the basic
structure in Fig. 5. In the following, we describe the proposed
IIns-VAE network structure with IN [39] and adaptive instance
normalization (AdaIN) [41] technique for the VAE module.
The problem-specific network architecture can hence avoid
the need for expensive network fine-tuning. These techniques
integrate model knowledge implicitly, making the network
learning more structured and informed.

We find that adding IN layers to the positional sub-encoder
can remove the environmental feature while preserving the dis-
tance feature. Similar ideas have been verified to be effective
for style transfer in computer vision [41] and voice conversion
[42].

We first utilize IN in the encoder to normalize the distance
feature. Let M denote the feature map of the output of the
former convolutional layer, which is a W−dimensional array.
To apply IN, we have to compute the mean µc and standard
variation σc of the c−th channel feature map Mc.

µc =
1

W

W∑
w=1

Mc[w]

σc =

√√√√ 1

W

W∑
w=1

(Mc[w]− µc)2 + ϵ

(20)

where Mc[w] is the w−th element in Mc, ϵ is a small value
to avoid numerical instability. To achieve IN, each element in
the array Mc is normalized into M ′

c as follows:

M ′
c[w] =

Mc[w]− µc

σc
(21)

where the normalized M ′
c substitutes Mc as transformed

features, and are processed by the following deep network
layers. In this way, the domain information for environments is
removed from the distance feature. In order to ensure the signal
reconstruction without information loss, the encoder extracts
such domain information in the environment feature.

We then use AdaIN in the variational decoder to combine
these two features. In AdaIN layers, the decoder first nor-
malizes the global information by IN, and the environmental
encoder provides the global information. The formula is given
as follows,

M ′
c[w] = γc

Mc[w]− µc

σc
+ βc (22)

where µc and σc are computed as (20), γc and βc for
each channel are the linear transformation of the output of
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(a) (b)

Fig. 5. Architecture of the VAE module in IIns-VAE. (a) Distributions of environment and distance features. (b) Architecture of the VAE module with IN [39]
AdaIN [41] layers. The sub-encoder for distance feature contains IN [39] layers to extract instance-specific information and remove unspecific information.
The decoder contains associated AdaIN [41] layers to combine both features and reconstruct the signal.

environment feature ze. With these techniques, the combined
feature integrates both instance-specific positional information
as well as the instance-unspecific environmental information
with respect to different environments, shown in Fig. 5b.

D. Deep Learning Algorithm

Given a dataset D = {x(n), d(n), k(n)}Nn=1 consisting of
N i.i.d. instances with paired signal x, real distance d, and
environmental scenario k. The network approximate VI with
dataset D by learning the distribution parameters ϕ,θ,φd
and φe. After these parameters are learned, the network can
conduct concurrent inference of distance and propagation envi-
ronment based on any received signals. Besides, the network
automatically extract distance and environmental features as
latent variables from signals as a side effect.

The offline training phase for parameters learning consists
of four parallel parts:

1) The variational encoder with parameters ϕ is learned
on signal instance x(n) ∼ D to produce two features
z
(n)
d and z

(n)
e , approximating the variational distribution

q(zd, ze|x(n);ϕ).
2) The variational decoder with θ is learned on features

z
(n)
d and z

(n)
e to produce the reconstructed signal in-

stance x(n), approximating the likelihood distribution
p(x|z(n)

d , z
(n)
e ;θ).

3) The estimator network with parameters φd is learned
on features z

(n)
d to produce distance estimate d̂(n),

approximating the distribution p(d|z(n)
d ;φd).

4) The identifier network with parameters φe is learned
on features z

(n)
e to produce environmental label es-

timate k̂(n), approximating the likelihood distribution
p(k|z(n)

e ;φe).
In the online testing phase, network parameters are frozen.

The feature extraction and concurrent inference are conducted
with the following three steps:

1) Feed signal instance x to encoder ϕ∗ for distance feature
zd and environment feature ze;

2) Feed distance feature zd into estimator φ∗
d for the

estimated distance d̂;
3) Feed environment feature ze into identifier φ∗

e for the
estimated environmental scenario k̂.

Since the network is learned in a unified scheme, distance
estimation and environmental identification can be conducted
concurrently. Algorithm 1 outlines the online and offline
phases for training and utilizing IIns-VAE for the concurrent
tasks.

While capable of concurrent inference, the trained IIns-VAE
can conduct each downstream task separately according to the
practical demand. For example, one can only conduct the first
step for tasks where only the features are required, or the first
two steps for distance estimation. Further downstream tasks
potential to be enabled by IIns-VAE are discussed in Sec. V-B.

V. DISCUSSION

The proposed IIns-VAE network has the following proper-
ties: i) It is driven by VI on the LVM specifically designed
for wireless propagated signals; ii) It gives a novel network
structure to approximate VI with deep learning; iii) It enables
concurrent inference of distance and propagation environment
based on high-dimensional signal measurements, as well as au-
tomatic extraction of distance and environmental features. The
presented LVM and IIns-VAE algorithm can also introduce
insights and variants on related problems. We briefly discuss
some of the possible variants in this section.

A. Generalization to Semi-Supervised Learning

While formulated under the supervised learning scheme,
the proposed approach can also be conducted in a border
scenario for semi-supervised learning [43], [44]. Such scenario
considers a dataset D̃ composed by an incomplete labeling of
d and k. The acquisition of fully and accurately labeled data,
especially for wireless scenarios, is often infeasible and at
great cost of time, man-hour and money. In contrast, unlabeled
data are much easier to obtain while also convey helpful
modeling information [45]. Therefore, it is essential for DL-
based approaches to tackle the scarcity of labeled data and
evolve to the semi-supervised learning versions [45], [46].

In a semi-supervised learning scheme, the loss function can
be assigned into a supervised term and an unsupervised term.
In particular, the loss terms for the encoder, i.e., Lenc(x;ϕ)
and Ldec(x;ϕ,θ) in (15)-(16), are fully unsupervised, based
on signal measurements only. The loss terms for the estimator
and the identifier, i.e., Lreg(x, d;ϕ,φd) and Lcls(x, k;ϕ,φe)
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Algorithm 1 Variational Learning of IIns-VAE
Offline Phase
Input: Training dataset D = {x(n), d(n), k}Nn=1, learning rate

α, batch size m, initial network parameters ϕ0, θ0, φd,0
and φe,0.

Output: Optimized parameters θ∗,ϕ∗, φ∗
d and φ∗

e .
1: while ϕ,θ,φd,φe have not converged do
2: Sample a batch B = {x(n), d(n), k(n)}mn=1 ∼ D.
3: gϕ, gθ, fφd , fφe ← ∇L(B;ϕ,θ,φd,φe).
4: ϕ← ϕ+ αAdam(ϕ, gϕ).
5: θ ← θ + αAdam(θ, gθ).
6: φd ← φd + αAdam(φd, fφd).
7: φe ← φe + αAdam(φe, fφe).
8: end while

Online Phase
Input: New signal measurements x(n), the stored model with

parameters θ∗,ϕ∗, φ∗
d ,φ

∗
e .

Output: Estimated distance d̂(n), environmental scenario
k̂(n).

1: for n ≥ 0 do
2: Generate z

(n)
d , z(n)

e from x(n) via encoder parameters
ϕ∗.

z
(n)
d ∼N

(
zd;µ(x

(n);ϕ∗);σ2(x(n);ϕ∗)I
)

z(n)
e ∼N

(
ze;µ(x

(n);ϕ∗);σ2(x(n);ϕ∗)I
)

3: Estimate d(n) from the distribution mean of zd
(n) via

estimator parameters φ∗
d .

d̂(n) := µ(x(n);φ∗
d)

4: Estimate k(n) from the distribution mean of ze
(n) via

the identifier parameters φ∗
e .

k̂(n) := µ(x(n);φ∗
e )

5: end for

in (17)-(18), are supervised based on signal-label pairs. We can
assign a semi-supervised dataset to a supervised subset and an
unsupervised subset, and use them to train the supervised and
unsupervised loss terms respectively.

B. Variants in Downstream Tasks

In the proposed algorithms, the variational decoder and its
learned parameters θ are not used in the online phase. For
the current estimation problem, they offer the regularization
constraint to guide feature learning. However, the decoder and
its approximated distribution p(x|zd, ze) can be utilized as
well. The decoder can work as a signal generator, enabling
further downstream tasks like realistic signal simulation and
conversion.

Signal simulation refers to the task of generating realistic
propagated signals with the desired positional and environmen-
tal information. Similarly, signal conversion refers to the task
where an input signal with targeted positional measurement
but from a different propagated environment is converted to a

target environment. With the proposed approach, these tasks
can be achieved by combining the corresponding features in
the decoder. The simulated signals can be used for indoor
localization, channel condition estimation and other types of
tasks, especially for learning-based methods in data-limited
scenarios. Moreover, they can be applied to special information
security tasks such as signal disguise.

C. Combination of Statistical Inference and Deep Learning

The proposed approach also presents a promising direction
to bridge the gap between statistical inference and learning
techniques. Such combination enjoys the benefits from both
sides. On one hand, the proposed approach has the efficiency
and capacity of DL techniques to approximate highly non-
linear transformations via training data. This addresses the
cases with complicated and intractable distributions but ac-
cessible large datasets. Conventional statistical techniques for
such cases tend to suffer from simplified assumptions to tackle
intractability, and slow sampling process to process large
dataset. On the other hand, the proposed approach enjoys
the flexibility and transparent interpretation from statistic
techniques. Motivated from first principles, the approach can
avoid the overfitting problems in DL techniques. Moreover, the
problem-oriented LVM enables more structured inference than
conventional DL approaches. Therefore, the related method-
ology has the potential to enable a wide range of emerging
applications, which can be both structured with LVM and
complicated with intractable distributions.

VI. EXPERIMENTS

In this section, we evaluate the proposed algorithms on
datasets generated from two public UWB data campaigns. In
particular, we give quantitative comparisons of the proposed
approach and conventional techniques for distance estima-
tion and environmental identification. Qualitative results of
latent space visualization are also presented to illustrate the
effectiveness of feature learning. In this section, we utilize
UWB measurements but the proposed approach is technology-
agnostic and applicable to any technology providing wireless
propagated signals.

A. Public Databases

We utilize data from two publicly available databases on
UWB. The data samples from these campaigns include re-
ceived signal measurements, real distance labels, and environ-
mental labels. We then generate three different datasets from
them to test the proposed approach.

Database 1: The database is from [47], created using
SNPN-UWB board with DecaWave DWM1000 UWB pulse
radio module. Each sample includes signal measurements, a
real distance, and an environmental label. The signal measure-
ments per sample include a waveform of length 152 and an
estimated distance from the device. The environmental label
indicates the LOS or NLOS condition. The database consists
of two sub databases, generated during two measurement cam-
paigns in different environments. Database 1-1 was recorded
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Fig. 6. The CDFs of original measurement errors with respect to distance and environmental scenarios in Database 2.

in two adjacent office rooms with a parallel connecting hall-
way, containing 9, 000 samples in total. Database 1-2 was
recorded in a different office environment involving multiple
rooms, containing 25, 100 samples in total.

Database 2: The database is from [48], created using
DecaWave EVB1000 devices. Each sample includes signal
measurements, a real distance, and an environmental label ar-
ray. The signal measurements per sample include a waveform
of length 157 and an estimated distance from the device. The
environmental label array includes two labels for room setting
and blocking materials, respectively. The room labels include
5 room scenarios, with i) an outdoor space, ii) a large office
room, iii) a medium-size office room, iv) a small office room,
and v) a through-the-wall (TTW) environment. The obstacle
labels include 10 different materials blocking the LOS path.
The database contains 49, 233 data samples in total.

The measurements data are obtained with the two-way rang-
ing (TWR) method equipped to commercial sensing devices,
enabled by IEEE 802.15.4-2011 for low-rate network devices
[49]. Such ranging method provides cost-effective distance
estimates since it does not require synchronization devices. In
addition, the proposed model can produce distance estimation
with mitigation of different sources of errors including syn-
chronization error, as long as the training measurements and
measurements in practical use share similar synchronization
error patterns.

We further analyze the dependency of the distance mea-
surement error on different distance ranges and environmental
scenarios in Database 2, illustrated in Fig. 6. It can be seen
that the relationship between distance ranges and measurement
errors is more random, while an obvious separation can be
viewed between CDFs of LOS and NLOS scenarios. There-
fore, the CDFs illustrate that distance measurement error have
a strong connection to different environmental scenarios in
accordance with the analysis in Section III-A.

B. Datasets

We create four datasets of different measurement settings
and environmental resolutions from these databases, presented
in Table I. The first two datasets are created from Database 1
and the last two datasets are from Database 2. In particular,
Dataset 2 can be viewed as a generalized version of Dataset 1.
In Dataset 2, training and testing data are generated in different
environments by different measurement campaigns to test the
generalization of the proposed method. Moreover, Dataset 4
can be viewed as an elaborated version of Dataset 3, with
higher resolutions over the obstacle and room labeling. They
are targeted to assess the generalization over different environ-
mental scenarios and explore the effect of each environment.

The assignments of environmental labels described above
are case studies for environmental identification. Nevertheless,
specific labels for environmental identification can be designed
with regard to different requirements of practical tasks. For
example, different labels such as the LoS, blocked LoS and
NLoS conditions of signal measurements can also be explicitly
considered by training the proposed model on data with these
labels.

C. Network Implementation

The network structure consists of a variational encoder for
feature extraction, a corresponding decoder for regularization,
an estimator for distance, and an identifier for environmental
scenarios. Specifically, the estimator and the identifier are of
a simple 4-layer structure, composed of linear layers. The
VAE module is designed with a more delicate structure to
combine the distance and environmental features generically,
as illustrated in Fig. 5b. In particular, the encoder is composed
of a parallel structure with similar architectures to disentangle
the two features. The architecture for distance feature consists
of 3 residual and 4 upsampling blocks, and the one for
environmental feature consists of 3 residual blocks and a
global pooling layer. Symmetrically, the decoder consists of
3 residual and 4 upsampling blocks for distance features,
and a MLP block to produce from environmental feature a
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TABLE I
DATASETS FOR CONCURRENT ESTIMATION AND ENVIRONMENTAL IDENTIFICATION

DATASET
NAME

DATASET SIZE
(TRAIN/TEST)

TRAIN TEST
ASSIGNMENTS

ENVIRONMENTAL
SCENARIOS LABEL

Dataset 1
(LOS/NLOS) 27790/6998

Database 1
80% TRAINING, 20% TESTING

RANDOMLY CHOSEN

LOS/NLOS
k ∈ KLOS

Dataset 2
(ACROSS-ROOM

LOS/NLOS)
14798/6451

Database 1
Database 1-1 TRAINING
Database 1-2 TESTING

LOS/NLOS
k ∈ KLOS

Dataset 3
(LOS/NLOS AND

OUT/INDOOR)
16999/4250

Database 2
80% TRAINING, 20% TESTING

RANDOMLY CHOSEN

LOS/NLOS, OUTDOOR/INDOOR
k ∈ KLOS ×KOUTDOOR

Dataset 4
(ROOMS AND
OBSTACLES)

16999/4250
Database 2

80% TRAINING, 20% TESTING
RANDOMLY CHOSEN

5 OBSTACLES, 4 ROOMS
k ∈ KOBS ×KROOM

TABLE II
FLOPS AND TOTAL PARAMETER NUMBERS OF DL APPROACHES.1

EVALUATION
METRICS

DISTANCE ESTIMATION
CNN RESNET LSTM IINS-VAE

FLOPs 95.51M 108.13M 103.69M 101.26M
PARAM 94.66M 94.66M 94.64M 94.92M

EVALUATION
METRICS

ENVIRONMENTAL IDENTIFICATION
CNN RESNET LSTM IINS-VAE

FLOPs 95.51M 104.34M 101.21M 96.90M
PARAM 94.67M 94.67M 94.64M 94.66M

set of AdaIN [41] parameters for the residual blocks. The
downsampling blocks reduce the dimensionality of signal
instances to features while the upsampling blocks generate
from features the reconstructed signals. The residual blocks,
applied in the bottleneck of the VAE, conduct signal process-
ing without dimensionality changes. The detailed architectures
are presented in Appendix B.

We use the Adam [50] optimizer with 500 epochs, and the
learning rate set to 0.0001. The decays of first and second
momentum of gradients are 0.5 and 0.999, respectively. The
model is built in Pytorch [51] and conduct learning on a GTX
1080 GPU with a memory of 12 GB with the accelerator
powered by the NVIDA Pascal architecture. The code is
available to public at https://github.com/JadeLilyx/IIns-VAE.

D. Baseline Methods

We consider three conventional ML-based approaches and
three DL approaches as baselines. The ML-based approaches
include SVM, Multi-Layer Perceptron (MLP), and Random
Forest (RF), while the DL approaches include convolutional
neural network (CNN), ResNet, and LSTM. Since these ap-
proaches cannot conduct the distance estimation and environ-
mental identification together, we train two separate models

1Note that the presented FLOPs values are in terms of MACs (Multi-
ply–Accumulate Operations).

for each method, one for distance estimation and one for
environmental identification.

The ML-based approaches take physical features (PFs) as
inputs to generate the estimations of distance and environmen-
tal labels, while DL approaches take in raw measurement data
as inputs. In particular, the ML-based approaches can hardly
deal with high-dimensional signal measurements. Therefore,
we first extract physical features (PFs) as suggested in [9]
from the signal measurements. These hand-crafted features
account for the intrinsic properties of the wireless link such
as its strength, delay, and waveform shape. In addition to RSS
and TOA, other PFs are considered such as the maximum
amplitude (MA) νMA, rise time (RT) νRT, mean excess delay
(MED) νMED, delay spread (DS) νDS, and kurtosis νkurtosis.
The PFs have been used to obtain DEs and to mitigate the
effects of complex propagation of distance-related measure-
ments in the literature [9], [25], [46].

The DL approaches, as the proposed IIns-VAE, take in high-
dimensional signals and measured distance directly as inputs.
We utilize the same initialization and output layers as IIns-
VAE, with their main bodies substituted to CNN, residual, and
LSTM blocks of the same depth for a fair comparison. As a
main concern for DL approaches, we further compare their
computation cost and complexity via FLOPs and parameter
numbers in Table II. The results show that the DL approaches
have similar computation cost and complexity. In practical
usage, the model can be further enhanced with network com-
pression techniques, such as pruning and quantization [52].

The performance comparison on distance estimation is
shown in Sec. VI-E, and the comparison on environmental
identification is shown in Sec. VI-F. The execution times
provided in the manuscript are all conducted on the same
GPU device. Note that the proposed approach conducts dis-
tance estimation and environmental identification concurrently
without the requirement of training separate models as ML
and other DL approaches. Therefore, the execution time of
the proposed approach in both inference tasks is the same. We
also give visualizations of the extracted environmental features

https://github.com/JadeLilyx/IIns-VAE
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TABLE III
QUANTITATIVE RESULTS ON DISTANCE ESTIMATION ON FOUR DATASETS.

DATA
EVALUATION

METRICS
APPROACHES

SVM MLP RF CNN RESNET LSTM IINS-VAE

Dataset 1
RMSE 0.218 0.207 0.225 0.420 0.420 0.421 0.054
MAE 0.141 0.138 0.151 0.289 0.289 0.289 0.028
TIME 0.097 0.031 0.031 0.001 0.004 0.408 0.004

Dataset 2
RMSE 0.386 0.558 0.291 0.337 0.339 0.337 0.275
MAE 0.294 0.384 0.226 0.240 0.241 0.241 0.218
TIME 0.064 0.040 0.040 0.001 0.004 0.206 0.004

Dataset 3
RMSE 0.125 0.151 0.132 0.177 0.176 0.177 0.084
MAE 0.082 0.087 0.088 0.124 0.124 0.124 0.056
TIME 0.123 0.040 0.031 0.001 0.005 0.285 0.006

Dataset 4
RMSE 0.162 0.162 0.180 0.218 0.218 0.218 0.128
MAE 0.094 0.096 0.107 0.134 0.134 0.078 0.069
TIME 0.093 0.070 0.071 0.001 0.008 0.386 0.008
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Fig. 7. The CDFs of the distance estimation errors for the approaches in comparison.

with reduced dimensionality, presented in Sec. VI-G.

E. Results on Distance Estimation

We evaluate the distance estimation performance of the
proposed approach and 6 baseline approaches. The results are
presented in Table III. It can be seen that the proposed IIns-
VAE achieves the best estimation accuracy and efficiency in all
four datasets. Specifically, IIns-VAE can realize a centimeter-
level accuracy. The improvements in accuracy to baseline
approaches are above 50% for RMSE and above 60% for
MAE. In addition, the execution time of IIns-VAE is around
50% shorter than conventional ML-based approaches. The
steady performance rise across four datasets illustrates the
generalization ability of IIns-VAE in different environmental
scenarios. For data from Database 1, IIns-VAE and com-
pared approaches achieve better performance on Dataset 1
for within data campaign training than on Dataset 2 for
cross data campaign training. This indicates that the unseen
environmental scenarios remains challenging to predict for the

approaches. Moreover, the approaches achieve better perfor-
mance on Dataset 3 than on Dataset 4 for data from Database
1. This implies that the complicated environmental features
have an essential impact on distance estimation. However,
there is almost always an improvement in distance estimation
for different environments. This implies that the proposed ap-
proach is able to learn a way to disentangle the environmental
features and compensate distance error accordingly.

F. Results on Environmental Identification

We evaluate the environmental identification performance of
the proposed approach and baseline approaches. The trained
proposed IIns-VAE is the same as for distance estimation,
while the compared approaches are trained separately for the
new identification problem. The results are presented in Ta-
ble IV. It can be seen that the proposed IIns-VAE shows better
performance on Dataset 1, Dataset 3 and Dataset 4. Specif-
ically, IIns-VAE achieves the best accuracy in LOS/NLOS
identification in Dataset 1 and indoor/outdoor identification in
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TABLE IV
QUANTITATIVE RESULTS ON ENVIRONMENTAL IDENTIFICATION ON FOUR DATASETS.

DATA
EVALUATION

METRICS
APPROACHES

SVM MLP RF CNN RESNET LSTM IINS-VAE

Dataset 1
(LOS/NLOS)

ACCURACY 0.872 0.899 0.853 0.999 0.999 0.777 1.000
TIME 0.078 0.033 0.033 0.001 0.003 0.290 0.004

Dataset 2
(LOS/NLOS)

ACCURACY 0.771 0.779 0.588 0.668 0.662 0.804 0.797
TIME 0.051 0.044 0.043 0.001 0.003 0.185 0.004

Dataset 3
(LOS/NLOS)

ACCURACY 0.708 0.736 0.696 0.591 0.906 0.524 0.926
TIME 0.0.061 0.032 0.033 0.001 0.004 0.192 0.006

Dataset 3
(IN/OUTDOOR)

ACCURACY 0.962 0.966 0.954 0.908 0.530 0.999 1.000
TIME 0.035 0.031 0.031 0.001 0.004 0.197 0.006

Dataset 4
(5 OBSTACLES)

ACCURACY 0.513 0.531 0.439 0.195 0.195 0.677 0.713
TIME 0.101 0.032 0.033 0.001 0.006 0.223 0.008

Dataset 4
(4 ROOMS)

ACCURACY 0.595 0.376 0.464 0.879 0.846 0.200 0.880
TIME 0.101 0.032 0.032 0.001 0.006 0.228 0.009
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Fig. 8. Confusion matrices for binary identification on Dataset 3.

Dataset 3. For Dataset 2, IIns-VAE achieves the second best
accuracy just after LSTM by 0.007. However, the execution
time of IIns-VAE is 96.88% shorter than LSTM. Across differ-
ent datasest, IIns-VAE also achieves more steady performance
than LSTM. The execution time of IIns-VAE is around 50%
shorter than ML-based approaches. The efficiency is even
more outstanding considering the fact that the presented exe-
cution times for IIns-VAE is for concurrent distance estimation
and environmental identification instead of a single task.

We further obtain confusion matrices, shown in Fig. 8-
9. In particular, the proposed approach achieves over 90%
accuracy in LOS/NLOS identification, with the false-alarm
rate (0.08) slightly higher than the detection rate (0.07). The
approach also achieves high accuracy for multi-class cases.
In particular, the approach achieves best performances for
metal and wood identification in obstacle identification, and
for the ’outdoor’ scenario in room identification. Therefore, the
proposed approach can conduct highly-accurate identification
in all cases analyzed.

G. Environmental Features Visualization

In order to get further insights of environmental semantics,
we conduct visualization on latent space. The environmental
features ze from IIns-VAE of testing signal instances are re-
duced to the 2-dimensionality plane by t-distributed stochastic
neighbor embedding (t-SNE) [53]. Each point represents the
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Fig. 9. Confusion matrices for multi-class identification on Dataset 4.

reduced code of a signal instance, with the color indicating
the corresponding environmental scenario. The scatter plots
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Fig. 10. Visualization of environmental features in different obstacle-related
scenarios.

are shown in Figs. 10-11.
It can be seen in Fig. 10 that there is a prominent separation

for LOS and NLOS conditions, while separations for detailed
obstacles are highly related to insulators and conductors. In
particular, there is a distinct separation for signal instances
from LOS and NLOS conditions in Fig. 10(a). In Fig. 10(b),
it can be seen that the metal obstacles are well separated from
the others, while the rest three materials are clustered. This
implies that insulators and conductors have different effects on
received signals. Moreover, a spectrum can be observed among
points associated to signals blocked with insulators, along
with ’glass-plastic-wood’ according to their distance towards
’metal’. This hints at a connection between these obstacles,
as they possess the same order of dielectric coefficient val-
ues. Slight overlapping among different classes also indicates
that the impact of obstacle-related environmental features is
challenging to fully disentangle and exploit. Nevertheless,
this reveals a possible structure of the underlying manifold
to conduct propagation identification with respect to NLOS
conditions and detailed obstacle labels.

Similar visualizations are conducted for room-related en-
vironmental scenarios, shown in Fig. 11. It can be seen
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big room
medium room
small room
outdoor

(b) Room features from Dataset 4.

Fig. 11. Visualization of environmental features in different room-related
scenarios.

in Fig. 11(a) that there is a distinct separation for indoor
and outdoor scenarios. This explains the drastic difference
between indoor and outdoor environments, and why existing
methods find it challenging to generalize in both indoor and
outdoor conditions. Visualization on different room scenarios
are shown in Fig. 11(b). It can be seen that points of different
room labels gather in slightly-overlapping clusters, while the
outdoor points are in clear separation. This reveals a possi-
ble structure for environmental identification with respect to
different room scenarios. Moreover, clusters of different room
scenarios relatively have less overlaps than those of obstacle
scenarios. According to the analysis in section III-A, obstacle-
related features mostly impact FPs of received signals, while
room-related features impact both FPs and MPCs. This implies
that room-related features and their impact on received signals
are more exploitable than obstacle-related ones, in accordance
with the quantitative results in sections VI-E and VI-F.

VII. CONCLUSION

This paper proposed a DL-based approach named IIns-VAE
to conduct concurrent inference on distance and environmental
scenarios for wireless applications. The proposed approach
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enabled highly efficient distance estimation and environmen-
tal identification, and extracted distance and environmental
features automatically from received signals. Specifically, the
approach presented an LVM for the propagated signal mea-
surements, consisting of a distance-related latent variable and
an environment-related variable. Then a VAE-based network
was introduced to approximate the inference on such LVM
via deep learning and a loss function is derived from the
variational bound. The proposed approach integrated benefits
from both statistical and deep learning techniques. Experimen-
tal results illustrated the superiority on distance estimation
and environmental identification compared to conventional
approaches. Future work will focus on the scalability of
the approach towards more complicated problems, aiming to
enable easy and enhanced situational awareness in the next
generation of wireless applications.

APPENDIX A
PROOF OF Proposition 1

We denote latent variable z = {zd, ze} and label variable
y = {d, k} for convenience. The bound can be derived as

log p(x,y)

≥ log p(x,y)−DKL
(
q(z|x,y)

∣∣∣∣p(z|x,y))
=

∫
q(z|x,y) log p(x,y)p(z|x,y)

q(z|x,y)
dz

=

∫
q(z|x,y) log p(x,y|z)dz

−
∫

q(z|x,y) log q(z|x,y)
p(z)

dz

= Eq(z|x,y)
{
log p(x,y|z)

}
−DKL

(
q(z|x,y)

∣∣∣∣p(z))
= Eq(z|x)

{
log p(x|z)p(y|z)

}
−DKL

(
q(z|x)

∣∣∣∣p(z))
= Eq(z|x)

{
log p(x|z)

}
+ Eq(z|x)

{
log p(y|z)

}
−DKL

(
q(z|x)

∣∣∣∣p(z))
= Eq(zd,ze|x;ϕ)

{
log p(x|zd, ze;θ)

}
+ Eq(zd|x;ϕ)

{
log p(d|zd;φ)

}
+ Eq(ze|x;ϕ)

{
log p(k|ze;φ)

}
−DKL

(
q(zd, ze|x;ϕ)

∣∣∣∣p(zd, ze)
)

=: LELBO(x, d, k;ϕ,θ,φ) (23)

Note that the third to last equation in (23) are derived
according to the LVM assumptions in (9), using

q(z|x,y) = q(z|x), q(z|x,y) = q(z|x)
p(x,y|z) = p(x|y, z)p(y|z) = p(x|z)p(y|z).

The last equation in (23) is derived from the LVM assumptions
in (6)-(8) as well as the notation exchange for y and z, i.e.,

p(y|z) = p(d, k|zd, ze) = p(d|zd)p(k|ze).

APPENDIX B
DETAILED NETWORK ARCHITECTURE

The detailed network architecture for the proposed IIns-
VAE are presented in Table V-VI, including the layer type,
output shape, and trainable parameters. Note that ’−1’ in

the first dimension of output shape is adaptive to the batch
size of data instances. The output shape of the identifier in
Table VI, currently 2, can be adaptive to the class number of
environmental scenarios, e.g., 5 for identification of obstacles
and 4 for rooms.
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