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A simple catch: fluctuations enable hydrodynamic trapping of microrollers by obstacles
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It is known that obstacles can hydrodynamically trap bacteria and synthetic microswimmers in orbits, where
the trapping time heavily depends on the swimmer flow field and noise is needed to escape the trap. Here, we use
experiments and simulations to investigate the trapping of microrollers by obstacles. Microrollers are rotating
particles close to a bottom surface which have a prescribed propulsion direction imposed by an external rotating
magnetic field. The flow field that drives their motion is quite different from previously-studied swimmers. We
found that the trapping time can be controlled by modifying the obstacle size or the colloid-obstacle repulsive
potential. We detail the mechanisms of the trapping and find two remarkable features: the microroller is confined
in the wake of the obstacle and, more importantly, it can only enter the trap with Brownian motion. While
noise is usually needed to escape traps in dynamical systems, here we show it is the only means to reach the

hydrodynamic attractor.

INTRODUCTION

Colloidal-scale swimmers exhibit complex behaviors [1, 2],
such as swarming [3], hydrodynamically stabilized motile
clusters [4], oscillatory dynamics [5], and percolating net-
work states [6]. These swimmers can be classified by the flow
field they generate, which governs their propulsion as well as
their behavior in complex environments, e.g. structured land-
scapes [7-9]. There is a strong, applications-based interest
in microswimmers, as they can be leveraged to advance both
microfluidic applications (micromixing, local advective trans-
port, etc.) and drug delivery systems; it is critical to both of
these applications to control swimmer transport in a structured
environment (e.g., junctions, the blood stream, porous mate-
rials) [10, 11]. The motility of these swimmers is coupled
to the hydrodynamic flows they generate, and these flows are
strongly modified by obstacles, nearby walls, and other struc-
tural features. Thus, in order to learn how to manipulate and
guide these microswimmers through more realistic environ-
ments, where they will encounter non-trivial geometries, we
must develop a framework to understand how these structured
environments modify the transport and propulsion of these
particles. As a first step to build this understanding, it is im-
portant to study a model system: the interaction of a single
swimmer with an obstacle [7, 12-20].

It has been demonstrated that obstacles can be used to guide
swimmer trajectories, both deflecting them [18], as well as
trapping them in ‘bound’ orbits [13-15, 20-22]. By manip-
ulating the geometry of these obstacles, one can gain control
over both scattering and trapping. For example, by using pil-
lars of various sizes, approaching bacteria could be scattered
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at a particular angle [18], or for larger pillars, trapped in an
orbit [16, 20]. Similar trapping has been observed in artificial
swimmers [13, 14, 21], and by using more complex geome-
tries, more exotic behaviors, such as directional trapping can
be achieved [15].

The mechanism behind this ensemble of geometry-
mediated behaviors is set by the flow field of the microswim-
mer; this is a hydrodynamic effect. Many microswimmers
have a dipolar flow in the far-field, the direction of the flow
classifies them as either ‘pushers’ (E. Coli) or ‘pullers’ (alga
Chlamydomonas). The scattering and orbital trapping of dipo-
lar swimmers by spherical obstacles was captured in simu-
lations and a semi-analytical far-field hydrodynamics model
by Spagnolie et al. [12]. Their work demonstrated that the
trapping efficiency of the obstacles was directly set by the
swimmer flow field: puller swimmers were trapped by much
smaller obstacles than pusher swimmers. Additionally, they
demonstrated that fluctuations by Brownian motion were nec-
essary for a trapped swimmer to exit the bound orbit.

While swimmers inducing a dipolar flow field are com-
mon, there is another class of microswimmers which gen-
erate a quite different flow: microrollers, driven by rotation
near a boundary [4]. The flow field around a microroller dis-
tinctly differs from the dipolar flow fields around more com-
mon pusher or puller swimmers [7, 12, 23, 24]: there is no
fore-aft symmetry and the flow field is not axisymmetric. Ad-
ditionally, in the microroller system, the orientation of propul-
sion does not diffuse, but is prescribed by a rotating field, and
can therefore be externally controlled. These rotating parti-
cles generate strong flows, which can lead to a tunable and
hydrodynamically-mediated attraction between adjacent mi-
crorollers [4, 25, 26].

Dense suspensions of microrollers give rise to interesting
collective effects [4, 27-29], such as the formation of hy-
drodynamically stabilized motile clusters composed of micro-
rollers [4]. These emergent structures show great promise in
the transport of passive species using magnetic fields for mi-



Fig. 1. Magnetic field driven microrollers. The magnitude of ve-
locity (color map) and stream lines (white) of the fluid flow field
around a spherical particle rotating perpendicular to a nearby wall
in the z — z (a) and x — y plane (b). Velocities are normalized
with the bulk velocity of the microroller. (c) Scanning electron mi-
croscopy image of TPM spheres with an embedded hematite cube
and an overlay of a schematic of the particles. The scale bar is 2 pm.
(d) Schematic of a suspended microroller with magnetic moment m
confined above a glass wall by gravity g and driven by a magnetic
field B rotating perpendicular to the glass wall. (e) Side view and (f)
perspective view of a microroller (cyan) with a hydrodynamic radius
rn, = 1 um, constructed as a rigid multiblob, approaching a cylindri-
cal obstacle (magenta) with a hydrodynamic radius R}, composed of
similar sized blobs. The roller is subject to an applied torque in the
x — z plane and Brownian motion, whereas the obstacle is frozen into
place.

crofluidic devices and drug transport, as the magnetic fields
used for external control and are non-invasive to the human
body [30].

Just as with other kinds of swimmers, to realize the full po-
tential of these systems requires building an understanding of
how their transport is modified by a structured environment.
As the interaction of a single dipolar swimmer with obstacles
is very sensitive to (the sign of) its flow field [12], we can
expect the microroller to similarly exhibit unique interactions
with obstacles due to its particular flow field, as well as its
prescribed direction. Therefore, studying the interaction of a
single microroller with obstacles is needed for our understand-
ing of microroller transport, but will also increase our knowl-
edge of the generalized problem of hydrodynamics-governed
interaction of microswimmers with structured environments.

Here, we study the interaction of a microroller with a cylin-
drical obstacle in experiments and through numerical sim-
ulations which include Brownian motion and hydrodynam-

ics [27, 31]. The microrollers are rotating colloidal parti-
cles confined by a balance between gravity and thermal fluc-
tuations at an average height above a bottom wall [4]. The
(asymmetric) flow field created by the rotation of these mi-
crorollers leads to their propulsion (see Figs. 1a-b). We note
that these particles do not roll on the chamber floor, but are
suspended at an average height above it [4]. This is what
allows for such strong hydrodynamic effects in this system:
unlike heavier rollers which touch the floor [3, 32-35], the
velocity of the fluid at the surface of these microrollers is or-
ders of magnitude higher than the self-induced velocity of the
microrollers themselves (see Figs. 1a-b). In experiments, the
microrollers are realized by applying a rotating magnetic field
(where the axis of rotation is parallel to the bottom wall) to
suspended colloidal particles with a permanent magnetic mo-
ment [4, 23, 27-29, 31, 36].

In this system, we observe trapping of the microroller by
the obstacle, and demonstrate that this trapping emerges from
hydrodynamics alone. We find that the trapping time is sen-
sitive to the relative size of the obstacle, but also depends on
the electrostatic repulsion between the obstacle and the mi-
croroller; these two control parameters offer unique possibil-
ities for more exotic trapping behaviors. To understand the
mechanism of this trapping, we characterize the velocity of
the roller around the obstacle and find saddle points (points of
near zero velocity) up- and downstream of the obstacle, which
are connected by a separatrix encircling the obstacle. Near the
upstream saddle point the roller is repelled from the obstacle,
whereas downstream the roller is drawn towards the obstacle,
causing it to get trapped by an attractor (stable node), whose
basin of attraction is delimited by the separatrix. The trapping
mechanism we find is quite unique: to enter the basin of at-
traction of the obstacle, the particle must cross the separatrix.
Thus, in contrast with dipolar swimmers, noise (e.g., Brown-
ian motion) is necessary not only to leave the trap, but to enter
it as well.

RESULTS
Observations of microroller trapping

We study the interaction of microrollers with cylindrical ob-
stacles in an experimental system similar to Ref. [28], but with
the addition of a 3D-printed cylindrical obstacle. The polymer
microrollers with a radius 7 = 1.05 um contained a hematite
cube with a permanent magnetic moment (see Fig. 1c). The
obstacles were 3D printed on top of a cover glass, from which
a sample chamber was built and subsequently filled with a wa-
ter suspension containing the rollers. We imaged the fluores-
cently labeled rollers and autofluorescent obstacles using fluo-
rescence microscopy, while applying a rotating magnetic field
with the rotation axis parallel to the cover glass (see Fig. 1d).

In Figs. 2a-b the interaction of a microroller with a printed
obstacle with radius R = 14.4 um and height H = 20 pm
is shown (see also Vids. S1-2 of the Supplementary Mate-
rial [37]). We observe the trapping and eventual release of the
microroller on the side of the roller (see Fig. 2a, Video S1), but
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Fig. 2. The interaction of microrollers with cylindrical obstacles
in experiments and simulations. (a-b) Temporal projections of a
fluorescence microscopy image sequence of microrollers interacting
with cylindrical obstacles (H = 20 um, R = 14.4 um), where the
microroller is trapped and eventually released (a), or passes the ob-
stacle (b). (c-d) Temporal projections of simulations of microrollers
approaching cylindrical obstacles (R, = 10 pm) where also the mi-
crorollers gets trapped and eventually released (c), or passes the ob-
stacle (d). Videos of the trapping in experiments and simulations are
provided in the Supplementary Material [37]. The arrows denote the
direction of propagation of the microrollers. The scale bars are 10
um.

another microroller passes the obstacle without being trapped
(see Fig. 2b, Vid. S2). The electrostatic interaction between
the microrollers and the 3D printed obstacles is purely repul-
sive as both are negatively charged [38, 39], indicating that
the trapping of the microroller likely originates from hydro-
dynamics.

We also observed trapping in Brownian dynamics simula-
tions [27] of a microroller interacting with an obstacle. The
roller and the cylindrical obstacle are modeled as a discrete
set of blobs in a coarse-grained model called the rigid multi-
blob model [27, 31, 40] (see Figs. le-f). A constant torque in
the x-z-plane is applied to the roller, whereas the obstacle is
constrained at a fixed position on the bottom wall. The mi-
crorollers were modeled with a hydrodynamic radius r, =
1 pm[41] confined by gravity to the no-slip bottom wall. A
smaller height of the obstacles (H = 5.5 um), with respect
to the experiments, was chosen to reduce the run-time of the
simulations and its (minimal) effects on the results will be ad-
dressed in the Discussion. The roller, obstacle and wall inter-
acted through a repulsive Yukawa potential. The simulation
parameters were chosen similar to the experimental parame-
ters and the work reported in Ref. [28].

We observed hydrodynamic trapping of the roller by the ob-

stacle in our stochastic simulations (see Fig. 2¢ and Vid. S3).
As in the experiments, the trapping does not always occur,
as some rollers pass the obstacles without being trapped (see
Fig. 2d and Vid. S4 of the Supplementary Material [37]).

Microroller interaction with cylindrical obstacles

To study the interaction of microrollers with obstacles in
more detail, we measured heat maps (or 2D histograms) of
the positions of the microroller around the obstacle, in both
experiments (Fig. 3a) and stochastic simulations (Figs. 3b-c).
In the experiments, we drove microrollers at low area fractions
through an array of printed pillars (r, /R, = 0.07) and im-
aged them by fluorescence microscopy. Using particle track-
ing [42, 43], we assigned the positions of the microrollers to
the nearby obstacles and combined this data in a 2D histogram
shown in Fig. 3a. Upstream (x < 0) a semicircle of low count
is observed close to the pillar, indicating a repulsion from the
obstacle. Downstream (x > 0), however, two high count re-
gions are found at about one and five o’clock close to the pil-
lar, indicating an attraction to the obstacle where the roller
gets trapped. Furthermore, the hydrodynamic trapping of the
particles also results in a low-count zone further downstream
of the obstacle. Upstream there is also a lower count around
y = 0, which is caused by the depletion of rollers due the
adjacent pillars in the printed array (see Fig. S1 of the Sup-
plementary Material).

In the stochastic simulations, 200 runs were performed with
the roller at starting positions with x = —20r;, and y rang-
ing from —107rp to 107y, with steps of 0.17,. The 2D his-
tograms for r;, /Ry, = 0.1 and 0.33 are shown in Figs. 3b-c,
respectively. We simulated smaller obstacles than used in the
experiments, as the large pillar size used would have led to
long run times due to the number of blobs needed to construct
the obstacle in simulations. Upstream repulsion and down-
stream attraction are observed, similar to the experiments.
For r,/R;, = 0.1 (see Fig. 3b), two high count regions are
observed, but more downstream than in experiments. For
ri /Ry = 0.33 (see Fig. 3c), the two high count regions are
merged into a single high count region around y = 0. Simi-
lar to the experiments, a depletion zone is found in the wake
of the pillar. Furthermore, the width of this depletion zone
decreases with increasing relative size (or relative curvature)
rr/ Ry (see Figs. 3b-c). Interestingly, when the simulations
are repeated without Brownian motion, using the determin-
istic Adams-Bashforth method [36], no trapping is observed
(see Fig. 3d). Instead, the particles are repelled from a low-
count zone downstream of the obstacle. This indicates that
Brownian motion is needed for the microroller to enter the
hydrodynamic trap.

To investigate the strength of the hydrodynamic trap, we
ran stochastic simulations where the particles are placed in
the attractive region behind the obstacle at contact [x = Ry, +
Th,y = 0] and the escape time (or first passage time) from the
trap is measured (see Fig. 3e)[44]. The escape time is defined
as the time it takes the roller to pass x = Ry, + 5ry[45] (see
the red line in Fig. 3e). The rollers are found to explore the
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Fig. 3. Microrollers interacting with cylindrical obstacles.
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(a-d) 2D histograms (log-scale) of the [z,y] coordinates of a microroller

interacting with a cylindrical obstacle in experiments (a) and simulations (b-d), for different relative sizes: ry /R, = 0.07 (a), rn/Rr = 0.1
(b) and r/Rp, = 0.33 (c-d). In the simulations, the stochastic (b-c) or deterministic (d) methods were used. The roller is driven in the x
direction. In panel (a) the brown dotted circle is drawn as a guide to the eye to clearly show the upstream repulsion and downstream attraction
near the obstacle. In panel (b-d), the solid magenta circle denotes the obstacle, the white dashed line the position of the roller at contact with
the obstacle. (e) 2D histogram (log-scale) of the [x,y] coordinates of multiple runs where a microroller escapes the hydrodynamic trap of an
obstacle (ry /Ry = 0.33) from the starting point at [x = Ry, + r5,y = 0] (white arrow) until the escape when = > Ry, + 5rp, (red line).
Video S5 of the Supplementary Material shows a single escape run [37]. The colorbar of the histograms denotes the relative count in log-scale
(normalized to the maximum count in the histogram), where zero count values are depicted in black. (f) Log-log plot of the mean escape time
t* as a function of relative size rp /Ry, in simulations (b/r, = 0.1 (&) and b/r;, = 0.4 (V)) and experiments (no salt, b/r, ~ 0.3 (O) and
added salt, b/r, = 0.025 (O)), where the error bars denote the standard error. We found exponents of k = —2.53 + 0.08 (&), —1.33 £ 0.05 (

V) and —1.95 + 0.18 (O), when fitting the data with y = az® (fits not plotted here).

trap by thermal fluctuations and eventually escape (see Vid.
S5 in the Supplementary Material [37]). The distribution of
escape times have a long tail towards longer escape times, as
plotted in Fig. S2 of the Supplementary Material. As there is
no model describing this process yet, we will resort to using
the mean of the distributions to characterize them in further
analysis.

The mean escape time measured in simulations (corrected
for the escape time without an obstacle present) t* = (tes.) —
(tno obstacle)[46] as a function of relative size rj, / Ry, is shown
in Fig. 3f. We ran simulations for two different Debye lengths
of the repulsive Yukawa potential (2): b/rp = 0.1 (&) and
b/rr, = 0.4 (V). We find that the escape time strongly de-
pends on the relative size of the obstacle, where small relative
sizes lead to long escape times. Furthermore, the escape time
decreases with an increase in the Debye length and therefore

the range of the repulsive electrostatic interaction between the

roller and the obstacle.

To verify these findings, we measured the trapping time of
cylindrical obstacles in experiments. As we could not place
the particles in the wake of the obstacles, we analyzed image
sequences of microrollers interacting with cylindrical obsta-
cles and measured the time between a microroller arriving be-
hind the obstacle and it subsequently leaving the trap. Fig. 3f
shows the mean escape time t* versus relative size ry, /Ry,
data from the experiments for rollers suspended in pure wa-
ter (b/rp, ~ 0.3 [47], O) and in a 0.14 mM LiCl solution
(b/rn, = 0.025 [28], D).

In the experiments a strong dependence of the mean es-
cape time on the relative size is found, similar to the sim-
ulations. Moreover, the slopes of the data from the experi-
ments and simulations are similar. This is evident from the
exponents of k = —2.53 £ 0.08 (b/rp, = 0.1 (&, sim.)),
—1.33 £ 0.05 (b/rp, = 0.4 (V, sim.)), and —1.95 + 0.18



(pure water, b/ry, =~ 0.3 (O, exp.)), when fitting the data with
y = ax®, demonstrating non-linear relations (fits not shown).
In addition, as in the simulations, an increase in Debye length
results in a decrease of the mean escape time. While the
escape time versus relative size data sets from the simula-
tions and experiments overlap, they do so for different Debye
lengths (see Fig. 3f). Fig. 3f demonstrates that the trapping
time can easily be tuned over multiple orders of magnitude in
experiments by adjusting both the relative size of the obsta-
cle and the Debye length of the microroller suspension. Both
of these control parameters are easily accessible experiments
by changing the printed obstacle size and/or tuning the salt
concentration of the roller suspension.

Basin of attraction

To understand the mechanism by which the microrollers are
trapped by the obstacles, we calculated the deterministic ve-
locity of the microroller around the obstacles in simulations,
allowing us to identify the basin of attraction. This was done
by placing the particle on a grid and measuring its instanta-
neous velocity in the  — y plane at that point. The height
of the roller was chosen as the height of the roller in the trap
of the obstacle, as determined by simulating a roller placed in
the trap using the deterministic method. The roller velocity
fields for relative sizes ry, /R, = 1.00, r;/R, = 0.33 and
rn/Rp = 0.1 are shown in Fig. 4. We only plot the roller ve-
locities for 22 + y? > (Ry, + 74 + d)?, where d = 0.87,,[48],
as the microroller velocity too close to the obstacle is domi-
nated by the electrostatic repulsion between the roller and the
obstacle.

Two saddle points (points of near zero velocity) are identi-
fied up- and downstream of the obstacles, as indicated by the
red dots in Figs. 4a-c. Although the two saddle points are sym-
metric with respect to the obstacle, they are tilted slightly with
respect to the x-axis. This is a non-physical effect induced by
the finite resolution of our simulations and the discretized na-
ture of the roller and the obstacle. Although the magnitude
of the velocities at the up- and downstream saddle points are
identical, the directions of the velocities are different (as indi-
cated by the black and white arrows in Figs. 4a-c): while the
microroller is pushed from the obstacle between the obstacle
and the upstream (z < 0) saddle point, it is pulled into the
obstacle downstream (xz > 0). This explains the regions of
low and high count, respectively, up- and downstream of the
roller in the 2D histograms in Figs. 3a-c. Interestingly, for the
roller velocity field of r, /Ry, = 0.1, two low velocity regions
emerge on the side of the pillar, as indicated by the brown
arrows in Fig. 4c. These correspond to the two high count re-
gions found in both experiments (r, /R, = 0.07, Fig. 3a) and
stochastic simulations (r, /Ry, = 0.1), Fig. 3b).

At a given height, the up- and downstream saddle points lie
on a separatrix forming a circle around the obstacle, where for
x < 0 the flow direction converges at the separatrix, while for
x > 0 the flow diverges (see Fig. S3(b) in the Supplemen-
tary Material). This is why in the deterministic simulations of
the rollers interacting with the obstacle (see Fig. 3d) no trap-

ping is observed: as the microroller approaches the obstacle
it will never be able to cross the separatrix behind the pillar
to reach the basin of attraction. Thus, Brownian motion of
the microroller is necessary to cross the separatrix, enter the
basin of attraction, and thus be hydrodynamically trapped by
the obstacle.

We find that the saddle point moves non-linearly away from
the obstacle surface with decreasing relative size 7,/ Ry,. This
effectively increases the size of the basin of attraction, the area
where the microroller is attracted to the obstacle (see Figs. 4a-
¢), and results in an increase in trapping time (see Fig. 3f). As
this basin of attraction grows, the fluctuations due to Brow-
nian motion are less likely to kick the roller out of the trap,
resulting in longer escape times. For r, /R, = 0, e.g. a wall
(Rp, — 00, 5.5 pm high, 10 um long) the saddle point be-
comes a line parallel to the wall (see Fig. S3(c) in the Supple-
mentary Material).

In order to calculate the basin of attraction, we ran deter-
ministic simulations for different initial positions around the
obstacle and determined whether the microroller got trapped
or was able to pass the obstacle. In Fig. 5a the basin of attrac-
tion (pink area) around an obstacle (1, / Ry, = 1.00) is plotted.
In addition, we plot the trajectories of rollers with initial posi-
tions at 22 + y? = 9ry, and different heights, just outside the
area where the electrostatic repulsion dominates the dynam-
ics of the microroller (see interactive 3D plot in File S1 of the
Supplementary Material [37]). For the majority of initial po-
sitions, the roller cannot cross the separatrix and ends up into
a stable node (as denoted by the black dot in Fig. 5a). We find
that the roller converges to this point irrespective of its initial
height. Only for initial positions |y| < 0.8,z < 0, which lies
outside of the basin of attraction, the hydrodynamic and elec-
trostatic repulsion acting on the roller are enough to cross the
separatrix and the roller is able to pass the obstacle.

The stable node is located on the edge of the area where
the roller-pillar interaction is dominated by electrostatic re-
pulsion, as indicated by the black circles in Fig. 4a. At this
point, which is the attractor in this system, the hydrodynamic
attraction and electrostatic repulsion acting on the roller are
balanced. We can therefore conclude there are three critical
points in this system which are summarized in Fig. 5b: two
saddle points (up- and downstream) and one attractor or sta-
ble node (downstream). The two saddle points result from
the balance between the hydrodynamic interaction (repulsive
or attractive) between the roller and the pillar, and the self-
induced velocity (or propulsion) of the roller. The stable node,
however, is a result of the balance between the self-induced
velocity of the roller, the hydrodynamic attraction and the
electrostatic repulsion between the roller and the pillar. For
rp/Rp = 1, the attractor is localized to a single point, and
the roller is always trapped immediately behind the obstacle.
For larger obstacles, the situation is more nuanced; regions of
near-zero velocity appear not only immediately behind the ob-
stacle, but also in regions along the sides (i.e. near 1 o’clock
and 5 o’clock., see brown arrows in Fig. 4¢)

When the Debye length is increased, the electric repulsion
between the roller and the pillar will increase, resulting in a
shift of the stable node towards the saddle point. The reduced
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Fig. 4. The velocity of a microroller around obstacles of different size. Deterministic microroller velocity fields in the xy plane calculated
around cylindrical obstacles with relative sizes of (a) r, /Ry, = 1.00, (b) /Ry, = 0.33 and (c) r,,/ R = 0.1. The height of the roller was
chosen as the height of the roller in the trap of the obstacle, as determined by simulating a roller placed in the trap using the deterministic
method (z/rp, = 1.392, 1.412 and 1.382 for r, / R, = 1.0, 0.33 and 0.1, respectively). The instantaneous microroller velocities in the plots are
normalized to the average velocity of the microroller in the absence of obstacles Vp. The filled magenta circles denote the obstacle, the white
dashed circles the position of the roller at contact with the obstacle. The filled black circle of radius Ry, + r, + d, where d = 0.8, is drawn
to block out the region where the electrostatic repulsion dominates the dynamics of the roller. Two saddle points (V/V, = 0, red dots) can be
identified upstream and downstream from the obstacle, which differ in their surrounding flow field (white and black arrows): the flow between
the point upstream and the obstacle repels the roller from the obstacle, while the point downstream attracts the rollers to the pillar. The brown
arrows in (c) indicate the emergence of zero velocity zones for decreasing relative size.

distance between the stable node and saddle point, and there-
fore the reduced size of the basin of attraction, will increase
the probability of the roller leaving the trap due to thermal
fluctuations. This agrees with the observed decrease in the
measured escape times upon an increase in the Debye length
in both experiments and simulations (see Fig. 3f).

To further understand how the roller explores the trap ge-
ometry, we plot the radial and tangent velocity roller velocity
fields for relative sizes r, /Ry, = 1.0 and 0.1 (see Figs. 6a-d).
In addition, we plot the radial and tangent velocities along the
semi-circles in Figs. 6a-d, for relative sizes r,/R, = 1.0,
0.33, and 0.1 (see Fig. 6e). The semi-circles are placed
downstream of the pillars, but exactly in between the saddle
point and stable node. The radial velocity plot (Fig. 6e, top)
shows that the relative size controls the depth of the basin of
attraction; at smaller relative sizes r /Ry, microrollers are
more strongly advected to the obstacle, consistent with an in-
crease in escape time in our measurements (Fig. 3f). We also
note that the tangent attraction towards the stable node for
ry, /Ry, = 1.0 decreases with smaller relative size (see Fig. 6e,
bottom). Interestingly, the radial and tangent velocities seem
to depend on the cosine and sine, respectively, of the angle be-
tween the roller-pillar vector and the direction of propulsion

(see magenta lines in Fig. 6e).

Mechanism of microroller trapping

The existence of the saddle points has a purely hydro-
dynamic origin. At the typical height measured in simula-
tions, the flow induced by the microroller is one to two or-
ders of magnitude greater than the self-induced velocity Vj:
on the roller surface the fluid velocity reaches u ~ 30V}, and
u =~ 5V} a few radii away along the x-axis (see Fig. 1a). As a
result, when the obstacle is separated from the microroller at
a given distance d, along the x-axis, it needs to cancel strong
horizontal (Fig. 7a) and vertical (Fig. 7b) flows on its surface
in order to satisfy the no-slip condition u = 0 for the fluid
velocity. To do so, it exerts a surface force distribution (called
traction forces) that generates a velocity field opposite to the
one induced by the microroller (see Figs. 7c-f). Owing to the
high magnitude of the surface velocities and to their slow de-
cay at low Reynolds number, the cylinder hydrodynamic re-
sponse is able to overcome the translation of the microroller at
speed V4. This explains why the rollers are attracted to the ob-
stacle at the rear and, by symmetry, repelled at the front. The
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Fig. 5. The basin of attraction and the critical points. (a) 2D pro-
jection of the trajectories of a roller with different initial positions
interacting with a cylindrical obstacle (magenta, r,/Rr = 1.00)
calculated using the deterministic Adams-Bashford method. An in-
teractive 3D plot of this panel can be found in File S1 of the Supple-
mentary Material [37]. The initial positions at 2 + y2 = Ory are
indicated by ® and the trajectories are colored according to the initial
roller height z /ry =0.9675 (—), 1.29 (—), 1.935 (—), 2.58 (—) and
3.225 (—). The black and white dashed circle denote the area where
the hydrodynamic radius of the roller and obstacle overlap. The pink
area, the basin of attraction, denotes the initial 2y positions of rollers
with z = 1.392 that are bound to converge into a single point (@)
downstream of the obstacle. This stable node is located on the edge
of the zone where the electrostatic repulsion dominates (see black
circles drawn in Fig. 4a). The fate of the roller (trapping or passing)
is independent of the initial height of the roller. Only the rollers with
an initial position outside of the basin of attraction undergo a strong
enough hydrodynamic and electrostatic repulsion to push the roller
around the basin of attraction and past the obstacle. (b) The roller
velocity field normalized by the bulk velocity Vj as in Fig. 4a with
the roller velocity directions and critical points annotated. The two
saddle points are annotated with ® on top of which a circle is plotted
indicating the separatrix. The stable node (or attractor) is indicated
by @. In this plot with also plotted the velocity inside the zone that is
dominated by the electrostatic repulsion, where we measured veloc-
ities much larger than the bulk velocity Vj.

saddle points therefore correspond to the separation distances
at which the cylinder-induced velocity on the microroller ex-
actly balances Vj.

Since the area of the cylinder surface exposed to strong
flows increases with the cylinder radius Rj, (see Figs. 7a-b)
the reflected flow gets stronger when 7,/ Ry, decreases and
the saddle points move away from the cylinder (see Fig. 4c).
The attractive strength of this flow can be measured and vi-
sualized with the iso-contour u, = —V/, where the horizontal
cylinder-induced fluid velocity balances the microroller veloc-
ity, in the * — y and x — z plane (see Figs. 7c-f). If the mi-
croroller lies inside that region, it will be attracted towards the
obstacle. For a fixed horizontal separation distance d, = 2rp,,
the area of this iso-contour around the microroller increases
with Rj, leading to an enhanced hydrodynamic attraction.
This is further quantified by measuring the volume ) enclosed
by the iso-surface u, = —V) behind the obstacle: a threefold,
non-linear, increase of ) is observed between 7,/ R;, = 2 and
rn/Rp = 0.1 (see Fig. S4 in the Supplementary Material).

As shown in Figs. 4a-b, the cylinder with r, /R, = 0.33
is able to attract the microroller, i.e. induce a negative micro-
roller velocity along the x-axis, over a wider range of lateral

positions (between y ~ —2.25r, and y ~ 2.25r},) than for
rn/Rp = 1 (between y ~ —1.25r, and y =~ 1.25r}). Such
an increase in the attractive area with /Ry, reduces the es-
cape probability from Brownian motion and thus results in
longer trapping times. This increase can again be explained
by looking at the hydrodynamic response of the cylinder sur-
face when it is laterally shifted from the microroller. As shown
in Fig. 8a, for a given lateral shift d, = d, = 2}, the mag-
nitude of the flow induced by the microroller at the position
of the cylinder surface increases with Rj,: the larger the cylin-
der radius, the closer its surface is to the microroller and to
the maximal velocity located along the z-axis. The cylinder
response for d, = d, = 2ry, shown in Figs. 8b-c, is therefore
much stronger for ry, /Ry, = 0.1 than for r}, /R, = 1: the area
of the iso-contour u, = —V{ does not enclose the microroller
anymore for 7, /R, = 1, which allows it to escape, while the
attractive flow of the largest cylinder is still able to surround
and trap the microroller. In the limit 7, /R, — 0, where the
cylinder is an infinite wall, the system is translationally invari-
ant along the y-axis, the obstacle reflects the microroller flow
independently of d,, and the saddle point becomes an infinite
line (see Fig. S3(c) in the Supplementary Material).

DISCUSSION

We observed that the escape time versus relative size data
sets from the simulations and experiments overlap, but for dif-
ferent values of the Debye length (see Fig. 3f). To match the
escape times measured in the experiments, we need to overes-
timate the Debye length in the simulations. In other words: in
simulations a higher trapping time is measured than in exper-
iments for the same Debye length. We carefully matched the
parameters in the simulations, such as the buoyant force, vis-
cosity, and microroller-wall interactions, to the experiments
in previous work on dense layers of microrollers [28]. As
the previous work was in the absence of obstacles, the simula-
tion parameters concerning the introduced obstacle could very
well be the reason of the mismatch. Next, we will discuss the
effect of the resolution in our coarse-grained simulations, the
height of the pillar and the roller-to-obstacle interaction po-
tential.

In our simulations the number of blobs per roller of the rigid
multiblob model [31] is kept constant at N = 12. This en-
sures that the run time of the simulations, where also the ob-
stacles composed of similar sized blobs are present, remains
acceptable. It is known, however, that a low resolution in the
simulation of a microrollers, leads to an overestimate of its
self-induced velocity [4]. Therefore, we also ran simulations
with a higher number of blobs per roller (N = 42) to mea-
sure the escape time of the roller for different relative sizes
7,/ Ry, (see Fig. S3a in the Supplementary Material). We find
that the escape time of the high resolution roller is increased
with respect to the low resolution roller. An increase in resolu-
tion leads a smaller self-induced velocity while the fluid flow
around the roller remains similar, effectively moving the sad-
dle point away from the obstacle, and therefore increasing the
escape time [31]. Instead of narrowing the gap between the
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Fig. 6. Effect of relative size on the roller velocity field. The radial velocity V;. (a-b) and tangent velocity Vp (c-d) fields of a roller around
obstacles with relative size r, /Ry, = 1.0 (a,c) and 7,/ Ry, = 0.1 (b,d). The velocities were calculated at z /7, = 1.392 and 1.382 for 1, /Ry, =
1.0 and 0.1, respectively. The filled magenta circles denote the obstacle, the white dashed circles the position of the roller at contact with the
obstacle. The filled black circle of radius Ry + rn + d, where d = 0.8, is drawn to block out the region where the electrostatic repulsion
dominates the dynamics of the roller. The red dots (e) denote the saddle point of the roller velocity fields as in Figs. 4a,c. (e) The radial (top)
and tangent (bottom) roller velocities along the black dotted semi-circles in (a-d) as a function of relative size r,/Rpn = 1.0 (), 0.33 (a) and
0.1 (v). The magenta lines correspond to V,./Vy = —0.80 cos @ (top) and Vp/Vy = —0.42sin 6 (bottom). The fluctuations of the curves for

rn/Rpr = 0.1 (v) are due to a relative coarse resolution of the mesh
with the bulk roller velocity.

measured escape times in the simulations and experiments,
this further increases the mismatch.

The height of the pillar H in the experiments was 20 pm,
while in the simulations we introduced obstacles with H =
5.5 um; this value was chosen to significantly reduce the run-
time of the simulations. To study the influence of the pillar
height in the simulations, we measured the escape time for
different pillar heights with 7, / R, = 1 (see Fig. S3(d) in the
Supplementary Material). Although the trapping time is re-
duced with a smaller pillar height, at [/ = 5.5 um the escape
time is reduced by only ~15%. As the limited pillar heights
in the simulations lead to a reduction in the escape times, this
cannot explain the larger trapping time measured in the simu-
lations.

We have used the same potential at contact € for the
microroller-to-wall (blob-to-wall, €p,,) and microroller-to-
obstacle (blob-blob, €) in the simulations. Although we
know that the obstacle is negatively charged [39], just as the
glass wall, we do not know the magnitude of the charge and
therefore the correct value of €,;,. To investigate its influence
on the measured escape times, we ran simulations while vary-
ing €, and keeping €, constant. In Fig. S5(a) the mean es-
cape times t* are plotted for different €, simulated with rel-
ative size r, /Ry, = 1 and Debye length (br,)~! = 0.1. We
have also plotted the corresponding interaction potentials in

used to calculate the roller velocity fields. All velocities are normalized

Fig. S5(b). The potential at contact €, in this work was 0.03,
which corresponds to the red point and line in Figs. S5(a-b).
Clearly, an increase in €y, leads to a strong reduction of the
escape time. This reduction can be explained as the screen-
ing of the basin of attraction as plotted in Fig. 4d, effectively
expanding the black circle and making it more probable that
the microroller can leave the basin of attraction by Brownian
motion. Therefore, the larger measured escape times in the
simulations could very well be explained by an underestimate
of the microroller-pillar potential at contact €;,. One possi-
ble way to measure this potential would be by using optical
tweezers [49]. Alternatively, the interaction potential can be
estimated from zeta potential measurements of colloids fabri-
cated by 3D-printing using the same resin [39, 50, 51].

Finally, another possible contribution to the offset in the
measured escape times in experiments and simulations could
be the different initial conditions in the escape time measure-
ments. Where in the simulations the escape times are mea-
sured after placing the roller in the trap in the wake of the ob-
stacle, in the experiments this is not possible and instead the
escape times are measured after a roller enters the trap (most
often on the side of the obstacle). As pointed out before, plac-
ing the roller in the trap in the simulations is done to reduce
their run times. Although this might contribute to the offset in
the measured escape times, it is unlikely this will change the



Fig. 7. Trapping mechanism: hydrodynamic response of the obstacle. Fluid velocity field induced by an isolated roller at a height
h = 1.297, in the x — y plane (a) and = — z plane (b). The shaded areas represent the position of an obstacle with relative size ry /R, = 1
and r, /Ry = 0.1 separated by a horizontal distance d, = 2r,. Streamlines are colored in white and the colorbar represents the magnitude of
the flow parallel to the plane and is normalized with the self-induced velocity of a free roller Vi. The magnitude of the x — z velocity is shown
in log-scale due to the high velocity contrast between the rigid body motion on the roller surface (v ~ 30V}) and the vanishing velocity on the
bottom wall (u = 0). (¢)-(f) Fluid velocity field induced by the traction forces on the surface of the cylinder for two relative sizes v, /R, = 1
and ry /Ry, = 0.1 in the  — y plane (c,e) and = — z plane (d.f). Solid orange line: iso-contour u, = —Vjp, for which the fluid velocity induced
by the cylinder balances the self-induced velocity of the roller V4. If the microroller lies inside that region, it will be attracted towards the

obstacle.

trend in the escape times as a function of relative size as we
observe.

For obstacles that are larger than the roller (r, /Ry, < 1),
the stable node is no longer a point, but has a more extended
geometry consisting of multiple stable nodes. We believe that
this is the origin of the multiple high-count regions in the his-
tograms of experiments and simulations including Brownian
motion (Figs. 3a,b). These trapping points are challenging
to resolve precisely in our simulations due to resolution lim-
itations. The use of high-resolution simulations to study of
the precise nature of the changes in the stable node as a func-
tion of obstacle geometry would allow a deeper understanding
of this dynamical system. We note that in addition to obsta-
cle geometry, for small relative sizes, the nature of the stable
node(s) additionally depends on the rotation frequency (in-
duced flow velocity). With stronger induced flow, this system
becomes fully three dimensional, so that the quasi-2D picture

we have used is no longer sufficient to understand the loca-
tion and geometry of the stable node. Though it is beyond the
scope of this study, understanding this more complex problem
is promising avenue for future work. Exploration along this
direction would open up possibilities for finer control of mi-
croroller trapping using obstacles with more complex shapes.

The trapping of active particles has been studied in experi-
ments [13-16, 21] and simulations [12, 52], for bacteria [16,
20] and spherical [12—14, 21, 52] and rod-shaped [12, 13, 15]
artificial microswimmers. The hydrodynamic trapping as re-
ported in these studies is manifested in the orbit of the swim-
mers around round obstacles and along ridges above a critical
relative size. The escape time of Brownian dipolar swimmers
was found to depend on the curvature of the obstacle, as was
also put to use in the elegant experiments by Davies-Wykes
et al. [15]. In all of these studies, it was found that Brownian
motion only contributes to the escape of the swimmers from



Fig. 8. Effect of lateral shift on hydrodynamic trapping. (a) Fluid velocity field induced by an isolated roller at a height A = 1.297, in the
xy-plane. The shaded areas represent the position of an obstacle with relative size r, /R, = 1 and r, /R, = 0.1 separated by a horizontal
distance d, = 2r, and lateral distance d, = 2. Streamlines are colored in white and the colorbar represents the magnitude of the flow
parallel to the plane and is normalized with the self-induced velocity of a free roller Vy. (b)-(c) Fluid velocity field induced by the traction
forces on the surface of the cylinder for two relative sizes 7, /R, = 1 and 7, /R, = 0.1 in the zy-plane. Solid orange line: iso-contour
uz = —Vp. Insets: iso-contour u, = —Vj in the xz-plane going through the center of the microroller at y = 0.

these orbital traps. The microrollers studied in our work differ
from the swimmers in these studies (pushers and pullers) by
both their flow field [8, 23] (see Figs. 1a-b) and their restricted
orientation as imposed by the plane of rotation of the magnetic
field. This restriction in the direction of propulsion makes that
the trapped microrollers do not orbit the cylindrical obstacle,
but rather converge to a single point: the attractor. This allows
for external control of the trapping position by tuning the mag-
netic field in future applications. Moreover, Brownian motion
is needed in order for the microrollers to enter the basin of
attraction, contrary to dipole swimmers, where thermal fluc-
tuations only contribute to the release of the swimmer.

To conclude, we studied the interaction of microrollers with
cylindrical obstacles using experiments and simulations in-
cluding Brownian motion and hydrodynamic interactions. We
found hydrodynamic trapping of the rollers downstream to the
obstacle, where the trapping time increases sharply for smaller
relative size. The trapping originates from the emergence of a
basin of attraction with an attractor behind the obstacle which
draws the roller towards the obstacle, which increases with
increasing obstacle radius. At large relative size, we found
three critical points of zero roller velocity: two saddle points
(up- and downstream) and one stable node or attractor (down-
stream). As relative size is decreased, the stable node transi-
tions from a single point to multiple points, and finally a line in
the limit of zero relative size (a wall). The saddle points orig-
inate from a balance of the self-induced velocity of the roller
and the hydrodynamic interaction with the obstacle, while the
attractor adds the electrostatic repulsion between the obstacle
and the roller to the balance. Brownian motion plays a dou-
ble role in the trapping of the microroller: it is needed for the
roller to cross a separatrix to enter the trap, but it also kicks the
roller out of the trap. This is unlike dipolar microswimmers,

such as bacteria (‘pushers’) and algae (‘pullers’), where Brow-
nian motion is only contributing to the escape of the swim-
mer from the trapped state. We found an offset in the escape
times in simulations and experiments, which we attribute to
an underestimate of the obstacle-microroller potential at con-
tact. Finally, we note that the trapping is easily tunable over
orders of magnitude in the laboratory by controlling the cur-
vature of the obstacle and the Debye length of the microroller
suspension.

In this work we were limited by the computation time
to access higher resolution simulations or larger obstacles
(rn/ Ry < 1), which could be explored in future work, as well
as the incorporation of lubrication effects [28]. Furthermore,
a careful characterization of the microroller-obstacle electro-
static interaction could potentially close the gap in the trap-
ping time in the experiments and simulations.

Dense suspensions of microrollers exhibit interesting be-
havior such as the formation of hydrodynamically stabilized
motile clusters [4]. It will be of interest to explore how these
motile clusters interact with obstacles, as they are promising
for the directed transport of passive cargo [4]. This would be a
first step to understand their interaction with a complex envi-
ronment, and towards future applications. Preliminary exper-
iments with multiple rollers suggest multiple rollers are less
affected by obstacles in their path than single rollers.

Obstacles with more complex shapes can lead to other in-
teresting hydrodynamic interactions. As shown by Davies
Wykes et al. [15], obstacles with a variable curvature (such
a teardrops) can lead to controlled release of the swimmer
from the obstacle. In the case of the microrollers, this re-
lease can then be instigated by a change in the external mag-
netic field, resulting in switchable and externally controlled
trapping. Furthermore, as the trapping time depends on the



relative size, it can potentially be used to sort microrollers by
their size. Finally, it is worthwhile to study the interaction of
the microrollers with 3D obstacles where the obstacles distort
the flow field above the microrollers. It will be interesting to
extend this to the interaction of microrollers exploring a 3D
environment, for instance porous architectures.

MATERIALS AND METHODS
Experiments

The experimental system is similar to Ref. [28], but with
the addition of a 3D-printed cylindrical obstacle. The mi-
crorollers are TPM (3-(trimethoxysilyl)propyl methacrylate)
spheres with a diameter of 2.1 um with an embedded mag-
netic hematite cube[28, 53] (see Figs. 1c-d) suspended in wa-
ter. To reduce the Debye length b, lithium chloride (LiCl)
was dissolved in the water. The obstacles were printed using
a photopolymer resist (IP-Dip) on microscope cover slips us-
ing a Nanoscribe Professional GT two-photon printer [54, 55].
The auto-fluorescent obstacles were printed as open cylinders
with height H = 20 um, where the wall thickness was 2.5-2.8
um, in a periodic array with a square lattice, with a lattice con-
stant of 100 um. A sample chamber (~120 um X 2 cm X 2
cm) was constructed from the cover slip with the printed pil-
lars, two spacers and a microscope slide [28], which was filled
with the microroller suspension and sealed using UV glue
(Norland Adhesives, no. 68). The glue was cured using UV
light, after which the sample was placed on the microscope
with the cover slip down. Before imaging the colloids were
allowed to sediment toward the cover slip on which the pillars
were printed.

We imaged the microrollers and obstacles using a bright
field or fluorescence microscope (see Fig. S1 of the Supple-
mentary Material) while applying a rotating magnetic field
(40 G, 9 Hz, see Fig. 1d). The microscope was a Olympus
IX83 inverted widefield microscope equipped with a 20x/0.7
NA air objective. A 555 nm LED lamp was used for excita-
tion during fluorescence imaging. During the acquisition of
long image sequences, the particles were kept in focus using
the Olympus IX3-ZDC2 drift compensation module.

The magnetic field was generated using a home-built tri-
axial Helmholtz coil set, mounted on top of the microscope
stage (see Ref. [28] for details and images). Thorlabs C-mount
extension tubes were used to raise the objective close to the
sample in the center of the coil set. To create the rotating
magnetic field, two out-of-phase sinusoidal signals were cre-
ated by a Python script, a data acquisition system (DAQ, Mea-
surement Computing), and two (audio) AC amplifiers (EMB
Professional), and fed into the coil set. The phase difference
between the two signals was /2 and the signals were sent to
one coil parallel and one perpendicular to gravity, resulting in
a rotating magnetic field with its rotation axis parallel to the
bottom wall.

Escape time measurements were done using bright field mi-
croscopy and analyzed manually using ImagelJ. Microrollers
that remained adjacent to an obstacle after crossing its center
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coordinate were considered trapped; when these microrollers
moved more than 5 particle diameters downstream from the
post, they were considered released; the time difference be-
tween trapping and release was recorded for multiple interac-
tions (sample size varied between 4-16 escapes per obstacle
size). The times reported represent the mean and standard er-
ror of the distribution of trapping times per obstacle size.

2D positional histograms of rollers passing obstacles in ex-
periments were made from two fluorescence microscopy im-
age sequences (sequence length of 1800 frames, captured at
1 frame/second with a 500 ms exposure time) in the follow-
ing way. We tracked the positions of all the rollers using
TrackPy [43] and filtered out rollers with very short trajecto-
ries (<100 frames), particles that did not move substantially,
and clusters of rollers by their intensity. Next, we transformed
the particle coordinates so that each particle’s position was
shifted to the reference frame of the nearest obstacle; obsta-
cle centers were identified using scikit-image’s contour find-
ing algorithm [56]. To remove instances where two rollers
came closer than 15 pm (or 157), we removed these instances
from the trajectory as these microrollers likely were hydrody-
namically interacting. Finally, all the positions of the remain-
ing rollers around ~30 individual pillars from both image se-
quences were then combined and plotted in a 2D histogram.

Simulations

To study the trapping of microrollers we performed Brow-
nian dynamics simulations. The dynamics of a microroller
satisfy the overdamped Langevin equations [27]

%‘Z = MF + \/2kgTM"'*W + kpT0q - M (1)
where ¢ = {z, 0} is the vector collecting the roller position
a and orientation 6 (here a quaternion). The first term in the
RHS of (1) is the deterministic velocity of the microroller due
to the external forces f (here gravity and electrostatic repul-
sion) and torques 7T (from the rotating magnetic field in exper-
iments) applied on it, where F' = {f,7}. The mobility ma-
trix M (q(t)) relates the velocity V' and rotation rate w to the
forces and torques applied on the microroller through its hy-
drodynamic interactions with the wall and the obstacle. The
second term is the velocity increment due to Brownian mo-
tion, which involves a vector of independent white noise pro-
cesses W(t) and the square root of the mobility matrix M'/2,
The last term is the stochastic drift involving the divergence of
the mobility matrix with respect to the particle positions and
orientations, it arises when taking the overdamped limit of the
Langevin equations [57]. More details on the methods used to
compute those stochastic terms are found in [27].

We computed the mobility matrix M by solving the first-
kind integral formulation of the Stokes equations with a
coarse-grained model called the rigid multiblob model [31],
where the continuous single layer potential is replaced by a
discrete set of blobs, i.e. markers with a finite size, on the sur-
face of the microroller and of the cylinder. These blobs are
constrained to satisfy the rigid body motion on the obstacle



and microroller surface through a set of Lagrange multipliers.
Hydrodynamic interactions between the blobs are given by a
regularization of the Green’s function of Stokes equations in
the presence of a no-slip wall, called the wall-corrected Rotne-
Prager-Yamakawa (RPY) tensor [58]. The cylinder is con-
strained at a fixed position on the floor in order to satisfy the
no-slip boundary condition for the fluid velocity w = 0 on its
surface.

We modeled the microrollers with a hydrodynamic radius
rn, = 1 pm[41] confined by gravity to a no-slip bottom
wall, while a constant torque is applied in the x-z-plane (see
Figs. le-f) [27, 31, 40]. The microrollers are constructed of
12 blobs with radii r, = 0.416 pm, while we vary the hy-
drodynamics radius R}, of the cylindrical obstacles, which are
constructed of blobs with an equal size as the rollers and have
a height H = 5.5 um [59]. A smaller height was chosen in
simulations to reduce the run-time of the simulations and its
(minimal) effects on the results are addressed in the Discus-
sion.

The blobs in the roller and pillar interact through a Yukawa
potential

—etifr <l
U(r) = {6 r 'S )

ifr > 1,

where € = 0.03 pNum ~ 7.3 kT is the repulsion strength
at contact, r the center-to-center distance between the blobs, [
twice the blob radius rj, and b/r;, = 0.1 the Debye length. For
the interaction between a blob and the bottom wall we use the
same potential, but with [ equal to the radius of a single blob 7,
and r the distance from the wall to the center of the blob [36].
We used the stochastic Trapezoidal Slip method [27] to inte-
grate (1) with a time step At/7se;p = 2.25 x 1073, where
Tsetf = (6mnr) /KT, the time the roller takes to diffuse over
its own radius in the absence of a driving field [60].

The parameters used in the simulations are listed in Tab. S1
and are chosen similar to the experimental parameters and the
work reported in Ref. [28].
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Supporting File legends

Video S1

A microroller getting trapped by a cylindrical obstacle as imaged by fluorescence microscopy.
Eventually the roller is able to escape the trap. The arrow denotes the direction of propagation

of the roller. The obstacle radius is 14.4 microns.

Video S2

A microroller passing a cylindrical obstacle without getting trapped, as imaged by fluorescence
microscopy. The arrow denotes the direction of propagation of the roller. The obstacle radius is

14.4 microns.

Video S3

A microroller getting trapped by a cylindrical obstacle in simulations. Eventually the roller
escapes the trap. The arrow denotes the direction of propagation of the roller. The obstacle’s

hydrodynamic radius is 10 microns.

Video S4

A microroller passing a cylindrical obstacle without getting trapped in simulations. The arrow
denotes the direction of propagation of the roller. The obstacle’s hydrodynamic radius is 10

microns.

Video S5

An escape time measurement: the roller is placed in the wake of the obstacle (i.e. in the trap)

and the simulation runs until the roller escapes.



File S1

3D plot of the trajectories of a roller with different initial positions interacting with an obsta-
cle. The colors denote different initial heights. The majority of initial positions lead to the

convergence of the roller into a single point (black sphere).



Supporting Tables

Parameter Value Units
Blob radius 7, (N=12) 0.416 um
Blob radius 7, (N=42) 0.244 um
Roller geometric radius 7, 0.7921 um
Roller hydrodynamic radius 7, 1.0 pm
Buoyant force on roller mg 0.0372 pN
Viscosity 7 0.96 x 107% | Pa-s
Temperature 7' 22 °C
Torque 7* 1.36 x 107®¥ | N-m
Solver tolerance 107°

Potential at contact € 0.03 pN - um
Debye length b 0.1 um

Table 1: Parameters used in simulations. *Equivalent to a driving frequency of 9 Hz in the
absence of boundaries.



Supporting Figures

Fig. 1: Fluorescence microscopy image of an array of printed pillars and microrollers.
The scale bar is 50 um.
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Fig. 2: Escape time histograms for different relative sizes. Histograms of the escape times
tesc of a roller placed in the wake of an obstacle ([z = Ry + r,,y = 0]) for different relative
sizes ry,/ Ry, of the obstacle and Debye length b/r;, = 0.1.
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Fig. 3: Roller-obstacle interaction. (a) Log-log plot of the mean escape time ¢* as a function
of relative size 7,/ Ry, for different multiblob resolutions: 12 blobs (O) and 42 blobs () per
microroller. Errors bars denote the standard error of the mean. (b) Flow field of a microroller at
z/rp, = 1.29 around a pillar (r;, /R, = 1) showing two saddle points (purple) and a separatrix
encircling the pillar (green dashed line). On the separatrix the flow converges for x < 0 and
diverges for x > 0. The saddle points are slightly shifted from y = 0 due to the finite reso-
lution of the pillar in the simulations. (c) Microroller velocity field in the xy plane calculated
downstream of a wall (r,/R, = 0, H = 5.5 um, 10 um long). The microroller velocities are
normalized to the microroller velocity in bulk V{,. The magenta line indicated the wall position,
the white line denotes the position where the roller is in hard contact with the wall. The black
area is drawn where the electrostatic repulsion dominates the dynamics of the roller. The red
line indicates the saddle line. (d) The mean escape time ¢* as a function of pillar height H.
Errors bars denote the standard error of the mean.
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Fig. 4: Iso-surface volume in simulations as function of relative size. (a) Volume )’ enclosed
by the iso-surface u, = —V/ of the flow induced by the traction forces on the obstacle surface,
when the microroller is at a separation distance d, = 2ry, as a function of the relative size
rn/Ry. The volume is restricted to the region ahead of the obstacle © > . + Ry, (b) 3D
representation of ) (red transparent contour) for r, /Ry, = 0.1 (top) and r},/ R, = 1 (bottom).
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Fig. 5: Influence of the microroller-to-obstacle interaction strength ¢,, on the trapping
time. (a) Mean escape time ¢* as a function of the potential of contact ¢, with the error bar as
the standard error of the mean, for r;,/ R, = 1 and (br;,)~! = 0.1. (b) The blob-blob interaction
potentials with different potentials at contact €, with colors matching the data points in (a). The
grey vertical dashed line denotes contact of the blobs.



