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Open-air microwave quantum communi-
cation and metrology protocols must be
able to transfer quantum resources from
a cryostat, where they are created, to an
environment dominated by thermal noise.
Indeed, the states carrying such quantum
resources are generated in a cryostat char-
acterized by a temperature 7;, ~ 50 mK
and an intrinsic impedance Z;, = 50Q.
Then, an antenna-like device is required
to transfer them with minimal losses into
open air, characterized by an intrinsic
impedance of Z,,t = 377Q) and a tem-
perature Ty, ~ 300 K. This device ac-
complishes a smooth impedance matching
between the cryostat and the open air.
Here, we study the transmission of two-
mode squeezed thermal states, developing
a technique to design the optimal shape
of a coplanar antenna to preserve the en-
tanglement. Based on a numerical opti-
mization procedure, we find the optimal
shape of the impedance, and we propose a
functional ansatz to qualitatively describe
this shape. Additionally, this study re-
veals that the reflectivity of the antenna is
very sensitive to this shape, so that small
changes dramatically affect the outcom-
ing entanglement, which could have been
a limitation in previous experiments em-
ploying commercial antennae. This work
is relevant in the fields of microwave quan-
tum sensing and quantum metrology with
special application to the development of
the quantum radar, as well as any open-air
microwave quantum communication proto-
col.

Mikel Sanz: mikel.sanz@ehu.eus

1 Introduction

Superconducting circuit technology, working in
the microwave regime, has been around for a few
decades but it is modern when compared with
quantum optics. Recently, it has gained new life
thanks to advances in controllability and scal-
ability of superconducting qubits [1], spurring
this technology to the top on the field of quan-
tum computation |2]. The development of quan-
tum microwave technology is then vital not only
for quantum computation, but also for secure
quantum communication protocols |3, 4, 5, 6, 7],
distributed quantum computing [8], quantum
metrology and quantum sensing [9, 10, 11], spe-
cially with the quantum radar on sight [12, 13].

The quantum microwave technology toolbox is
constantly being updated, including new genera-
tions of HEMTs [14, 15, 16], JPAs [17, 18|, and
more recently, single-photon photodetectors [19,
20] and photocounters [21].

Quantum communication with microwave pho-
tons is the best way to connect
superconducting-qubit chips together, as envi-
sioned by the area of distributed quantum com-
puting. Although the number of thermal pho-
tons is larger in the microwave than in the optical
regime, attenuation of signals in the atmosphere
is reduced highly in the frequency window 100
MHz - 10 GHz [12, 22].

Applications of open-air quantum communica-
tion and sensing are particularly challenging and
require additional development, specially for an-
tennas connecting cryostats with the open air.
Recent experiments have failed on efficient en-
tanglement distribution while using commercial
antennae [23, 24, 25].

One could then wonder what are the limi-
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Figure 1: Sketch describing an open-air microwave quan-
tum communication protocol, in which a party A gen-
erates a two-mode entangled quantum state and sends
one of the modes to a second party, B, through an envi-
ronment dominated by thermal noise, keeping the other
mode. The effect of the antennae, as well as the trans-
mission in open air, are modeled by beamsplitters, which
allow for the description of the deterioration of the state
due to thermal noise. These have reflectivities |rp|?
and |#r|? for the antennae, and |rg|? for the imperfect
open-air transmission.

tations of using classical antennae transmitting
quantum signals. A classical antenna comprises
two mechanisms: impedance matching and am-
plification [26]. While the former will be also
required by quantum signals, in order to avoid
reflections when propagating between different
mediums, the latter can only destroy quantum
correlations. Phase-insensitive amplification sim-
ply pollutes the signal with thermal noise [27],
thus diminishing quantum correlations. There-
fore, a quantum antenna must not introduce this
type of gain into the signal, and it needs to be
specifically designed for the problem of entangle-
ment preservation of signals traveling from inside
a cryostat into the open air.

In this article, we address this problem by
considering the quantum antenna as a coplanar

(¢7+1
2Ax lln

}+Zd: {Am

j=0

where we have defined [iy,, ¢;, as the inductance

waveguide with a position-dependent impedance.
We observe that the shape of the antenna defines
its reflectivity, and this highly affects entangle-
ment. Thus, we optimize the impedance function
with the objective of minimizing the reflectivity
of the antenna. As a paradigmatic case, we study
the transmission of two-mode squeezed states [28|
into open air, for they are easy to generate and
robust to photon losses. We employ a numer-
ical optimization method through interpolation
and repurposing each solution, as well as pro-
pose an ansatz for the impedance, qualitatively-
based on the solution from the numerical case.
We find that the reflectivity can be reduced be-
low 1079, while entanglement preservation with
real-life experimental parameters would require
values below 10~%. To conclude, we study the de-
pendence of entanglement preservation on errors
in the impedance of the antenna, to illustrate the
impact that small fabrication imperfections could
have on the quantum antenna.

2 Antenna design

We intend to design an antenna for an open-
air microwave quantum communication protocol,
in which an entangled state is produced by a
source A, keeping one mode and sending another
through a waveguide into open air, to be received
at a remote location B, while maintaining the en-
tanglement between both modes, as can be seen
in Fig. 1. For this, we propose a transmission
line (TL) as a waveguide that sends out the state,
then a finite inhomogeneous transmission line as
the antenna, and then another TL to represent
the open air [12]. This circuit is sketched in
Fig. 2.

The TL on the left has an impedance of 50 (2,
whereas that on the right has an impedance of
377Q. Then, the antenna serves as an inhomo-
geneous medium that achieves a smooth transi-
tion from two very different impedances. The La-
grangian describing this circuit is

(Prt1 — ér)?
2Ax lout ’

(d"-‘rl - ¢)2 al Ax Cout ;2
G S [
=d+1

and capacitance densities of the transmission line
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inside the cryostat, l3(z), c2(x) as the inductance
and capacitance densities of the antenna, and
lout, Cout as the inductance and capacitance den-
sities of the second transmission line. See that
the inductances and capacitances on the antenna
depend on the position, which is necessary for a
smooth change of impedance. This way, we can
write the impedance as

Zy(z) = iz((z)) = la(x)v. (1)

The reflectivity of the antenna entirely depends
on the impedance between the different media.
As the impedance is defined by the densities of
inductance and capacitance, Z = /I/c, which
can be independently manipulated in nano fabri-
cation, we can choose without a loss of general-
ity the propagation velocity through the antenna,
v=1/ Ve, to be constant. Consequently, the de-
pendence on the position falls entirely onto the
impedance.

Taking N — oo in order to consider semi-
infinite transmission lines, amounts to taking the
continuum limit Az — 0. Then, we rewrite the

Lagrangian
1
= [T a4 iy Qe 1)
(2)

defining the capacitances and inductances as

(Orp(z, t))

ln  ifz<0
lo(z) f0<z<d (3)
loww ifz>d

and
Cin ifx <0

ca(z) f0<z<d (4)
Cout Hax>d

From the minimal action principle, we obtain the
Euler-Lagrange equations for this Lagrangian,

2 _ 8x¢<x7t)
(@), 1) = D (l(w) ) (5)

For the left and right transmission lines, [(x) and
c(x) are constant, and Eq. 5 is just the wave equa-
tion. This means that for the left and right TLs,
the solutions to the equations of motion are plane
waves. However, the solution for the antenna is
not as straightforward, for which we employ the

variable separation method. We then propose

O(z,t) = 32 on(t)un(z),

()l () = oft) (A2 ()

which leads to the expression

)28 = (uta) -

On both sides of the equation, the solutions are
constants,

‘Pn(t) = _£U290n(t)> (8)
()~ 2Dt @) = @) (9)

Z(x)

where we have used c(z)l(z) = 1/v? and Z(x) =
I(z)v. From this, we see that & = k2 = (w,/v)?,
the wavenumber. Then, the equation that we
need to solve is that for u, (), which can be writ-
ten as the Sturm-Liouville problem. In order to

solve this equation for the antenna we need to fix
Z(x).

2.1 Linear antenna

For a simple case study we consider that Z(zx) for
0 <z < d is a linear function of the position,

X X
Z@jz(l—d)zn+dZm, (10)

which implies that the inductance in the antenna
is also linear. From now on, we will focus on
a single mode of the wavefunction, and we will
drop the subscript notation -,. The solution to
the equation of motion (see Appendix A) is

u(z) = (Zin(d — ) + Zoutx) %

[01J1 (kx - kd Zout - Zin)
e, (k +-kd22“>] (11)
h v Zout - Zin ’

where Ji(-), Y1(-) are the Bessel functions of the
first and second kind, respectively, and c1, co are
arbitrary constants. Then, our problem can be
translated into a scattering problem,

uy(z) = Ae*® 4 Beke forz <0
uz(x) = u(z) for0 <z <d

uz(x) = Fe'l 4 Ge " forx >d (12)
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Figure 2: Description of a quantum circuit that represents the connection of a cryostat (black) with the open air
(blue), represented by a transmission waveguide, via the antenna (red), which is described by a finite inhomogeneous

transmission line.

where k£ = w/(c/3) is the wavenumber inside the
cryostat and the antenna, considering that the
propagation velocity is v = ¢/3 inside these two
circuits, and ¢ = w/c is the wavenumber on open
air, where v = ¢. Imposing continuity of voltage

(13)

¢z, t)

= ¢($,t)

—
and current

o ()], = ()

implies imposing the continuity of these functions
and their derivatives.
imposed at frontier points x = 0 and x = d, such
that

xT

(14)

xt

Boundary conditions are

lim wu(z) = u1(0), lim w(z) = ua(d),

z—0— r—d—
li = uy(0 li = u3(d),
Jlim u(z) =uz(0),  lim u(z) = uz(d)

considering that the impedance is constant across
the boundaries, lim,_,o- Z(x) = lim,_,o+ Z(z) =
Zin and lim,_,4- Z(z) = lim,_ g+ Z(x) = Zout.
Notice that, since we have imposed that the ve-
locity is constant throughout the antenna, it will
jump from vi, = ¢/3 to vout = ¢ when moving
from the antenna to open air. Therefore, the con-
tinuity of the current at z = d will be expressed

by
u2($)>
Vin Oy (
Z(:C) r=d~
If we do this, we find

_ Vout
Z out

8115“3 (.CL') ’x:d“' .

Z.
A+ B = dZ;, kd—""——
+ {Cljl ( Zout -7 )

1

Zin
Yi | kd—— 1
+621< Zout_Zi>:|7 (5)
A — B = —idZ; [c J (dem)
B S Zout — Zi

Z.
/ in

vt (haz =) | ao)

and also
Fe'd 4 Ge™1d = gz [cl Ji (deO“t>
out Zout - Zi

Zout
Y; _ 1
e 1<kdzout—zi )} (7)

. . Z
Fel1d _ Qe — _idz [ J! (kdo“t>
¢ c ! out | 11 Zout - Zi

Zou
out — i

where it will be useful to know that

Ti(@)Y{(z) = Yi(2)Ji(x) = — (19)
The transfer matrix
F A
@)-r() e

is used to construct a scattering matrix S,

(5),.=5(0). = &) (@), @

which will not be normalized (SST # 1). For
that, we can redefine S as

o _ 91 0 91 0 _ 9%5'11
5= (O 02> 8 (0 92) B (9192521
and find the parameters 61, 62, with which the
matrix S satisfies unitarity conditions. First of

all, the determinant must be equal to one (in
modulus). This implies that

0102512
0385 )’

det S = 0703det S = . (22)

Also, the rows of the matrix must represent or-
thonormal vectors,

016555
2 1V2091 | __
(91511 9192512) < 6255 ) =

01602 6751155, + 0351255, (23)
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and from these two conditions we can obtain the
parameters

of = - 2 (24

det S 511551

oh et 51155,

27 detS 51255,

(25)

For this scattering problem, we find that the uni-
tary scattering matrix is given by

9Zin_
A\ 5Zoums St S12

. (26
v det S 521 —4/ LqZZOi:" 522 ( )

where v is a free parameter of the system, and
thus can be set to zero. Also we have that, for this
problem, |det S| = 1. In the entries of this matrix
we can identify the transmission and reflection

coefficients,
& _ (tL TR
S = (TL tR) . (27)

In the case in which there is no antenna, we now
recover the usual formulas in optics

2
2\ Zin 2,
tr)? = Jtpl* » | oo 28
to|” = |tr] (Zin+Zout , (28)

Zin — 2, 2
2 in out
rp? — (222 29
igd (Zin—i—Zout) (29)

5 etv/2

Ire> =

when there is an abrupt change in the impedance.
Notice that, when both impedances are equal,
there are no reflections. In the opposite limit,
having an infinitely-long antenna, we find that

tr)? = |tr|* — 1, (30)

[rr|* = |re* — 0. (31)

This limit corresponds to an infinitesimally-slow
(adiabatic) change of impedance, generating no
reflections in a wave propagating through it into
another medium. Now, we want to obtain the
transmission coefficient for a given state, depend-
ing on the size of the antenna, d.

3 Two-mode squeezed thermal states

We study the performance of the antenna for two-
mode squeezed states, the best candidate for en-
tangled quantum states with continues variables
due to the stability and simplicity with which
they are generated. The entanglement of these
states is determined by its squeezing parameter.

A two-mode squeezed vacuum state results from
the combination in a 50 : 50 beam splitter of two
single-mode squeezed vacuum states in different
directions, generated with independent Joseph-
son parametric amplifiers (JPAs). The action of
JPA can be described by the single-mode squeez-
ing operator,

S(z) = ez(=Ta*—=a™) (32)

with z = re??. The single-mode squeezed vac-
uum states, with equal squeezing in orthogonal
directions in phase space, are then sent through
a 50 : 50 beam splitter to obtain a two-mode
squeezed vacuum state [28]. However, the pres-
ence of thermal photons during the generation of
squeezed states in the JPAs, at temperatures of
10 — 50 mK, leads to states which are not pure.
To account for the presence of thermal photons,
we consider that the input states to the JPAs are
identical thermal states, with n thermal photons,
which leads to a two-mode squeezed thermal state
(TMSth) [29] through the same process.

In this setting, we will work with the covari-
ance matrix, an object that contains the second
moments of the state, since it is a good way to
characterize gaussian states. This matrix can be

written as
UZ(? %> (33)
03 02
by defining
o1 — sz, m})
1 %{wm} wh )
_ 2{@2, p2})
o2 = <; {xg,pg} ? <p%> ) ) (34)
oo = L (Hzrm}) ({1, p2})
T2 \Upnw)) dpipeh))

Consider a TMSth state generated by applying a
two-mode squeezing operator,

Si2(r) = exp {r <a1a2 — aJ{aE)}, (35)

onto a thermal state. The covariance matrix of
the resulting state is given by

c 0 s O
1 10 ¢ 0 -—s
Jils 0 ¢ o) (36)
0 —s O
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where ¢ = cosh 2r, s = sinh 2r, and p is the pu-
rity, such that = 1/(1 + 2n)? for TMSth states
with n thermal photons. Then, the covariance
matrix of our initial state is

0
1

NG (37)

Oin =

SO »w OO0
[evBN e
S0 O W

—S

On the other hand, the covariance matrix of
the thermal noise coming from the environment,

0

0
cosh 2r

0

sinh 2r
0

Oenv-in =— (1 + 2”)

SO OO O3
S oo o3 O

where we have defined n = (1 + 2Neg)/(1 + 2n).
Now, in this quantum communication protocol
we intend to send one of the modes of the TM-
Sth state we generate, and optimize the entangle-
ment remaining between the mode we have kept
and the one that is sent into open air. Then,
one of the modes goes through the antenna and
is mixed with the thermal noise coming from the
environment through the scattering matrix of the
antenna, while the other mode is left untouched.
This process is described by the action of the op-

erator
B 0
= (O 12>

on the matrix above. See that thermal noise en-

(40)

which changes the state when it is sent into open
air, is given by

(142N 0
Tenv = ( 0 1+ 2Neﬂ> - (38)

Here, Neg represents the number of thermal pho-
tons from the environment, that characterize the
environmental noise in open air. The global co-
variance matrix is given by

0 0 0
0 0 0
0 sinh 2r 0
cosh 2r 0 —sinh 27 |’ (39)
0 cosh 2r 0
— sinh 2r 0 cosh 2r

ters here as the second input mode to the beam
splitter. We then trace out the reflected part
coming from the beam splitter matrix, and ob-
tain the covariance matrix of the output state,

Oout = 112 {Ta—env—ian . (41)
Given the order in which we have written the
states in the covariance matrix, the beam splitter
matrix B is a reshuffling of the scattering matrix
describing the action of the antenna, and can be

written as
trls
rrla )

This way, we find the covariance matrix of the
output state to be

B= <T312 (42)

trlsy

nlrr|* + |tL|? cosh 2r 0 tr, sinh 2r 0
_ 0 n|rrl? + |tL|? cosh 2r 0 —t, sinh 2r
Tour = (14 2n) t7 sinh 2r 0 cosh 2r 0 (43)
0 —t7 sinh 2r 0 cosh 2r
\
In the covariance matrix formalism, we can com- the negativity is computed as
pute the entanglement of a state through the neg-
ativity. For a covariance matrix A — max {0’ 12_ V} 7 (45)
v

(44)

01 03
g = T
03 g9

where v is the symplectic eigenvalue of the partial
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transposition of o [30],

v = \}5\/A(a) —\/A20) — 4det(o),  (46)

with A(o) = det(o1) + det(o2) — 2det(o3). The
state described by o is entangled if N > 0, or
equivalently 0 < v < 1. The symplectic eigen-
value of the TMSth state oy, is given by

Vin = (1 +2n)e %, (47)

and the condition for entanglement is r >
log(1 + 2n). Notice that this condition is 7 > 0
for two-mode squeezed vacuum states (n = 0).

The outgoing state will also be a TMSth state,
up to unitary transformations. Thus, it’s sym-
plectic eigenvalue will have the same form as that
of the initial state. If we set the initial squeezing
to zero, no squeezing can be generated through
the beam splitter, and we have vy, = 1 + 2n for
the initial state, and vy = 1 + 2n’ for the final
state. Comparing this formula with the symplec-
tic eigenvalue obtained from Eq. 43, we find that
n’ =n. Then, vy = (1 + 2n)e*27"/, and

1 v,
—— out ) 48
" 2Og(1—|—2n (48)

If we write out explicitly the symplectic eigen-
value of the output state, we obtain

1
Vout = \/i\/A(Uout) - \/A2(Uout) — 4 det(oout)
where
A(oout) = (1 + 2n)2 {(7]|7‘R|2 + |tL|2 cosh 27‘)2

+ cosh? 2r + 2|t |* sinh? 27"} ,  (49)

and \/A2(ooyt) — 4det(oout) is

(1+ 2n)2 [n|7‘R|2 +(1+ |tL|2) cosh 21“} X

\/(77 — cosh 27)2|rg|4 4 4tp |2 sinh? 2r.  (50)

The number of thermal photons is computed from
the Bose-Einstein distribution,

n(f) X —7—-. (51)

The number of thermal photons of frequency
f =w/2r =5 GHz is 8 - 1073 at temperatures
of T ~ 50 mK, whereas at room temperature

(T'" ~ 300 K), the number of thermal photons
is approximately 1250, which implies n ~ 2500.
Now, we can approximate vyt depending on the
relation between n|rg|? and |tz |?, and obtain a
simplified form in the different regimes.

The first case we study describes the regime in
which 7|rg|? > 1 with |rg| # 0. We find that

Vout = Vin + (1 + 2n) sinh 2r X
tr|?(1 4 [tz |?) sinh? 2r

1
2n|rr|? cosh 2r

(52)

Total reflection by the antenna is achieved by tak-
ing |rg| — 1, then vout = (1 + 2n) cosh 2r, which
is always greater or equal to 1. This means that
there cannot be entanglement, because we are ne-
glecting the reflected mode, and the transmitted
one only has thermal noise from the environment.
Then, we just have two thermal states. Total
transmission, |rr| — 0, breaks the approxima-
tion we have made here. Furthermore, see that
we recover the result 1+ 2n as r — 0. In this
case, Voyt 1s smaller for larger |tr|, only showing
entanglement for |rg| < 0.1. This is the regime
we study in the next case.

The second case describes the scenario in which
n|rr|* < 1 with |t;| ~ 1. This regime is more re-
strictive, and is close to total transmission, sim-
ply because in order to have n|rg|? < 1 we need
|rr| < 1072. Here, we find

1+

Vout = Vin

77\7’1%‘2 62T1
2
1 2

= Vin + (2 + Neff> rrl” (53)
When r — 0, the approximation breaks down
and we would have to substitute before perform-
ing the approximation. For total transmission,
|rr| = 0, we recover the initial state, since no
thermal noise from the environment is mixed with
the mode we are sending through the antenna.
The condition for entanglement on the initial
state is

r > %log(l + 2n), (54)

and in this case, for the output state it is

)

1 1 1
r>g log(1 4+ 2n)—§ log {1 - (2 + Neff) lrp|?

which is, of course, more restrictive. The former
inequality imposes (% + Neg> Irgr|? < 1.
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If we approximate log(1 + x) = +x for z < 1,
then we can write the condition for entanglement
on the input state’s squeezing parameter as 7 > n
for the initial state, and r > n+ %Neff‘TR‘Q for the
output state.

We have found that it is not possible to achieve
values of the reflection coefficient lower than
|rr| ~ 0.08 with a linear antenna. For the squeez-
ing of the initial state around r = 1, we need
|rr| < 0.026 in order for the output state to be
entangled. An antenna in which the impedance
grows linearly with the position is not sufficient,
and for this we explore the stepwise antenna.

_ Antenna
Cryostat ») >>) >>) A Open Air
) WZm Zl1 le le Zl.v Z:un .
d

Figure 3: Quantum circuit design describing the con-
necting between the cryostat and the antenna, and be-
tween the antenna and the open air. Now, the an-
tenna is divided in IV slices of length ¢, inside which the
impedance changes linearly, corresponding to a beam
splitter with reflectivity n; = |r%)|2, setting N + 1 scat-
tering problems. Globally, we are able to implement a
general function of the impedance.

4 Stepwise antenna

We propose a different approach to study the
circuit: consider the division of the antenna in
N infinitesimally-small slices, regions in which
the impedance changes linearly with the position,
such that adding up all of these slices together
yields an impedance that changes with the po-
sition following a different function. This setup
can be seen in Fig. 3.

The difference with the previous approach is
that now we have N — 1 new parameters, the
impedances of the intermediate slices, which we
can use to optimize step by step the transfer of
the quantum state in the antenna, together with
the size of the TL. In this case, the impedance at
a slice m in the TL is given by

Z(z) = <m+1 - j) T + <§ —m) L.

Then, the spatial component of the wavefunction
for a given slice m inside the antenna is given by

U (X)= [€Zm + (x — mE)(Zmt1 — Zm)] X (55)

m Zm
|:C§ )Jl (k(l’ — m€) + ngH—Z)

(m)y; _ _Im
+cy Y] <k‘(aj me) + k;eZmH — Zm>} ,

where ¢ = d/N indicates the size of each slice,
for x € [em,e(m + 1)] and m € {0,...,N — 1}.
See that, for N = 1, we recover the result of the
linear antenna studied above. This system allows
us to construct a transfer matrix for each of the N
scattering problems, such that the global transfer
matrix will be the result of an ordered product of
these N matrices. In this problem,

(N)
<g> =Ty @N)) = Ty.. T) (g) . (56)

and the global transfer matrix is T =
TnTn_1...Ty. From this global transfer matrix,
we can obtain the global scattering matrix, and
make it unitary in the same way as for the lin-
ear antenna. This technique allows us to imple-
ment different continuous piecewise functions for
the impedance, and provides more freedom in the
optimization process. Eventually, the design of
this circuit is oriented to optimize the resource
that is shared between two parties. Thus, the
optimization process will involve the minimiza-
tion of the reflection coefficient |rg|, in order to
maximize the entanglement in the output TM-
Sth state. We are facing a global optimization
problem that we will perform stepwise locally.
Starting from random impedance arrays as ini-
tial guesses, we optimize the reflectivity with re-
spect to the first impedance before Zy, = 3772,
while keeping the rest of the impedances fixed.
Once the optimal impedance value for the first
point has been found, we update its value and
optimize with respect to the previous point. We
repeat the process for the whole impedance ar-
ray until we reach the point before Zi, = 50 .
Of course, Zi, and Z,y must remain fixed. As a
criterion for the stability of the solutions, we con-
sider that the optimization process has been suc-
cessful when the difference between the reflectivi-
ties computed with the impedance solutions after
two consecutive sweeps is smaller than 10719,
Even with just one subdivision (N = 2), we are
able to find small enough values of the reflection
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—— N=10 (|rg| =1.77e-08)

N=20 (|rg|=4.37e-09)
—— N=40 (|rg|=1.49e-09)
| — N=80 (Iral=1.49¢-09)
—— N=160 (|rg| =4.39e-10)

Impedance (Q)
= N N w w
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Position in the antenna (cm)

Figure 4: Numerically-optimized impedance curves
against the position inside the antenna, of length d =5
cm, for different values of the number of subdivisions in
the antenna, N. Starting with the optimal solution for
N = 10, we compute the successive solutions through
interpolation. For each one, the optimal value of the
reflectivity |rg| is shown.

coefficient to have an entangled output state. In
the solutions presented in Fig. 4, we start from a
small number of subdivisions (N = 10) and op-
timize the reflectivity. We then interpolate the
optimal impedance by doubling the number of
slices, adding the average impedance value of ev-
ery pair of points in the original array in between
said points. This means splitting each slice in
half, while keeping the same linear impedance
function. Because of this, the new impedance ar-
ray, for N = 20, gives the same reflectivity as the
optimal impedance array we found for N = 10.
Now, taking the interpolated array as the initial
guess, we optimize the reflectivity for N = 20,
and continue in the same fashion until we reach
N = 160. In Fig. 4, we can observe how the op-
timal impedance curves are shaped for different
values of N, starting at N = 10, and doubling
it through interpolation, until N = 160. For
each value, we also give the value of the reflection
coefficient that such an antenna could achieve.
Notice that these values decrease as N becomes
larger, while the interpolation method leads to
very small changes in the impedances, such that
the curves cannot be distinguished.

To speed up the optimization process and try
to better recognize the behavior of the optimal

I
0.07 l0g10lrg|
2
2
0.06 g 25
& _so
o S _s.
& 0.05 £
e g -75
b= &
% 0.04 2 -10.0
o - T T T T
s 0 50 100 150
E 0.03 A Number of divisions
<
© 0.021
2o

0.01 A M

0.00 /\

0 20 40 60 80 100 120 140 160
Number of divisions

Figure 5: Reflection coefficient computed with the
impedance function proposed in Eq. 57, represented for
different values of the number of subdivisions inside the
antenna, for an antenna of size d = 5 cm. As an in-
set, we show log |rr| to illustrate how this impedance
function reduces the reflection coefficient down to 1078,

impedance, we propose an ansatz to describe it,

z\B Zout —Z;
z 10g(1+ ou m)
e(d) a o 1

(57)
where d is the size of the antenna, x indicates the
position inside it, and «, 8 are free parameters
that we can optimize. This functional ansatz is
an inspiration on the qualitative behavior of the
curves in Fig. 4, and not an actual fit of the nu-
merical data. Our goal is to rewrite N — 1 local
numerical optimization problems as a global op-
timization problem with just two parameters, «
and 3, in order to improve convergence and sta-
bility of the solutions. Notice that the results we
will find using this function will differ from those
obtained with numerical optimization. In fact,
since this is only an approximation of the optimal
solution, the reflectivities we compute with this
exponential impedance will be larger than those
we can obtain with numerical optimization. We
have found the optimal values to be a ~ 10.31
with 8 ~ 0.69, for d = 5 cm. See that, for
o — 00, we recover the linear antenna.

This function approximates the behavior of the
optimal impedance on the antenna, but the val-
ues of the reflection coefficient we obtain with it
are not small enough. However, these improve as
we increase N, as can be seen in Fig. 5, oscillating
around |rp| ~ 1078 for N approaching 160. We
observe that minimal values of |rg| are achieved

Z(IB) :Zin+()é
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Figure 6: Reflection coefficient against the size of the an-
tenna. The reflection coefficient is computed with a lin-
ear function of the impedance (blue) and the impedance
ansatz proposed in Eq. 57 (orange), for N = 160. Notice
that the reflectivity decreases further as we increase the
size of the antenna, continuously for a linear impedance,
and jumping between minimum values for the ansatz.

for N > 30, which must represent a regime where
e = d/N < )\, approaching the continuum limit.
This promising result suggests that we could em-
ploy the same treatment of the antenna as we did
for a linear impedance, but solving the Sturm-
Liouville problem with the impedance given by
Eq. 57, in the limit N = 1.

Taking N = 160, we represent the reflection co-
efficient versus the antenna size in Fig. 6. In blue,
we observe the reflectivity of the antenna with
a linear impedance function, and in orange we
see the result of the reflectivity corresponding to
the impedance function proposed in Eq. 57, with
optimized parameters. We observe that minimal
values of |rg| are achieved for particular values
of the antenna size, which approximately coin-
cide with multiples of half the wavelength inside
the antenna. Also, we observe that, in order to
find optimal values of the reflectivity, we require
d>\/2.

Finally, we investigate the squeezing of the out-
put state, in terms of the initial squeezing and the
size of the antenna. In Fig. 7 we represent the
quotient between squeezing parameters of output
and input states, showing that it is possible to
preserve squeezing in the multiples of the half-
wavelength of the signal, the same spots we found
in Fig. 6 for the size of the antenna, where the re-
flectivity is minimal.

In order to illustrate the sensitivity of the re-

flection coefficient to the shape of the antenna,
we introduce errors to the numerically-optimized
impedance as a random value taken from a nor-
mal distribution where the variance is a percent-
age of the value of the function at each point.
With this modified impedance we compute the
reflection coefficient, and then calculate the ratio
between the negativity of the output state and
the negativity of the input state, Noyt/Nin. This
study indicates a limit on manufacturing errors
oriented towards the fabrication of such a device.

In Fig. 8, we represent the average ratio of
negativities for different values of the error per-
centage (blue), and we observe that it decreases
as we increase the error, for an initial squeezing
r = 1, N = 160 subdivisions and antenna size
d =5 cm. As an inset, we represent the logarithm
of the ratio of negativities (green), which we fit
by a quadratic function (orange), as the function
seems to follow a gaussian. In red, we represent
the n-average (see Appendix B) of the mean neg-
ativity ratio, a function towards which the mean
should tend to in an infinite-trial scenario. Here,
each error percentage step is averaged 103 times,
and we have taken n = 50 for the n-average.

The results show that the negativity ratio goes
to zero for errors over 3% of the impedance values,
and from the quadratic fit of the logarithm, we
can extract a function ax?+bx+c with a ~ —0.51,
b ~ —0.14, and ¢ ~ 0.04, and with variance ~
0.01.

5 Antenna Design

In this article, we have proposed an antenna
based on a coplanar waveguide, and the char-
acteristics of this waveguide will depend on the
impedance we want to implement. Consider a
coplanar waveguide, whose central conducting
plate has a width of 2a and a height much smaller
than the total depth of the film, and in which the
distance between the middle of the conducting
plate and the start of the grounded plates is b.
By defining p = a/b, we can write the density
of inductance and the density of capacitance for
such a waveguide as [31, 32]
po &€ (V 1- p2)

=L TR (58)

K(p)

¢ = 4depees (59)
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Figure 7: Ratio between squeezing of the output state
r’ and squeezing of the input state r, represented over
r and over the size of the antenna, for an antenna with
N = 160 subdivisions. This shows that at least 90 % of
the initial squeezing can be recovered with an antenna
of size equal to the multiples of half a wavelength, with
initial squeezing r > 0.

where g and g9 are the magnetic permeability
and the electric permittivity of the vacuum, re-
spectively, and e.g is the effective dielectric con-
stant; it is a function of the geometry of the
waveguide, but also of the permittivities of the
substrate and the oxide layers. Here, we have de-
fined K (y) as the complete elliptic integral of the
first kind with modulus y, such that

/2 1
K(y) = / df————. 60
W) 0 V1 —y2sin?6 (60)
From Eqgs. 58, 59, the characteristic impedance of
the waveguide is straightforwardly obtained,

K (vI=77)

Z=3 , 61)
K(p) (
with z = }L E—(% = 10w. TFor the cryostat

impedance Zi, = 5082, this requires that py, =~
0.32, and for the impedance of open air, Zy =
377Q, pout ~ 2.60 - 1078,

In order to implement the kind of antenna we
have proposed here, a coplanar waveguide has to
be designed with a varying ratio p. One way to do
this is to solve the above equation, for each value
of Z. The dependence of p on the position inside
the antenna could be inferred by substituting the
values of Z by those given in the ansatz we pro-
pose in Eq. 57. Alternatively, we could directly
propose an ansatz for p, targeting a function of

Nout/Mn

1.0 4 10g(Nout/ Nin)
° 0= ~ — log
2 \ fit
0.8 z N
E -2 4 Y
N 5 ™
) 2 ¥
© 0.6 g4 \\\
z
2 . I I
©
o 0.4 1
(7}
=2
0.2
— mean
0.0 — n-average

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Error %

Figure 8: Ratio between negativity of the output state
Nout and negativity of the input state N,, averaged over
many iterations in which the impedance function is mod-
ified with a random error proportional to a percentage
of the value of the impedance at each point. In blue,
we represent the mean value of the negativity ratio over
different error percentages, and in red we display the
smoothing of the mean by applying a n-average tech-
nique (see Appendix B), for n = 50. In green, the inset
shows the logarithm of the ratio between negativities,
and in orange we show a quadratic fit of the logarithm of
the negativity ratio. The latter corresponds to a function
az? + bz + ¢ with a ~ —0.51, b ~ —0.14, and ¢ ~ 0.04,
and with variance ~ 0.01.

the position in the antenna that leads to an easier
technological design. Similar to what we did pre-
viously, certain parameters in this ansatz should
be left open in order to optimize over them to
obtain the ideal impedance. A simple example
would be to consider

z\B out —Pin
p(z) = pin + o(3) o1 remzin) | (62)

Usual values of @ and b are 5 um and 7 pum, re-
spectively. Fixing the value of a;, to 5 um, we
would need b, = 15.63 pm in order to obtain
Pin- To get pour at the termination of the an-
tenna, we could for example set agyy = 10 nm
and boyy = 38.46 cm. In principle, this may
be achieved, given that the electron-beam lithog-
raphy can achieve a precision below 10 nm for
the fabrication of coplanar waveguides. However,
the London depth of the material will impose a
lower bound on the value of a we would ideally
want to set. Different realizations of such a de-
vice could be based on carbon-nanotube ink de-
posits on the gap of the coplanar waveguide, as
described in Ref. [33], or on coplanar waveguides
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with width-varying superconducting plate, stud-
ied in Ref. [34].

Throughout this article we have assumed that
the antenna is implemented in a superconduct-
ing TL, meaning that the temperature inside it
is in the range of mK (or at least below 4 K).
However, this would be very difficult to imple-
ment, since the end of this line is connected to
the open air, whose temperature is 300 K. In or-
der to maintain a low temperature in the antenna,
with a constant propagation velocity of v, = ¢/3,
and still be able to connect it to the open air, we
could study the addition of a subsequent waveg-
uide. It would have the impedance of open air,
377 Q, while presenting a temperature gradient,
as well as a velocity gradient, from ¢/3 to c.

We consider modeling absorption losses due to
loss of superconductivity in a transmission line of
length L that connects the antenna, at cryogenic
temperatures, with the open air at 300 K, by an
infinite array of beamsplitters. Each beam split-
ter has a reflectivity 7; that represent absorption
probability, and incorporates thermal noise at a
given temperature T; inside the TL, characterized
by a number of thermal photons n(7;). This infi-
nite array of beamsplitters can be represented by
a single effective beam splitter, with reflectivity

L
Neff = 1 — elo () where wu(x) is the reflectiv-

ity density as a function of the positions inside
the TL. The effective number of thermal photons
that this beam splitter incorporates to the system
(see Appendix C) is

L ! !
_ I dep@yn(aye )

63

Neff

This expression is general and can be applied to
any case in which we know the profile of tem-
peratures. Let us now choose a simple but useful
profile which allows us to find a closed expression.
Indeed, if we consider that the TL can be kept at
temperatures below the critical one for a length
Ly < L, then we can choose

n(z) = n(Tn) + [n(Touw) — n(Ti)]0(z — Lo),
:U'(x) = fin + (,Uout - Min)e(x - L(]),
where piy describes absorption losses at cryogenic

temperatures and o, describes absorption losses
of the material at room temperature. Then, the

effective number of thermal photons becomes

e_ﬂout(L_LO) (1 — e_ll/inLO)

Neg = n(1;
eff ( ln) 1— e_NinLOe_/Jout(L_LO)

1 _ e*ﬂout (LiLO)

+ n(Tout) (64)

1 — e—#inLoe—pout(L—Lo)
Notice that, when Ly = 0, then neg = n(Tout)
and, when Ly = L, then neg = n(Ti,), as ex-
pected. Consequently, for Ty, = 300 K and
w/2m = 5 GHz, and by using the Bose-Einstein
distribution, we obtain that n(Tout) =~ Neg ~
1250, which is considered as the input thermal
noise into the antenna. The number of thermal
photons at cryogenic temperatures is n ~ 8-1073,
corresponding to Ti, = 50 mK and the same fre-
quency. Given that n/Neg ~ 1076, we have

1 _ e*uout (LiLO)

n
eff <1

Neﬁ - 1-— e_p’i“Loe_.U»out(L—Lo) — (65)

since e #inlo < 1. This implies that, considering
this approach, the effect of thermal noise in the
antenna is reduced when compared with respect
to the study we present here. The reason is that
before, we were considering the thermal state as
the incoming state of the antenna from the right,
while it is now substantially reduced since part
of the thermal photons are also absorbed in the
cryostat before arriving at the antenna. There-
fore, the introduction of these losses is a tradeoff
between the effect of the effective beam splitter
on the entanglement, and the improvement on
the performance of the antenna due to the lower
number of photons corresponding to the effective
thermal state. Of course, these effects will sub-
stantially depend on the exact profile of temper-
atures along the TL. When this is obtained, one
should repeat the optimization procedure for the
impedance and then add the effective beam split-
ter after the antenna to take into account the en-
tanglement degradation.

Although it is a crucial part of classical mi-
crowave communication, amplification of signals
is not relevant in this setup. Consider a cryogenic
HEMT amplifier, currently used in quantum mi-
crowave experiments, which produces large gains
in a relatively large frequency spectrum, but also
introduces a significant amount of noise. Thermal
noise added by commercial HEMTs is counted in
the range n ~ 10 — 100 photons in the considered
frequency regime [27]|. Since the amplification is
applied to the modes individually, it results ideal
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to enhance classical signals, but it cannot increase
quantum correlations. To sum up, the goal of this
work is to preserve quantum correlations in open
air and traditional amplification does not provide
an advantage in this objective, on the contrary,
it could lead to entanglement degradation due to
the introduction of thermal noise.

6 Conclusions & Perspectives

In this article we have studied the optimization
of a quantum circuit for an open-air microwave
quantum communication protocol, in which en-
tangled states, which are generated in a cryo-
stat, are sent into the air, maximizing the en-
tanglement of the output state in the presence of
thermal noise. This circuit consists of a waveg-
uide that transports the state out of the cryostat,
and a waveguide representing the transmission of
that state in open air, both connected by an an-
tenna that realizes a smooth impedance matching
between the two environments, maximizing the
transmission of energy.

Knowing that previous studies using similar
architectures had failed to detect entanglement
in open air, we have investigated the simplest
case of quantum antenna, a finite inhomogeneous
transmission line with an impedance that changes
linearly with the position. Studying the trans-
mission of two-mode squeezed thermal states, we
have found that such a device cannot preserve en-
tanglement due to insufficiently low reflectivity.

For that, we have proposed a stepwise antenna
that introduces N subdivisions, inside which the
local impedance grows linearly, but globally can
implement a more general function. Numerically,
we were able to find a shape of the impedance
which minimized the reflectivity of the antenna
enough to preserve entanglement on the output
state in the presence of thermal noise. Inspired by
this shape, we proposed an exponential function
to describe the optimal impedance. This shape
leads to a reflectivity that decreases with higher
N, as if taking the continuum limit, and that im-
proves significantly with respect to a linear shape.
In fact, the reflectivities are low enough as to be-
ing able to preserve over 90% of the squeezing of
the initial state. However, it cannot improve the
numerical results previously obtained. A further
simulation confirms that errors over 3% of the
values of the impedance function result in a de-

struction of the entanglement, exemplifying how
easily an entanglement distribution protocol can
be truncated by the use of a simple antenna.

This works will impact the fields of quantum
illumination and quantum sensing, with partic-
ular emphasis on the quantum radar, as well as
any quantum communication protocol dependent
on entanglement distribution in the microwave
regime.
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A Sturm-Lioville problem for the wavefunction inside the antenna

In this appendix, we solve the Sturm-Liouville problem for the spatial part of the wavefunction, in the
case of an antenna whose impedance is a linear function. The equation we want to solve is

" Z'(x)
u'(x) — Z(2)

u'(z) + k2u(z) =0, (66)

and first we will multiply by (Z(x)/Z'(x))?, resulting in

Z(x) 2 " Z(z) , 5 (Z(2) ? _
(zw) (@) = @) + k (Z,(x)> (@) = 0. (67)
For a linear impedance Z(z) = (1 — g) Zin + & Zout, we have
5,(8) —z+ dZoutZi—n o (68)

Let us define y = kZ(z)/Z'(z), such that u'(z) = ku/(y), u”(z) = k*u”(y). With this, we can rewrite

y*u"(y) — yu' (y) + yPuly) = 0. (69)
If we introduce yo(y) = u(y), with u'(y) = ¢(y) + y¢'(y) and u"(y) = 2¢'(y) + y¢"(y), we find

v (y) +y¢e' (y) + (v° — Dely) =0, (70)
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which is the first order Bessel’s differential equation. The solution to this equation is

e(y) = biJi(y) + b2Yi(y), (71)
and if we undo all the variable changes, we find

Zin
U(ﬂf) = k <$ + dZOHt—Z1> |:b1e]1 (k’l‘ —+ k’d

Zin

Zin
7Z0m —Z > + byY] (k‘l’ + kd) ] (72)

Zout - Zi
To obtain the result shown in Eq. 11, we need to redefine b;k/(Zow — Zin) = ¢;, with i = {1, 2}.

This derivation is equal to the one that leads to Eq. 55, for the spatial component of the wavefunction
inside slice m in the stepwise antenna. In this case, the only difference is that we have an impedance

Z(z) = <m +1- if) Zom + (i - m> Zimit, (73)
and then, parameter y will be defined as
Z(x) Zm,
= — L 4
7(2) k(x —me) + kEZm+1 e (74)

Then, the arbitrary parameters of the solution need to be redefined as bgm)k‘ /(Zm1 — Zm) = cgm), for
i={1,2}.

B n-average technique for function smoothing

Take a discrete function fj, evaluated over a grid of points labelled by zy, for k € [0, L]. This function
results from an average over many trials, given that it has a stochastic component based on a normal
distribution. The function still presents traces of stochastic behavior, since the number of trials we
can perform is finite. Our goal is to find the value towards which the infinite average of the function
tends. For that, we propose the computation of the average of the function on a given point, such that

fo(xrs1) + 2fo(xk) + fo(xr—1)

filen) = j , (75)
where f is the 1-averaged function. Then, the n-averaged function is
2n m
fn(xk:) = 2—2n Z <m> fO(xk-i-n—m)e(k +n— m)a (76)
m=0
with 6(0) = 1 and ) _ m,(22+lm,) Here, n indicates the number of times the average has been
m . !

performed, k represents a point where the function is evaluated, and m is a dummy index of the sum
that goes through all the values that contributed to the n-average of the function at a point xj. If
n > k, then m € [0,n + k], and if n < k, m € [0,2n]. From our definition of average we have taken

fu(xo) = ... = fi(z0) = fo(zo) and frn(zL) = ... = fi(xr) = fo(xr).
The largest binomial coefficient, :1 , occurs at m = n /2, and then the largest contribution to the

weighted sum that represents the n-average is

fulan) 272 (25 ) o) (1)

This process exemplifies a discrete, binomial convolution, which in the continuum limit becomes a
gaussian convolution.
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C Absorption losses by an infinite beam splitter array

Consider a beam splitter with reflectivity n; that incorporates thermal noise to a signal as the reflected
contribution. The output mode of an array of N beamsplitters of this kind is given by

N-1 N-1 N-1
an = a1 H V1—mni+ Zh}ﬁn\/nk H V31— (78)
i=1 k=1

i=k+1

for an input signal mode a1, where the number of thermal photons incorporated by beam splitter k is
given by ny = <hmThm>. We aim at representing the action of this array of beamsplitters by a single
beam splitter with effective reflectivity and effective number of thermal photons. In this expression,
we can identify effective reflection and transmission coefficients,

= a1v/1 — Neft + hi%\/Tetr- (79)

Consider the reflectivity of a beam splitter as n; = uL /N, where p is the reflectivity per unit length. For
very large N, assume L/N = Axz. Then, we could write n; = u;Ax, and then the effective reflectivity

is simplified by
N-1

log(1 — negr) Z log(1 — n;) Z log(1 — pu;Ax). (80)
i=1

For Az < 1, we can expand this as log(1 — p;Ax) ~ —p; Az, and taking the continuum limit,

N-1 L
— Z Wiz — —/ dzp(x). (81)
i=1 0
L
Then, we write neg = 1 — e Jo #=1(@) Lt us now compute the effective number of thermal photons,

N-1
Netinett = ((v/Tefthett) | (v/Tefthefr)) = Z NNk, [ IT a- m)} 7 (82)

i=k+1

which can be expressed as

N_l L ! ! L L / /
NeftNeft = Y AT e S, denta’) :/0 drp(z)n(z)e” J. da'utat) (83)
k=1
Then, the effective number of thermal photons is

— Lda:’ !
o do dzp(@)n(@)e” b D )

1| o= Jo dont@)
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