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ABSTRACT
Optimization problems is one of the most challenging applications
of quantum computers, as well as one of the most relevants. As a
consequence, it has attracted huge efforts to obtain a speedup over
classical algorithms using quantum resources. Up to now, many
problems of different nature have been addressed through the per-
spective of this revolutionary computation paradigm, but there are
still many open questions. In this work, a hybrid classical-quantum
approach is presented for dealing with the one-dimensional Bin
Packing Problem (1dBPP). The algorithm comprises two modules,
each one designed for being executed in different computational
ecosystems. First, a quantum subroutine seeks a set of feasible bin
configurations of the problem at hand. Secondly, a classical compu-
tation subroutine builds complete solutions to the problem from the
subsets given by the quantum subroutine. Being a hybrid solver, we
have called our method H-BPP. To test our algorithm, we have built
18 different 1dBPP instances as a benchmarking set, in which we
analyse the fitness, the number of solutions and the performance of
the QC subroutine. Based on these figures of merit we verify that
H-BPP is a valid technique to address the 1dBPP.
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1 INTRODUCTION
Computational optimization is a highly studied research topic
within the wider Artificial Intelligence field. Its contrasted applica-
bility is one of the main reasons of the success of this knowledge
area, which is resorted to address a myriad of real-world oriented
tasks.

Usually, the efficient tackling of optimization problems involves
the need of significant computational resources, making impractical
the adoption of a brute-force approach. For this reason, the formu-
lation of time-efficient solving strategies has emerged as a hot topic,
leading to the design of a plethora of heterogeneous techniques
during the last decades.

At the time this paper is written, the vastmajority of optimization
algorithms have been conceived for being executed on classical com-
puters. In this context, Quantum Computing (QC, [66]) has recently
emerged as a promising paradigm for facing optimization problems.
In a nutshell, QC provides a revolutionary approach for dealing
with complex problems with a possible significant advantage[3].
Today, QC is the pivotal point of a growing amount of experimental
and theoretical scientific studies [35, 53, 62].

Despite the potential demonstrated by QC, this research field
is still at its dawn, and the available quantum processors present
some limitations in terms of performance and capability [4, 27].
Issues such as the reduced size of the quantum processors, the
inaccurate control of the quantum resources, or the limitations
in material science should be faced by researchers and engineers
on their effort towards fault-tolerant quantum-computing. As a
result of these handicaps, two kind of solvers prevail in the current
literature: i) purely quantum approaches, whose objective is to face
a problem employing only QC resources, and quantum-classical
hybrid techniques, which are conceived to enhance applicability
within the short and mid-term QC limitations.

In this context, our objective with this paper is to take a step
forward in QC by proposing a quantum-classical hybrid algorithm
for addressing one of the best-known combinatorial optimization
problems: the Bin Packing Problem (BPP, [32]). Although it is a
canonical use case, the BPP often emerges in a wide variety of
industrial problems. To our best knowledge, this problem has not
yet been faced from a QC perspective. Thus, the present work
represents a step further over the current QC literature, presenting
the following contributions:

• We introduce a quantum-classical hybrid algorithm for solv-
ing the well-known one-dimensional BPP (1dBPP,[52]). The
algorithm is composed of two modules, each one designed
for being executed in different computational ecosystems.
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First, a QC-based module is employed for finding the set of
feasible bin configurations of the problem at hand. In other
words, this module seeks as many feasible bins as possible,
considering the constraints of the problem (i.e. the weight of
the items and the capacity of the bins available). The second
module, which is implemented to be run in classical com-
puters, takes as input the list of feasible subsets provided by
the QC-based module, and generates complete solutions to
the problem finding the optimal combination of subsets. As
it is a hybrid solver, we have called our method H-BPP. To
the best of our knowledge, it is the first time that a BPP is
solved using such strategy.
• As mentioned, the proposed method has been developed
for facing the 1dBPP. Despite related problems, such as the
knapsack problem [61] or the subset-sum problem [16] have
been considered in the literature, no variant of the BPP has
been studied from a QC perspective up to now. Therefore,
taking into account the scientific and business interest that
BPP-related problems still arise in the community and in
the industry [10, 11], it is relevant to further research in
this direction. For testing the performance and accuracy of
our method, we have conducted a preliminary but extensive
experimentation over 18 synthetically-generated heteroge-
neous instances of the 1dBPP, with sizes ranging from 10 to
12 items. Results obtained by our algorithm are compared
with the ones obtained by a brute-force algorithm.

The rest of this manuscript is structured as follows: we present
in Section 2 a brief introduction on QC and BPP. Afterwards, the
problem addressed in this paper, the 1dBPP, is described in Section
3. In Section 4, we delve into the main characteristics of our hybrid
algorithm. Experimental setup and results are discussed in Section
5. Finally, in Section 6 we summarize our conclusions and outline
future research lines.

2 BACKGROUND
This section briefly introduces the two main pillars of this paper:
Quantum Computing, in Section 2.1; and the Bin Packing Problem,
in Section 2.2.

2.1 Introduction to Quantum Computing
Quantum computing takes advantage of quantum resources to
solve computational problems. Indeed, exploiting entanglement and
superposition properties, some quantum algorithms have shown
potential to speed up the convergence towards a solution for cer-
tain problems. Two representative algorithms that show quantum
advantage are Grover’s algorithm for the unstructured searching
problem [33] and Shor’s algorithm for the integer factorization [64].
Even though in these two cases a speedup is achieved, not every
problem can benefit from employing quantum resources [1], espe-
cially in the current Near-Intermediate Scale Quantum era [43, 67]
(NISQ, noisy quantum hardware with a size in the order of 10-100
qubits [59]). However, quantum algorithms might have a speedup
compared with classical approximate algorithms for particularly
hard problems (i.e. problems in the approxNP-hard set), such as the
Max-E3-SAT problem [36], [73].

Within the framework of quantum computing, there are three
main different paradigms. Firstly, digital quantum computing (DQC)
[23], which works with a sequence of ideal operations (or gates)
taken from an universal set. For implementing algorithms in this
paradigms, we have a pletora of gate-based quantum computers
(IBM1, Google2, Rigetti3, ColdQuanta4), which allows users to run
programs written as the application of seccessive gates. Then, ana-
log quantum computing (AQC) is a less flexible but much more
robust approach [37]. In AQC, a controllable quantum system is
manipulated to mimic the system of interest. This approach also
includes quantum annealing and simulators, which can be imple-
menmted in any system which provides a way to adiabatically
modify the system Hamiltonian (D-Wave5, Xanadu6). finally, an
universal quantum computing paradigm has been proposed, namely
digital-analog (DAQC [57]). This approach combines the robustness
of AQCwith the flexibility of DQC. The algorithms are implemented
by alternating the application of (digital) single-qubit gates with
analog entangling blocks. Running a circuit using DAQC requires a
hardware in which one has access to fast single-qubit gates and an
interaction Hamiltonian, as it has been implemented in different
platforms.

Encouraged by early results, the quantum-computing and com-
puter science-communities have conducted a huge effort for achiev-
ing quantum advantage. As a prominent example of this research,
an information processing task performed by a QC was proven
unaffordable for any classical computer. Even though this has been
attained for certain artificial problems [9, 72], achieving this for a
useful application is still an open question. Approximate optimiza-
tion problems are considered a suitable target for this goal. On this
regard, quantum annealing takes advantage of a purely quantum
mechanism, the adiabatic theorem [18, 38], to find the ground state
of a Hamiltonian which encodes the solution to the problem [25, 34].
A family of near-term quantum algorithms that have shown a rea-
sonable success are variational quantum algorithms (VQAs) [20],
with variational quantum eigensolvers (VQE) and quantum approx-
imate optimization algorithm (QAOA) [26] as the most prominent
examples. These algorithms relay on the classical optimization of
control parameters with the objective of obtaining the best possible
solution given a certain amount of resources. On another vein, hy-
brid quantum algorithms employs quantum algorithms to speedup
certain operations, while subrogating some tasks to classical rou-
tines [24, 49]. When evaluating quantum algorithms, it should be
noted that the probability to obtain a solution is unlikely to reach
exactly 1. On top of this, the problems of efficiently encoding in-
formation into a quantum system and retrieving it by means of
measurements are generally open problems.

2.2 BPP state of the art
A paradigmatic example of a NP-Hard problem is the BPP, which
is a classical combinatorial optimization problem whose objective
is to pack a finite set of items into a group of available bins. More

1https://www.ibm.com/quantum-computing/
2https://www.quantumai.google/
3https://www.rigetti.com/
4https://www.coldquanta.com/
5https://www.dwavesys.com/
6https://www.xanadu.ai/
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precisely, the goal is to minimize the total number of bins used
not exceeding the fixed maximum capacity of each bin considered
in the solution. The packaging of items or packages in different
containers or bins is a daily and crucial task in the field of production
and logistics. For this reason, multiple packaging problems can be
formulated depending on the size of the items to be packed, as well
as the size and capacity of the containers. These types of issues
have been widely discussed in the literature for several decades,
giving rise to remarkable survey and review papers [44, 46, 48].

The 1dBPP is considered to be the simplest packaging problem.
Anyway, despite its simplicity, it is applied to a wide variety of
real-world problems [8, 70]. Furthermore, it is frequently used as a
benchmarking problem [28, 55]. Recent works focused on 1dBPP
led to the proposition of novel methods for its resolutions, such as
the cooperative parallel grouping genetic algorithm introduced in
[40], the branch-and-price-and-cut technique proposed in [71], or
the adaptive fitness-dependent optimizer developed in [2].

Beyond its basic formulation, several variants of the 1dBPP have
been proposed in order to give an answer to some specific con-
straints. Some examples of these variants can be found in [39], in
which a maximum number of items per bin is fixed; or in [21], in
which items should be placed in bins according to some concrete
time intervals. Further variants of the basic 1dBPP can be found in
[22]. In this present research, the canonical version of the 1dBPP
is considered. This variant still gathers lot of attention from the
community, as can be seen in recent surveys such as [51] and [52].

Additionally, based on the original formulation of the 1dBPP,
many variants have been recently proposed in recent literature
to address real-world situations. On this regard, two are the most
frequently referred variants of the BPP. The first one is the two
dimensional BPP (2dBPP, [45]), in which each item is described by
two different parameters: height and width. There are many works
in the recent literature that revolve around this problem and its
resolution. In [41], for example, the authors address this problem
with a genetic algorithm, adding a search mechanism called Crow
Search to increase the exploration capacity of the algorithm. In
the work [47] a hybrid approach applied to the same problem is
presented. Additional examples can be found in articles like [15]
or [63]. A second variant is the three-dimensional BPP (3dBPP,
[50]), in which each packet has three dimensions: height, width,
and depth. Consequently, the containers in which the packages are
stored have three dimensions as well. This variant has also been
widely investigated by the community [54, 60].

Furthermore, variations with a variable number of additional re-
strictions or constraints arising from real-world use cases have been
studied, usually leading to an increment of the problem complexity.
Some examples are i) the minimum clearance of the container [6],
ii) load balancing inside the container [69], iii) expiration dates of
rapidly perishable products [58], iv) transport restrictions [56], or
v) possible packet fragmentation [14].

In addition to these restrictions, the problem has been treated
from different computational approaches, highlighting the single-
objective and multi-objective variants [65].

To sum up, the research around BPP-related problems is still
vibrant today. Even the most basic variant of the BPP, the 1dBPP,
still gathers a significant attention from the community. However,
as far as we know, there is no work in the literature that deals

with this problem from the QC perspective. On the contrary, there
are few publications mentioning the BPP and quantum algorithms,
but most of them discuss it from quantum-inspired classical algo-
rithms perspective [29, 42, 68]. Furthermore, slightly related with
the 1dBPP, there are quantum algorithms solving the subset-sum
problem [5, 13, 17]. However, these algorithms take advantage of
some-problem specific properties which can not straightforwardly
be translated to our scheme.

For this reason, this paper implies a remarkable step forward in
the literature, tackling a BPP problem through a hybrid classical-
quantum algorithm.

3 THE ONE DIMENSIONAL BIN PACKING
PROBLEM

As mentioned beforehand, this paper is focused on solving a BPP
variant known as 1dBPP. The problem can be formally defined as fol-
lows [51]: considering amaximum amount of𝑛 bins {𝐵1, 𝐵2, . . . , 𝐵𝑛}
of equal non-negative capacity 𝐶 , and a set of 𝑛 itemsW =

{𝑤1,𝑤2, . . . ,𝑤𝑛}, where 𝑤𝑖 is a positive value 0 < 𝑤𝑖 ≤ 𝐶 repre-
senting the weight of item 𝑖 , the objective is to find the smallest
amount of bins 𝑏 ≤ 𝑛 such that partition 𝐿 = 𝐵1 ∪ 𝐵2 . . . ∪ 𝐵𝑏 fits
the wholeW. Furthermore, the sum of the item weights in each
bin must not exceed 𝐶 .

Regarding the codification used for representing a solution to
the problem, the well-known binary encoding has been considered.
In this way, the 1bBPP can be formulated in the following way:

min𝑏 (1)
Subject to:

𝑛∑︁
𝑖=1

𝑤𝑖𝑥
( 𝑗)
𝑖
≤ 𝐶, ∀𝑗 ∈ {1, . . . , 𝑏}, (2)

𝑏∑︁
𝑗=1

𝑥
( 𝑗)
𝑖

= 1, ∀𝑖 ∈ {1, . . . , 𝑛}, (3)

𝑥
( 𝑗)
𝑖
∈ {0, 1}, ∀𝑖 ∈ {1, . . . , 𝑛}, ∀𝑗 ∈ {1, . . . , 𝑏}, (4)

where 𝑏 is the number of employed bins, such that the set of bins
is {𝐵1, ..., 𝐵𝑏 }, and 𝑥

( 𝑗)
𝑖

= 1 if item 𝑖 is in bin 𝑗 .
This strategy has the advantage of being fully compliant with dig-

ital QC devices, designed for working with binary variables. On this
basis, one solution to the 1dBPP is provided by means of 𝑏 binary
arrays of size𝑛 (𝐿 = {𝑥 (1)1 , . . . , 𝑥

(1)
𝑛 }, {𝑥

(2)
1 , . . . , 𝑥

(2)
𝑛 }, . . . , {𝑥

(𝑏)
1 , . . .

, 𝑥
(𝑏)
𝑛 }). Let us assume a possible instance composed by 10 items

(𝑛 = 10). By using a binary representation, one feasible solution
comprising two bins (𝑏 = 2) might be:

𝐵1 = [0, 1, 1, 0, 0, 0, 1, 1, 0, 0]

𝐵2 = [1, 0, 0, 1, 1, 1, 0, 0, 1, 1]
meaning that four items (𝑤2,𝑤3,𝑤7 and𝑤8) are placed in the first
bin, while the remaining six assigned to the second one, hence
being the intersection ∅. This solution can also be encoded as (𝐿 =

{𝑥 (1)1 = 0, 𝑥 (1)2 = 1, 𝑥 (1)3 = 1, 𝑥 (1)4 = 0, 𝑥 (1)5 = 0, 𝑥 (1)6 = 0, 𝑥 (1)7 =

1, 𝑥 (1)8 = 1, 𝑥 (1)9 = 0, 𝑥 (1)10 = 0}, {𝑥 (2)1 = 1, 𝑥 (2)2 = 0, 𝑥 (2)3 = 0, 𝑥 (2)4 =
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1, 𝑥 (2)5 = 1, 𝑥 (2)6 = 1, 𝑥 (2)7 = 0, 𝑥 (2)8 = 0, 𝑥 (2)9 = 1, 𝑥 (2)10 = 1}). An
additional, yet worse, solution for this instance could be:

𝐵1 = [0, 1, 1, 0, 0, 0, 1, 1, 0, 0]

𝐵2 = [1, 0, 0, 0, 0, 1, 0, 0, 0, 1]

𝐵3 = [0, 0, 0, 1, 1, 0, 0, 0, 1, 0]
where three bins are used for storing the complete set of items.
As can be deduced, for these solutions to be feasible, each item
𝑤𝑖 ∈ W should be placed in one, and only one, bin 𝐵 𝑗 , and the
capacity 𝐶 should not be exceeded by any 𝐵 𝑗 .

As the BPP is a combinatorial optimization problem, one can find
a quadratic unconstrained binary optimization (QUBO) formulation
for solving it. With this QUBO formulation, it is immediate to map
it to an Ising Hamiltonian whose ground state corresponds to the
solution of the original problem. However, the QUBO formulation
comes with a cost in terms of employing extra bits or qubits to
express express the problem. In particular, for the 1dBPP we would
need 𝑛2 to encode the assignment of the packages to the container.
To encode the first constraint (Eq. 2) we can introduce slack vari-
ables [19, sec 4.1.3]. Employing a binary codification of the slack
variables, we would need to introduce log2 (𝐶) ancillary qubits per
container. Since the second constraint (Eq. 3) is given as an equality,
so it can be implemented without additional qubits. By measuring
the quantum state in the computational basis, the third constraint
would be fulfilled by construction. With all these ingredients, we
could run a quantum annealing algorithm to solve the full 1dBPP
problem, but at the expense of employing 𝑛2 + 𝑛 log2 (𝐶) qubits,
which is impractical within the limitations in size of NISQ systems.
Thus, we have avoided to address the full problem with a quantum
annealing algorithm.

4 PROPOSED QUANTUM BASED HEURISTIC
FOR SOLVING THE BPP

In this section, we propose a hybrid quantum-classical algorithm for
solving 1dBPP, that is, the H-BPP. The algorithm is divided into two
main subroutines. In the first one, a quantum annealing algorithm is
executedmultiple times to sample feasible configurations of items in
a single bin. When this first subroutine ends, a classical subroutine
is run, whose objective is to optimally combine the previous list of
feasible subsets, considering that each item is assigned to a feasible
bin. As a result of this second subroutine, the algorithm returns the
best solutions found, this is, the solutions requiring the minimum
amount of containers to accommodate all items. A diagram with
the overview of H-BPP is shown in Fig. 1. In the rest of the section,
we explain these two subroutines in detail.

4.1 Quantum annealing algorithm for the
subset sampling subroutine

The objective of the subset sampling subroutine is to obtain a set
of feasible subsets, which effectively reduces the search space for
the classical solution construction algorithm. On this regard, we
define a feasible subset as a set of items 𝐵 𝑗 ∈ {1, . . . , 𝑛} such that
they fulfill the constraint from Equation 2 for a single container.
The process of sampling feasible subsets will be performed with a
quantum annealing algorithm.

Start

SUBSET SAMPLING QUANTUM ANNEALING SUBROUTINE

Classic
Run QA circuit

Update parameter 𝛼

Quantum

Set of feasible subsets

SOLUTION GENERATOR HEURISTIC SUBROUTINE

List of subsets Sample until
completing a solution

Shuffle

Return best solutions found

Figure 1: Diagramof the fullH-BPP algorithm. The algorithm
is divided into two subroutines. The first one is a quantum
annealing algorithm to obtain a set of feasible configuration
for single containers. The second one takes the set provided
by the quantum subroutine to generate possible solutions.
The solution yielded by the algorithm is a list with the best
results found.

In a nutshell, quantum annealing is a heuristic quantum algo-
rithm for finding the ground state of a Hamiltonian. By means of
an adiabatic evolution, the quantum state evolves from an easily
preparable ground state of an initial Hamiltonian 𝐻0 to the ground
state of the problem Hamiltonian 𝐻P, which encodes the informa-
tion of the optimization problem. In general, the time-dependent
Hamiltonian is given by

𝐻 (𝑡) = (1 − Λ(𝑡))𝐻0 + Λ(𝑡)𝐻P, (5)
where Λ(𝑡) is the mixing function with the boundary conditions
Λ(0) = 0, Λ(𝜏) = 1, and 𝜏 is the annealing time. For simplicity, and
without loss of generality, we choose this function to be a linear
function Λ(𝑡) = 𝑡 , although it can be designed to verify that the
adiabaticity condition is fulfilled [7].

Furthermore, to solve the subset sampling problem, ideally we
seek the ground states of a stepwise Hamiltonian

𝐻ideal =

{
∞ if

∑
𝑖 𝑤𝑖𝑥𝑖 > 𝐶,

0 otherwise,
(6)

where we have slightly modified the notation used in the previous
section. Now 𝑥𝑖 = 1 if the 𝑖-th item belongs to the subset, and 𝑥𝑖 = 0
otherwise. To encode the classical information into the quantum
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system, we do a one-to-one assignment of each binary variable to
a qubit, where we represent the state in the computational basis
𝑥𝑖 = 1 ≡ |1⟩𝑖 and 𝑥𝑖 = 0 ≡ |0⟩𝑖 . This way, a classical bit 𝑥𝑖 has a
one-to-one map to a local Hamiltonian term of the form (1−𝜎𝑧

𝑖
)/2,

where 𝜎`
𝑖
is the Pauli ` operator acting on qubit 𝑖 .

Additionally, we cannot generate stepwise Hamiltonians in a
real system, so we have to find an implementable model for Equa-
tion 6. Instead of employing a single Hamiltonian, we divide the
search of feasible subsets. To achieve this, we divide the problem
into a number of quadratic Hamiltonians in which the (possibly
degenerated) ground state corresponds to configurations for which∑
𝑖 𝑤𝑖𝑥𝑖 = 𝐶 − 𝛼/2𝛽 , i.e. the ground states corresponds to subsets

with a total weight equal or lower than the maximum capacity 𝐶 .
For this, we employ the following quadratic Hamiltonian

𝐻P = 𝛼

(∑︁
𝑖

𝑤𝑖𝑥𝑖 −𝐶
)
+ 𝛽

(∑︁
𝑖

𝑤𝑖𝑥𝑖 −𝐶
)2

≡ −
∑︁
𝑖

𝑤𝑖

(𝛼
2 + 𝛽𝜖𝑤

)
𝜎𝑧𝑖 +

∑︁
𝑖< 𝑗

𝛽𝑤𝑖𝑤 𝑗

2 𝜎𝑧𝑖 𝜎
𝑧
𝑗 ,

(7)

where 𝜖𝑤 ≡
∑
𝑖 𝑤𝑖/2 −𝐶 . 𝐻P has two-body interactions between

all pairs of qubits, i.e. it is an all-to-all (ATA) Hamiltonian. The two
parameters 𝛼, 𝛽 allow us to tweak the sum of the weights of the
packages, and the energy penalty added to the states not fulfilling
the condition. This way, we can sample the allowed configurations
by setting 𝛼 = 2𝛽 (𝐶 − 𝑘Δ𝑤), where Δ𝑤 is the minimum weight
difference between two different configurations and 𝑘 = 1, ...,𝐶/Δ𝑤 .
Since we cannot know how many runs for the different values of
𝛼 are required for sampling all possible configurations, we set a
total number of runs. Then, we will repeat the annealing algorithm
for each value of 𝛼 and save all the results obtained as shown in
Algorithm 1. A visual representation of the subroutine sampling
strategy is displayed in Figure 2.

Algorithm1:Quantum annealing subroutine for the subset
sampling
Data:𝑤𝑖 , 𝐶 , 𝛽 , #runs

1 for k = 1,...,𝐶/Δ𝑤 do
2 Update Hamiltonian parameter, 𝛼 = 2𝛽 (𝐶 − 𝑘Δ𝑤);
3 for i = 1,...,#runs 𝐶/Δ𝑤 do
4 Run the quantum annealing algorithm, 𝐵 𝑗 ;
5 Add the result to the list of subsets, F ← 𝐵 𝑗 ;

Result: The list of all sampled subsets. F

Once implemented, we have to run the quantum annealing algo-
rithm. For this, we have two distinct alternatives. On the one hand,
we can use a quantum annealer in which we have the resources to
implement the evolution under our problem Hamiltonian. On the
other hand, we can simulate the digitized evolution, i.e. approxi-
mating the time dependant evolution with 𝑛𝑇 time-independent
evolution steps [12], with a DQC or DAQC implementation. With
the currently available quantum hardware capabilities and qubit
connectivity topology, we can not directly simulate the evolution
under 𝐻P. Thus, we have to resort to methods that simulate an

ATA Hamiltonian with limited resources, for example, using the
decomposition shown in [30].

4.2 Solution Generator Heuristic
This section briefly describes the heuristic procedure used to solve
the 1dBPP by using as input the set of feasible subsets F computed
in the previous subroutine. Specifically, the proposed scheme aims
at seeking, among the elements in F , an optimal combination that
packages all items inW. In this case, the search strategy has the
objective of finding the configuration with the smallest number
of bins. It is important to highlight that this algorithm has been
designed to be run in classical devices.

Algorithm 2: Classical heuristic for finding the best com-
bination of bins
Data: F ,W, MaxIter

1 Initialize solution set, S = ∅;
2 for 𝑐 = 1, . . . , MaxIter do
3 Initialize number of bins, 𝑏 = 0;
4 Initialize the set of assigned packages, A = ∅;
5 Randomly shuffle elements in F ;
6 for j = 1, . . . , |F | do
7 Select subset 𝑗 from F , 𝐵 𝑗 = F [ 𝑗];
8 if all elements in 𝐵 𝑗 are unassigned,

(
𝐵 𝑗 ∩ A

)
= ∅

9 Include items in 𝐵 𝑗 in A, A = A + 𝐵 𝑗 ;
10 Increment the number of bins, 𝑏 = 𝑏 + 1;
11 if all packages are assigned,W = A
12 Add solution to S ← S ∪ {𝑏};
13 Break for loop;

Result: minS

The pseudocode of the proposed heuristic is given in Algorithm
2. As aforementioned the procedure gets the set of feasible subsets
F and creates a solution (lines 6-11) by looking for bins (lines 7-9)
that might package all the items inW (line 10). Note that this
search is made sequentially in F , so this strategy cannot guarantee
the optimal solution if it is computed just once. To improve the
search, the algorithm repeats this procedure MaxItems times (line
2), saving the computed solution in a temporary variable S. Finally,
the procedure outputs the solution with the smallest number of
bins stored in S.

5 EXPERIMENTAL SETUP, RESULTS AND
DISCUSSION

This section is devoted to showcasing the whole experimentation
conducted in this study. To this end, this section have been divided
into two different subsections, the first aiming at describing the ex-
perimental setup (Section 5.1), and the second focused on showing
and discussing the main results obtained by our H-BPP (Section
5.2).

5.1 Experimental Setup
As pointed in the introduction, the benchmark comprises the reso-
lution of 18 different synthetic instances. With the main intention
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Figure 2: Representation of the sampling strategy used in
the 1dBPP problem. The 𝑥 axis ticks shows the ideal weights
of the subsets we are sampling in each step, while the 𝑦 axis
shows the energy of the eigenvalues. If one implements the
strategy for not measuring the same eigenvector twice, we
would see Dirac delta functions that represent the penalty
factors added to the measured states.

of building an unbiased and heterogeneous benchmark, we have
developed an instance generator script. This script takes three dif-
ferent values as configuration parameters: i) the number of items
(𝑛), ii) the bin capacity (𝐶), and iii) the random distribution of item
weights that compose the instance. In reference to the number of
items, two different values have been considered: 10 and 12. These
sizes are sufficiently large for finding meaningful outcomes, re-
garding the limited resources of the current QC devices. For the
maximum capacity, 100, 120 and 150 values have been deemed. As
distribution functions, three configuration have been employed: a
single Gaussian centered in 𝐶/2, a 2-component Gaussian mixture
model with centers established in 𝐶/3 and 2𝐶/3, and a uniform
distribution between 0 and 𝐶 . We summarize the characteristics
of the whole benchmark in Table 1. Finally, in order to assure the
replicability of this study, all the algorithms, instances, and data
used in this work are publicly available7.

As mentioned in the previous paragraph, the size of the instances
has been chosen considering the QC hardware limitations, but also
the computational restrictions of the brute-force algorithm used for
measuring the quality of our developed H-BPP. On this regard, as a
preliminary study, our main objective is to compare the outcomes
obtained by our implemented method with the optimal results of
each instance. For carrying out this task, we have developed a brute-
force algorithm which exhaustively seeks for the minimum number
of bins needed for storing all the items of each instance.

The procedure followed by the brute-force algorithm is the fol-
lowing one. First, the technique checks if all items of the instance
fit into a single bin (note that none of these cases have been contem-
plated in our benchmark). Otherwise, it starts an iterative process
using a starting exploratory value of 𝑏 = 2, and it evaluates all
possible feasible combinations for item allocation in 𝑏 number of
bins. In case all items cannot be inserted into 𝑏 bins due to capacity
7https://bitbucket.org/mikel_gda/bpp

restrictions, 𝑏 value is increased by 1. This iterative procedure is ex-
ecuted until the algorithm finds a solution in which all items fit into
𝑏 bins. After finding the optimal value of 𝑏, and in the interest of
exhaustive experimentation, the algorithm continues the execution
in order to find each and every possible item assignment combi-
nation considering those 𝑏 bins. In other words, the brute-force
algorithm finds all the optimal solutions, if more than one exists. It
is noteworthy that we define two 𝐿 and 𝐿′ solutions as different if
the arrangement of items {𝑥 (1)1 , . . . , 𝑥

(1)
𝑛 }, . . . , {𝑥

(𝑏)
1 , . . . , 𝑥

(𝑏)
𝑛 } dif-

fers on its composition, and not in the artificial order promoted by
the bin code 𝑗 .

Lastly, the circuit implementing the digitized quantum anneal-
ing algorithm has been simulated with a classical computer. As
a first approximation to the problem, we have employed an ideal
setup, in which we have assumed we have an ATA connectivity and
noiseless gates. For the initial Hamiltonian, we used 𝐻0 =

∑
𝑗 ℎ0𝜎

𝑥
𝑗
,

where ℎ0 > 0 is a tweakable parameter. A more rigorous analysis
would require to introduce the effect of noise and the extra steps
required to simulate the evolution in a hardware with limited re-
sources. For this work, we run the algorithm with the following set
of parameters: #runs=1000, 𝛽 =𝑚𝑖𝑛 𝑗 (𝑤 𝑗 )/5, 𝜏 = 10−14𝑠 , 𝑛𝑇 = 500,
and ℎ0 = 10. We have selected these parameters based on previous
experience solving similar problems and adjusting them to obtain
the maximum fidelity within a reasonable range of values [31].

5.2 Results and Discussion
Table 2 summarizes the outcomes reached by H-BPP for all in-
stances. Each entry on the table depicts the following metrics:
• Fitness average (𝑏): this metric shows the average value of 𝑏
found by H-BPP, considering that the lower the value, the
better the result.
• Average number of optima (#𝑜𝑝𝑡𝑖𝑚𝑎): considering that each
instance counts with more than one optimal solution, the
value #𝑜𝑝𝑡𝑖𝑚𝑎 represents the average number of optima that
the H-BPP has found per each run.
• Average size of the ideal subset in F : considering one specific
instance of the 1dBPP, the ideal subset is composed of all
the 𝐵 bin configurations needed to build the whole set of
optima solutions. On this regard, the average size of the ideal
subset F represents the average amount of bins that the H-
BPP has found per run which are part of this complete ideal
subset. This metric helps to independently assess the H-BPP
performance.

These results have been computed over 10 independent runs
conducted for each instance. At this point, it should be pointed that
#𝑜𝑝𝑡𝑖𝑚𝑎 and the average size of the ideal subset in F are calculated
using these runs in which the algorithm has obtained the optimal
value. Furthermore, we also show in Table 2 the optimal values
for each test case on each of the considered metrics. Thus, we
provide the optimal solution (Opt.) and the total number of optimum
configurations (#𝑜𝑝𝑡𝑖𝑚𝑎) for each instance, as well as the size of
the optimal ideal subset (size of opt. ideal sub.).

Several remarks can be drawn from these outcomes. The first
one is to highlight the performance of the proposed method on
instances composed by 10 items, in which the H-BPP reaches the
optimal results in the 100% of the cases. It is important to observe
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Table 1: Description of the 18 1dBPP instances generated for measuring the quality of the developed H-BPP algorithm

Instance # of items min-max weight capacity Distribution Instance # of items min-max weight capacity Distribution
10_100_2G 10 30-80 100 Double Gaussian 12_100_1G 12 10-70 100 Single Gaussian
10_120_2G 10 30-80 120 Double Gaussian 12_120_1G 12 20-100 120 Single Gaussian
10_150_2G 10 40-100 150 Double Gaussian 12_150_1G 12 40-120 150 Single Gaussian
12_100_2G 12 10-90 100 Double Gaussian 10_100_U 10 10-70 100 Uniform
12_120_2G 12 30-110 120 Double Gaussian 10_120_U 10 10-100 120 Uniform
12_150_2G 12 30-120 150 Double Gaussian 10_150_U 10 20-140 150 Uniform
10_100_1G 10 20-80 100 Single Gaussian 12_100_U 12 10-60 100 Uniform
10_120_1G 10 20-70 120 Single Gaussian 12_120_U 12 10-110 120 Uniform
10_150_1G 10 30-120 150 Single Gaussian 12_150_U 12 20-130 150 Uniform

Table 2: Results obtained by the H-BPP and their comparison with the optima values.

H-BPP Optimum values H-BPP Optimum values

Instance 𝑏 #𝑜𝑝𝑡𝑖𝑚𝑎
Avg. size of
ideal sub. Opt. #𝑜𝑝𝑡𝑖𝑚𝑎

size of opt.
ideal sub. Instance 𝑏 #𝑜𝑝𝑡𝑖𝑚𝑎

Avg. size of
ideal sub. Opt. #𝑜𝑝𝑡𝑖𝑚𝑎

size of opt.
ideal sub.

10_100_2G 6.0 20.1 22.7 6 36 26 12_100_1G 6.0 103.4 61.6 6 5376 110
10_120_2G 6.0 185.3 49.8 5 284 59 12_120_1G 7.6 10.2 23.2 7 260 38
10_150_2G 5.0 8.0 15.5 5 24 20 12_150_1G 7.3 5.8 19.8 7 162 34
12_100_2G 5.4 2.1 12.1 5 36 31 10_100_U 4.0 688.7 113.4 4 1574 111
12_120_2G 8.4 14.1 18.8 8 180 29 10_120_U 6.0 140.9 48.9 6 285 59
12_150_2G 6.9 1.0 13.0 6 30 21 10_150_U 5.0 5.1 14.7 5 8 17
10_100_1G 5.0 188.1 55.4 5 500 72 12_100_U 6.0 370.7 58.3 6 3132 95
10_120_1G 4.0 126.2 60.7 4 337 79 12_120_U 7.0 59.9 46.1 7 1230 92
10_150_1G 6.0 15.9 20.3 6 42 25 12_150_U 7.3 10.4 29.2 7 224 54

that this trend is maintained regardless the total number of optima
or the size of the optimal ideal subset, assuming that an instance
with less number of optima or a reduced optimal ideal subset is
harder to be optimized. The performance demonstrated by H-BPP
in the instance 10_150_U is a specially noteworthy example of this
situation. This instance counts with 8 optimum values and a size
of optimal ideal subset of 17. These values makes 10_150_U the
most complex 10-item case to solve. In any case, H-BPP obtains
not only the optimum in all the 10 independent runs (which is the
main objective of the method), but a remarkable amount of optima
(more than the 60% of them) and a significant percentage of the
ideal subset (higher than the 80%).

Regarding the instances composed by 12 items, despite some re-
sults are slightly degraded, the overall performance of the method is
still meritorious considering the current capacities of QC resources
and that the input parameters of the quantum annealing subroutine
have not been optimized in this preliminary study. In this way, there
are three specific 12-item instances in which the H-BPP gets the op-
timal results on each of the 10 independent executions(12_100_1G,
12_100_U and 12_120_U). If we further analyze the composition of
these cases, it can be seen how they count with a high number of
optima. This situation makes easier the optimal resolution of these
instances. In any case, it can be observed how the H-BPP obtains a
significant fraction of the optima in more complex examples, such
as 12_100_2G or 12_150_1G.

Moreover, we have conducted an additional analysis in Table
3, in which we compute the average size of the ideal subset in F
obtained by the H-BPP for the runs in which the optimal solution
has not been reached. Our main objective with this is to better

understand the behaviour of the method in these specific cases. In
this sense, and conducting a deeper analysis of these results, it can
be seen in instances such as 12_150_2G, 12_120_1G or 12_150_U,
that attaining more than the 50% of the ideal subsets does not
guarantee the obtention of any optimal solution. This situation
unveils the complexity of some instances, in which the weight of
finding some concrete subsets is crucial for reaching the optimum
of the problem. In other words, some specific examples are more
restrictive than others, since few limited subsets are compulsory
needed for obtaining any optima. Not finding these subsets in the
quantum annealing algorithm for the subset sampling subroutine
(Section 4.1) leads to the impossibility of the method to reach the
optimal solution.

Table 3: Average size of ideal subset found by H-BPP in those
runs that the optimal solution is not found.

Instance Avg. size of ideal sub. Instance Avg. size of ideal sub.
12_100_2G 10.2 (out of 31) 12_120_1G 19.1 (out of 38)
12_120_2G 15.2 (out of 29) 12_150_1G 17.0 (out of 34)
12_150_2G 11.5 (out of 21) 12_150_U 28.i3 (out of 54)

6 CONCLUSIONS AND FUTUREWORK
In this work, we present a new hybrid quantum-classical algorithm
for solving 1dBPP. The idea that we have introduced is to use a
quantum annealing algorithm to reduce the space of possible so-
lutions. This is performed by searching for feasible configurations
of items fitting in a single bin. Within this reduced search space,
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the algorithm implements a classical heuristic for generating the
configuration minimizing the number of containers. As a proof of
concept, we have compared the accuracy of our results against a
classical brute-force algorithm. Employing a benchmark composed
by 18 randomly generated instances with different number of pack-
ages and weight distributions, we have found that our algorithm
is capable of reliably finding the optimal solution for the smaller
instances. For the instances with a higher number of packages, the
performance of the algorithm slightly degrades. However, the re-
duction of the search space and the expected resource consumption
of the quantum annealing algorithm in terms of the qubit number,
allows us to find approximate solutions for larger instances, while
the brute-force algorithm can not find the solution in a reasonable
time.

Despite of the simplicity of the problem solved in this work, this
paves the way for addressing more complex BPP problem variants
(such as the two-dimensional or three-dimensional BPPs) using hy-
brid quantum-classical algorithms. There is room for improvement
regarding the quantum annealing subroutine, and the selection of
its hyper-parameters. As a future work, we have planned to im-
prove the classical module of the H-BPP, in order to increase the
probability of finding the subset of packages found in the optimal
configurations. In this regard, we need to perform further analysis
of the algorithm to prove the possible advantage of using a com-
plete quantum algorithm for the whole process. We also leave the
possibility of expanding the algorithm developed in this exploratory
work to other problems whose solution can also be divided into
different partial solutions.
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