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1. Introduction

Let Q2 c R? be an open bounded set. Given v € C'(£2;R?), the area functional is defined as

A, Q) ::/ V14|Vl + [Jof? dx:/ IM(V)| dx, 1.1)
Q Q

where M(Vv) = (1, Voy, Vv, Jv) and Jv = 3% g% - 3% Z’% is the Jacobian determinant of v. The value A(v, ) is the 2-dimensional
1 2 1 2
Hausdorff measure of the graph

G, :={(x,y) € 2xR? : y=v(x)}

of v. In order to extend the area functional to a more general class of maps one is led to consider the relaxation of (1.1): Namely,
for all u € L'(2;R?) one chooses a convergence, for instance the L!-convergence [12], and sets

A1 (u, Q) :=inf {llicrninf Ay, 2), u, € CH(2;R?), uy — u in LI(Q;Rz)} . 1.2)
—+00
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In contrast with the case of real valued maps, for which the L'-relaxed area is well-understood [11], in higher dimension, including
the case of R2-valued maps considered here, the analysis of .A;, has been shown to be very challenging and a lot of questions
remain open. For instance, it is known that the domain Dom(zL 1(-, 2)) of ZL] (-, Q) is strictly included in BV (2;R?), but its complete
description is, so far, not available. The main difficulty to treat ZU is due to its non-local behavior: Indeed, for general maps u
with the only exception of very trivial cases, the set function E C Q ~ A;1(u, E) is not subadditive, and this excludes to represent
(1.2) in integral form. As a consequence, the explicit value of A 11(u, £2) is, at the moment, known only for very specific non-smooth
maps u enjoying a high degree of symmetry [5-7,25] (see also [4] for partial results without symmetry assumptions).

A useful simplification in the relaxation analysis of A is to consider some variants of (1.2), for example modifying the convergence
of u to u (see [8,9,13,17]). Even if the L!'-convergence seems to be natural also with respect to the application to the non-parametric
Plateau problem, one can replace the L!-topology with different ones. In some recent works [3,22], instead of relaxing with respect
to the L'-topology, the authors have considered relaxation with respect to the strict convergence in BV (2; R?) (shortly BV -relaxed
area). Namely, one defines

Apy (@, Q) :=inf {lli(minf Auy, Q), uy, € CH(2;R?), uy, — u strictly BV(.Q;R2)} ) (1.3)
-+

Although the analysis of Ay, seems quite more treatable, a complete picture and description of its behavior is still missing. It is
straightforward that for any u € BV (£2;R?)

Ay, Q) > A1 (1, Q),

SO Dom(ZBV(~, Q)) C Dom(ZLl(-,_Q)), and the inclusion is strict as Example 4.1 below shows.
Strictly related to the area functional is the Jacobian total variation functional, namely

TV I, Q) :=/ |Jv| dx,
Q

valid for all v € C'(2;R?). Also in this case, to extend TV J to a larger class of functions, a relaxation procedure is in order. However,
the choice of the L!-convergence is in some cases not interesting: for instance, if u € W1(Q;S!), with Q simply connected, the
corresponding relaxed functional trivializes and becomes constantly null (see [10, Cor. 5]). On the other hand, the notion of strict
convergence in BV gives rise to a nontrivial relaxed functional which shows to play a crucial role in the analysis of A ,,. Specifically,
for u € BV (£2;R?) we consider

TV J gy (u, Q) := inf {llicminf TV J(v;, 2), v, € C1(2;R?), v, — u strictly BV(Q;]R2)}‘ 1.4)
—+00

In the present paper we compute the value of Ay, (u, Q) for some particular piecewise Lipschitz maps u which are allowed to
jump on curves in turn meeting at junction points. We refer to Definition 5.2 for the details on these maps, and we summarize here
their features: Let 2 C R? be a bounded open set of class C! and {£; },—, .y a finite partition of £ made of Lipschitz sets. Suppose
that X := uﬁ’=10(2k is the support of a finite family of C2-curves a, : 1, - 2, # = 1,...,n, I, = (az, b,). We suppose that the curves
ay, arc-length parametrized on 1 ,, are injective on I,, a,(I,) C £, and of class C2 up to a, and b, (namely &, and i, are continuous
on 7,/»). Furthermore, we assume that a,(I,) and a,(I}), for ¢ # h, may intersect only at the endpoints. Endpoints of «, are allowed
to belong to d£2, and we assume such endpoints to be distinct for different curves.

A map u € BV (£2;R?) is called piecewise Lipschitz if its restriction to any £, is Lipschitz. Notice that if p; is a junction point and

.Qj( (k =1, ..., N;) are the connected components of £\ X having p; as boundary point, then there exists the limit ﬂli 1= lim x~p; u(x).
xeQ!
. k
For the sake of simplicity, we assume that the enumeration k = 1, ..., N; respects the counterclockwise order of 2,’s around p;.

To introduce our main result, we have to consider also a planar Plateau problem for Lipschitz curves: Given a Lipschitz curve
@ : S!' = 0B, — R? we consider the quantity

P(p) :=inf {/ [Jvl dx : v €Lip(B;;R?) : vjyp, = ga}_ (1.5)
By

For all i = 1,...,m we denote by 7 a Lipschitz curve which parametrizes on S' the polygon in R? with vertices g, ..., ,
in the order (see Fig. 3). Notice carefully that this curve may self-intersect. Also, P(¢) is invariant under reparametrizations of ®
(Proposition 2.9). Finally, set I = [0, 1]. The main result of the paper is the following

Theorem 1.1 (Relaxation for Piecewise Lipschitz Maps). Let u : Q2 — R? be a piecewise Lipschitz map. Then

n m
Apy W, Q) = / IM(Vu)| dx+ Y / 0, X% Ao X |drds + Y PG, 1.6)
oAz r=1lag.bel i

x1 i=1
where, forany £ =1,...,n,
Xzzt;)(t, s) = (t, su}f(r) +(1 - s)u;(t)) V(t,s) €lay, byl X 1, 1.7)

and u? are the traces of u on the support a,(1;) of a,.
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One of the main features of expression (1.6) is the presence of two singular contributions: a 0-dimensional term due to the
concentration of the Jacobian determinants of a recovery sequence (v,) for ZBV(”’ Q) around the junction points (namely, the
term involving the minimum of the Plateau problems P(7")), and a 1-dimensional term, which essentially takes into account the
concentration of the gradients and of the Jacobian determinants of v, along the jump set . So, we can interpret (1.6) as a non-
trivial generalization of [3, Theorem 1.3], valid for the triple point map u; (see also Theorem 4.4), and of [3, Theorem 1.1], valid
for 0-homogeneous maps of the form ¢ (x/|x|) with ¢ : S' — S! Lipschitz. Indeed, in the first case the 1-dimensional term was
simply the total variation of u; (consisting of the area of three vertical walls over X) and the 0-dimensional one was the area of
the target triangle, which is a trivial minimum of (1.5), while in the second case we had no 1-dimensional contribution and the
0-dimensional one was the solution of (1.5) with this special ¢, that reduces to P(¢) = =|deg(p)|. In other words, the relaxed area
of a more general map u as in 1.1 is still a measure (if we regard it as a function of £2), which has the same dimensional structure,
but with a more involved and rich expression.

We observe that for this special kind of maps it always holds A (4, £2) < +00, because the contributions of the Plateau problem
P(7") is always finite, since one can construct a Lipschitz competitor for (1.5). On the other hand, the presence of a finite number of
junction points is crucial, because, as Example 4.1 shows, we can build a piecewise constant map whose BV -relaxed area is infinite.
It is here remarkable that the same map can be seen to have finite L'-relaxed area (compare with (4.2)). This in particular shows
the proper inclusion

Dom(A gy (-, 2)) € Dom(A;1(, 2)).

We divide the proof of Theorem 1.1 in several steps, and in particular we first focus on the relaxation on piecewise Lipschitz
maps « without junction points. In this case we show in Corollary 3.12 (consequence of Theorems 3.7 and 3.11) that the relaxation
provides as singular contribution the integral over the jump set S, of u of the area spanned by the affine map X*. The main issue is
the proof of Proposition 3.4, the lower bound for the relaxed area of maps jumping on the central horizontal segment of the rectangle
R = [a,b] X [—1,1]. Here, we need to use some tools from the theory of integer multiplicity currents, in particular slicing arguments
and the isoperimetric inequality, in order to show that over the jump segment the graph of the elements of an approximating smooth
sequence (v;) have area bounded below by the area of X?f. The properties of the strict convergence (Lemmas 2.3 and 2.7) enter
at the level of vertical slices of the graph of v, in a neighborhood of the jump segment, but these results only are not enough to
pass to the limit in the area of the graph of v,. For this purpose, the idea is to make a decomposition of the graph of v, and of the
surface X in several tiny strips, and notice that, when the number of these strips is very high, the boundaries of these two little
pieces of surfaces are uniformly close together, as a consequence of the strict convergence and, at the same time, the strips which
decompose X are very close to a minimal mass current having the same boundary.

In [9], the authors compute the relaxed area A« (u, £2) with respect to the local uniform convergence out of the jump, for u as in
Proposition 3.4. They obtain, as singular contribution, the area of the minimal semicartesian' surface spanning the graphs of the two
traces. In particular, since X* is semicartesian and spans graph(u*) as well (see [9, Definition 2.4]), we have ZLm(u, R) < ZBV(u, R).
In general, this inequality holds strictly, even if graph(u*) are coplanar. We can find an example in [9, Remark 8.5], where one can
notice that in order to minimize the area of the spanning surface, the approximating sequence needs not keep the total variation of
the limit map, which instead is forced to be preserved under strict convergence. Moreover, it is important to notice that A e (u, -)
is not subadditive (see [9, Thm. 8.1]), while ZBV(u, -) is clearly a measure.

In a second step we instead consider the case of maps u which are piecewise constant but whose jump might have junction
points. Specifically, in Theorem 4.4 we see that the relaxation on a n-uple point map (i.e., whose jump consists of » radii of the
same ball B,(0)) provides as singular contribution, besides the total variation of u, the number P(y), where 7 is the piecewise affine
curve which parametrizes the perimeter of the polygon whose vertices are the values of u around 0.

Finally, in Section 5, we use Corollary 3.12 and Theorem 4.4 to complete the proof of Theorem 1.1.

We point out that, to our best knowledge, it is not yet known, in general, whether the BV -relaxed area is subadditive if considered
as a set function and, further, if it gives rise to a measure. We expect such a subadditivity for BV -maps u from the plane to the
plane, being motivated by relevant examples with explicit computations, and also because of the presence of a unique cartesian
current with minimal completely vertical lifting associated to u (as recently shown in [23]). Unfortunately, this uniqueness result
fails in higher codimension, where in addition we have less explicit examples.

2. Preliminaries

We start by collecting some tools needed in the proof of the main theorems. For an integer M > 2, set S¥~! := {x e RM : |x| = 1}.
In what follows, 2 c R? is a bounded open set.

2.1. Some consequences of the strict convergence

Theorem 2.1 (Reshetnyak). Let uy,, u be (finite) Radon measures in Q, taking values in RM. Suppose that u,, A pand |p,|(2) = |ul(2).
Then

lim /f(x,ﬂm) d|uh|<x)=/f<x,i<x)) A1)
) [15] Q [ 1]

for any continuous bounded function f : @ x SM~1 - R.

1 A map having the identity as the first component.
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Proof. See for instance [2, Theorem 2.39]. []

For any u € BV (2;R?), we recall that the distributional derivative Du is a Radon measure valued in R**2. S BV (&) stands for the
space of special functions of bounded variation on £ [2]. The symbol |Du|(£2) stands for the total variation of Du (see [2, Definition
3.4, pag. 119]) with | - | the Frobenius norm. We denote by .S, the jump set of u.

Definition 2.2 (Strict Convergence). Let u € BV (€2;R?) and (1) C BV (£2;R?). We say that (u,) converges to u strictly BV, if

Ll
uy—>u and | Duy |(£2) = | Du|(£2).

Let R =[a,b] X [-1,1]. For (¢,0) € R, set
R :={(x,x)) ER x| =1}, R? :={(x;,x)) ER : x, = c}.

If u € BV(R;R?), by Lebesgue differentiation theorem and Fubini theorem, for almost every ¢ € [a, b], the restriction ul_ Rf‘ of u on
the vertical segment Rfl coincides with the trace of u at H'-almost every point of Rf‘. So, for almost every 7 € [a, b], the map ul_Rfl
is well defined because it is independent of the representative of u. The same argument holds in R}> for almost every ¢ € [-1, 1].

Lemma 2.3 (Inheritance of Strict Convergence to Slices). Let u € BV (R; R?). Suppose that (v,) ¢ C'(R;R?) is a sequence converging to u
strictly BV (R;R?). Then for almost every (t,c) € R, there exists a subsequence (v W) € ) depending on t and o, such that

v, LR — ul_ R} strictly BV(R}';R?), 21
v, L RS — ul_ R} strictly BV (R;%;R?). (2.2)

Proof. For almost every ¢ € [a, b], in view of the definition of Rf‘, we can define the total variation of ul_ Rf‘ as

| DL RyHI(R;') = sup {—/_11 u(t,x,) - g'(xp)dxy; g € CH((=1,1); B (0))} . (2.3)
where E 0) = {(&,7) € R? : €2 + 1% < 1}. Let us show that
|D2u|(R):/le(ul_Rf‘)l(Rf‘)dt, 2.9
a
where Dyu := Due, is a Radon measure on R valued in R? with finite total variation. Since, for almost every t € [a,b],

X

v LR - ul R in L'(R;";R?), we have, using (2.3),
DL RIHI(R) < ]iminf/ |0, 0, (2, x5)|dx,. (2.5)
k—+o00 R;‘l
Then, using Fatou lemma and Fubini theorem,
b b
/ [ D@L R;HI(Rdt < / lim inf/ |0, 0, (8, x,)|dx, dt (2.6)
a a k—+o00 R;‘l
< liminf/ |0,0, (1, x5)|dtdx, = | Dyu|(R),
k—+o0 R
where in the last equality we used Theorem 2.1 with f(x,v) = 4/ v§ + vi, for every x € R, v € S* ¢ R* = R? x R?, with
- 2)
V2 V4

The converse inequality in (2.4) is standard.? So, (2.4) is proved and (2.6) holds as an equality, which implies that also (2.5) holds
as an equality, namely

D@L R™)|(R™) = liminf |0, 0, (2, xp)|dx,.
! ! k=400 R;‘l
Extracting a subsequence (v, ) C (v,) depending on ¢, we get
v, L R —> ul Ry strictly BV (R;'; R?).

Finally, repeating the same argument for v, on the horizontal slices {R}?}, we get (2.1) for a (not relabeled) sub-subsequence. []

2 We recall that
| D,ul(R) = sup{—/u-«&g dx: ge Cj(R;E(O))}A
i 2

Now, for g € C!(R:B,(0), [pu-d,,8 dx= [ (/j, u(t,xz)-()ng(t,xz)dxz)dt < 21Dl ROIRM ), so |Dyul(R) < [ Dl RMI(R ).

4
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Now, let B, be the disk of R? centered at the origin of radius / > 0. We want to prove the analogue of Lemma 2.3 in B,, by
slicing with concentric circumferences. If u € BV (B;; R?), as in the previous case, for almost every r € (0,1) the restriction ul_dB, is
well-defined and independent of the representative of u. In particular, for almost every r € (0,/), we can define the total variation
of ul_oB, as

27 _
|D(u L 0B,)|(9B,) := sup {—/ i(r,0) - f'(6)do; f € C'(10,2x]; B;(0)), f(0)=f(27r),f'(0)=f’(27f)} 2.7)
0

which turns out to be finite (see Lemma 2.5), giving that ul_dB, € BV (dB,;R?), for almost every r € (0, /). Here
u(r,0) :=u(rcos,rsinf), re (0,11, 0 € [0,2x).

We want to relate this quantity with the notion of tangential total variation.

Definition 2.4. For x = (x,x,) € R?\ {(0,0)}, set 7(x) = ﬁ(_xl’ x;). Let0</ < Land Ay, := B;(0)\ B,(0) be an annulus around
0. We define the tangential total variation of u € BV (A, ;; R?) as the total variation of the Radon measure D,u := Dur, namely

|D,ul(Ap,) = |Dur|(AL,) = sup{—/

u-(Vgr) dx : g € CL(AL By O) ). 2.8)
ALy

The last equality in (2.8) is justified since r € C®(A,;;R?) satisfies divr = 0 everywhere, so for any g = (g',g%) € C!(A, ;R?)
we have

—/ u-(VgT)dx:—/ u1Vg'~‘rdx—/ uZng-rdx
ALy AL ALt

= —/ uldiv(g'r) dx —/ w?div(g?r) dx
Ay

ALy

=/ glr-dDu1+/ g2T~dDu2=/ g - (dDu)r = (Dur, g).
ALt ALt AL

This computation shows that | D u[(A} ;) < |Du|(A ), since |z] < 1, and also that (2.8) is compatible with the case u € whla L R2),

where simply | D u|(A; ) = /| AL |Vur| dx. Moreover, Du = %lDul by polar decomposition, so that

(Du‘r,g)=/ g-(dDu)‘r=/ g~< Du a’IDu|>T=/ g-( Du ‘r> d|Du| VgeCcl(B,;]Rz),
Ap, AL | Dul AL [ Du|

giving that

D,u=Dur = 2% 21Dy, (2.9)
[ Dyl

Lemma 2.5 (Inheritance of Strict Convergence to Circumferences). Let u € BV (Bg;R?) and (v,) C C'(Bg;R?) be a sequence converging
to u strictly BV (Bg;R?). Then, for almost every r € (0, R), there exists a subsequence (0g,) € (W), depending on r, such that

vi, LoB, > ul 0B, strictly BV(0B,;R*)  as h — +co. (2.10)
Proof. For almost every r € (0, R), by Fatou lemma and Fubini theorem, up to extracting a subsequence, we may assume that the

restriction v, L 0B, has equi-bounded variation w.r.t. k. Moreover, we may also assume that (v,) converges to u almost everywhere
in Bg, so that, for almost every r € (0, R),

v, 0B, - ul_oB, %'-ae.indB,. (2.11)

Now, let r € (0, R) be such that v, L dB, has equi-bounded variation and (2.11) holds. Then, there exists a subsequence (vg,) C (V)
depending on r such that

0y, 0B, = ul_0B, w*— BV(3B,;R).
By lower semicontinuity of the variation, we infer that for almost every r € (0, R), u L dB, € BV(dB,;R?) and
|D(uL_0B,)|(dB,) gliminf/ ‘wk r|d7—ll. (2.12)
h—+oc0 0B, h

Let 0 </ < L < R be such that v, — u strictly BV(ALy,,RZ) where, as in Definition 2.4, A}, := B;(0) \ B,(0) (notice that this holds
for a.e. / and L); by integration, we get

L L
/ |D(ul_dB,)|(0B,) drs/ <liminf/ |Vukh‘r‘d7-[1> dr
I i h—+o00 0B,

L (2.13)
Sliminf/ / ‘Vuk T dHldr=liminf/ ‘Vvk ‘r| dx.
h=too [ JB, h h=teo Jay, "



G. Bellettini, S. Carano and R. Scala Nonlinear Analysis 239 (2024) 113424

Thanks to Theorem 2.1, with the choices M =4, S c R* = R¥?, f € Cy(4,, x SP),

£ =\ Tor - TP + [ - 0L,

where v € §* and vy, := (v}, 3), Vyer = (3, V4), We obtain

lim / Vo] dx=/ Du
koo Jay, ALg

[ Dul d|Du| = |D.ul(Ay)), (2.149)
where in the last equality we have used (2.9). So we get

T

L
IDul(AL ) > / |D(L_0B,)|(0B,) dr.
1

In order to prove the converse inequality, let g € Cj (A L,l§§1 (0)). Then, in polar coordinates, by definition (2.7),

L 2r L
/ u-Vgrdx = / / ii(p,0) - 0yg(p,0) dpdf < / |D(u|_¢?Bp)|(0B‘,) dp,
Ar, 1 Jo I
where g(p,0) := g(pcos @, psinf), for any p € (0,1], 6 € [0,2x). So, we have proved that

L
|DTu|(AL,,)='/ |Dul_0B,)|(0B,) dr.
!

In particular, we deduce that (2.13) is a chain of equalities. Then, (2.12) holds as an equality and there exists a subsequence
(0,) € (), depending on r, which achieves the full limit. Since / and L are arbitrary, we get the thesis. []

2.2. Further properties in dimension 1
In [3, Proposition 2.4] the following is proved:

Lemma 2.6. Let (y,) C Wh1((a, b); R?) be a sequence converging strictly BV ((a, b);R?) to y € W1((a, b); R?). Then y, — y uniformly in
(a, b).
For our purposes, we need an improvement of Lemma 2.6, where discontinuous functions y at a single point, or at a finite number
of points, are allowed; we start with one point discontinuity.
Lemma 2.7. Let I~ := [-1,0),I* := (0, 1]. Suppose that (y,) ¢ W ([—1,1];R?) is a sequence converging strictly BV ([-1, 1];R?) to
y € BV([~1, 1;R) n Whi(I—;R?) n whi(I+; R?), with y*(0) # y~(0). Let S : [—1/3,1/3] — R? be defined by
3 _
S(z) = 3 (3407 O+ 13-y (0), 7e€[-1/3,1/3]
Let 7~ (resp. 7*) be the reparametrization of Y- (resp. i +)on[—1, —%) (resp. (%, 1]) defined by the composition with the increasing linear
function taking [—1,—1/3] onto [—1,0] (resp. [1/3, 1] onto [0, 1]). Define
7= in[-1,-1/3)
7:[-,11-R%,  ¥:=3S  in[-1/3,1/3] (2.15)
75 in(1/3,1].

Then there exist:

(a) a Lipschitz strictly increasing surjective function h : [-1,1] - [-1,1],
(b) a subsequence (k;) and Lipschitz strictly increasing surjective functions hkj P [=L 11 = [=1,1] for any j € N, with sup; ||hkj [l < o0,

such that

lim y, oh; =7Yoh uniformly in [-1,1]. (2.16)
Jj—otoo i j

Proof. The lengths L, of y, and L of y are given by

1
Ly :/ [7k] dz,
-1

0 1
L=|y|<[—1,11>=/1 17l dr+|y+<0)—y-<0>|+/0 17l dr.

Since, by assumption, y, — y strictly BV ([-1,1];R?), we have that L, — L as k — +oo. Fix # > 0 and for all k € N define the
function®

- _L+n [T n
se =L [0, L4nl,  su() = m/_}(mmu 5) dr, 2.17)

3 We need 7, since in principle 7, could vanish somewhere.
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with Lipschitz inverse a; :=s."' : [0, L +#] — [~1, 1]. Define

7¢ 2 [0,L+n]— R?, 71 (8) 1=y (i (s)) Vs € [0, L +7]. (2.18)

Since from (2.17)

& . L+
ﬂ(S) SMS k nsC for a.e. s € [0, L + 7],
ds [$ (o (s)] L+n

for some constant C > 0 independent of k, the sequence (7;) is bounded in W1 ([0, L + 7];R?). Thus, up to a (not relabeled)
subsequence, we may assume that there exists 7 € W *([0, L + 5];R?) such that

7x = 7 weakly* in w ([0, L + 5];R?) and uniformly in [0, L + 7]. (2.19)
We observe that for any open interval J C [0, L + 7],

[ ias <t [ ugas <1t 8 =1,
and thus

7] <1 ae. in [0, L + 7. (2.20)

Now, in order to conclude the proof, we need to show that 7 is a reparametrization of 7. Then the thesis of the lemma will follow
by reparametrizing both 7, and 7 on [-1,1].

Using that (y,) strictly converges BV ([—1,1];R?) to y € WhI(I7;R?) n WhI(I*;R?), by Lemma 2.6 and a diagonal process, we
can find an infinitesimal sequence (5,(/) C (0, 1] such that

lye, = Vlle([—l,lJ\(—Ekj,ék/)) -0 (2.21)

-5, 0 1 1
[ morar= [peras [Cinora- [Cpeas
—1 -1 8; 0

as j — +oo. In particular,

and

lim _y, (£6;) = r*(0) (2.22)
J—+oo J J

and, setting

. L+n [T% n
T, =Sk, (50) = /_] (lyk/|+§)d7’

Lk/ +7
L+n Lo Yoo
S _ 2 _ -
"k; '_sk/(ak’) - Ly, +n [/1““" * 2) dr 5 (Im"l * 2) dr |,
J
we have
" 0
Aim =3 +/ 7l dr=:r7,
—+00 J
J _(1) (2.23)
: + _ N ; +00 .t
Jim g =1+ [ par - o) =
As a consequence of (2.19), (2.22), and (2.23) we get
i @, (g ) = T, (e ) = 7(7%) = 7*(0).
Therefore the curve ¥ maps the segment [, "] into a curve joining y~(0) and y*(0). Now, since r* — r~ = |y*(0) — y=(0)|, from

(2.20) we conclude that 7 coincides with the unit-speed parametrization of the segment joining y~(0) and y*(0) on [r~,r*]. Hence
we have shown that

Yk, 0%, = Soa uniformly in [r~,r"] as j — +oo, (2.24)

for the affine increasing reparametrization @ : [r~,r*] - [-1/3,1/3].
We now check that 7 = yoa on [0, 7] for some increasing bijection a : [0,7~] — [-1,0], and similarly ¥ = yof on [r*, L + ] for
some increasing bijection g : [r*, L + 5] — [0, 1].
Indeed, the functions a; : [0, L + ] — [—1, 1] are strictly increasing and satisfy
Ly+n C

(s ) = ——A 1 <€
o = o+ B =

so that we may assume (up to extracting a further not relabeled subsequence) that

a, — a weakly* in w ([0, L + 1)) and uniformly in [0, L + #],
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for some nondecreasing map a € W ([0, L + 5]). Hence, using (2.21), we find out
Pk, (9) = 71, (@ () = y(a(s)) for all s € [0,r7).

This, together with (2.19), implies
7(s) = yoa(s) for all s € [0,r7).

A similar argument shows that this also holds for all s € (#*, L +1].
Finally, we observe that « is strictly increasing on [0,77) U (r*, L + 5]. For, if « is constant on some interval [s,, s,] C [0,r7), we
have lim,_ g, (sy) = limy,_ o @ (57) and hence

52 Tkj2
0= lim / &, (s)ds = lim / dr= lim (1 5~ 1, ), (2.25)
5 ot i i

—+ Jjo+oo
i Tij1

where Ty, are defined by si; Ui, 1) = 51 and sk, (1, 2) = 52. By definition (2.17) of sg; we have
Tkj2 n
0<sy—s51= / (17, (@1 + 5) dr. (2.26)
Tkjl

Possibly passing to a (not relabeled) subsequence and using (2.25), let f € [—1,0] be the limit of (tkj,l) and (’kj,2)~ If 1 # 0, for any
open neighborhood J c (-1,0) of 1, using (2.26), we get

y| dr = lim i | dt > 55 — 54,
[iras=im [ 1ar> -5,

which contradicts the inclusion 7 € L'((—1,0); R?). The same argument holds if 7 = 0, for J a left neighborhood of 0 in (-1,0). We
conclude that « is strictly increasing.

Let hk be a rescaling of @, on [-1,1]; rescaling also « from [0,r~] to [-1,—1/3], and then from [r*, L +#] to [1/3, 1], using also
a in (2. 24) we construct a reparametrlzatlon h : [-1,1] = [-1,1] such that (2.16) holds, and the lemma is proved. []

Lemma 2.7 can be readily extended to curves y with finitely many jump points:
Corollary 2.8. Let (v,) ¢ W1([0,27];R?) be a sequence converging strictly BV ([0,2x];R?) to a map y € SBV([0,2x];R?) having

finitely many jump points 0 < z; < z, < --- < z, < 27. Let 6, > 0 be such that the intervals (z; — 6,, z; + 6,) C (0,2x) are disjoint, and for
alli=1,...,nlet S, : [z; — 6y, z; + 6,] — R? be defined by

Si(7) 1= % ((r=z+60) rT(z)+ (z;+ 60y —7) ¥ (z)), T Elz;— 0, z; + bp).
0

Setting z, := 0 and z,,, :=2x, forall i =0,...,n let7; : [z; + 0y, 2,11 — 0y] = R? be a rescaled reparametrization of y : [z;,z;4,] = R%.
Finally, let 7 : [0,27] — R? be the Lipschitz curve defined as
Y=Yk S| * Y xSy kP x ..k S, * Y, (2.27)

where x denotes the arc composition. Then there exist a subsequence (k;) and Lipschitz increasing surjective functions h, hk 1 [0,27] -
[0, 2] such that

lim y, oh, =7oh uniformly in [0,2x]. (2.28)
Jj—o+oo i j
Proof. We sketch the proof which is a direct consequence of the arguments used to prove Lemma 2.7. Choose points w;, i = 1, ..., n—1
so that z; + 6y < w; < z;,; — 6, and let wy, = 0 and w, = 2z. Then we can apply Lemma 2.7 to any interval [w;, w;,], and taking a
suitable subsequence and concatenating the obtained maps one can easily construct the desired parametrizations. []

2.3. Planar Plateau-type problem

Let ¢ : S! — R? be a possibly self-intersecting Lipschitz curve. Let us consider, as in [24] (see also [14]), the planar Plateau-type

problem (1.5) spanning ¢. Notice that the class of competitors is non-empty, since it contains the map v(x) = |x|¢ I ) for x # 0,
and v(0) = 0. We first observe that P is independent of the radius of the domain of integration. Specifically, for any r > 0, let
0,0) = (p( ) for all y € 0B,. (2.29)
Setting y :=rx, y € B, and v,(y) := u(f), we have
/B |Jv| dx=/B |Ju,|dy Yv € Lip(B;; R?). (2.30)
1 )y

In particular, for any r > 0,
P(p) = inf {/ [Jvl dx : v € Lip(B,;R), 095 = (p,} . (2.31)
Br

In the next proposition we show that P(-) is invariant under Lipschitz reparameterizations of ¢.
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Proposition 2.9 (Invariance). Let ¢ € Lip(S'; R?) and h be a Lipschitz homeomorphism of S!. Then
P(poh) = P(¢).

Proof. Since i and the identity map id : S' — S! have the same degree, they are homotopic in S! by Hopf Theorem (see [21, pag.
51]), namely there exists a Lipschitz map* K : [0,1] xS! — S! such that

K@©,)=id, K(,)=h.
Define H : [0,1]xS' = R? as H(t,v) = @(K(t,v)). Then H is Lipschitz and
H(,)=¢, H(l,)= goh.

Now, suppose v, € Lip(B;;R?) is such that v, = ¢ on dB; and

lim / |Jug| dx = P(@).
B,

k—+00

Define the map 7, : B, — R? as

vy (kx) for x € By,
k
T =4H (klxl -1, l—;) for x € By \ By (2.32)
q;oh(i) for x € B, \ B:.
x| %

Then 7, € Lip(B;;R?) and 0, = @oh on dB,. Moreover, since H and goh take values in ¢(S') which is I-dimensional, by the area
formula and (2.30) we have

/ [J D, (x)] dx :/ |Jvp(kx)| dx :/ |Jvi| dx — P(@)
B, B B,
I3
as k — +oo. In particular P(goh) < P(p). Exchanging the role of ¢ and @oh, we obtain the converse inequality. []
Lemma 2.10. Let ¢, ¢, € Lip(S'; R?). Then
[P(@y) — P(py)| <2l — ¢2||oo(||¢1 Iy + ||¢2||1)- (2.33)
Proof. Let v € Lip(B;; R?) be such that v = ¢, on S!. We define

01 (%) = v(2%) if |x] < 1,
x)=1 2 (2.34)
20 = xhes () +2(Ix1= 1) o (35) if <<t

Then w € Lip(By; R?), w(x) = ¢,(x/|x|) if x € 9B, and w = ¢, on dB,. Let us estimate
2

/ _ |Jwl| dx.
BI\B%

Writing w in polar coordinates in the annulus B, \B_l, pE (%, 1), 6 € [0,2n),
2

(9. 0) = w(peos 0, psin ) = 2(1 = ps(®) +2 (0 = 3 ) 1(0),
where @;(0) := @;(cos0,sin6), i = 1,2. Then
|0, A 0piD| = 4 ‘(@1(0) — @,(0) A ((1 - P (0) + (P - %) @1(9))'

)in®)

<4100 - 3,00 |(1 = D520 + (- 3

<4ler = @2l (1220 + 1610)]) -

Thus, integrating on B, \ B, , by the change of variable formula,
2

1 2z
/7|Jw<x)|dx=// )
BI\B] 1 Jo

2

4 The construction of a Lipschitz homotopy between A and id can be done at the level of liftings, by considering the affine interpolation map (for more
details, see for instance [3, Proposition 3.4]).

_ 0l
9,1 A 7' dpdd (2.35)
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2r
<2llg; - (P2||oo/ (120 + @1 (8)]) d6 (2.36)
0
=2ll¢; - @alle (11l + 2 lly) - (2.37)
Hence
P(p,) S/ [Jwl| dx S/ |JU%| dx +2lo1 = ool (1 lly + o lly) - (2.38)
B, B

1
2

Since v is a Lipschitz map such that (with the notation in (2.29)) v1 = (¢,)1 on 0B, using (2.31) with r = % we can take the
2 2

1
infimum in (2.38) on these maps v and get :

P(¢)) — P(93) <2[l@) = @3lle (11111 + 2l ) -

Exchanging the role of ¢, and ¢, we find that also P(¢,) — P(¢,) is bounded by the right-hand side of the previous expression. This
concludes the proof. []

Remark 2.11. With a similar argument used in the proof of Lemma 2.10 it is immediate to obtain that if [a, 5] C R is a bounded
interval and y,,7, : [a,b] — R? are Lipschitz curves, then the following holds: Let @ : [a, b] X [0, 1] — R? be the affine interpolation
map @(t, s) := sy;(t) + (1 — s)y,(t). Then, as in (2.35),

/ |P; AD| dtds < Iy = 2l (71111 + 17211 (2.39)
a,bIx[0,1]

Using Lemma 2.10 we readily obtain the following continuity property for the minimum of the Plateau-type problem (1.5).

Corollary 2.12 (Continuity of P). Let ¢ € Lip(S'; R?) and suppose that (¢,), C Lip(S'; R?) is such that

@, —~ ¢ uniformly and iugllmlll < Hoo.

€
Then P(p,) — P(p) as k - +oo.
In what follows it is convenient to consider the relaxation

P(y) :=inf {li‘l‘i’éf P(@y) : ¢y € Lip(S';R?), ¢, —  strictly BV(SI;RZ)} Yy € BV (S';R?) (2.40)
of P with respect to the strict convergence in BV of the boundary deEum. It is well known that the i_nfimurg in (2.40) is taken on
a non-empty class of approximation maps. Moreover, by (2.30), also P is invariant by rescaling, i.e. P(y) = P(y,).

Lemma 2.13. Let ¢ € Lip(S'; R?). Then P(p) = P(¢).

Proof. If (¢,) C Lip(S';R?) is a sequence converging to ¢ strictly BV (S!;R?), then by Lemma 2.6 ¢, — ¢ uniformly on S! as
k — +o00. Moreover, the strict convergence guarantees that the total variations of ¢, are equibounded. So, thanks to Corollary 2.12,

P(p) — P(o) (2.41)
as k — +oo. Since this holds for any sequence (¢,) as above, the thesis follows. []
Lemma 2.14. Let y € SBV(S';R?) have a finite number of jump points z; € S', i = 1,...,n. Let 7 : S! — R? be the Lipschitz map in
(2.27) (with S! identified with [0, 2x]). Then

P(y) = PG). (2.42)
Proof. Let (@), C Lip(S';R?) be a sequence converging strictly to y. Let us consider a not-relabeled subsequence of (¢;);; by
Corollary 2.8 there are a further subsequence (ox,); and Lipschitz reparametrizations Y, = @x,°hy, € Lip(S'; R?) of @, such
that Yy Yoh uniformly as j — +oo, for some Lipschitz homeomorphism # : S! — S!. Moreover, since by Lemma 2.7(b) the
reparametrization maps A, can be chosen with uniformly bounded Lipschitz constants, it follows that y, have uniformly bounded

total variations. Hence it follows from Corollary 2.12 that P(Vk,) — P(yoh) as j — +oo0. On the other hajnd, by Proposition 2.9 we
also have P(qokj) — P(7) as j — +oo. Finally, since this argument holds for any subsequence of (¢,), we conclude that the whole

sequence satisfies P(¢,) — P(y), and therefore F(y) =P@H). O

As a consequence of the argument in the proof of Lemma 2.14, we easily infer the following continuity property:

Corollary 2.15. Lety € SBV(S';R?) and 7 be as in Corollary 2.8, and assume that (¢,), C Lip(S'; R?) is a sequence converging strictly
to y. Then

Jim P(gy) = P(y) = PG).
—+00

10
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Furthermore, we can refine the previous corollary as follows:
Corollary 2.16. Lety,y, € SBV(S';R?), k > 1, be maps as in Corollary 2.8. Assume that (y,) converges to y strictly BV (S';R?). Then
Jim P(y) = P@).

Proof. By Corollary 2.15 and the density of Lip(S!; R?) in BV (S';R?) with respect to the strict convergence, for all k > 1 we can
find ¢, € Lip(S'; R?) such that

. . = 1
7k = @illi+ | @ 1SY = 17 ISHI + | Pleoy) = Pr)| < T
Hence the sequence (p,) converges to y strictly BV (S!; R?), and by the triangle inequality and Corollary 2.15 we conclude

lim P(y) =P(). O
k—+o00
3. Relaxation on piecewise Lipschitz maps jumping on a curve
Recalling that R = [a, b] X [-1, 1], consider Rt = {(x;,x;) € R : x, >0} and R~ = {(x,x,) € R : x, <0}.

Definition 3.1 (Piecewise Lipschitz Map). We say that a map u : R — RZ? is piecewise Lipschitz if u € BV(R;R?) and u €
Lip(R™; R?) N Lip(R*; R?).

Thus S, C [a,b] x {0}; we denote u* : [a,b] X {0} — R? the traces of u g+, which are Lipschitz maps. Set I = [0, 1] and define
X4t : [a,b] x T - R3 to be the affine interpolation surface spanning graph(u*) = {(t,u=(1)) : t € [a,b]} C R x R?> = R3, namely

X1, 5) = (6, sut () + (1= sy () =2 (1, X(1,8)) Vi, 5) € [a,b] X 1. G-

Remark 3.2. For a (semicartesian) map @ : [a,b] X [c,d] — R? of the form @(t,0) = (t,$(t,0)) = (1, ¢,(1,06), P,(t,0)), the area
integrand is given by

10 7 0,01 =\ 10,112 + 10,5 + b1 0,82 — 0,10, = 110,01 + 1S

The main result of this section is the following:

Theorem 3.3 (Relaxed Area of Piecewise Lipschitz Maps: Straight Jump). Let u : R — R? be a piecewise Lipschitz map. Then

Apgyu, R) = A, R") + A, R") + / 10, X2 A 0, X drds. (3.2)
[a,b]xT

Notice that the Lipschitz regularity of u on R* ensures that the area functional has the classical expression

A(u,Ri):/ A/ 1+ |Vul]? + |detVu|? dx;
R*

therefore, the singular contribution produced by the relaxation in (3.2) is given by the area of Xt
We divide the proof of (3.2) in two parts: the lower bound (Proposition 3.4) and the upper bound (Proposition 3.5).

Proposition 3.4 (Lower Bound for (3.2)). Letu : R — R? be a piecewise Lipschitz map, and (v,) C C'(R;R?)n BV (R; R?) be a sequence
converging to u strictly BV (R;R?). Then

liminf A(vy, R) > A, RY) + A, R7) + / 10, X3 A 9, X dtds. (3.3)
k—+00 [a,b]xI

Proof. Fix £ € (0,1). We have
lli(minf A(vg, R) > lli(minf A(vg, R\ ([a, b] X [—¢€,€])) + lli{m+inf A(vg, [a, b] X [—¢,€])
> A(u, R\ ([a, b] X [—€,€])) + l,i€m+inf A(vg, [a, b] X [—¢, €]),

where in the last inequality we used [1, Theorem 3.7]. Sending ¢ to 0%, by dominated convergence it follows .A(u, R\([a, b]X[—¢, €])) —
A(u, RT) + A(u, R™), so (3.3) will be proven provided we show that
e—-0t k—>+c0

lim liminf A(vy, [a, b] X [~€, €]) > / 10, X% A 0, x| drds. (3.4
[a,b]xI

Consider the maps

Vi R=R, Vit o) = (0 €0)),

11
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S

Fig. 1. Here S = X;‘“ [la, 6] % I, S = Uiﬁ[[Ri]]. The horizontal and vertical axes span the target space R?. The approximating current V¢ is depicted in bold,
as well as the boundary of its restriction to R;, i.e. the current 0V . The current 95, is depicted with the oriented dotted straight segments, while Fy, is the
oriented surface obtained as the union of the short segments connecting 9V;, and dS, . Finally, for simplicity, we depict with straight segments the graph of u*
and the (semi)graph of u on {(t,6) : ¢ = +¢}, but it is worth to remember that they are graph of Lipschitz maps.

and the associated integer multiplicity 2-currents in R3
Vi = VIR

Notice that, neglecting the term 1 + |0, v, we get

V00,0 ? + [Tv|* dx
1

A(vg, [a, b] X [—¢, €]) 2/

[a,b]X[—€.e

(3.5)
=/R 10,VE A0, VE dido = |VE],

where we used Remark 3.2, and | - | stands for the mass current. Consider also the maps

US @ RE S R, UL(to) = (tult,e0)), (3.6)
and the current

S, = x;”[[[a, BIX TN+ UL, IR+ USR], (3.7)
see Fig. 1. We want now prove the following crucial inequality:

lim inf V(| > |S, . (3.8)

To show (3.8) we prove that V; are close to suitable currents M;, independent of k (see (3.19)) which converge to S, as n — +oco.
For any n € N, n > 1, consider a partition {7y = a,t,...,t,,; = b} of [a,b] in (n+ 1) intervals [z,_;,1;), with

-t € (bz‘n“,z(b;")>. (3.9)

12
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Moreover, set
R =1t 1) X [=1,1], Rf =[1,_1,1)x (0,1, R =[1;_1,1;) X [=1,0),
and define the currents
Vi, =VEIRD Sey = XTIy 1) X TT+ UL IRTT+ U IR, (3.10)

see Fig. 1. By definition, we have

n+1

Ve=) Ve, and  M(sptVpnsptV ) =0 fori# ),
i=1

" (3.11)
S,=Y 8., and  HsptS,, NsptS, ;) =0 fori# ;.
i=1
Furthermore,
a8, =- (Ufﬁ[[{t,-_l} X (=10 + X3 [ty ) X T+ UL, [t} % O, 1]]])
- U510y 1) x (1] 3.12)

(U2 X =100+ XETT) X T+ UL ) < ©.11)
+ USI 1) X (<11

Now, for fixed i € {1,...,n}, set

yf’j(a) = u(t;, e0) Vo € [-1,0),
yj_ﬁ(a) = u(t;, €0) Vo € (0,1],
r2(s) = sut (1) + (1 — s~ (1) vsel,
A0 = (1,u(1, xe)) Vi€ [ti_y.1,

and define y;** : [-1,1] - R? as in (2.15) where 7~, S, and 7" are replaced by "<, y? and 7} in the order, after a rescaling on

Ji

[—1,—%], [—% %], and [% 1], respectively, as in the statement of Lemma 2.7. Also, define l"i"’g D [-1,11 = ({t;} xR?) as
I*(0) = (1,7, (0)) Vo € [-1,1].

Using the definition of U$ and X aff by (3.12) we infer

08y = =I =1 100 = A L 1)+ T 00+ A 1)) (3.13)
Moreover, set

vE(0) = vt e0), T (0) = (1, 7 (o)) Vo € [-1.1],

AEL(0) = (1,01, x0) Vi€l til

By definition of V;i in (3.10), we also have

OV, ==, I-1 10 - AL T N+ T

o PIES T il (RN (3.14)

We now define F, € D,(R?) as a suitable affine interpolation between 0V, and 0S5, ;, see Fig. 1. First observe that by Lemma 2.3,
we can suppose that, for our choice of £ and {7, ...,t,}, there exists a (not relabeled) subsequence of (v, ), such that
v, (t;,€) > u(t;, e) strictly BV ([-1, 1,RY) Vi=1,...,n, (3.15)
(-, +€) = u(-, +e) strictly BV ([a, b]; R?). (3.16)
In particular, by Lemma 2.7, we know that there are increasing Lipschitz bijections R ohf =11 = [-11] such that Yei®Me:

ytf‘"ohf uniformly in [-1, 1] as k - +co.
Fori=1,...,n, we define
dii ’.(a, s) 1= s(]",fl.oh;[(a)) +(1 - s)(]"i"‘eohf(o)), (o,s) e [-1,1] X1,
lplff(r, 5) 1= sAi’f(t) + (1 =A@, (t,5) € [t ;1 x 1.
Therefore we set
Fiy ==, =110 X T =% Ty, 1] X T

(3.17)

+ Qi,iﬁ[[—l, 1NxI]+ T,;;Eu[[[t,-,l,ti] x IT.

13
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In particular, from (3.13) and (3.14), a direct check shows that
0Fk5’i = av,f’i - 0S, ;. (3.18)

Eventually, we let M, ; be an integer multiplicity 2-current of R? with minimal mass and boundary 9.5, ; (the existence of M, ; is
guaranteed, for instance, by [19, Theorem 8.3.3]) and set

i Z e (3.19)
Note carefully that we do not sum over i from 1 to n+ 1, but only from 2 to n. In particular, setting S” = S, — S, | — S 4, we have
oM =0S! = —rluseﬂ[[[—l U+ T =1 100 = AF e 1,10+ Al 1,10, 320
where
AZE() = (Lult, +€)), 1 E(1,1,).

Thus, we have
VeI > Ve, = FE = IFE | > IM,| — |Ff,| fori=2,....n,

where we used the minimality of M, ; and (3.18). By summing up, using (3.11), we get®

n+1 n
| = Z|v,§,| > 2 Vel > Z IM,,| - ZI FE > M5 = Y IFE L. (3.21)
i=2
Therefore,
n
11m1nf Vel > M| - th sup | F; Al (3.22)

i=2 k—>+o0

In order to obtain (3.8), we have to prove that:

@ IF;,l > 0ask -+ for every i =2,...,n;

(i) M —~ S, as n — +oo,
so that (3.8) would follow by lower semicontinuity of the mass and (3.22).

(). Since y; ohy , — v “oht uniformly in [-1,1] as k — +oo, also I, 0h?, — I*“oh? uniformly; moreover, by Lemma 2.6 and
thanks to (3.16), Uk( +¢) = u(-, +¢) uniformly in [¢,_;,7,;], and the same holds for A*e and Aﬂ Finally, by (3.15) and (3.16), and
recalling also Lemma 2.7(b), the L!-norm of the derivative of I oh; , and of /fr.E is un1f0rmly bounded with respect to k. Hence

(i) readily follows from the definition of F¢ € in (3.17) and Remark 2. 11
(ii). First observe that oM, has mass umformly bounded with respect to n. Indeed by (3.20)

|aM;|=|aS:|s|y;‘~5|<[—1,11)+|y:»é|<[—1,11>+/ \/1+|a,u<r,e>|2dz+/ 1+ [0,u(t,—e)|*dt
a a

< Ce. [Jull oo lip(u ). 1D ).

Moreover, by minimality of M¢ and (3.11), M| < |S?| < |S,|, hence the sequence (Mf,)n is compactly supported in R? and has
bounded mass and bounded boundary mass. Then, by [19, Theorem 8.2.1], we have

M; = S, = M, =S llp >0 asn— +oo,

where || - || stands for the flat norm. Then, we are reduced to show that ||M¢ — S|l — 0 as n — +oo. Notice that
n
MG = Sellp < D IMe; = Seillp + 1S illp + 1S et s (3.23)
i=2

where, by definition of flat norm (see [15, Sec. 5.1.3]),
IM,; — Sl <inf{|G;| : G integer multiplicity 3-current s.t. dG; = M, ; — S ;}.

Observe that the class of competitors in the above minimum problem is non empty, since it contains the affine interpolation current
between M, ; and S, ;. So, pick a 3-current G such that 0G{ = M, ; — S ;; then

3
|G¢| < C1oGE |2

5 In (3.21) we had to remove the first and last term of the sum, because condition (i) can be false for i = 1 and i = n+ 1, since the strict convergence is
inherited only on almost every line, as stated in Lemma 2.3.
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by the isoperimetric inequality [19, Theorem 7.9.1], for an absolute positive constant C > 0. For i = 2,...,n, we have
3 3 3 3 3
[IM,; =S, llF £1G]| £ C|oG;|Z =C|M,; - S, ;|2 <C <|M5,| 2+ |S,,12 ) <2C|S,,12, (3.24)

where in the last inequality we used the minimality of M, ;. Now let us prove that |S, ;| < % foreveryi=1,...,n+1, where C is a
constant independent of n. We start observing that

X)) 1= [ 10X A0X dds

Ui tiIXT

7
=/ /|(1,su++(1—s)l't_)/\(0,u+—u_)| dtds
i 1
1
s/ /(|u+—u—|+‘(su;f+(1 — i)t —uy) = (sict + (1 —s)u;)(u;f—ul—)|) dtds
i JI

G _ &) - . .
< 7”qu —u |l poapy + 7“qu =t || poogapy (16 I ooy + 187 M| Looany)

5

s|Q

where we used (3.9). Moreover, recalling (3.6), we have
UL, IRET] = /Rr 10,US A9, U%| dtds

= / |(1, 0,u(t, £6)) A (0, £0,u(t, €0))| dtde
Ri

< 6/ |0 u(t, e0)| dtdo + 5/ |0,uy (1, €0)0,uy(t, €6) — 0,u,(t, €0)0,u (1, €0)| dtdo (3.25)
R* R*
<e S (IVul o + 1V )
=7 L®(R*) L®(R*)
_ce
-
Thus,
_ C
ISeal < IXGT g, 1) X T + UL IRET + JUSIRTT <
3
as claimed. Finally, by definition of flat norm and the isoperimetric inequality, ||S,;|lp < |S.;|2 for i = 1,...,n+ 1, so that, from
(3.24) and (3.23), we obtain
1 C C C
M, = Scll <Ch-D—5+—=5<—+—5-0
n2 n2 n2 n2
as n — +oo. This concludes the proof of (ii) and hence of (3.8).
We are now in a position to show (3.4). From (3.5) and (3.8),
liminf A(vy, [a, b] X [—¢,€]) > liminf [ V| > |, . (3.26)
[ k—+co

As in (3.25), we have
UL IR=D] < € (IVull o rey + 1Vl gy ) =0 a5 € = 0%,
so, from (3.26) and (3.7), we conclude

lim liminf A(vy, [a,b] X [—€,€]) = lim |S,| = | X [[a, 6] x 7] =/ 10, X3 A 0, X | drds. [
k—+o00 =0t #

e—0t [a,b]xI

Proposition 3.5 (Upper Bound for (3.2)). Let u : R — R? be a piecewise Lipschitz map. Then there exists a sequence (v;), C C'(R;R?)
converging to u strictly BV (R;R?) such that

limsup A(vy, R) < A(u, RY) + A, R) + / 10, X3 A 3, x| drds. (3.27)
k—+o00 [a,b]xT

Proof. Although v, needs to be of class C!, we claim that it suffices to build v, just Lipschitz continuous. Indeed, assume that
(v € WL*(R;R?) converges to u strictly BV (R;R?) and (3.27) holds. Consider, for all k € N, a sequence (UI;;)h c CY(R;R?)
approaching v, in W2(R;R?) as h — +c0. In particular, we get the L!-convergence of all minors of VUI;; to the corresponding ones
of Vu,. Then, by dominated convergence,

im AW, R) = Ay, R). (3.28)

15
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Hence, by a diagonal argument, we find a sequence (Ul;'k ) , converging to u strictly BV (R; R?) such that (3.27) holds for Ul;'k in place
of vy.

Set for simplicity e = ¢, = %, and define the sequence (v,) C Lip(R; R?) as
t, t, R ,b] X [—¢, €]),
0,(t,0) 1= L:E,gg) . (t,0) € R\ (la, D] X ¢, €]) (3.29)
?u(z‘, £)+ ?u(z‘, —€) (t,0) € [a,b] X (—¢,¢).

First, let us check that v, — u strictly BV (R;R?) as ¢ — 0. Clearly, v, — u in L'(R;R?). Hence, by lower semicontinuity of the total
variation, it is enough to show that

limsup/ |Vu, |dtde < |Du|(R),
R

e—0t

which in turn reduces to prove

lim sup/ |Vu,|dtde < |Du|([a, b] X {0}),
[a,b]X[—¢.,€]

-0t

since

/ |Vo, |dtdo =/ |Vuldtdo —>/ |Vu|dtd0'+/ |Vu|dtde as e — 0.
R\([a,b]X[—¢.€]) R\([a,b]X[—¢.€]) Rt R™

For almost every ¢ € [a, b] and every ¢ € [—¢, €], one has
e+o E—o0 1
0,v.(t,0) = Ta,u(t, )+ Ta,u(t, —€), 0z, (t,0)= Z(u(t’ €) —u(t,—¢)).

Thus, setting M := max{lip(u|g-), lip(u g+)}, we get

/ |Vu,| dtdo S/ [0,v.(t, 0)| dtd0'+/ |o,v.(t,0)| dtde
[a,b]X[—¢,€] [a,b]X[—¢,€] [a,b]X[—¢,€]

<M dtd0'+/ i|u(t, €) —u(t,—¢)| dtdo
[a,b]X[~e,€] lablxl—e.c] 2€

b
=M (b - a)2e + / lu(t, €) — u(t,—¢)| dt
a
e—0t

b
— lu*(®) = u ()| dt = | Dul([a, b] X {0}).

Furthermore, since u is piecewise Lipschitz, we have
A(v,, R\ [a,b] X [-¢€,€]) = A(u, R\ [a,b] X [—€,€]) > A@w, RY) + Aw, R™) ase— 0.

So it remains to prove that

lim sup A(v,, [a, b] X [—€, €]) < / |0, X3 A 0, X | dtds. (3.30)
[a,b]xI

-0t
Let us linearly reparametrize X*f on R = [a, b] x [-1, 1], namely consider Y, having the same image as X*, given by
-0

- u*(z)), (t,6) € R.

Now, using the trivial inequality 1+ a2 + b2 + ¢2 < 1 + |a| + Vb? + ¢2, we find
A(v,, [a,b] X [-¢,€]) < /

dtdo + / 10,0, | dtdo + / Voo * + |Jv, *dido
[a,b]X[—¢,€] [a,b]X[—€,€] [a,b]X[—¢,€]
=2¢(b—a)+ 25/ |0,6,| dtdo +/ \/ 10,5.1> + | T8, |* drdo, (3.31)
R R

where 7, : R - R? is defined as 0.(t,0) = v.(t,€0). A direct computation based in (3.29) gives

ut(t) +

LT _ l+o
Y@, 0) =@, P, 0) = (z, -

1+60,u(t,e)+ 1-0

0,0,(t,0) = du(t,—g) fora.e. t€[a,b] Voe[-1,1]

u(t,e) — u(t,—¢)

3 for a.e. r € [a,b] Vo €[-1,1].

0,0,(t,0) = €0,0,.(t,€0) =

Then we have

0,0,(t,0) = at () + - %y (t)=0,Y(t,6) a.e. inR,

l1+o
2

- ut(t) —u (1) ~ .

0,0,.(t,0) = — =0,Y(t,0) a.e.in R

Since 9,, Y and o Y are in L*®(R;R?), by dominated convergence we can pass to the limit in (3.31) as e — 0%, so that, using Remark 3.2,
we obtain (3.30). [

16



G. Bellettini, S. Carano and R. Scala Nonlinear Analysis 239 (2024) 113424

Remark 3.6. After having proved the upper bound inequality in Proposition 3.5, we readily infer that Ay, (u, R) < +c0. Hence
Proposition 3.4 can be deduced from an argument independently developed in [23], based on the theory of Cartesian currents [16].
Indeed, consider T, := G, +.5, where G, is the 2-current on R x R? carried by the graph of u and S is the 2-current on R x R? given
by S := X4ll[a, b] x I], where

X(t,5) := (1,0, X(t,5)) = (1,0, sut (1) + (1 — $)u™ (1)), t€la,bl,sel.
Clearly, the mass ot T, is given by

IT,| =1G,| +|S| = A, R*) + A, R) +/ 10, X A0, X| dtds
la.bIxT

= A(u, R") + A(u, R") +/ 10, X3 A 0, X | dids.
[a,b]xI

Now we claim that T, is the unique Cartesian current on R x R? with minimal completely vertical lifting associated to u, according
to [23, Definition 3.1]. Borrowing the notation from [23], this definition is given by imposing that the mixed components of T, are
the minimal lifting measures ;4{ [u] associated to u in the sense of Jerrard and Jung [18]. Once the claim is proven, by the lower
semicontinuity of the mass and the continuity of the lifting measures with respect to the strict convergence (see [18, Theorem 1.1]),
we deduce

IT,| < Apy . R),

i.e., inequality (3.3).
In order to show the claim, we start to prove that T, € cart(R, R?). For this, it is enough to see that (3T,) L (R x R?) = 0: We get

(0G,)L (Rx %) = X[ [lla, b1l = X} [, b1 = —9X,[[[a, b] X IT = @) L (R X B?),
where X () 1= (1,0,u*(1)), t € [a,b]. Next, what remains to prove is that the vertical component of 7, is the minimal completely

vertical lifting associated to u. To this purpose, denote by x = (x!, x?) the (horizontal) variable of R, y = (y', ?) the vertical variable
of R? and u = (u', u?) the components of u. We have to check that

W)= wllul Vij=12, (3.32)

where y{[Tu] =T, ((-1)'dx’ Ady’). By [18, Theorem 2.2], for every f € CX(Rx R2),

b 1
/ Fx y)duiul = / f G u(x)ouw dx + / < / 1.0, X, s))ds> W@ —w7)s, d1,
RxR2 RtUR~ a 0

where §;; is the Kronecker symbol. On the other hand, setting w(x,y) := (=1) f(x, y)dxi A dy/, we have
/ f(x, Y)dll; [T,]1= / £, u(x))0;u’ dx +/ 1)
RxR2 RtUR~ X([a,b)xI)
= / £ G, u(x))dud dx + / o(X(t, s))d XY,
R+UR- la.bIxI
where, if X = (X:,X;,Xf,)?g), then d XV = dXi A d)?é. Notice that dX7 =0 if i =2 and d X" = /™ —w/7) di Ads, so we get

/ o(X(t,5)d X" = / (D f XN = )5, di Ads
la.bIxI [a.b]x]

b 1
=/ </ 1,0, X, s))ds> Wt =5, dt,
a 0

3.1. Extension of Theorem 3.3

and (3.32) follows.

The validity of Theorem 3.3 is guaranteed also when the two traces u* of u on [a, b] X {0} coincide on some subset of [a, b] x {0}.
In particular, (3.2) extends to maps u whose jump set .S, is a subset of [a, b] X {0}. However, the situation is different when the jump
set is curvilineous. Specifically, assume 2 c R? is a bounded open and connected set, and:

(H1) X = a([a,b]) C Q is a simple curve, arc-length parametrized by « : [a, b] — @ of class C? and injective in [a, b);
(H2) If a(a) = a(b), then a(a*) = a(b™) and d(a*) = a&(b™);
(H3) u € Whe(Q\ X;R?); as usual, we denote by u* the traces of u on X, satisfying u* € Lip(Z; R?).

Again, we introduce the affine interpolation surface X! : [a,b] x I — R? spanning graph(u®) = {(t,u*(a(t))) : t € [a,b]} C
R x R? = R, namely

XM (1, 5) = ¢, suT(a(®) + (1 = Hu~(a®t)))  V(,s) € [a,b] X 1. (3.33)
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Theorem 3.7 (Relaxed Area of Piecewise Lipschitz Maps: Curved Jump). Suppose
(H1)-(H3). Then

ZBV(M,Q)=/ | M(Vu)| dx+/ 10, XY A 0, X3 drds. (3.34)
o\x [a,b]xI

Remark 3.8. The image of the map X*T sits in R? and it is not exactly the interpolation surface which closes the holes in the graph
of u, which is instead given by
(1, s) = (a(t), sut (@) + (1 — s~ (@) €R* Vi€ [a,b]x1. (3.35)

However, since |&]| =1,

/ |0, A0W| dids = / 10, X3 A 0, X | dtds. (3.36)
[a.b]xI [a,b]x1

To prove Theorem 3.7, we borrow from [8] some notation. We denote by x = (x;, x,) coordinates in £ and by (7, 5) coordinates
in R = [a,b] x [~1,1]. Since X is simple and of class C2, we can find § > 0 and a C'-diffeomorphism A : R; — A(R;), where
R;s = [a,b] X [-6,6] and A(Rs) C £ is a curvilineous strip containing X of width 26. Explicitly we have

At,0) = a(t) + ca(t)t  Y(1,0) € Ry, (3.37)

with @()* the counter-clockwise ’é—rotation of a(1). For (x1,x,) € A(R;), we can write the inverse A~ (xy,x,) = (#(x}, x,), 6(x1, X,)),
where:

* o(x],xp) = ds(x,x,) is the signed distance® of (x|, x,) from X;
* 1(x],x,) is the unique number in [a, b] such that a(t(x;, x,)) = 75(x;, x,), where 7x(x|,x5) = (x|, %;) — d5(x}, x)Vdx(x, x,) is
the orthogonal projection on X.
Since « is of class C?, we have that ¢ is of class C? as well and ¢ is of class C!' on A(R;). Moreover, for (x;,x,) € A(R;), we have
[Vo(xi, x| = [Vds(x, x)) = 1, (3.38)
[Vi(x;, %) = 1+ 8[| Vdxll < 1+ C8. (3.39)

We divide the proof of Theorem 3.3 in two parts, the lower and the upper bound inequalities.

Proposition 3.9 (Lower Bound for (3.34)). Letu : Q — R? as in Theorem 3.7 and (v) C C!(2;R?) be a sequence converging to u
strictly BV (2;R?). Then (3.3) holds with Xt in (3.33).

Proof. It is enough to show that

lim liminf A(vy, A([a, b] X [—¢, €])) > / 10, X3 A 0, X | ditds. (3.40)
[a,b]x]

£=0+ k—-too
We start by defining the maps ¥{ : R — R* and ¥¢ : R* — R* given by
'l’,f(l, o) = (A(t, €0), v (A(t, €0))), 'I’i(t, o) = (A(t, €0), u(A(t, €0))).
Introduce the following integer multiplicity 2-currents in R*:
Vi =W RN, 8¢ =Wylla, bl X I+, IR] + %, IR,
where ¥ is defined in (3.35). Using that Av A Aw = detA v A w for any A € R¥? and v, w € R?, by direct computation, we have
0,75 A0, WE 17 = €2(0,A(1, £0) A 9, At, £0) 2 [1 + Vo (A, eo))? + 1T v (A, 50))|2].

Hence, making the change of variable x = A(t, e0), we obtain

Aoy Alas b] X [—e,€]) = / IM(Vop)| dx = / 0P 0,5 | dido = [VEL.
A(la,b]xX[—£.e]) R
We notice that |[¥£ [R*]]| — 0 as e — 0%, as in (3.25), where ||Vu|| jo(g+) is replaced with ||ully 1.0, and it is used that |&| < C.

Therefore, recallin_g also (3.36),

li S| = |7, bl x I =
Tim 151 = #1la, 6] 1] /

[0,¥ AOP| dtds = / 10, X A 0, X | dids.
[a,b]xTI

[a,b]xT

So it is enough to show liminf,_, ., [V;| > |S¢|, which can be proved proceeding as in the proof of Proposition 3.4, once we have
checked that v, 0A(:, &) — uoA(-, &) strictly BV (R; R?). This is a straightforward computation, and we omit the details. []

6 The sign of dy is determined by the orientation induced on X by «, so that dy > 0 in the part of A(R;) which is pointed by a*.
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Proposition 3.10 (Upper Bound for (3.34)). Let u : 2 — R? be as in Theorem 3.7. Then, there exists a sequence (v) € Cl(Q;R?)
converging to u strictly BV (22; R?) and such that (3.27) holds with Xt in (3.33).

Proof. For simplicity, we assume that a(a) # a(b) (the case of closed curves is simpler and the following proof can be
straightforwardly adapted). We start by fixing # > 0 small enough and we extend the curve « to [a — #,b + 7] in a C2-way, so
that 2" := a([a — n,b + n]) C 2, keeping the validity of (H1) on X". With this extension, we can assume (by choosing a different &
if necessary) that A in (3.37) is defined on R" :=[a — 5, b+ ] X [=6, §]. We observe that

ut(a(t)) = u (a(t) for allt € [a—n,alU [b,b+7n]. (3.41)
Now, set € = % and, for k large enough,

Al = {x € A(la—¢€,a] X [~¢€,€]) : |[o(x)] L1(x) —a+Ee},
A = {x € A(b,b+ el X [—,€]) : [o(x)] < b+e—1x)}.

We define the recovery sequence (v,) C Lip(2; R?) as

204 (AU(x). ©) + 2Lu(AG(x), ~€))  in A(la, b] X [~¢.€]).

—a —b (3.42)
u(x) inQ \ (A(la, b] X [~¢,e])) UL, U4, ) :

Ve (x) =

In order to define v, in AZU Af it is sufficient to observe that, by (3.41), the restriction of v, on 04? and aAi’ is Lipschitz continuous
with Lipschitz constant bounded by [|u|| 1. Hence, we can take a Lipschitz extension of v, in 42 UA? keeping the Lipschitz constant
(up to a dimensional factor independent of ¢). Thus

/ , [M(Vo,)| dx = 0 ase — 0T, (3.43)
Afu

e

Let us check that v, — u strictly BV (2;R?) as ¢ — 0*. Clearly, v, — u in L1(€2;R?), since |A([a, b] X [~¢,€])| — 0 and |4° U 4| — 0.
So, by (3.43), as in the proof of Proposition 3.5, it is enough to show that

b
lim sup/ Vo, | dx < |Dul(X) =/ lut(a()) — u~(a(?))]| dt.
A([a,b]X[—¢,€]) a

-0t

Almost everywhere in A([a, b] X [—¢, €]), we have

Vo, =5 +: Vu(A(t, €))0,A(t, €) ® Vi + 62_: Vu(A(t, —£))0, A(t, —€) ® Vi
+ 21_5V" ® (u(A(t, ) — u(A(t, —€))).
Therefore,

[Voe| < 2_15 [ (€ + 0|0, All o [Vu(AG, —&)) || Vi| + (€ = )0, All | Vu(A, ) || Vi
+ Vo || (A, €)) = uA(t, o) |
< é [Zellu”Wlm 10, Allo(1 + Cé&) + [u(A(1, €)) — u(A(, —6))|],
where we used (3.38) and (3.39) with ¢ in place of . Thus, we get

/ Vo] dx <C©O)(1 + Ce)|A([a, b] X [—&, £])]
AllabIx[—z.€])

1
+ =
2 J Aabixi-e.c)

=0.()+ o / lu(AQ €)) — u(AC, ~e)ldx,
2 J Ala.bixi—e,eD)

|u(A(t, €)) — u(A(t, —¢))| dx

where o,(1) is infinitesimal as e — 0*. Consider the last integral and perform the change of variable x = (x, x,) = A(t, 6), with
|detVA(t,0)| = [0,ANI Al = |l +caAa| =]|1 —k5o],

where k5 is the curvature of >. We get
L
28 J Adabixie.])

-+ (A, ) - u(At, ) || 1 = kyoldido
2e Jiapix[-c.c]

b 3 b
SZI—E/ / |u(A, €)) — u(A(t, —¢))| dtd0+05(1)=/ [u(A(t, €)) — u(A(t, —€))| dt + o, (1)

|u(A(t, €)) — u(A(t, —¢e))|dx
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b
— / lut (a(t)) — u (a(2))| dt as e — OF.
a
It remains to prove (3.27) with X*f in (3.33). To this purpose it is enough to show that
liminf A(v,; A([a, b] X [—€,€])) < / 10, X3 A 0, x| drds.
-0t [a,b]xT

Let us define ¢, : R — R? as

L0 A e) + L% u(At, —e))).

2 2
Thus, for x € A([a, b] X [—¢, €])

@ (t,0) =

a(x)
V(%) = @, <I(X)» T)
and, almost everywhere in A([a, b] X [—¢, €]),
Vo, = 0,0Vt + éag(pEVU, Ju, = é|0,(p£ Ay, || VEA Vo],
where from now on, V¢ and Ve are evaluated at x, while 0,¢, and d,¢, are evaluated at (t(x), @) Then, we get
2 1
IM(VE)P = 1410, PIVI + 2010, - 0,0, V1 - Vo + 3 [la(,rpg|2|w|2 +19,0. A9, 17| VE A VUF]
2
<1+ |ﬂ,(p5|2(1 +o.(1)) + g|0,(pg < 0,0, (1 +0.(1))
1 2 2
+3 10,01 + 10,0, A0, |7(1 + 0, (1)),

where we used (3.38) and (3.39) with ¢ in place of 6. Now, since o,(1) ~ £ and ¢, is Lipschitz with Lipschitz constant independent
of £, we obtain

A(vg, Ala, b] X [—¢, €]))

2 1
</ \/1 10,02+ 2109 - 9,01 + =5 |10, 2 +10,00 A0y, 1+ 0,(1)] dx+0,(1)
A(la,bIX[—¢.€]) € €

2 1
5/ \/1 +10,0.1> + 210,0, - 9,0 + = [|05(p5|2 10,0, Ao, 21+ 05(1))] 11— kyo| dido
[a,b]X[—¢.] 3 3
+ o.(1),

where we made the change of variable x = A(7,6), and so J,¢, and d,¢, are computed at (t, %) Finally, by the change of variable

;5 — o, we get

A(vg, Ala, b] X [—¢, €]))

s/ \/og(1>+ 10,0 (t,0)|> + 19,0, (1,0) A 0,0 (1, 0)|*(1 + 0, ()|1 = ks£0| dido
R

+ 0. (1) — 10, X% A 0, x| drds,
[a,b]xT

where, to pass to the limit as ¢ — 0%, we apply the dominated convergence theorem (as in the proof of Proposition 3.5). []
We observe that Theorem 3.7 can be easily extended to the case of curves with one endpoint or both endpoints on 9. Write:

(H4) Qis of class C!, a : [a,b] — 2 is injective, arc-length parametrized, of class C?, a((a, b)) C 2, and « hits 02 transversally at
a(a), a(b).

Theorem 3.11. Suppose (H3) and (H4). Then (3.34) holds with X*f in (3.33).
Proof. Lower bound: let (v,) ¢ C!(£2;R?) be a sequence converging to u strictly BV (£;R?). Fix 0 < p < b;z” and notice that
A(la+ p,b— p] X [—¢,€]) C £, for e > 0 small enough. Then it is sufficient to show that

lim lim ian(vk, Ala, b] X [€, €]) N .Q) > / 10, X% A 9, X | dids, (3.44)
=0t k—>+ [a+p,b—p]xI
since the lower bound will follow by the arbitrariness of p > 0. After writing A(v,, A([a, b]X[—¢€, e])NR) > A(vy, A([a+p, b—p]X[—&, €])),
the proof of (3.44) is identical to that of (3.40).
Upper bound: let us fix 7 > 0 small enough so that B,,(a(a)) and B,,(«(b)) are disjoint, and consider 27 := QU B,,(a(a))UB,,(a(b)).
We extend the curve a (still calling a the extension) in Q" \ Q in such a way that it satisfies (H4) in Q", and so that it reaches the
boundary of B, (a(a) \ Q and of By, (a(b)) \ Q splitting both B,,(a(a)) \5 and By, (a(b)) \5 in two connected components. If a is
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now defined on an interval of the form [a — &, b + 6] with 6 = () > #, and if we set X% = a([a — 8, b + 6]), we prescribe the traces
u* and u~ on X¢ in such a way that they are Lipschitz continuous and u*oa = u~oa on [a — &,a — n] U [b + #, b + &]. Finally we take
a Lipschitz extension u" of u on the four connected components of B,,(a(a)) \ 5\ 3% and of By, (a(b)) \ Q \ X%. It turns out that
W € W ((By,(a(@)) U By, (a(b))\ =";R?), where X" = a([a—n, b+n]) C £". Since the definition of (u")* is arbitrary, we can assume
that

Wy (a(t)) = ui(a(a))<1 - a; t) fort € [a —n,al,

WY (a(t)) = ui(a(b))(l - % ) for 1 € [b, b+ 7.

For € > 0 small enough, we see that A, := A([a —n,b + 1] X [—¢,€]) C 2". Hence we define v, as in the proof of Proposition 3.10

with € replaced by ©2" and u replaced by u" (in particular, v, = u on 2\ A,). Finally, let us fix p € (0,7). We can write

Apy(u, 2) < lim inf A(v,, 2)
E—

< lim | M(Vu)| dx+1iminf/ IM(Vo,)| dx
e=0" Ja\a, e=0% S Ala-p.b+pIx[—e.6])

= / |M(Vu)| dx + / [0, X3 A 0, X | drds,
Q [a—p.b+p]XI
where we use that Q C ((.Q\AE)U A(la—p, b+ p]X[—¢, e])) for £ > 0 small enough. The upper bound then follows by the arbitrariness
of p. O
Finally, with straightforward modifications of the previous arguments one can show the following:

Corollary 3.12. Let Q2 have C;'—boundary, letneNand a; : [a;,b] - Q,i=1,...,n be curves satisfying either (H1)-(H2), or (H4).
Assume that Z; := a;([a;, b;]) C 2 are mutually disjoint, and let u € W*(Q\ X;R?) satisfy (H3), where = := ul',’=1 %, Then

n
Apy (1, Q) =/ |M(Vu)| dx + Z/ |0, X" Ao, X21| dids,
Qo im1 Jlapbiaxt

Where Xg_f)f : [a;, b1 % I — R? is the map Xg_f)f (t,8) = (t, su™ (a; (D) + (1 — s)u™(a;(2))).

4. Piecewise constant maps

In this section we study the relaxed area (1.3) and the relaxed total variation (1.4), on certain piecewise constant maps. We start
by exhibiting a BV map taking three values having infinite relaxed total variation of the Jacobian (and hence infinite BV -relaxed
area), but finite L!-relaxed area.

Example 4.1 (BV -Relaxed Area and L'-Relaxed Area). Let a, f,y € R? be three non-collinear vectors. Consider the map u : B,(0) C
R? — {a,p,y} in Fig. 2, obtained by the following procedure: divide the source equilateral triangle T 4,08, in two regions with
a vertical segment connecting A, and B,, the middle points of the oblique sides of the triangle; assign the value g and y on the
right and on the left as in the figure, and repeat this construction on the equilateral triangle T4 op,, and then repeat the argument
iteratively on all smaller triangles; finally set u = @ in B,(0)\ T4, In this way we get an infinite collection of triple points located
at {A;, B;};»,. Then, u € BV(B,(0); {a, §,7}), since

+o0 +o0 +0oo
| Dul (B, (0)) = <1 +2(1 - 22-%) 1B—al+2) 27 a—yl+ Y27 |f -yl

i=1 i=1 i=1

= Zip—al+ Fa-yl+ 10yl

On the other hand, consider an infinitesimal sequence (r;);,, of radii with 0 < r; < 27¢+D_ With an argument similar to [3, Theorem
1.3], we have

TV gy, B, (A) = |Typ |,

|T,4,| denoting the Lebesgue measure of the target triangle with vertices a, f,y, and thus, for every N € N,

N
TV gy (u, By(0) > TVJ gy, UY B, (AD) 2 Y |Typ, | = NIT,, .

i=1

Whence
Agy (u, By(0)) = TVJ g (u, By(0)) = +oo. (4.1)
On the other hand, we claim that

A1 (u, By(0)) < +co. (4.2)

21



G. Bellettini, S. Carano and R. Scala Nonlinear Analysis 239 (2024) 113424

O

Fig. 2. The source disk B,(0) and the values {,f,y} of u, with infinitely many triple points.

Indeed, we can construct a sequence (v,) of piecewise constant maps on B, (0), taking values in {a, §,y}, with uniformly bounded L'-
relaxed area and converging to u in L!(B;(0); R?): Let € € (0, 1) and consider the intersection with Ty.08, of a tubular neighborhood
of the segment A, B; of diameter £2-(+D, for every i € N. Then, the map v, is obtained by modifying « on these strips in the triangle,
by assigning the value a. Now, v, is a piecewise constant map valued in {a, 8, y} without triple points, hence, by [1, Theorem 3.14],

A1 (0, By(0) = | B, (0)] + | Dv,| (B, (0))
+0oo
<ot gl-al+ Sla=ri+ (1+£) 20 -al+ =7

<ot Zlp-al+ Bla-yl

Clearly, v, — u in L'(B,(0); R?) as ¢ — 0%, so by lower semicontinuity
A1, B, (0) < 7+ %ﬂ-lﬂ + %a—ﬂ < 400.

In particular

Dom(ZBV(., B,O)) € Dom(ZLl (. B,(O)).

Remark 4.2. Following the notation of [23], one can show (4.1) also by considering the measure ”L{; defined for every w €
BV (B,(0); R?) as

1 - - 00
(u!,g) = E/ W' W —w W )o,gd M Vg € CX(B,(0)),
SIL’

where 7 = v! and v is the unit normal to S, so that Dw L_S,, = (w* —w ) @ vH' L S,,.

If XBV(w, B,(0)) is finite, we can consider the unique cartesian current T,, € cart(B,(0); R?) associated to w defined in [23,
Theorem 3.5], whose vertical part is by definition equal to the minimal completely vertical lifting u,[w] associated to w, according
to [23, Definition 3.1]. Then, since |u,[w]| is lower semicontinuous with respect to the weak convergence of measures and, for v
smooth, |u,[v]|(B;(0) X R?) = TV J(v, B;(0)) (see [23, Theorem 6.2]), we get

L, [w]](B;(0) X R?) < TV J g (w, B, (0)).
In particular, if w € BV(BI(O);RZ) is piecewise constant, we have
|1 1(B1(0)) < |y [w]|(B(0) x R?) < TV J gy (w, B(0)), (4.3)

where the first inequality is a consequence of [23, Corollary 4.3].
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Fig. 3. An n-uple point map and the corresponding curve y, for n=5.

Now, if by contradiction ZBV(u, B, (0)) is finite for the map u in Example 4.1 we have

Z| w64, = 83).

In particular | ;4; [(B;(0)) = 400, and (4.1) follows from (4.3). In Example 4.6, we construct a piecewise constant map u €
BV (B,(0); R?) taking only five values in R?> with mgy(u, B,(0)) = 400 and ;41{ = 0. In that case, one can see even that y,[u] =0,
whence a maximal gap phenomenon occurs between the mass of the current 7, (which is finite and without a vertical contribution)
and ZBV(u, B,(0)) (which is infinite as well).

4.1. Piecewise constant homogeneous maps

We need some tools that allow us to characterize (and compute in some cases) the relaxed functionals for n—uple point maps
with n > 3. Thus, for r > 0, we consider maps « : B, := B,(0) - R? of the form

u(x)=y < ] ) for a.e. x € B,, (4.4)

where y : S! = {a;,...,,} is piecewise constant and takes the (not necessarily distinct) values «,, ..., ®, € R? on the arcs Cy,...,C,
in the order (see Fig. 3 for n = 5). So, u is an n—uple point map with one n—uple junction at the origin. Now, we can consider the
broken line curve 7 C R? (an example of which is in Fig. 3) made of the segments connecting «, to a,, @, to a; and so on, closing
up by connecting «a,, to ;. The curve 7 can be parametrized as in (2.27), and the curves 7; are constant. Denoting by L(y) the length
of 7, we have

m—1
L) = Zm,ﬂ a|-|y|<S>—sup{Z|y<v,H> (v,~>|:meN,{vl,...,v,,,}cS‘}, (4.5)

i=1 i=1

with the convention a,,; := a;, Clearly, by definition of u, we have
|Dul(B,) = rlj|(S") = rL(y).
Thanks to Lemma 2.14, for P(y) as in (2.40) we know that
P(y) = P(). (4.6)

For a general y the computation of P(y) seems not immediate. For the configuration in Fig. 3, we expect it to be the area of the
region enclosed by 7, with the small internal quadrilateral counted twice.

Theorem 4.3 (Relaxation of TVJ on Piecewise Constant Maps). Let {a,...,a,} C R%, y € BV (S,; {ay,...,a,}) be a function with a finite
number of jump points, and let u be as in (4.4). Then

TV J gy (. B,) = P(y).
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Proof. Lower bound: Assume that (v,) C C!(B,;R?) converges to u strictly BV (B,;R?) and

lim / |Jog| dx =TV J gy (u, B,).
k—+00 B,

By Lemma 2.5, we can fix ¢ € (0, 7) and a not-relabeled subsequence depending on ¢, such that v, l_dB, — ul_dB, strictly BV (B, ;R?).
Thus, using Corollary 2.15 and the rescaling invariance of (2.40), we can estimate

TVJ gy (u, B,) > lim inf/ |Jvy| dx > liminf P(v, L 0B,) = P(ul_aB,) = P(y). (4.7)
k—+o0 B, k—+o00

Upper bound: By an argument similar to the one at the beginning of the proof of Proposition 3.5, it will be enough to construct
a recovery sequence (u,) C Lip(B,;RR?). Let 7 be as above. We start by building a sequence (y,), of Lipschitz reparameterizations of
7 which converges strictly BV (S';R?) to y. Let us denote by ay,...,a, € [0,27) the angular coordinates of the extremal points of
C,...,C,, and assume without loss of generality 0 = a; < a, < -+ < a,,. Then

laj,a;411=[0,27],
1

n
i=
with the convention a,,; = 27. Let (§,), be an infinitesimal sequence with 0 < §, < max{|a;.; —a;|.i = 1,...,n}, for instance §;, = %,
k large enough. We define the piecewise affine map y, : [0,27] » R? as

o ift €la;+6,/2,a;41 — 6, /2],
v =9 a;. +6,/2—t t—a;+6,/2 . i=1,...,n (4.8)
= 5: o + ’+l]5k oy (1€ lag —6c/2, a0 +6,/2),

Then y, — y strictly BV (S'; R?) (actually a direct computation shows that |7,|(S!) = |7|(S1)), y, are uniformly bounded in L*, and
converge almost everywhere to y. As a consequence, from Corollary 2.15,

P(y) = P(y) as k — +co. (4.9)

Therefore, by (1.5) we choose, for all k > 1 large enough, a map v, € Lip(B;;R?) such that

v LSt =y, < (4.10)

1=

P(yk)—/ [Jvg| dx
B,

Let ¢, > 0 be the Lipschitz constant of v;. Defining v, , € Lip(Bp;Rz) as ”k,p()’) = Uk(%) for any p > 0, it is straightforward that the
Lipschitz constant of vy , is ¢ /p.
We now choose an infinitesimal sequence (p,) C (0,r) in such a way that lim,_, ., ¢;p; = 0. As a consequence we get

/ VUi, | dx < mepp — 0 as k - +oo. (4.11)

Pk

We are now in a position to introduce our recovery sequence: We define u, € Lip(B,;R?) as

n(f5) veeB\B,,
Uk,pk(x) Vx € B‘,k.

u(x) = (4.12)

Using that y; — y strictly BV (S';R?) and (4.11) we see that u, — u strictly BV (B,;R?). Finally, since in B, \ B, the map u; depends
only on the angular coordinate, its Jacobian determinant vanishes in B, \ B, . Hence

liminf/ |Juy | dx=1iminf/ [Jvg,, | dx = P(p), (4.13)
B, k—+o0 B/’k Pk

k—+o0
the convergence being a consequence of (2.30), (4.10), and (4.9). [

As a consequence of Theorem 4.3 we deduce:

Theorem 4.4 (Relaxation of A on Piecewise Constant Maps). Let y and u be as in Theorem 4.3. Then, for any r > 0, we have

Ay (u, B)) = 2 +rL(y) + P(y). (4.14)

Proof. Lower bound: Suppose that v, € C!(B,;R?) is such that

v, = u strictly BV(B,;R?) and  lim A(v, B,) = liminf A(vy, B,).
k—+o0 k—+o0
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Fig. 4. The map u and the broken line curve 7 of Example 4.5.

Now, let £ € (0,r) and write A(vy, B,) = A(vy, B, \ B,) + A(vy, B,) > A(vy, B, \ B,) + fB |Jvg| dx, so that, by [1, Theorem 3.71,
. > limi .
kEToo A(vy, B,) > l’irllgof A(vy, B\ B,) + lllchIc;lof /BE [Jvg| dx

> |B, \ B,| +(r—£)L(y)+l]i(minf/ |Jug| dx
—+00 B,

> B\ B.| + (r— ©)L(y) + P(¥),

where in the last line we have applied Theorem 4.3 with r replaced by e. We now pass to the limit as ¢ — 0% to get the lower bound
Apy W, B,) > zr? + rL(y) + P(y) in (4.14).
Upper bound: It is sufficient to consider the sequence (u,), defined in (4.12), for which

Apy(u, B,) < limsup A(uy, By) < |B,| + lim / [Vuy| dx + lim / [Juy| dx
k—+00 k—+o00 B, k—+o0 B,

=’ + rL(y) + ﬁ(y).

Now, we are in the position to show an example of a piecewise constant map u € BV (B; R?) with infinite relaxed Jacobian total
variation but vanishing associated minimal vertical lifting measure y,[u]. This map is constructed in Example 4.6, while Example 4.5
is preparatory.

Example 4.5. We want to show here how singular topological phenomena related to the double-eight map [13,15,20,22,24] arise
also among piecewise constant maps. In particular, as pointed out in [23], for the homogeneous extension of the double-eight map,
a gap phenomenon occurs between the minimal vertical lifting measure and the relaxed Jacobian total variation. We show now that
we find such a gap also among piecewise constant maps, by exhibiting a piecewise constant map with vanishing minimal vertical
lifting measure but with finite non-zero TV J. Namely, we are going to define a map u : B; — R? assuming five distinct values,
for which the resulting closed curve 7 has zero degree, but is homotopically non-trivial, since it is, in fact, homeomorphic to the
double-eight curve. Let {a;,a,, a3, 4,25} C R? be the vertices of two (equilateral for simplicity) triangles with a common vertex,
say a; (see Fig. 4). Fix a partition of S! in twelve disjoint non-empty arcs C,, ..., Cj, (not necessarily of the same length), with
extremal points aj, ..., a;, in counter-clockwise order. Then, define y : S! — {a;,®,, 23, a4, a5} to be constant on the arcs Cy, ..., C,,
precisely equal to, in the order, a;, ay, a3, a1, ay, a5, @y, @3, @y, @}, a5, a4. Then, the broken line curve ¥ runs consecutively the triangles
Ti23 1= Ty apay aNd Tiys 1= T, 4,4, twice, and every time with different orientation. Define u as in (4.4), obtaining a 12-point map.
Now, by applying Theorem 4.3 and computing the minimum of the Plateau problem (1.5) for ¥ as in [24, Theorem 5], we obtain

TV J gy (u, By) = P(y) = P(7) = 2min{|Ty53], | Tyas1). (4.15)
Moreover, it is not difficult to see that
) = (T3] + | Tigs| = 1 Tio3| = | Tias S = 0.

In this case, we have also y,[u] = 0, indeed we can prove that the unique current 7, with minimal completely vertical lifting
associated to u is given by

12 12

T,=G,+S8 = YICIxIel+ Y 10.a1x [,y 1. (4.16)

=1 I=1
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Y

Fig. 5. The sequence {D,} C B, of disks of Example 4.6.

where C, is the circular sector corresponding to C, and ¢, is the assigned value of y on C, for / = 1,...,12 (we used the convention
¢y = ¢1). Let us show (4.16). One checks that /4{ [T,]1= /4{ [u] for i, j = 1,2 by proceeding as in Remark 3.6. So, it remains to prove
that T, € cart(B,; R?): it is enough to check that (97,) L B, x R?> = 0. Compute

1 12

2
as = 2 0 (10, a1 x [le)-y. ¢/T) = 2 (=101 X [,y ;T + [0, a1 X e, = [0, a1 X ey 1) -

i=1 =1
Now, since by convention a3 = a,

12 12
9G, = Y (104 1% el = 0.1 x e 1) = = 3 (10. /1 X lle, )~ 10 a1 % ey 1) -

=1 I=1
Moreover, by the choice of {¢,},

12

ZI[O]] X [e;_1,¢1 = [0 X [y, ap ]l + [0 X [y, a3 + «++ + [0 X [[ag, a;]] = 0.
I=1

Therefore, 0G, = —05S.

Notice that the action of 7, against 2-forms with only vertical differentials is 0, which means that 7,, does not have completely
vertical part and so p,[u] = 0. Roughly, due to cancellations in the part of the boundary of 7, in correspondence to the origin, the
current 7), is not able to detect the hole upon the origin in the graph of u, generated by the presence of the multiple junction.

Example 4.6. This example is an adaptation of [22, Theorem 1.3] to the case of piecewise constant maps. Indeed, we construct a
piecewise constant map u, taking only five values of R2, such that

Uplul =0 and TV J gy (u, B)) = +co.

The idea is to replicate the map of Example 4.5 infinitely many times on a sequence {D,};cy C B, of disjoint balls, whose measures
form an infinitesimal sequence (see Fig. 5). So, for i € N, set

i—1
D; := Bri(x,-), with x; = <—1 + 22_j,0> , 1= 21,
=0
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Let {ay, 2y, a5, 04,05} CRZ and y : S! - {a;, 2y, 3,04, a5} be as in Example 4.5. Now, define the map 7 : S' = {a;,a,, a3, 4,25} in
the same way as y, but with different order of the values, in a symmetric way with respect to the vertical axis through «,, namely,
in the same arcs Cy, ..., Cyy, 7 is equal to a;, as, ay, a;, a3, 4y, &y, 0y, @5, @y, @y, a3. Then, for i € N, define ujp :=u® as

y <£> if i is odd,
[x — x|

~f X7X
7| —— if i is even.

[x = x;]

uD(x) =

It remains to define u in By \ U;eyD;. Start by considering, for every i € N, the square Q; that circumscribes D; and extend u to
Q; to be constant along horizontal lines. Now, denote by Lf.l) and LEZ) the vertical left and right sides of dQ;, then extend u to the
convex hull of sz) and Lf.i)l to be constant along straight lines which interpolate pointwise the two sides. Finally, extend u in the
strip that connects L(ll) to dB; to be constant along horizontal lines and set u = a; in the rest of B, (see Fig. 5). It is not difficult
to see that u € BV (B,;R?), by the choice of the infinitesimal sequence (r;). Thus, assuming by contradiction that ZBV(u,Bl) be
finite, one can define the current T, = G, + .S in a similar way as in Example 4.5, that is to say, by setting .S to be the trivial affine
interpolation surface on the jump segments of u. One can prove in the same way that T, is the current with minimal completely
vertical lifting associated to u and y,[u] = 0. In particular, T, € cart(B,; R?) and has finite mass. On the other hand,

+0oo +oo

TV gy B) 2 D TV gy, D) = D 2min{|T, g0, 1 1To, gy |} = +0.

i=1 i=1

In particular A gy (u, B;) = +co as well.
5. Piecewise Lipschitz maps

In this last section we combine the results of the previous sections and compute the BV -relaxed area for an interesting class of
maps that we call piecewise Lipschitz maps, quickly mentioned in the Introduction. As stated in our main result (Theorem 1.1), the
relaxed area turns out to be composed by a regular term and a singular one, that interestingly further splits into two non-trivial
pieces, respectively related to the 1-dimensional and 0-dimensional singularities.

Let 2 c R? be a connected bounded open set with boundary of class C'. We say that a collection {£2,,..., 2y} of disjoint
nonempty open sets is a Lipschitz partition of Q if Q = UkN=l§k and for each k =1,..., N, @, is connected and Lipschitz.

For a given Lipschitz partition of £ we can consider its interface ¥ := u,’:’z 1042 Also, we can define the (possibly empty) set of
interior junction points {p;}/. , i.e. points p; € £ such that there exist r > 0 and an integer N; with 3 < N; < N, such that B,(p;) C 2
and B(p;) has nonempty intersection with exactly N; connected components of £, for every s € (0, r].

We shall consider Lipschitz partitions whose interface is a network in the following sense:

Definition 5.1 (Network). The interface X of a Lipschitz partition of Q is a network if
n f—
=T Te=aly) I, =(as.by), (5.1)
£=1

where the curves a, : I, :=[a,.b,] - 2, £ = 1,...,n, satisfy the following properties:
- a, is of class C?, injective with |&,| =1 on I,, and J, C &;
-7 ;éf2:>JfI NJy, =5
- a,({ag, bp}) C{pys....pp VO for all £ =1, ..., n such that a,(a,) # a,(b,);
- if x € J, N 0K, a, is transversal to 02 at x;
-0 # 6 >T 0 0 gy CHAPL Py

From the last condition it follows that if two curves have endpoints on 0, then these points are distinct.
Definition 5.2 (Piecewise Lipschitz Map). Let {Qk}kN= , be a Lipschitz partition of £ whose interface X is a network. We say that
u € BV (£2;R?) is a piecewise Lipschitz map if its jump set S, coincides with * and uL 2, € Lip(€2;;R?) for any k=1,..., N.

Since ul_ 2, € Lip(2;;R?), the trace of u on 02, is also Lipschitz. In particular, for any i € {1,...,m} such that p; € 02,

3 lim u(x) =: preRr.
;(e!z,’(
Let p > 0 be sufficiently small so that B,(p;) C 2 fori € {1,...,m}. Let £ € {1,...,n} be such that p; is an endpoint of jf; since a, is
of class C?, for p small enough the intersection J, N dB,(p;) consists either of a single point, or of two points if a,(a,) = a,(b,) = p;.
Hence, the map uL 0B,(p;) is piecewise Lipschitz and jumps at any point of X n dB,(p;). In particular, the number of these jump
points is, by definition of junction point,

N, =#(ZnoB,p)) =23, i=1,...m
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Fori=1,...,m, we denote by Qi, ,Qﬂv the connected components of £\ X whose closure contains p;, chosen in counterclockwise
1 N
order around p;. Since &, is Lipschitz for every k = 1,..., N, any £, has a corner at p; whose aperture is a positive angle 9:‘ € (0,2x).

Lemma 5.3 (Circular Slices). Let i € {1,...,m} be fixed and let p > 0 be as above. Then the maps y/‘; € BV(S';R?) defined by
y!’; (v) = u(p; + pv) converge strictly BV (S';R?), as p — 0%, to a piecewise constant map y' : S' — R? taking in counterclockwise
order, the values ﬂil, ﬁiz, . ﬁ[N" on arcs of size 9[',9,.2, ,vai, respectively.

The map y’ has N; jumps on S! whose angular coordinates are denoted by a ll ) af, e

aiv” (where’ a{—a{_l = 6‘{, forj=1,...,N;+1).
Proof. It is easy to see that (y;) converges to y' almost everywhere on S! as p — 0*. Moreover, y;, for p small enough, has exactly
N; jumps at points aj of amplitude |u*(p; + paj )— u=(p; + paj )| which tend, by continuity of u in B,(p;) \ Z, to | ﬂj Y +1| Also,

on the arcs between a o and a“l, |y | < Lp, where L is the maximum of the Lipschitz constants of u on the sectors .Q‘ Hence

|y [(SY = |7/|(S") and the thesis follows straightforwardly. []
For Z = 1, ...,n, we denote by u( 2 the two traces of u on J,, and consider the affine interpolation surface X%, : [a,,b,1xT - R?
spanning the graphs of Uy, and u,+), given by (1.7):
X 9) = (sul, 0+ (L= ug, ), (1,5) € lag, by X 1. (5.2)
We are now ready to prove Theorem 1.1.
Proof of Theorem 1.1. Lower bound: Consider a sequence (v;) C C'(£2;R?) converging to u strictly BV (£2; R?). For any p > 0 small

enough, we take a family of mutually disjoint balls B,(p)) C 2,i=1,...,m By Lemma 2.5, there exists a subsequence (v, L) C (W)
depending on p such that for i=1,...,m

v, \— 0B, (p;) > ul_0B,(p,) strictly BV (0B, (p,): R?). (5.3)

We may also assume that for i =1,...,m

liminf/ [Jug| dx = l1m / |J”kh| dx.
koo JB () B,(p;)

Then

Ay, . 2) = Av,. 2\ U™ B, (p,))+21A(ukh,B (1) = Ay, . 2\ U™ B,(p) + 2/ [0, 1dx.

By Corollary 3.12, we get

lim inf A(vy,. @ \ UL, B,(p)) > Ay (u. 2 \ UL, B,(p))

= / |M(Vi)ldx + 2 / 10, X8 A 0, X%)| drds
Q\UL B,(p;) AN

—>/ |M(Vu)|dx + Z/ |a,X‘}f,f) A X S |dtds as p - OF,
lag,bp]x

where (aé’,),(b?) C [ay, b,] are respectively a decreasing and increasing sequence of numbers satisfying a’; — a, and b? — b, as
p— 0" and af([a’;,b’;]) =ay(las, b\ U;”:l_Bﬂ(p_,-)- _ '
Let us recall that, by Lemma 2.14, P(7') = P(y'), with y' as in Lemma 5.3. So, it remains to show that

liminf lim |Ju, | dx > PG¢/) Vi=1,...,m. (5.4)
p=0* hteo [ ) ki

By definition (2.40), using (2.31) and (5.3), we readily conclude that

lim Ju, | dx > P(y!),

o Jp ) |Jvg, | dx = P(y,)
where yt’; is defined in Lemma 5.3. Then, since y/’; converge to y' strictly BV (S';R?) as p — 0%, (5.4) follows, thanks to Lemma 5.3

and Corollary 2.16.

Upper bound: Fix r > 0 small enough and consider mutually disjoint balls B.(p;) € @, i = 1,...,m, such that, for every
¢ €{1,...,n}, J,ndBy(p;), if nonempty, consists either of a single point, or of two points if a,(a,) = a,(b,) = p;, for every s € (0, r].
Clearly, the difficulty of the proof is concentrated around the junction points p;. The idea is to modify u on UL B.(p;) by
constructing a new map u, (see (5.8) and (5.20)), which coincides with u out of U;": B ) and converges to u strictly BV (2;R?) as
r tends to 0*. The map u, will be again a piecewise Lipschitz map with the same set {p;} of junction points, but different jump set

7 With the convention N, +1 = 1.
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Z,, with X, n B, »(p;) made of segments, i.e. u, is of the form (4.4) in B, ,(p;). The difficult point will be to provide that X, is still
a union of (pairwise disjoint up to the endpoints) C2-curves @,, in particular that each on e hits dB, /2(p;) with vanishing second
derivative. At the end, we will apply Theorem 4.4 to u, in U B, »(p;) and Corollary 3.12 to u, in 2\ (U B, »(p;)), and conclude
by lower semicontinuity of Ay (-, ).

We start by considering a smooth strictly increasing surjective function vy, : [g, +00) = [0, +00) with®

(p)=p VYp>r ()—< —K)Sinari ht neighborhood of Z, |y/| <C in (£ r) (5.5)
v =p Vozr. wm=(r-3 g g LA > .

with C > 0 independent of r. We define the radial map @, : R? \ B (0) > R2\ {0} as

@,(x) = w,(Ix) =,
x|
whose inverse is @-!(y) = f,(lyl)ﬁ, where f, :=y~!, and set
2.(x) :=u(p, + @,(x — p;)) for x € B,(p;) \E%(p,-), i=1,...,m (5.6)

The jump set of &, in B,(p;) \ B,/>(p;) is parametrized by the curves
@y =p+ @ ap—p) VE=1,...n (5.7)

Notice carefully that @, is parametrized on the same parameter interval of a,, but this is not an arc length parametrization for a,.

Moreover, thanks to the regularity of @,, the map
u in Q\ (U™ B.(p;)

u, 1= { \ Wiz, B (5.8)

ro ~

u., in B.(p;)\ B%(pi), i=1,....m,
has jump set X, which is parametrized by the curves @,, whose supports J, are pairwise disjoint and in turn coincide with the ones
of a, in 2\ (Ulf"ler(pi)).

Step 1: Let us first check that the length of @, in U:”= (B,.(p;))\ B, /2(P)) is controlled, more precisely, we will show that for each
i and ¢, the length of @, in B,.(p;) \ B,/,(p;) goes to 0 as r — 0*. We suppose that J, N dB,(p,), for every s < r, consists of a single
point, because the argument adapts also if a, has two arcs exiting from p;, simply by considering them separately. To this aim, fix
i and ¢ and denote a, = a, J, = J. Without loss of generality, assume p; = 0, B.(0) = B,, and suppose that J n B, is parametrized
by arc length on [0, R], with «(0) = 0 and a(R) € dB,, where R(r) = R = H'(J n B,). We can express the gradient of ¢';1 as follows:

_ £y
VT ) = (W) 2 ® 2+ £,(y)V <l> =12 ® 2+ ). (5.9)
vl 1yl [yl [yl = 1yl [yl
where
) =1- 222,
[yl
and we used that
v <l> = L. (5.10)
[yl [yl
From (5.7), we have @ = VcDr‘](a)d, and using (5.9) and |a| =1,
A +(al) )
] sf,’(lal)+% | (a)é] . (5.11)
Notice that if r is small, the function ¢ — |a(t)] =: &(r) is C! and invertible from [0, R] to [0, r]. Moreover, ¢’ (f) = %\ s a(t) -
;Egi‘ -@(0) = |&(0)| = 1 as r — O*. Let us integrate on [0, R] the term f/(|a|): performing the change of variable o(1) = p, we get

R R r d ,
/ fla@hdr = / fleydr= / fl—2— <2 / Il (p)dp,
0 0 0 6’ (c='(p) 0

where in the last inequality we used that, for small r, ¢'(c™'(p)) > % for every p € [0,r]. Sending r to 0%, we have that

/OR fl(la(®])dt — 0 by integrability of f’ near to the origin.
In order to estimate the second term on the right hand side of (5.11), we can use a Taylor expansion of a around 0, writing
a(t) = vt + wi? + o(?), with v = @(0), w = X2, and lim,_+ o(t?)/1” = 0. We have

H(a)a = (vt + wi* + o(t?))(v + 2wt + 0y(1)) = I (v + wt + 0,(1))(V + 2wt + 0,(1)),
where o, (f) = o(t?)/t and 0,(t) = o(t). Writing v + 2wt + 0,(t) = v + wt + 0,(t) + Wt + 0,(t) — 0, (t), we get

M(a)d = (v + wit + 0,()(© + wit + 0, (1)) + I (0 + wi + 0, ()Wt + 0y(t) — 0,(1)).

8 The exponent must be chosen greater than 2 in order to ensure (5.19).
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The first term on the right hand side is 0 and the norm of the second term can be estimated from above by |w|r + o(f). Now, by

definition of arc length parameter, R = H!(sptan B,(0)) — 0 as r — O+ Moreover, by Taylor expansion, |a(t)| > 1 for ¢ small enough.
AION)
£ede®h 2

ol S " on [0, R]. So, integrating on [0, R] the second term on the right

Therefore, since f,(0) = %, for r small enough we have
hand side of (5.11),

R
/ fr(la(t)l) | IT (a(t))x(t)| dt < / 2(|w|t + o(t))dt — 0 asr - 0t
o o !

Step 2: Let J= JA{ be the support of @; let us show that there is a parametrization of Jn (B, \ B,/,) on an interval [0, L], which
is of class C2 up to 0 and with vanishing second derivative at 0. Indeed, set L := H!(J n (B, \ B, /) and consider the arc-length
parameter s € [0, L] given by

t
S(t)=/ |V, (a(z)|dz,
0
where
V(@) = Vo ().

We compute

Vigp:! vo:
L= <|ZE ;) =H(Vr(a))< (@Dt (a)a> (5.12)

V@I

Here and in what follows, a is evaluated at 7 = #(s) and & and & denote the first and second derivative of « with respect to 7. The
operation : between a tensor T = (T;;;) € R>®? and a matrix M = (M,;) € R>? is defined as the vector T : M € R? with
components (T : M), =T;;; M,; for k= 1,2.

We get

< AV (@) <

V2oria) : (a@a)) .\ Vo, (a)i]
V(o) V(o)

(5.13)

Vo @ Gea)| S+ £lsh
+ .
|V,(a)|2 |V,.(0t)|2

< IV, () (

where we have used (5.9) and that & is bounded.
The Hessian of @' can be computed as

Y e
¥l I| ¥l

¥l
+ f] (Iyl)ﬁ ®V (I |> + f,(yHV? < )
® —

=L ® L ® 2+ f,’(IyI)V< )
Iyl Iyl Iyl ¥l

+2f] (Iyl)ﬁ®v<| |>+fr(|y|)v< <|1>>

Then, by (5.10), we have

o)

V2 0) =7/ () ® PV <

!
l(a) f”(|a|)_® o ®i <fr(|a|) _zfr(loj)) (a )® o
lal © Tal © Jal lal lal lal
N <2f,(|a|) S |a|)> 2 9.
lal la|?> / lal

So, for k = 1,2, we have

(V2o ' (a) 1 (@ ® ),

=f] (|l |><< L@ ) (a@a))
lal = lal = lal k

N <f,(|a|) _2f,(|a|)) << 0L ) (a®a)> (5.14)
lal la? lal

. <2f,(|al) B f,(|a|>> <<|a| 1@ (ma)) . (5.15)

lal la|?
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Notice that, since I7(«) is symmetric,

(a);a; =0, I(a);e =0, (5.16)

ijej

where we sum on repeated indices. So, using (5.16) and that, from Taylor expansion, &(t) = v+ 2wt + o(t) = @ + wt + o(t), we have

<<H(a)®—> :(a@a)) = I1(a), iy, - (a),]( +wt+ o) g, o
|al k | | el

Lo
= H(a),-j (wit +o(t)) ajm;

a o Q; L a; @; )
<<m ® H(a)) : (a®a)>k = ml‘[(a)jkaiaj = M”(a)’k (T +wjl+o(t)> &;

a; .
= mﬂ(a)”‘ (w;t + o) &

So, the norm of the sum of (5.14) and (5.15) can be easily estimated by

3<fr(la|)+fr(|a|)> (0 |t+o(t))sC<f (|a|)+f,(| |)>’
|al la)? la]

where we used that, for 7 small, |a(?)| > %
Therefore, (5.13) becomes

< |7 Aab)

® L& @\ fllah+ 5
C . (5.17)
V(@)

IAC ))< S TR
" (a

Now we treat the first term of the right hand side of (5.17). For j = 1,2, by definition of V,(«), using Taylor expansion and (5.16),
we have

, oa; )
V(@) = f,(lal)Waf + [l (@);;;

—f(| N—s> 4% <a—+wt+o(t))+fr [a) I (a);; ( +wt+o(t))

2
|l (5.18)
= fl(lal) <— + Ww 1+ o(t)) + f(aD) I (@), (w;t + o())

= f!(al) <7’ + o(t)) + £,(12))0; (1),

where in the last equality we used that o;w; = o(7), since v;w; = 0 because |¢| = 1, and we setted O (1) 1= IT(a);;(w;t + o(1)), meaning
that lim,_,g+ |0;(1)|/t < +co. Then, we get

a=t<w+0(1)>.

ATD)
So,
0 (a >>'Z' W @i @B _we, 1V, (@) b
IV, (@) e % v, >|2
(V'ﬁifi.a?i” +o)
=Wa’a’l TR V@)
O(1)
LT ))(f,’qan +°(’))
TP el IV, (@]

where we used that IT(V,(«))V,(a) = 0. For # small, we get

. . O(1)
= ® m ® m (@®a) - 70D +0(t).

V(@)? T @)

@)L
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Finally, from (5.17), we obtain

_0W
fr(al)

IV, (@) IV(oz)I2

+0(1) f (|a|)+ fr(|ll|)

d* . "
|ﬁaa>‘ < |/

From the definition of f,, we have that f,.(la(¥)|) = % + t% + o(t%) for ¢ near to 0. So, by (5.18), we have |V, (a(?)| > Cf/(la@®)]) =
Ct% + o(f%). Then, since |f/(la()])| = Ct’g + 0({%)’ a straightforward check shows that

d—za(t) -0 ast— 0. (5.19)
ds?

We conclude that the curve @ is C? up to 0 with vanishing second derivative, and hence can be extended on the interval (—%, 0)
to a (not relabeled) curve @ whose support is a straight segment connecting @(0) to 0 (namely a radius of B,/,(0)). Going back
to the curves @, we have just proved that we can extend them in B, ,(p;) with C?-regularity using a segment along a radius,
reaching p;. In particular, the new supports of @,’s form a N'-junction point around p; in B,/ (p;), whose circular sectors 6}’:
(j = 1,..., N;) have amplitudes 91,‘, ,OiN’ (according to Lemma 5.3). Up to a reparametrization by arc-length of @,, we will suppose
that @, : [4,.5,] — R? have always derivative of modulus 1.

Step 3: We are ready to extend the map u, in B,,>(p). We observe that, from (5.8), u,(x) = y' (%(x —p,.)> on 9B, (p;) (see

Lemma 5.3), and hence it is constant on any arc with angular coordinate in (a{ _l,a{ ). Hence we define

u,(x) =y < X P > x € Br(p)). (5.20)
[x — Pi| 2

Now, u, satisfies the hypotheses of Corollary 3.12 in Q, := 2\ (U:”: IE, 74(P)s where all the curves &j satisfy hypotheses (H3), and
they run on a straight segment (along a radius of B, ;(p;)) inside B, >(p;)\ B,/4(p;). Then we introduce a sequence of Lipschitz maps
D, : £, — R? which are defined as in 3.10, where, we recall, ¢ = %, with u, in place of u and A = id; in particular, for k large
enough, the trace of U, on 9B, 3(p;) is a piecewise affine map coinciding with y, in (4.8), with f; in place of ;. Thus, if we introduce
also the sequence of Lipschitz maps Dy, : B,/,(p;) - R? as in (4.12) (with B, replaced by B, (p,)) we see that T, = 0, on 9B, /3(p;).
Therefore we define

poo O i@\ Byys(p) (5.21)
U in UL, B,;(pp),

and we readily see that v — u, strictly BV (2;R?).
Since the supports of a, and a, coincide out of U, B,(p,), there exist @’ b € [a,, bf], a, < bf, and a b' € lag, by, a < b’, such
that

a,(@. 5] = at»([a;,b;]), 0,@) = a,@), a,()=a,b).

In particular, br =b,—a,souptoa translation of the parameter interval of [ﬁf,zf], we can suppose E; =a, and 3:,, =b.
Clearly, ), — a, non 1ncreasmgly and b, — b, non decreasingly as r — 0*.
In view of Corollary 3.12 and Theorem 4.4 we conclude
Apy(u,, ) < lim A}, Q) =/ |IM(Vu)| dx + / |a,x'“‘ff A XML dids
' k=>too QU™ B () Z (3, by 1x orisner
+/ | M(Vu,)| dx+mﬂ+ZF(y")
= (Br(i)\B,/3(p)) EO=
m
= / |M(Vu)| dx + Z / 10, X4 A0, X2"| dids+ Yy P(r')
2\W", B,(n) [ 0 1xT =
+/ | M(Vu,)| dx + Z /M/3 7 10, X2 A 0, X2T| dids
UL (Br(p\By/3(p1)) o=1J @@ a1 B s
Ni ;)
r
+3 Z 28 =B+ m T (5.22)
i=1 j=I
where for all # = 1,...,n we have a, < af/ <d, <b < 3 < /b\f, where @(Af) € 9B, /3(p)), ?1}(37) € 0B, 3(p;) for some

i,je{l,...,m}, unless one of them belongs to d£2, and where X7 aff is defined as X3 aff w1th u, replacing u.
Now, since by (5.5) |y/| < C, u, is still a piecewise L1psch1tz map on £, hence, by Step 1, the last four terms in (5.22) are
negligible as r — 0*. We then conclude, provided that u, — u strictly BV (£2;R?), that

m
Ay (u, Q) <11mmfABV(u,,Q) </ [M(Vu)| dx + Z/ |a,x;ff/\asx;”| drds + ) P(y'),

lag.belx i=1
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that is the thesis. In order to check that u, — u strictly BV (£2;R?) it is sufficient to observe that u = u, outside U, B.(p;) and that

lim sup |Dur|(U:n=1 Br(pt))

r—0%

Slimsuplimsup/ \/1+|VU;|2 dx
U B ()

r—0t  k—-+co

<limsup lim A(v},Ul, B.(p;)

o0t k—otoo

. .

=limsup ( |M(Va,)| dx +mZ=
=0t N JUn (B (O\B,3 (1) 9

n

m N;

P o

+ / 10, X4 A0, X | drds + = ld! —a | ): 0.
;1 @l @y o< T 3 ; Z{ A

The proof is complete. []
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