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Abstract. Image geolocalization is receiving increasing attention
due to its importance in several applications, such as image retrieval,
criminal investigations and fact-checking. Previous works focused
on several instances of image geolocalization including place recog-
nition, GPS coordinates estimation and country recognition. In this
paper, we tackle an even more challenging problem, which is rec-
ognizing the city where an image has been taken. Due to the vast
number of cities in the world, we cast the problem as a verification
problem, whereby the system has to decide whether a certain image
has been taken in a given city or not. In particular, we present a sys-
tem that given a query image and a small set of images taken in a
target city, decides if the query image has been shot in the target city
or not. To allow the system to handle the case of images, taken in
cities that have not been used during training, we use a Siamese net-
work based on Vision Transformer as a backbone. The experiments
we run prove the validity of the proposed system which outperforms
solutions based on state-of-the-art techniques, even in the challeng-
ing case of images shot in different cities of the same country.

1 Introduction

The ability to recognize the geographic location, where an image has
been taken, is of crucial importance in several applications like im-
age retrieval, criminal investigations, fact-checking, and to prevent
the diffusion of fake news and fight misinformation campaigns. For
instance, recognizing the location portrayed in a photo could be ex-
tremely useful to identify text-image inconsistencies in the news, and
reveal if a certain image was actually taken in a different location
with respect to the one referenced in the text. Most of the works car-
ried out so far treat image geolocalization as an inference problem, in
which the final goal is to estimate the geo-coordinates of the image
scene obtaining the best possible accuracy [22,23,35]. More recently,
some works have shown the possibility to set the image geolocaliza-
tion task as a classification problem, where the goal is to identify the
country where an image has been shot, by relying on the architec-
tural, engineering and, so to say, social characteristics of the images,
like house shapes, cars, shops and roads signs [4, 20].

In this work, we adopt yet a different perspective, consisting in
identifying the city where an image has been taken. In most cases,
in fact, recognizing the source city of an image is more important
than providing a precise geo-coordinates estimate of the scene, while
recognizing only the country where the image has been taken, does
not provide a sufficiently precise localization. As a matter of fact,
city recognition is an extremely challenging task, due to the huge
number of cities worldwide and the high similarities between many
urban environments belonging to the same country. To address this
challenge, we shift from the inference and classification approaches
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adopted so far and set the city recognition problem as a verification
task. In particular, we present a system based on a Siamese network,
whose goal is to evaluate if a source image has been taken in a tar-
get city, assuming that a small set of images of the target city are
available.

One may argue that once the geo-coordinates have been estimated,
tracing back the city should be a trivial task. However, this is true
only in an ideal case. In fact, in non-ideal conditions, a system which
is asked to minimize the spatial localization error may result in a
wrong identification of the city, if doing so allows a better estimate
of the geo-coordinates.

With the above ideas in mind, the novel system we are proposing
employs a Siamese network with a Vision Transformer (ViT) back-
bone. ViT architecture has been proven to be extremely successful
for image classification and was widely applied in several fields. Our
proposed framework takes as inputs both a query image and a small
set of pictures taken in a target city and decides if the query image
has been shot in the target city or not. The system is complemented
in both the training and test phases by the GeoVIPP country classi-
fier described in [4], to rule out the possibility that images taken in
different countries are judged to belong to the same city. Moreover,
we exploit the Places365-CNNs model [39] to measure the semantic
similarity between the input image and the reference images of the
target city, weighting more heavily the similarity (or dissimilarity)
between images having similar semantic content.

To train and test our verification system, we constructed a dataset
extracted from the VIPPGeo dataset described in [4]. Overall, the city
verification dataset we built consists of 120, 909 high-quality urban
images from 19 cities all around the world.

We present several experiments on the city verification dataset, to
demonstrate the effectiveness of our system for both closed and open
set scenarios. In the former case, the images used in the testing phase
belong to cities that were also used in the training phase. In the open
set scenario, instead, the to-be-verified images do not belong to any
of the cities used in the training phase. In both cases, we also consid-
ered the difficult case of images taken in cities of the same country.
We compared the performances of our system with those of a veri-
fication system, built on top of a geolocalization network, providing
an estimate of the image geo-coordinates and using them to decide if
the query image belongs to the target city or not. The results of the
experiments show that the proposed system outperforms the state-
of-the-art geo-coordinates estimation method [22] in both closed and
open set scenarios.

The paper is organized as follows. In Section 2, we briefly review
the relevant state of the art. In Section 3, we present the city verifi-
cation dataset and the proposed ViT-based Siamese architecture. In
Section 4, we describe the experimental setting and the results we
got. Finally, we draw our conclusions and outline some perspectives
for future research in Section 5.
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2 Related work

In this section, we start by reviewing the most common approaches
for image geolocalization. Then, we will briefly review Vision Trans-
formers (ViT) and Siamese Neural Networks.

2.1 Geolocalization of images

Geolocalization is a very challenging task due to the amount of vari-
ability in photos, in terms of scenery, environment and architecture.
In the literature, several works have addressed such a challenge,
adopting different strategies.

The first attempt, at planet-scale image geolocalization, was intro-
duced in Im2GPS [13], in which a query image is matched against
a database of six million geo-tagged images and the location is in-
ferred from the retrieved set. Subsequently, in [14], the method in
Im2GPS [13] was further improved by incorporating multi-class sup-
port vector machines, to refine the search process. Another notewor-
thy work is [32], where the authors proposed learning a feature rep-
resentation with a convolutional neural network (CNN) to enhance
the performance of Im2GPS [13].

In Planet [35], the authors formulated the problem of image geolo-
calization as a classification problem. The earth’s surface was divided
into thousands of multi-scale geographic cells and a convolutional
neural networks (CNN) model was trained using millions of geo-
tagged images. However, the granularity of the partitioning in image
geolocalization is crucial, as larger cells may yield lower location ac-
curacy, while smaller cells may result in reduced training examples
per class, making the model susceptible to overfitting. To address this
issue, CPlanet [26] proposed a combinatorial partitioning algorithm
that generates a multitude of fine-grained output classes by intersect-
ing multiple coarse-grained partitioning of the earth’s surface.

In more recent studies, in [23], a selective prediction method was
introduced to assess the suitability of an image for the geolocal-
ization task, resulting in the removal of non-localizable images and
thereby increasing the overall accuracy. In [16] Izbicki et al. intro-
duced the Mixture of von Mises Fisher (MvMF) loss function which
is able to exploit the spherical geometry of the Earth to improve ge-
olocalization accuracy. In [18], the authors introduced a mixed classi-
fication and retrieval scheme, combining the strengths of both meth-
ods in a unified solution, achieving new state-of-the-art performance
at fine granularity scales. Moreover, Pramanick et al. [25] recently
introduced TransLocator, a unified dual-branch transformer network
that achieves continent-level accuracy improvement over the existing
state-of-the-art methods.

In the context of understanding geolocalization models, a recent
study, by [28], introduced a novel semantic partitioning method, ca-
pable to enhance the interpretability of prediction results, still achiev-
ing state-of-the-art results in terms of geolocalization accuracy on
benchmark test sets. One of the best-performing systems proposed
to date is [22]. In this work, the authors proposed a classification
system, in which the earth is subdivided into geographical cells. Im-
ages taken in various types of environments (urban outdoor, indoor
or natural) are incorporated, so as to embed in the learning process
specific features of several environmental settings. The deep learning
architecture used is based on the ResNet network architecture [15].
Results obtained on benchmark datasets demonstrate the capability
of this system, positioning [22] as a reference benchmark for im-
age geolocalization. In our experiments, we adapted the framework
proposed in [22] to be used as a city verifier, enabling a meaningful
comparison with our results on the city verification task.

Most recently, a new direction of research focused exclusively on
country recognition. In G3 [20], the authors showed how language
can be leveraged to improve image geolocalization. Their approach
involves predicting the country of an image by exploiting a set of
clues extracted from a textual guidebook for the GeoGuessr game. A
new massive dataset for country recognition, the VIPPGeo dataset,
was introduced in [4]. The dataset contains nearly 4 million high-
quality urban images. In [4] the authors utilized the VIPPGeo dataset
to train a ResNet-based classifier, which achieves state-of-the-art per-
formance in the country recognition task [4]. In this paper, we lever-
aged the VIPPGeo dataset to construct a dataset containing images
from 19 cities around the world.

2.2 Vision Transformers

Transformers were first described in the work by Vaswani et al. [30]
based on attention mechanism in natural language processing tasks,
e.g., machine translation and question answering. The basic building
block of a transformer consists of the multi-head self-attention mech-
anism that exploits a deep relationship among the elements of em-
bedding words. Vision Transformer (ViT), a variant of transformer
targeting computer vision tasks, was first presented in [11] for im-
age classification, by taking a sequence of image blocks as input.
Thanks to their outstanding performance, more and more researchers
are proposing transformer-based models for improving a wide range
of visual tasks, including object detection [38], semantic segmen-
tation [27, 37], image processing [9], and video understanding [5].
Traditional CNNs have gradually been substituted by transformers
as the preferred model in the field of computer vision, with several
models proposed such as Swinformer, BERT [17], and BEVT [34].
In contrast to recurrent neural networks, transformers are able to fo-
cus on the whole sequence, not focusing mainly on short-term de-
pendencies. Moreover, transformers are purely based on the atten-
tion mechanisms and their uniqueness consists in an implementation
which is optimized for parallelization purposes [8]. As opposed to
other approaches, like hard attention [31], which is stochastic in na-
ture and needs Monte Carlo sampling for attention location sampling,
transformers scale well to high-complexity models and large-scale
datasets. Additionally, pre-trained transformers trained using pretext
tasks on large-scale (unlabelled) datasets [17,30] are adopted as start-
ing point of the training procedure, thus significantly reducing the
cost of manual annotations.

2.3 Siamese Networks

The Siamese network framework was first proposed by Bromley et
al. [7] in 1993 for verification tasks. A basic Siamese network adopts
two subnetworks with shared weights as feature extractors. The final
decision, then, is made by comparing the outputs of the two sub-
networks [19, 33]. Learning knowledge by comparing the features
extracted by the two branches instead of directly using labels gives
the possibility to learn with unlabeled data and plays an important
role in overcoming the limited label issue in real-life applications. In
recent years, Siamese architectures have attracted increasing atten-
tion in addressing various matching problems, such as object track-
ing [12], image matching [21], image identification [29] and image
change detection [6, 36].

In this work, we combined a Vision Transformer (ViT) model [11]
with a Siamese architecture [7] for the city verification task. Specif-
ically, we constructed a two-branch network, with ViT as the back-
bone. The network is then followed by fully connected layers with
ReLU activation functions. The final layer of the network uses a Sig-
moid activation function to make the final decision.
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3 Methodology

In this section, we describe the city verification dataset and the pro-
posed city verification system.

3.1 City Verification Dataset

The city verification dataset was constructed starting from the VIPP-
Geo [4] dataset. The VIPPGeo dataset has been built by using three
publicly available data sources: Flickr [1], Mapillary [2] and Un-
splash [3]. The dataset includes urban pictures with different char-
acteristics, shot with various cameras, from a wide range of differ-
ent photographers and largely diverse views of world areas. The im-
ages were crawled by using the APIs released from each of the 3
data sources. In total, the VIPPGeo dataset contains 3, 813, 651 geo-
tagged images.

The city verification dataset consists of 120, 909 images from 19
cities worldwide (refer to Table 2 and 3 for the cities’ names.). To
obtain the images of each city, we retrieved all the images shot within
a circular area around the city centre. The diameter of the circular
area varies from 5 Km to 10 Km, depending on the availability of
images in the VIPPGeo dataset for that particular city. We used a
flexible diameter length to ensure that a fixed number of images were
collected for each city in our dataset. Our city verification dataset is
partitioned into two sets: Closed and Open sets. We have collected
12, 000 images for each city class in the Closed set and 101 images
for each city class in the Open set.

The VIPPGeo dataset has been built by filtering the images to en-
sure that the dataset contains urban images [4]. To build the city veri-
fication dataset, we added additional constraints to maximize the rel-
evance of the dataset for the city verification task. In particular, we
employed various filtering strategies to eliminate unsuitable or irrele-
vant images, like, for example, images containing only faces, natural
images, and indoor images. Similar to [4], we used the Places365-
CNNs model [39] to implement the above filtering strategy.

The Closed set portion of the city verification dataset consists of
10 city classes, with two pairs of cities belonging to the same coun-
try. This subset contains a total of 120, 000 images, 100, 000 out of
which were used to train the proposed ViT Siamese network, 10, 000
for validation, 10, 000 for testing, and 1, 010 images for verifica-
tion. The verification subset dimension is reduced by applying re-
strictive filtering on the test set and we have used it to evaluate the
performance of the overall city verification system, which includes
not only the Siamese network but also other auxiliary components.
In contrast, we used the testing subset exclusively to assess the per-
formance of the Siamese network. Further details are given in the
following sections.

The Open set portion of the dataset consists of 10 city classes,
including 9 new cities that were not present in the Closed set, and one
city shared with the Closed set. The Open set contains two pairs of
cities coming from the same country, with each class containing 101
images. The images in the Open set are much smaller than that of the
Closed set since these images were not used for training. The Open
set was used exclusively for the verification task. Table 1 summarizes
the characteristics of the publicly available city verification dataset.

Table 1: The number of images in the City Verification Dataset.

Training Validation Siamese-testing Verification

Closed Set 100000 10000 10000 1010
Open Set 0 0 0 1010

3.2 Proposed City Verification System

Figure 1 shows the overall architecture of the proposed city verifi-
cation system. The core of the system is formed by a Siamese Net-
work [7] with a Vision Transformer backbone (ViT) [11]. The other
building blocks include the country classifier (GeoVIPP) introduced
in [4], and the Places365-CNNs model [39] to measure the semantic
similarity between images. The verification pipeline of our system is
outlined in the following:

1. Given an input image (hereafter referred to as query image) and
a claim on the city where the image has been taken (hereafter
referred to as claimed city), the image is passed through the
GeoVIPP [4] country classifier to obtain the Top-2 country pre-
dictions.

2. If the country of the claimed city does not appear in the Top-2
country predictions, the image city claim is not verified, and the
image is not passed to the subsequent steps of the system.

3. If the country of the claimed city appears in the Top-2 country
predictions, the query image is paired with m reference images
taken in the claimed city for verification.

4. The image pairs (composed by the query image and the m refer-
ence images from the claimed city) are fed to the Siamese net-
work.

5. The semantic similarity between the two images in each pair is
calculated using the Places365-CNNs model [39] (refer to Sec-
tion 3.2.4 for the details).

6. The Siamese network outputs a probability between 0 and 1 for
each image pair, with 0 meaning that the images belong to the
same city, and 1 that they belong to different cities.

7. The scores given by the Siamese network are weighted according
to the image similarities evaluated by the Places365-CNN network
and summed together. Eventually, the weighted score is thresh-
olded to verify if the query city has been shot in the claimed city
or not.

In the following sections, all the components of the verification
system are described in detail, starting with the Siamese network
which represents the backbone of the system.

3.2.1 ViT-based Siamese Network

In the proposed framework, for each branch of the Siamese network
we have used the ViT-L/16 variant of the Vision Transformer model
provided by [11]. We have set the last layer of the ViT model to have
64 output units. Afterwards, we concatenated the output of both net-
works to form a single-layer feed-forward network with a size of
128 units. The concatenated output is then passed through a Rec-
tified Linear Unit (ReLU) activation function. Then, the output is
forwarded to a layer with 64 units, and finally to a Sigmoid activa-
tion function. A Sigmoid output equal to or close to 0 indicates that
the image pairs come from the same city, while a value close to 1
indicates that the image pairs come from different cities.

Given that the size of the ViT input is fixed (224× 224, 3− band
images with 16 patches), and given that the images to be verified have
very different dimensions, we adopted a strategy to analyse the entire
image content without changing the aspect ratio of the images, since
this could affect the performance of the system. During the valida-
tion, testing and verification phases, the query image is first resized
in such a way that the lower dimension (either width or height) is
equal to 256. Then, a crop of size 224 × 224 is taken from the re-
sized image. The prepossessing step ensures that all images fed to
the Siamese network are consistent in size and orientation.
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Figure 1: The figure illustrates the overall workflow of the proposed architecture. For more verification examples see the supplementary
material. The code and the dataset are publicly available at the following link: https://github.com/alamayreh/city_verifier .

Furthermore, during the training phase, we applied geometric aug-
mentation to prevent overfitting and promote the learning of robust
features. The images are first resized so that the lower dimension is
equal to 256. Then, we randomly applied horizontal flipping to the
training images. Subsequently, we took a random crop covering at
least 2/3 of the image area. Eventually, we resized the crop to 224
× 224.

In all phases (i.e., training, validation, testing, and verification),
the images were normalized to bring the mean pixel values and the
standard deviation equal to those of the Imagenet dataset1.

3.2.2 ViT Siamese Training

Based on the number of images per class in the city verification
dataset, which is equal to 10, 000 images, we can form a very large
number of possible image pairs that we can use to train the Siamese
network. Specifically, the total number of image pairs that we can
form is in the order of 5× 109.

To account for this large number of image pairs and to force the
Siamese network to learn robust and discriminative features, with-
out being biased towards any specific city class, we adopted a proper
sampling strategy to be used during training. The strategy ensures
that for each training epoch, we have a balanced and representative
number of positive and negative image pairs. In addition, the sam-
pling strategy ensures that the negative pairs are evenly distributed
across different cities, preventing any bias towards specific cities.
During each epoch, a total of 16384 image pairs are sampled to train
the Siamese network. The large number of image pairs sampled at
each epoch provides a diverse and representative sample of the city
verification dataset.

The Siamese network was trained for a total of 50 epochs, starting
from a ViT model pre-trained on ImageNet [10]. The batch size was
set to 32 image pairs. The network was trained using Binary Cross
Entropy loss (BCE) and the Stochastic Gradient Descend (SGD) op-
timizer with a learning rate of 1 · 10−2 a momentum of 0.9, and a
weight decay of 1 · 10−4. We used the loss function value on the
validation set to select the best model for testing and verification. All
the experiments have been performed using PyTorch [24] as a Deep
Learning framework on a workstation equipped with one Intel(R)
Xeon(R) E5-2620 24-Core CPU and four NVIDIA Quadro M6000
12GB GPU.

1 This is common practice when using models pre-trained on Imagenet.

3.2.3 GeoVIPP Country Classifier

We exploited the country classifier (GeoVIPP) provided in [4] for
the city verification task during both training and testing. During
training, while sampling the negative pairs to be used within each
epoch, we imposed a specific, country plausibility, condition to hold
for 50% of the pairs. The condition can be expressed as follow. Sup-
pose we have sampled Image A and Image B as candidate negative
pairs. Before feeding the pair to train the Siamese network, we pass
each image through the GeoVIPP country classifier, and we consider
the negative image pair (A, B) valid if at least one of the Top-2 coun-
try predictions of Image A is equal to one of the Top-2 country pre-
dictions of Image B.

Adding this condition helps to ensure that the negative pairs used
to train the Siamese network consist of challenging pairs to verify,
in the sense that these images are coming from different cities but
according to the country classifier, these images may potentially be
from the same country. In this way, we also mimic the operating con-
ditions enforced at test time, when the verification automatically fails
if the country of the claimed city is not in the Top-2 countries esti-
mated by the GeoVIPP country classifier on the query image.

In the testing phase, the role of the GeoVIPP country classifier is
to let the verification fail if the country of the claimed city does not
appear in the Top-2 country predictions made by GeoVIPP on the
query image.

3.2.4 Semantic Similarity Analyzer

As shown in Figure 1, the final decision is made by accumulating the
output of the Siamese network on all the image pairs formed by the
query image and the reference image of the claimed city. The out-
put of the Siamese network is weighted according to the semantic
similarity between the two images in the pair. The rationale behind
this choice is that the output of the Siamese network is more reli-
able when the input images represent similar scenes. To do so, we
exploited the Places365-CNNs classification model [39].

Given an image, Places365 classifies it into one of 365 scenery cat-
egories, for example, house, street, river, etc. We reduced the output
vector dimensions of the Places365 classification system from 365
to 16 by utilizing the scene hierarchy matrix provided in the same
work. The hierarchy categories contain 16 major classes like trans-
portation, forest, industrial, etc. The reduction results in a 16-long
vector, whose components give the probability that the scene shown
in the input image belongs to the 16 hierarchy scene classes consid-
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Table 2: Results on the Closed Set. In each cell, the value on the right shows the total number of images that have successfully passed the
GeoVIPP classifier test. The value on the left indicates the fraction of images that passed the overall verification procedure. The overall accuracy
is 0.82 for positive pairs (True Positive rate) TP and 0.96 for the negative pairs (off-diagonal elements, True Negative rate TN = 1 − FP ).
The blue cells refer to images from the same cities, while the grey cells indicate the results obtained on different cities of the same country.

.
City Amsterdam Barcelona Berlin London New York L.Angeles Rome Milan Paris Tokyo

Amsterdam 0.89 - 98 0.00 - 00 0.02 - 15 0.07 - 24 0.00 - 04 0.00 - 04 0.00 - 01 0.00 - 01 0.01 - 09 0.00 - 00

Barcelona 0.00 - 01 0.83 - 90 0.03 - 06 0.04 - 05 0.01 - 17 0.14 - 17 0.00 - 19 0.15 - 19 0.21 - 26 0.00 - 02

Berlin 0.00 - 04 0.00 - 03 0.89 - 93 0.04 - 07 0.00 - 07 0.04 - 07 0.00 - 02 0.01 - 02 0.11 - 12 0.00 - 03

London 0.04 - 07 0.01 - 02 0.03 - 08 0.71 - 96 0.06 - 24 0.13 - 24 0.00 - 03 0.02 - 03 0.15 - 19 0.01 - 03

NewYork 0.00 - 01 0.00 - 00 0.00 - 05 0.00 - 06 0.91 - 99 0.04 - 99 0.00 - 01 0.00 - 01 0.00 - 02 0.03 - 04

L.Angeles 0.00 - 02 0.12 - 14 0.00 - 01 0.00 - 01 0.10 - 88 0.74 - 88 0.00 - 01 0.00 - 01 0.00 - 02 0.03 - 06

Rome 0.00 - 00 0.05 - 32 0.00 - 01 0.00 - 02 0.00 - 02 0.00 - 02 0.85 - 98 0.09 - 98 0.00 - 23 0.00 - 00

Milan 0.00 - 03 0.15 - 19 0.07 - 11 0.04 - 06 0.03 - 13 0.08 - 13 0.00 - 78 0.70 - 78 0.10 - 12 0.00 - 01

Paris 0.00 - 01 0.16 - 18 0.08 - 10 0.18 - 22 0.00 - 05 0.02 - 05 0.00 - 07 0.06 - 07 0.95 - 99 0.00 - 00

Tokyo 0.00 - 01 0.00 - 02 0.00 - 04 0.01 - 04 0.13 - 17 0.01 - 17 0.00 - 00 0.00 - 00 0.00 - 01 0.80 - 96

ered by Places365-CNN. Given such a vector, the semantic similarity
s between the images of each image pair is computed as follows:

s =
u · v

‖u‖2‖v‖2 (1)

where u and v are the output probability vectors provided by
Places365 model for each image. Then, we used the similarity to
weigh the output of the Siamese network. In particular, the final de-
cision is made as:

ŷ = argmax
i∈0,1

m∑

j=1

sjPi,j (2)

where s is the semantic similarity between the two images in each
pair, m is the total number of image pairs, P0 is the probability that
the images pair are coming from the same city and P1 are coming
from a different city. P1 is equal to the Sigmoid output of the Siamese
Network, while P0 is equal to (1− P1).

4 Experiments and Results

We conducted several experiments to evaluate the performance of the
proposed City Verifier. We considered different scenarios, including
Open and Closed datasets. We also conducted an ablation study to
understand the impact of the GeoVIPP classifier on the accuracy of
the overall system. Finally, we have compared our results with a ver-
ification system built on top of a state-of-the-art image geolocaliza-
tion system.

4.1 Siamese Training

To start with, we trained the Siamese ViT model using image pairs
sampled from the 100, 000 images of the training set. The model
is continuously evaluated on 64, 000 image pairs sampled from the
10, 000 images of the validation set. We selected the best model
based on the lowest loss value achieved by the trained models on
the validation set. Then, The best model is used in the test and veri-
fication phases.

Upon training, the performance of the Siamese ViT model was
evaluated on 64000 image pairs sampled from the 10, 000 images of
the Siamese-testing set (see Table 1 for the dataset details). In the fol-
lowing, we present the results of the evaluation in the form of a con-
fusion matrix (see Figure 2). The matrix indicates that the Siamese

Network has an adequate capability to detect if two images belong
to the same city. Even if the performance of the Siamese network on
single image pairs may appear insufficient, this is good enough to let
the overall verification system work, when the Siamese network is
applied to all the images in the reference dataset of the claimed city,
and when it is used in conjunction with the country classifier which
contributes significantly to discard negative image pairs, when they
belong to cities of different countries. This aligns with our goal, to
maximize the Siamese network’s ability to detect images from the
same city and to rely on the GeoVIPP classifier to discard images
that do not belong to the country of the claimed city.
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Figure 2: Confusion matrix showing the performance of the Siamese
network in determining positive and negative pairs on 64000 image
pairs sampled from the Siamese-testing set.

4.2 Verification Results - Closed Set

With regard to the verification task, which we remind is the final
goal of our system, the results we got on images representing cities
belonging to the Closed set are shown in Table 2. The experiments
were conducted on the verification set, including 101 images per
city class. As mentioned in the procedure outlined in Section 3.2,
we paired each image from the claimed city with the 101 images
of the reference dataset of the claimed city. The claimed cities are
given in the first column of the table, while the ground truth of the
query cities is shown in the first row of the table. For cases where the
claimed city and the ground truth of the queried cities are the same
(on the diagonal), we held out one image from the 101 images of the
claimed city and paired it with the remaining 100 images. Then, we
pass the pairs to the verification system. The process is repeated for
each image of the 101 images. The fraction of images that passed the
entire verification process is reported in the table.
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Table 3: Verification accuracy results in the open set scenario. The meaning of the values is the same as in Table 2. The overall True Positive
and True Negative rates are 0.71 and 0.98, respectively.

City Amman Istanbul Mexico.C Singapore Quebec Vancouver Florence Rome R.Janeiro Delhi

Amman 0.79 - 97 0.02 - 03 0.00 - 00 0.00 - 00 0.00 - 01 0.00 - 01 0.00 - 04 0.02 - 04 0.00 - 01 0.03 - 05

Istanbul 0.06 - 07 0.79 - 92 0.00 - 01 0.00 - 00 0.00 - 00 0.00 - 00 0.11 - 13 0.00 - 13 0.00 - 01 0.03 - 04

Mexico.C 0.00 - 00 0.00 - 00 0.55 - 71 0.00 - 00 0.06 - 07 0.00 - 07 0.02 - 04 0.00 - 04 0.01 - 06 0.00 - 01

Singapore 0.00 - 00 0.00 - 00 0.00 - 00 0.66 - 100 0.00 - 00 0.00 - 00 0.00 - 00 0.00 - 00 0.00 - 02 0.01 - 04

Quebec 0.00 - 00 0.00 - 00 0.00 - 01 0.00 - 00 0.70 - 88 0.20 - 88 0.00 - 00 0.00 - 00 0.00 - 00 0.00 - 01

Vancouver 0.00 - 00 0.00 - 00 0.00 - 00 0.00 - 01 0.38 - 86 0.64 - 86 0.00 - 00 0.00 - 00 0.00 - 02 0.00 - 00

Florence 0.00 - 01 0.00 - 01 0.00 - 00 0.00 - 00 0.00 - 00 0.00 - 00 0.77 - 99 0.21 - 99 0.00 - 00 0.01 - 02

Rome 0.00 - 00 0.00 - 02 0.00 - 01 0.00 - 00 0.00 - 00 0.00 - 00 0.20 - 98 0.85 - 98 0.00 - 00 0.00 - 02

R.Janeiro 0.00 - 00 0.00 - 01 0.04 - 08 0.00 - 00 0.00 - 00 0.00 - 00 0.00 - 01 0.00 - 01 0.57 - 81 0.03 - 05

Delhi 0.06 - 09 0.01 - 02 0.00 - 01 0.00 - 00 0.00 - 00 0.00 - 00 0.00 - 01 0.00 - 01 0.00 - 00 0.78 - 99

Each cell of the table reports two values. The value on the right
shows the total number of images that have successfully passed the
GeoVIPP classifier test, that is, the claimed country belongs to the
Top-2 countries predicted by the classifier on the query image. The
number on the left, instead, shows the overall verification accuracy,
that is the fraction of images that passed the verification procedure.
The blue cells (on the diagonal) represent the verification results
when the claimed city is correct, while the grey cells indicate results
when the query and claimed cities are different, but from the same
country.

As shown by the table, the verification system demonstrates very
good performance, even in the difficult case when the claimed and
query cities belong to the same country2. As an overall performance
metric, we considered the True Positive (TP ) and False Positive
(FP ) rates, defined as:

TP =
1

C

C∑

i=1

ai,i (3)

FP =
1

C(C − 1)

C∑

i=1

C∑

j=1,j �=i

ai,j , (4)

where C is the total number of cities and ai,j are the left values
reported in Table 2. In particular, TP in Equation (3) reports the
accuracy of the verification when the query city corresponds to the
claimed one (the larger the better), while FP in Equation (4) gives
the probability that a false claim is verified (the lower the better).
The values of TP and FP calculated from Table 2 are 0.82 and
0.03, respectively.

4.3 Verification Results - Open Set

We also evaluated the performance of the verification in an open set
scenario where both the query and claimed cities do not belong to the
set of cities used during training. The Open set portion of the dataset
consists of 10 cities, each city class containing 101 images. The only
exception to the open set rule is represented by the images of Rome,
given that Rome was also included in the Closed set portion of the
dataset. The reason for this exception is that we wanted to evalu-
ate the accuracy of the system in a mixed scenario where the query
(res. claimed) city has been seen during training and the claimed (res.
query) city has not.

2 In this case, in fact, the country classifier is of no help.

As illustrated in Table 3, the city verifier maintains very good per-
formance also in the open set scenario, especially for cities belonging
to different countries. A certain performance drop can be observed
when the claimed and query cities are different but belong to the
same country, however, even in this difficult case, the verifier main-
tains a certain capability to recognize if the query image depicts the
claimed city or not. Applying Equations (3) and (4) to Table 3,. we
now get TP = 0.72 and FP = 0.02.

4.4 Ablation Study

As a further investigation, we conducted an ablation study that in-
volves systematically removing and tuning the GeoVIPP country
classifier [4] at different stages of the process and evaluating its im-
pact on the overall performance. By carefully analyzing the results,
we were able to gain insights into the contribution and importance of
the GeoVIPP classifier in the proposed city verification framework.

Table 4: Impact of GeoVIPP country classifier on n verification accu-
racy at different stages of the verification pipeline.

GeoVIPP No use Sampling Verification Sampling and
Verification

Closed Set (TP) 0.9079 0.8782 0.8544 0.8287

(FP) 0.2639 0.3410 0.0391 0.0388

Open Set (TP) 0.7772 0.7851 0.7118 0.7128

(FP) 0.3785 0.4832 0.0242 0.0209

We started first by removing the GeoVIPP [4] classifier from the
system. Then, we measured the verification accuracy on the Open
and Closed city verification datasets using Equations (3) and (4). The
results are reported in Table 4. The column labelled No use refers to
a case where the GeoVIPP classifier is not used at all, while the Sam-
pling column shows the results when the GeoVIPP is only used in the
sampling stage of pairs during training of the Siamese network. The
Verification column represents the case where the GeoVIPP is not
used during training, but only during verification. Finally, the last col-
umn refers to the case where the GeoVIPP is used in all stages. Upon
inspection of the Table, we can see that incorporating the GeoVIPP
country classifier in different stages of the city verification leads to a
performance increase in both open and closed sets scenarios.

We also conducted an experiment to investigate the effect of
changing the Top-N prediction of the GeoVIPP classifier used in the
verification process. Increasing the value of N means allowing more
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images to be passed to the city verification system, with an expected
positive effect on the True Positive rate (diagonal values in Tables 2
and 3) and a negative effect on on the False Positive rate (off-diagonal
values in Tables 2 and 3). As we can see from Figure 3, choosing N
involves finding a trade-off between TP and FP . According to our
experiments, a good trade-off is obtained by letting N = 2.

1 2 3 4 5

0.2

0.4

0.6

0.8

1

Top-N prediction

TP Closed Set
FP Closed Set
TP Open Set
FP Open Set

Figure 3: Verification accuracy using different Top-N predictions by
GeoVIPP country classifier (see the supplementary material for the
full tables obtained by using Top-1 and Top-3 results.

4.5 Comparisons with State-of-the-Art

As a last set of experiments, we compared the results of our system
with those obtained by relying on the state-of-the-art ISN method
described in [22]. Such a method provides an estimation of the GPS
location where the image was captured. As to comparing our results
with the state-of-the-art, we can only compare with methods estimat-
ing image GPS location. However, the source code of such methods
is only rarely available and the results reported in the papers refer
to different kinds of problems. The code of the method described in
ISN [22] is available, making it suitable for our comparison, all the
more that such a system is a well-recognized benchmark in the field.

To turn the system in [22] into a city verifier, we defined circles
around the city centres with different diameters, precisely 25 Km,
50 Km, and Flexible. A city claim is positively verified if the GPS
estimation of the query city falls within the predefined radius of the
claimed city. The Flexible diameter was adjusted until we achieved
the same False Positive rate FP of our system. This yielded a ra-
dius equal to 463 Km and 711 Km for the open and closed set cases,
respectively. In particular, we used the Haversine3 formula to mea-
sure the distance between the city centre coordinates and the esti-
mated geo-coordinates [22]. By using the procedure outlined in Sec-
tion 3.2, we constructed tables similar to Table 2 and Table 3 for both
the Closed and Open sets (such tables are available as supplementary
material). Then, we applied Equation (3) and Equation (4) to calcu-
late TP and FP .

Figure 4 illustrates the TP rates obtained when the claimed and
the query cities are the same. As we can see from the figure, the
proposed method outperforms ISN even when we relax the diameter
constraint and enlarge the predefined circle around the city centres.
In Figure 4, the slightly higher verification accuracy obtained on the
closed set compared to the open set case, can be explained by the
fact that some cities in the Open set have fewer images in the original
dataset on which ISN has been trained [22]. With regard to the False
Positive rate, we got the results reported in Table 5. As shown in the
table, both our system and ISN achieve good performance.

3 The Haversine formula determines the great-circle distance between two
points on a sphere given their longitudes and latitudes.
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Figure 4: True Positive rate comparison with SOTA [22] for various
values of proximity circle diameters (from left to right, 25 Km, 50
Km, and Flexible).

Table 5: False Positive rate comparison with SOTA [22].

ISN-25 ISN-50 ISN-Flexible Ours

Closed Set 0.0049 0.0051 0.0388 0.0388

Open Set 0.0009 0.0009 0.0209 0.0209

5 Conclusion

We have introduced the city verification task, a new instance in the
class of image geolocalization problems and presented a novel sys-
tem to address it. The proposed system uses a Siamese network back-
boned with Vision Transformer, coupled with a country classifier and
Semantic similarity analyser. Given a query image and a small set
of images taken in a target city, the system accurately determines
whether the query image was taken in the target city or not.

The city verification problem involves two key factors: i) the vast
number of cities worldwide, and ii) the variability in scenes from
the same city. Our Siamese-based verifier effectively addresses both
challenges. Firstly, it is not necessary to retrain the system to handle
images belonging to cities that have not been used in the training
set. Secondly, our system gives more voting power to the reference
images that are semantically similar to the query image. Moreover,
our system compares the query image with several reference images
of the claimed city. We argue that if the number of reference images
is large enough, then the verifier can handle the variability of images
from the same city properly.

While our system shows promising results, we acknowledge that
the experiments we carried out can only prove the plausibility of the
arguments our system relies on. Thus, future research should focus
on improving the generality and scalability of our approach. Addi-
tionally, optimizing the choice of images in the reference dataset and
adopting more sophisticated fusion strategies could further enhance
the system’s performance.
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