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Simple Summary: Over 80% of people globally rely on traditional medicine, primarily using medici-
nal plants, leading to rising demand both domestically and internationally. This has impacted natural
ecosystems due to wild harvesting. Cultivating these medicinal species has been proposed as a
conservation solution. However, in today’s climate change-focused world, smallholder farmers face
uncertainty regarding how cultivation benefits match up against climate impacts, increasing their
stress. The effects of climate change on the ex situ cultivation of ten significant medicinal plants in
Crete, Greece, were analyzed by predicting their habitat suitability in future climates. The findings
showed varied effects across species, categorizing them into three based on potential cultivation
area changes. This data, showing where these areas might increase or decrease, can guide regional
management strategies to assist practitioners.

Abstract: Over 80% of the global population addresses their primary healthcare needs using traditional
medicine based on medicinal plants. Consequently, there’s a rising demand for these plants for both
household and industrial use at local, regional, national, and international levels. However, wild
harvesting has negatively impacted natural ecosystems. Cultivating medicinal species has been proposed
as a conservation strategy to alleviate this pressure. Yet, in this age of global climate change concerns,
smallholder farmers’ views on the benefits of such cultivation clash with the uncertainties of climate
change impacts, amplifying their anxieties. In this context, the climate change dependence of ex situ
cultivation of ten wild medicinal taxa with significant ethnopharmacological interest in Crete, Greece,
were studied, projecting their potential habitat suitability under various future climate scenarios. The
results demonstrated species-specific effects. Based on the potential cultivation area gains and losses,
these effects can be categorized into three groups. We also outlined the spatial patterns of these gains and
losses, offering valuable insights for regional management strategies benefiting individual practitioners.

Keywords: medicinal plants; wild harvest; precision agriculture; ex situ conservation; climate change;
Ecological Niche Modeling; Crete; Lamiaceae; habitat shift; adaptation strategies

1. Introduction

The World Health Organization (WHO) estimates that traditional medicine, primarily
rooted in medicinal plants, meets the primary healthcare needs of over 80% of the global
population [1].
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Furthermore, a variety of products derived from medicinal plants range from raw
materials to refined and packaged goods. These include medicines, herbal remedies, teas,
beverages (both alcoholic and non-alcoholic), cosmetics, confections, dietary supplements,
varnishes, and insecticides [2]. Consequently, there is a persistent and escalating demand
for medicinal plants for both household and industrial applications on local, regional,
national, and international scales [2–6]. This demand is projected to grow by 10–20%
annually, with over 70% of these plants being sourced from the wild [7].

Natural ecosystems have undeniably suffered due to such wild harvesting [8]. Propa-
gating and cultivating medicinal species in controlled settings has been advocated for some
time as a strategy to alleviate this environmental pressure [1,9].

Farmers’ perceptions of the benefits offered by various precision agriculture tech-
nologies vary widely [10]. Despite the challenges posed by traditional agriculture, many
farmers are reluctant to transition to these new methods. Two primary reasons underlie
this hesitation: (a) their comfort and familiarity with traditional farming practices and
(b) the long-standing proven reliability of traditional agriculture in terms of its consistent
performance over centuries.

Transitioning from traditional to precision agriculture introduces a sense of uncertainty,
especially among smallholder farmers. This unease stems from their reliance on specialized
scientific knowledge, leading to a dependence on external experts and resources, which
they feel are beyond their control.

To address this barrier, numerous initiatives have been launched [11,12], providing ac-
cessible expertise on precision agriculture, particularly via online platforms. These efforts aim
to assist smallholder farmers and familiarize them with the specialized knowledge required.

An example of such an effort concerns previous research on cultivating wild medicinal
plants in Crete. A number of taxa with known ethnopharmacological uses [13] were studied,
which have been employed extensively in traditional medicine and as culinary supplements.
The data propose potential habitats suitable for these taxa across the study area in the
context of precision agriculture. In addition, a platform has been developed where all
interested groups can access and utilize this specialized knowledge, from the policy-maker
to the individual practitioner level (https://navaak.shinyapps.io/agriSuitNew/ accessed
on 30 August 2023

Regarding the second reason, it is worth mentioning that, in the era of global concern
about climate change [14], the unknown response of the medicinal plant cultivations to
climatic scenarios strongly increases the anxiety of the smallholder farmers, especially due
to the new activity’s future duration, which has to be known to develop their business
plan. In the Mediterranean basin, this anxiety is reinforced and may also derive from the
inter-annual variability in seasonal weather, a characteristic of the Mediterranean climate,
which every year generates uncertainty in the decision-making processes of cultivation
practice in their field [15].

The present work attempts (a) to study the climate change dependence of ex situ culti-
vation of ten wild medicinal taxa of high ethnopharmacological interest across the islands of
Crete, Greece, projecting the potential habitat suitability in different future climate scenarios,
and (b) to explore the expected spatial patterns for possible management implications.

2. Materials and Methods
2.1. Medicinal Plants and Study Area

Ten wild plant species known for their medicinal properties [16–23], all native to Crete,
were examined. These include Calamintha nepeta (L.) Savi subsp. glandulosa (Req.) P.W.
Ball, Thymbra capitata (L.) Cav., Melissa officinalis L., Micromeria juliana (L.) Rchb., Origanum
dictamnus L., Origanum vulgare L. subsp. hirtum (Link) Ietsw., Origanum onites L., Salvia
fruticosa Mill., Salvia pomifera L. subsp. pomifera, and Satureja thymbra L., with Origanum
dictamnus L. existence endemic to the island. The nomenclature of the Greek taxa studied is
after Flora of Greece Web [24].

https://navaak.shinyapps.io/agriSuitNew/
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Crete is the largest island of Greece, with a total surface of 8729 km2 and a west–east
extension of about 254 km, where four mountain ranges (Lefka Ori, Psiloritis—including
Kedhros, Dikti, and Afendis Kavousi) occur [25]. The island shares the same latitude
with central Tunisia. The elevation and longitude have the most significant influence on
precipitation and yield the highest spatial correlation (positive to elevation and negative to
longitude) [26]. For example, for the period 1974–2005, areal mean annual precipitation is
estimated to 750 mm and varies from ca. 440 mm in the east (Ierapetra; 10 m a.s.l) to ca.
2120 mm in the west (Askifou; 740 m a.s.l). Notably, the eastern part of the island of Crete
has been characterized as a major hot spot in the Mediterranean zone concerning drought
susceptibility [27,28].

2.2. Data Collection

A comprehensive survey was carried out at 665 locations on the island, noting the
occurrence of the mentioned plant species. The chosen sites were randomly selected,
considering the island’s geography. The data collection were thorough, stemming from
extensive field visits that encapsulated the great majority of each plant species’ known
habitat. Previous knowledge, such as [29], ensured that no significant habitats were
overlooked. Since these species are easily identifiable and non-cryptic, there’s a minimal
chance of missing them. The study revealed a range of occurrences for each species, with
counts ranging from 24 (for Salvia pomifera subsp. pomifera) to 301 (for Thymbra capitata),
reflecting their respective abundances on the island.

The bioclimatic variables with a spatial resolution of 30 s (approximately 1 km2) were
downloaded from the WorldClim database (https://worldclim.org/ accessed on 30 August
2023) [30].

2.3. Ecological Niche Modeling (ENM)

For over two decades, ENM has been a reliable tool in addressing diverse eco-
geographical challenges, ranging from studying hybrid zones [31,32] and conserving
Tertiary relict species [25,33] to understanding the macroecology of Crop Wild Relatives
(CWR) [34] and from the management of invasions in the face of climate change [35] to the
response of cultivated species to climate change [36].

For predicting the potential niche of the species in focus [13], MaxEnt version 3.4.1 [37,38],
a version implemented in R using the dismo package, was utilized. This machine-learning
method hinges on the principle of maximum entropy. MaxEnt stands out for its strong
predictive capabilities, even with limited data entries [39,40]. Moreover, as a presence-only
modeling technique, it estimates a taxon’s potential niche (which aligns perfectly with this
study’s objectives) instead of its realized niche [41].

As a measure of model performance, the area under the ROC curve (AUC) was
calculated. This was performed by retaining 10% of the presence points as the test sample
and iterating this process 10 times per model. After the process was completed, the mean
AUC of those 10 iterations was calculated. As this process was performed purely for
validation purposes, the final models presented and discussed in this work were trained
with 100% of the available presence records.

2.4. Future Climate Scenarios

Future climate scenarios were calculated using the global climate model MIROC-
6 (Model for Interdisciplinary Research on Climate-6), developed by the Japan Agency
for Marine-Earth Science and Technology (JAMSTEC), Atmosphere and Ocean Research
Institute (AORI), University of Tokyo, and National Institute for Environmental Studies
(NIES), Japan [42,43]. This is a newly developed climate model, with updates to its physical
parameterizations in all sub-modules, and it was utilized to predict the future potential
distribution of the species for the years 2040, 2060, and 2080 with the two Shared Socio-
Economic Pathways (SSPs) (SSP 126 and SSP 370).

https://worldclim.org/
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SSP-based scenarios further refine the previous greenhouse gas concentration scenar-
ios known as Representative Concentration Pathways or RCPs. The SSPs are based on
five narratives (SSP 1-SSP 5) describing alternative socio-economic developments, includ-
ing sustainable development, regional rivalry, inequality, fossil-fueled development, and
middle-of-the-road development. SSP 1 envisions relatively optimistic trends for human
development, while SSP 3 is more pessimistic. Specifically, SSP 126 with 2.6 W/m2 by the
year 2100 is a remake of the optimistic scenario RCP2.6 and was designed with the aim of
simulating a development that is compatible with the 2 ◦C target.

This scenario also presumes the implementation of climate protection measures. The
SSP 370, projecting 7 W/m2 by the year 2100, falls within the upper-middle spectrum of
all scenarios.

It was newly introduced after the RCP scenarios, closing the gap between RCP6.0 and
RCP8.5 (for an overview, see [44]).

In addition, future climate scenarios using Australia’s national climate model ACCESS-
2 (Australian Community Climate and Earth Systems Simulator) were also calculated.
ACCESS was initially created to focus on the Southern Hemisphere but later developed
into a world-class climate model used internationally [45–47]. This model was used only
for the year 2060 as complementary to MIROC-6 to obtain an indication of the uncertainty
and limits of climatic projections in the future.

Moreover, to help estimate the propensity for change and stability of each species, all
suitability maps were converted into presence/absence maps by use of the Least Training
Presence threshold for each species. Then, all pixels of the study area were grouped into
four categories based on the current and future predicted presence of the species: turned to
suitable, remained suitable, remained unsuitable, and turned to unsuitable. Furthermore,
the Stability Index was calculated as the proportion of unchanged pixels (remained suitable
and remained unsuitable).

2.5. Data Processing and Visualization

All analysis presented in this study was performed in R version 3.6.3 [48]. Apart from
the base functionality of R, some additional packages were employed, especially for the
geospatial data preparation, processing, and visualization. These were rgdal [49], sp [50],
and raster [51].

3. Results

Predictive performance, as indicated using mean AUC, was good (>0.8) for most of
the models. As expected, a small number of models demonstrated slightly lower predictive
performance (Figure S1), mainly due to the small number of records, but as Pearce et al. [52]
stated, a model with an AUC value of 0.75 is considered reliably accurate.

Of course, the predictive distribution of a taxon does not accurately predict the realized
distribution since taxa can be absent from suitable locations for various reasons [32,53].
Nevertheless, it is valuable as it can be used as the basis for suitability visualization and,
specifically, the geographic distribution of suitability of the areas within a web-based,
easy-to-use application [13].

Regarding future projections, in Figure 1, the outcomes resulting from the interaction
of two distinct Shared Socio-economic Pathways, namely Pathway 126 and Pathway 370,
coupled with two disparate climatic models, ACCESS-Australia and MIROC-Germany,
for the years 2040, 2060, and 2080 are presented. It is clearly shown that the output of the
ACCESS-Australia climate model is comparable with the output of MIROC-Germany both
for the current and 2060 future projections and for both Shared Socio-Economic Pathways.
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subsp. hirtum, and Salvia pomifera subsp. pomifera, exhibits intense spatial discontinuities 
between gains and losses concerning the studied future climate scenarios. 

In the case of Thymbra capitata (Figure 2), a member of the favored group, a signifi-
cantly wide area in continental Crete, particularly in the central parts of the island and to 
the corresponding southern coast, represents gains of potential cultivated lands. How-
ever, losses are predicted in coastal areas, which are projected to spatially expand in the 
subsequent years. 

Figure 1. Results of MaxEnt modeling for the potential distribution of the ten studied taxa. Warmer
colors represent a higher probability of occurrence scores, while colder colors represent lower proba-
bility scores. The left column corresponds to the current probabilities of occurrence, while the other
columns correspond to future projections according to the year and the selected model.

As shown in Figure 1, four species groups are recorded based on the projections of the
future probability of occurrence. The favored group encloses four species: Thymbra capitata,
Micromeria juliana, Origanum onites, and Salvia fruticosa. In this group, the probability of
occurrence spatially projected to the future climate scenarios appears ameliorated compared
to the current occurrence scores. The disadvantaged group includes Origanum dictamnus,
Melissa officinalis, and Satureja thymbra. In this group, a deterioration is predicted regarding
the spatial pattern of the projected probability of occurrence. Finally, the intermediate
group, represented by Calamintha nepeta subsp. grandulosa, Origanum vulgare subsp. hirtum,
and Salvia pomifera subsp. pomifera, exhibits intense spatial discontinuities between gains
and losses concerning the studied future climate scenarios.

In the case of Thymbra capitata (Figure 2), a member of the favored group, a significantly
wide area in continental Crete, particularly in the central parts of the island and to the corre-
sponding southern coast, represents gains of potential cultivated lands. However, losses are
predicted in coastal areas, which are projected to spatially expand in the subsequent years.

On the contrary, no losses have resulted for Micromeria juliana (Figure 2). The projec-
tions in all studied climate scenarios predict gains of potential cultivated lands almost all
over the island, excluding the high mountain areas. Similarly, no losses were predicted
in the case of Origanum onites (Figure 2). However, the gains are not distributed all over
the island and are mostly predicted on the northern coast and the western areas. No gains
were predicted for the southern coast and the central-south part of the island.
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Figure 2. Spatial pattern of gains and losses of potential cultivated areas of the favored group for
the studied years and the future climate change scenarios. Green and red colors represent gains and
losses, respectively. White colors correspond to areas where no alterations are predicted.

In the case of Salvia fruticosa (Figure 2), significant gains are predicted primarily on
the central-south part of the island, while no losses are expected. On the other side, in the
island’s western and eastern parts, remarkably minor gains are expected.

Concerning the disadvantage group, for Melissa officinalis (Figure 3), all possible sce-
narios indicate a decrease in the projected probability of occurrence, with more pronounced
losses in the northwestern part of the island, while no gains were predicted. Furthermore,
a decrease in the projected probability of occurrence is expected for Satureja thymbra (Fig-
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ure 3), with predominant losses almost all around the island. Minor gains are predicted
only in the central part.
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Figure 3. Spatial pattern of gains and losses of potential cultivated areas of the disadvantaged group
for the studied years and the future climate change scenarios. Green and red colors represent gains
and losses, respectively. White colors correspond to areas where no alterations are predicted.

Origanum dictamnus (Figure 3) is the only of the studied species that reveals inconsis-
tency between the results of the different climate scenarios. In MICRO-6 (126), only minor
gains are predicted all over the island without losses, in contrast to the other three, where
losses dominate with no gains, like the patterns of the other species of the same group.

Calamintha nepeta subsp. grandulosa, Origanum vulgare subsp. hirtum, and Salvia
pomifera subsp. pomifera (Figure 4) reveals a pattern with intense spatial discontinuities
between gains and losses, which are predicted to take place in the case of Calamintha nepeta
subsp. grandulosa and Origanum vulgare subsp. hirtum between western and central parts,
while in the case of Salvia pomifera subsp. pomifera between the eastern and western parts of
the island.
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Figure 4. Spatial pattern of gains and losses of potential cultivated areas of the intermediate group
for the studied years and the future climate change scenarios. Green and red colors represent gains
and losses, respectively. White colors correspond to areas where no alterations are predicted.

The above classification of species into three groups also results from the stacked
area plots of calculated cell change statistics for different years and climatic scenarios for
both Shared Socio-Economic Pathways (Figure 5), where the portion of cells turned to
suitable, remained suitable, remained unsuitable, and turned to unsuitable is quantitatively
presented. In addition, the Stability Index (Figure 6) remains in relatively high values for
all species except for the disadvantaged group members.

The predicted number of species (Figure 7) for the present varies across the island,
with the lower values distributed in mountain areas. The main variation between present
and future projections is estimated to be the significant reduction in areas with high
numbers of species in the eastern and central parts of the island and their rarefaction in the
western part, while the mountain areas remain with close to zero number of species in all
future projections.
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4. Discussion

There is an undeniable interest in studying the effects of future climate change in
several aspects of plant conservation and agriculture [54–56]. Such studies are necessary to
predict the stability of the environment in new potential initiatives, for example, the ex situ
cultivation of wild medicinal plants in the frame of precision agriculture. Our results on the
climate change dependencies of ex situ cultivation of ten wild medicinal taxa reveal species-
dependent effects. Three groups of species were identified, the favored, the disadvantaged,
and the intermediate group, concerning gains and losses in areas of potential cultivation.
These data can be directly utilized for possible management implications at the regional
level to help individual practitioners.

A species-dependent response of medicinal plants to climate change scenarios is
supported by other studies for other areas and biomes, such as in Indonesia [57]. Gains and
losses of predicted areas of occurrence for medicinal plants under future climatic conditions,
which are in line with a species dependency concept, were also reported for several regions,
such as Nepal [58], South Africa [59], and Egypt [60]. You et al. [61] reported that Rhodiola
species would increase their habitat distribution in Asia, and Zhang et al. [62] suggested
that under two kinds of SSPs, Ephedra sinica will increase its total suitable areas significantly,
while Guo et al. [63] showed that under future climate scenarios, high-quality habitats of
Schisandra sphenanthera will continue to decrease and draw near to extinction. This indicates
that the species dependency response covers all the predicted distribution range shifting,
from the expansion to the reduction or even extinction of the species from a given area.

On the other side, our results suggest that the species-dependent responses to climate
change scenarios can be classified into groups, which likely indicates functional similarities
between members within each group. As the species examined at the studied scale are
phylogenetically close, being members of the Subfamily Nepetoidae Tribe Menthae [64], and
well adapted to the Mediterranean environment, functional similarities, and divergences
should probably be investigated at a finer scale of traits (species-level plant functional
attributes), including the secondary metabolites and/or the biochemical pathways for their
biosynthesis [65] and not at the scale of traditional functional divisions, e.g., tree vs. shrub,
or deciduous vs. evergreen [66]. Of course, a broader set of species is required in future
studies to achieve this target.

Range shifts of individual species or groups of species due to climate change have
long been reported [67], and altitudinal and latitudinal variation seems to be among the
dominant worldwide patterns [68]. According to this pattern, poleward and upward shifts
were the main expansions of species, or species shifts predicted in response to climate
change [69]. Here, the reported expansions and retractions, which are in close agreement



Biology 2023, 12, 1327 14 of 17

with other types of range shifts beyond the mountain-latitude scheme, are possibly linked
to complex interactions between temperature and precipitations in the landscape of the
island. Mountain areas of the island remain unsuitable in all future climate scenarios and
under both Socio-Economic Pathways for all the studied species, independently of their
position in the classification scheme of the current study. Lowland range shifts presented
here follow a longitudinal variation, where both expansions and retractions also take place.

Of course, the projected range shifts of the studied species would be used by practi-
tioners in the decisional processes of cultivation but do not represent the only parameter of
the suitability of species concerning climate change or the suitability of the farmland. Other
ecological characteristics and non-climate factors may influence the species’ suitability and
the suitability of the farmlands, respectively. Both of them should be additionally explored
before the application of cultivation planning. For example, the effects of climate change on
the quality of medicinal plants concerning the accumulation of phytochemicals (secondary
metabolites) and their biosynthetic pathways remain poorly understood [70–73]. On the
other side, despite the climate suitability of an area, land transformations due to past
management practices may constitute lands unsuitable for cultivation. Additionally, our
methodology was centered on species-level data. Factors such as genetic diversity within
species, the population structure of the species on the island, or potential metapopulation
structures were not considered and could be part of future studies. Thus, these factors
ought to be recognized as potential limitations of the study.

Concerning plant secondary metabolic responses to global climate change, a general
scheme of high management value has been suggested by Sun et al. [74]. This could be
implemented in parallel to the findings of the current study by potential farmers as a
guideline in the decision-making process. According to this scheme, the phenolic and
terpenoid levels generally respond in a positive way to elevated carbon dioxide (eCO2) but
negatively to elevated nitrogen deposition (eN). In addition, the total alkaloid concentration
increases remarkably by eN. In contrast, decreased precipitation (dP) promotes the levels
of all secondary metabolites, while elevated temperature (eT) exclusively exerts a positive
influence on the levels of phenolic compounds.

5. Conclusions

Actions to address the consequences of climate change can be developed at two man-
agement levels: the higher level focuses on improvement actions, while the lower level
centers on adaptation actions. At the higher tier, international agreements guide govern-
ments towards implementing policies that reduce greenhouse gas emissions. Meanwhile,
at the lower level, adaptation actions are employed to diminish the vulnerability of specific
sectors to the effects of climate change [75].

Within this framework, the cultivation of wild medicinal plants, both as a component
of the agriculture sector and an ex situ conservation strategy, requires adaptation actions.
The findings of our study align with this demand, emphasizing the need for enhanced
cultivation planning.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biology12101327/s1, Figure S1: Predictive performance as indicated
by mean AUC.
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