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Abstract
Reaction systems (RSs) are a successful natural computing framework inspired by chemical reaction networks. A RS

consists of a set of entities and a set of reactions. Entities can enable or inhibit each reaction and are produced by reactions

or provided by the environment. In this paper, we define two quantitative variants of RSs: the first one is along the time

dimension, to specify delays for making available reactions products and durations to protract their permanency, while the

second deals with the possibility to specify different concentration levels of a substance in order to enable or inhibit a

reaction. Technically, both extensions are obtained by modifying in a modular way the Structural Operational Semantics

(SOS) for RSs that was already defined in the literature. Our approach maintains several advantages of the original

semantics definition that were: (1) providing a formal specification of the RS dynamics that enables the reuse of many

formal analysis techniques and favours the implementation of tools, and (2) making the RS framework extensible, by

adding or changing some of the SOS rules in a compositional way. We provide a prototype logic programming imple-

mentation and apply our tool to three different case studies: the tumour growth, the Th cell differentiation in the immune

system and neural communication.

Keywords Bioinformatics � SOS rules � Reaction systems � Logic programming

1 Introduction

Inspired by natural phenomena, many new computational

formalisms have been introduced to model different

aspects of biology. Basic chemical reactions inspired

Ehrenfeucht and Rozenberg’s reaction systems

(RSs) [1, 2]: a qualitative modelling formalism that is

based on two opposite mechanisms: facilitation and inhi-

bition. Facilitation means that a reaction can occur only if

all its reactants are present, while inhibition means that the

reaction cannot occur if any of its inhibitors is present. A

reaction system is a set of reactions, each determined by its

reactants, inhibitors and products, over a (finite) support

set of biological entities. The theory of RSs is based on

three principles: no permanency, any entity vanishes unless

it is sustained by a reaction; no competition, an entity is

either available for all reactions, or it is not available at all;

and no counting, the exact concentration level of available

entities is ignored, as if it was always high enough to

activate all enabled reactions.

Dynamically, RS exploit a discrete time model, where

each state collects the entities that are present at a given

time unit. The computation of the next state is a deter-

ministic procedure. However, the overall dynamics is
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influenced by the entities received (nondeterministically)

from the external environment, called contextual entities.

Such entities join the current state of the system and par-

ticipate to enabling and disabling reactions. The behaviour

of a RS is hence defined as a discrete time interactive

process consisting of a context sequence (the sets of entities

received at each unit of time from the environment), a

result sequence (the sets of entities produced at each unit of

time by reactions) and a state sequence (the join of the

context sequence with the result sequence). Since their

introduction, RSs have shown to be a quite general com-

putation model whose application ranges from the mod-

elling of biological phenomena [3–6] and molecular

chemistry [7] to theoretical foundations of

computing [8–10].

1.1 Towards extensible reaction systems

As it is often the case for computational models, the study

of RSs has to balance between simplicity and expressive-

ness. If more accurate models are required to precisely

account for certain aspects of biological system, then RSs

must be extended accordingly to increase their predictive

power, possibly making their theory less straight or even

cumbersome and more difficult to approach [11–17].

Moreover, different kinds of enhancements proposed in the

literature do not necessarily agree.

Our long-term goal is to develop a convenient way to

embed RSs in a modular and extensible formal framework,

where new extensions can be accommodated with a

friendly syntax, so to match simplicity with increased

expressiveness. To this aim, we plan to build on a process

algebraic representation of RSs, whose dynamics can be

expressed as a labelled transition system (LTS) generated

by a small set of inference rules defined by structural

induction (SOS style) [18, 19]. We have already exploited

this technique to explore and experiment with locally

scoped entities and recursively defined nondeterministic

contexts, where a single LTS accounts for different evo-

lutions of the same system. Among the main advantages of

our approach we mention: (1) transparency: each transition

label conveys information about all the activities connected

to the execution step it describes; (2) compositionality: the

behaviour of a composite system is defined in terms of the

behaviours of its constituents; and (3) extensibility: RS

variants can be enhanced by modifying/adding language

operators and inference rules in a modular fashion.

1.2 The problem

In this paper, motivated by three quite different case

studies taken from the literature, we investigate the possi-

bility to devise general-purpose extensions of our

framework to tackle quantitative features of biological

systems. The three case studies are concerned with a model

of drug administration in tumour growth, a complex gene

network that regulates the differentiation of T lymphocytes

and the modelling of synaptic transmission between neu-

rons, which we briefly introduce below.

Drug administration in tumour growth We develop a

model for comparing the efficacy of drug administration

strategies to block the tumour growth. Our model is

inspired by the delay differential equation model presented

in [20], where delays are added to differential equations to

describe the duration of the different phases of the cell

cycle. In particular, we model the immune system response

and a phase-specific drug able to alter the natural course of

action of the cell cycle of the tumour cells. While a general

method for transforming differential equation models into

RSs in such a way to preserve all properties is likely

unfeasible, we use the case study to demonstrate that, for

this particular example, it is possible to exploit delays and

durations in order to rediscover some of the phenomena

also present in the differential equation model. In this case,

the advantage is of course the simplicity offered by a dis-

crete time model and by the key feature of RSs (no per-

manency, no competition, no counting).

Regulating differentiation in Th cells We focus on the

discrete dynamical model for differentiation in Th cells as

proposed in [21], which was able to reproduce the most

important dynamics aspects of the regulatory process.

While a previous RS encoding had to classify different

levels of the same entity in separate objects (see [22]), thus

requiring some arbitrary ad hoc classification, we exploit

this case study to show some advantages of using numer-

ical (discrete) concentration levels instead of (distinct)

object levels in RS models.

Synaptic transmission We introduce a simple functional

model with a quantitative abstraction for synaptic trans-

mission, that is the process that allows two neurons con-

nected by a synapse to communicate. Communication

consists in impulsive chemical signals that are sent from

the first neuron to the second. Chemical signals take the

form of neurotransmitters that are released by the first

neuron and perceived by the second neuron, and they are

stimulated by ionic currents. Mathematical continuous

models were applied to model the dynamics of this synapse

communication [23]. Here, we do not consider the kinetic

rates of the different biological reactions, but we make a

combined use of delays, durations and concentration levels

to model different facets of this complex phenomenon.

Although our model is very simple and deterministic, we

show that the dynamics of the entire system is faithfully

modelled and can be compared to more complex approa-

ches such as [24], where a stochastic modelling method is

used.
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1.3 Contribution

The above case studies serve to witness that the ability to

account for reactions with different speeds or to define

different reactions according to the levels of concentration

of certain entities can play a very important role in the

study of biological phenomena. Therefore, in this paper we

propose two conservative extensions of RSs that try to

increase the expressiveness while preserving its simplicity

as much as possible.

First, we add the possibility to express reaction delays

and durations, which makes it possible to encode reactions

with different speeds. A reaction with associated delay n

will deliver its products after n time units. The value zero

for n represents fastest reactions (0 is the smallest delay,

the product being immediately available) but delays can

otherwise take any integer value n[ 0 to model slower and

slower reactions. For reactions, the delay is thus the time

that elapses between the enabling of the reaction itself and

its product being available in the system. Following this

idea also a duration of ‘permanency’ can be specified for

each reaction. A reaction r that has delay n and duration

m will deliver, if applicable, its products after n time units

and such products will remain available for the following

m time units before vanishing.

The second enhancement adds some quantitative infor-

mation to each entity to model concentration levels that can

influence both the facilitation and inhibition mechanisms of

reactions. Each entity in a reaction comes with an

approximated quantitative threshold that will be necessary

for enabling the reaction. We note that we still maintain a

qualitative perspective on the biological system, since the

concentration levels will be used to determine the set of

reactions that can be applied in any step, whereas compe-

tition between different enabled reactions to ‘consume’

available reactants will not be considered.

Most importantly, although we formalise the two fea-

tures separately for ease of presentation, they can be inte-

grated and used in combination without much efforts. Also,

they are conservative extensions, meaning that the new

features can be readily cancelled out by some default

parameters whenever we just want to study their ordinary

RS counterparts. This witnesses the flexibility, extensibility

and modularity of an SOS-based approach.

The formal specification has been instrumental to

develop a prototype implementation in Prolog that allows

us to perform computational experiments and to compute

and inspect the resulting LTS. Since the code follows the

formal specification very closely (apart for minor optimi-

sations), its soundness is easy to check by code inspection

and the implementation will be easy to extend if new

features must be added.

The tool has been fundamental to experiment with the

case studies, because even if small- to medium-sized

specifications were sufficient to encode the biological

systems under scrutiny, it would have been very difficult

and time consuming to analyse their behaviour without any

automatic support.

Structure of the paper In Sect. 2, we recall the basics of

RSs. In Sect. 3, we recall the syntax and operational

semantics of our process algebra for RSs. The original con-

tribution starts from Sect. 4, where we add new features to

our framework: we introduce the concepts of delay and

duration in Sect. 4.1 and linear patterns for expressing con-

straints on the concentration levels of the entities in Sect. 4.2.

Section 5 describes the related work. The logic programming

implementation of the new features is described in Sect. 6. In

Sects. 7–9, we show how the extensions proposed in Sect. 4

can improve the study of the three biological phenomena we

selected. For each case study, we report the key findings of

our experimentation with the tool from Sect. 6. Section 10

discusses some related work and concludes the paper.

This article is the full version of the conference

paper [25], here extended with a more detailed account of

the theory behind our RS enhancements, many small

examples to illustrate the syntax and semantics of our

models, an in-depth inspection of the first two case studies

and an entirely new example about synaptic transmission.

We have also notably extended the implementation of our

tool adding several features. We just mention a new parser

for our extended syntax and an automated graphical rep-

resentation of the computations, which we illustrate by

including in the paper some automatically generated fig-

ures and graphics.

2 Reaction systems

The theory of reaction systems (RSs) [2] was born in the

field of Natural Computing to model the behaviour of

biochemical reactions in living cells. While our contribu-

tion builds on a process algebraic presentation of RSs, we

recall here the main concepts as introduced in the classical

set theoretic version. In the following, we use the term

entities to denote generic molecular substances (e.g.,

atoms, ions, molecules) that may form some biochemical

system.

Let S be a (finite) set of entities. A reaction in S is a

triple a ¼ ðR; I;PÞ, where R; I;P � S are finite sets1 such

that R \ I ¼ ;. The sets R, I and P are the sets of reactants,

1 Usually, R and I are required to be nonempty sets, but we prefer to

relax this constraint to avoid the introduction of dummy entities and

keep our models easier to read. We require instead that R [ I is not
empty.
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inhibitors and products, respectively. All reactants have to

be present in the current state for the reaction to take place.

The presence of any of the inhibitors blocks the reaction.

Products are the outcome of the reaction, to be released in

the next state. We denote with racðSÞ the set of all reac-

tions over S. A reaction system is a pair A ¼ ðS;AÞ where
S is the set of entities, and A � racðSÞ is a finite set of

reactions over S.

Given the current set of entities W � S, the result of a

reaction a ¼ ðR; I;PÞ 2 racðSÞ on W, denoted resaðWÞ, is
given by:

resaðWÞ,
P if enaðWÞ

; otherwise

(
enaðWÞ, R � W ^ I#W

where enaðWÞ is called the enabling predicate for the

reaction a in state W: it requires that all reactants R are

present in W and that no inhibitor I is present in W, here

written I#W as a shorthand for I \W ¼ ; (it reads as ‘the

sets I and W are disjoint’). Similarly, the result of the

application of all reactions in A to W, denoted resAðWÞ, is
the obvious lifting of the above function, i.e.,

resAðWÞ,
[
a2A

resaðWÞ:

Since living cells are seen as open systems that react to

environmental stimuli, the behaviour of a RS is formalised

in terms of an interactive process. Let A ¼ ðS;AÞ be a RS

and let n� 0. An n-step interactive process in A is a pair

p ¼ ðc; dÞ s.t. c ¼ fCigi2½0;n� is the context sequence and

d ¼ fDigi2½0;n� is the result sequence, where Ci;Di � S for

any i 2 ½0; n�, D0 ¼ ;, and Diþ1 ¼ resAðCi [ DiÞ for any

i 2 ½0; n� 1�. The context sequence c represents the envi-

ronment, while the result sequence d is entirely determined

by c and A. We call s ¼ fWigi2½0;n� the state sequence, with
Wi,Ci [ Di, for any i 2 ½0; n�. Note that each state Wi in s
is the union of two sets: the context Ci at step i and the

result set Di ¼ resAðWi�1Þ from the previous step.

Example 1 We consider a toy RS defined by

A,ðS;AÞ S,fa; b; cg A,fa1g

whose unique reaction is a1,ðfa; bg; fcg; fbgÞ, to be

written more concisely as ðab; c; bÞ. Then, we consider a

3 - step interactive process p,ðc; dÞ, where

c,fC0;C1;C2;C3g; d,fD0;D1;D2;D3g;

with C0,fa; bg, C1,fag, C2,fcg, and C3,fcg; and

D0,;, D1,fbg, D2,fbg, and D3,;. The context

sequence can be written more concisely as c ¼ ab; a; c; c,

and similarly, the result sequence can be shortened as

d ¼ ;; b; b; ;. Then, the resulting state sequence is

s ¼ fW0;W1;W2;W3g ¼ ab; ab; bc; c. In fact, it is easy to

check that, e.g., W0 ¼ C0, D1 ¼ resAðW0Þ ¼
resAðfa; bgÞ ¼ fbg because ena1ðW0Þ, and

W1 ¼ C1 [ D1 ¼ fag [ fbg ¼ fa; bg.

3 SOS rules for reaction systems

Inspired by process algebras such as CCS [26],

in [18, 19, 27] the authors introduced an algebraic syntax

for RSs and equipped it with SOS inference rules defining

the behaviour of each operator. This made it possible to

consider a LTS semantics for RSs, where states are terms

of the algebra, each transition corresponds to a step of the

RS and transition labels retain some information on the

entities needed to perform each step. In this paper, we build

on the approach in [19], which we briefly summarise

below.

Definition 2 (RS processes) Let S be a set of entities. An

RS process P is any term defined by the following

grammar:

P:: ¼ ½M� M:: ¼ ðR; I;PÞ
��D��K��MjM

K:: ¼ 0
��X��C:K��Kþ K

��recX:K
where R; I;P � S are nonempty sets of entities, C;D � S

are possibly empty set of entities, and X is a process

variable.

An RS process P embeds a mixture process M that is an

arbitrary parallel composition of reactions (R, I, P), (pos-

sibly empty) sets of currently present entities D, and con-

text processes K. We write
Q

i2I Mi for the parallel

composition of all Mi with i 2 I. For example, we letQ
i2f1;2g Mi ¼ M1 j M2.

Example 3 A mixture process containing the reaction a1
from Example 1 with initial entities a and b can be written

ðab; c; bÞ j a j b, and its RS process as ½ðab; c; bÞ j a j b�.

A process context K is a possibly nondeterministic and

recursive system: the nil context 0 halts the computation;

the prefixed context C:K says that the entities in the

(possibly empty) set C are immediately available to be

consumed by the reactions, and then, K is the context

offered at the next step; the nondeterministic choice K1 þ
K2 allows the context to behave either as K1 or K2; X is a

process variable, and rec X: K is the usual recursive

operator of process algebras that intuitively corresponds to

the recursive definition X ¼ K (see Example 4). We writeP
i2I Ki for the nondeterministic choice between all Ki with

i 2 I. For example, we let
P

i2f1;2g Ki ¼ K1 þ K2.

Example 4 The context process a:b:0 represents a context

sequence where C0 ¼ fag and C1 ¼ fbg, while a:ðb:0þ
c:0Þ represents a nondeterministic context that initially
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provides the entity a and then either the entity b or the entity c

before stopping. The context process rec X: a:0þ b:X rep-

resents a nondeterministic context that, recursively, either

provides the entity a and then halts, or the entity b and iterates.

The keen reader might have already noticed from the

previous examples that there are different ways to represent

the same concept. For example, why should we care to

distinguish ½a j ðab; c; bÞ j b� from ½ðab; c; bÞ j ab�? Or

b:0þ b:0 from b:0? In fact, we prefer not to. In process

algebras, this is typically achieved by defining a suit-

able notion of structural equivalence � and by taking

processes up to such equivalence. Formally, we say that P

and P0 are structurally equivalent, written P � P0, when
they denote the same term up to the laws of commutative

monoids (unit, associativity and commutativity) for parallel

composition � j �, with ; as the unit, and the laws of

idempotent and commutative monoids for choice � þ �,
with 0 as the unit. We also assume D1 j D2 � D1 [ D2 for

any D1;D2 � S.

Remark 5 The processes ; and 0 are not interchangeable:

as it will become clear from the operational semantics, the

process ; can perform just a trivial transition to itself, while

the process 0 cannot perform any transition and stops the

computation.

Definition 6 (From RSs to RS processes) Let A ¼ ðS;AÞ
be a RS, and p ¼ ðc; dÞ an n-step interactive process in A,

with c ¼ fCigi2½0;n� and d ¼ fDigi2½0;n�. For any unit of time

i 2 ½0; n�, the corresponding RS process sA; pti is defined
as follows:

sA; pti,
Y
a2A

a j Di j Kci

" #

where the context process Kci,Ci:Ciþ1: � � � :Cn:0 is the

sequentialisation of the entities offered by ci,fCjgj2½i;n�.
We write sA; pt as a shorthand for sA; pt0.

Example 7 Here, we give the encoding of the reaction

system A from Example 1. The resulting RS process is as

follows:

P ,sA; pt ¼ sðS;AÞ; pt ¼ sðfa; b; cg; fa1gÞ; ðc; dÞt
¼ ½ðab; c; bÞ j ; j Kc�
� ½ðab; c; bÞ j Kc�
� ½ðab; c; bÞ j ab:a:c:c:0�

Note that D0 ¼ ; is inessential and can be discarded thanks

to structural congruence (because ; is the unit of parallel

composition).

As already exemplified, our syntax allows for more

general kinds of contexts than plain sequences. Nondeter-

ministic contexts can be used to describe several alternative

experimental conditions, while recursion can be exploited

to extract some regularity in the longterm behaviour of a

RS. Together, they can deal with a wide variety of in-

breadth/in-depth behavioural analysis.

The behaviour of RS processes is defined as an LTS

whose states are processes and whose transitions represent

the possibility to move from one process configuration to

another in a single unit of time. Transition labels are used

to compose behaviours of separate components and to

record some information about the entities involved in that

move.

Definition 8 (Label) A label is a tuple hWBR; I;Pi with

W ;R; I;P � S. The set of transition labels is ranged over by

‘.

In a transition label hWBR; I;Pi, we record the set W of

entities currently in the system (produced in the previous

step or provided by the context), the set R of entities whose

presence is assumed (either because they are needed as

reactants on an applied reaction or because their presence

prevents the application of some reaction); the set I of

entities whose absence is assumed (either because they

Fig. 1 SOS semantics of the RS

processes
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appear as inhibitors for an applied reaction or because their

absence prevents the application of some reaction); and the

set P of products of all the applied reactions. Our LTS will

be defined in such a way that any transition will carry a

label hWBR; I;Pi such that I and W [ R are disjoint,

written I#ðW [ RÞ.
As a convenient notation, we write ‘1 � ‘2 for the

component-wise union of labels. We also define a nonin-

terference predicate over labels, written ‘1 _ ‘2, that will

be used to guarantee that there is no conflict between

reactants and inhibitors of the reactions that take place in

two separate parts of the system. Formally, we let:

hW1BR1; I1;P1i � hW2BR2; I2;P2i
, hW1 [W2BR1 [ R2; I1 [ I2;P1 [ P2i

hW1BR1; I1;P1i _ hW2BR2; I2;P2i
, ðI1 [ I2Þ#ðW1 [W2 [ R1 [ R2Þ

Remark 9 In Sect. 4.2, when we will present the extension

with concentration levels, transition labels will be extended

to include lower bounds on the availability of certain

entities, and the operators � and _ will be updated

accordingly.

Definition 10 (Operational semantics) The operational

semantics of processes is defined by the set of SOS infer-

ence rules in Fig.1.

The process 0 has no transition. The rule ðEntÞ makes

available the entities in the (possibly empty) set D, then

reduces to ;. As a special instance of ðEntÞ, we have, e.g.,

; �!h;B;;;;;i ;.
The rule ðCxtÞ says that a prefixed context process C:K

makes available the entities in the set C and then reduces to

K. The rule ðRecÞ is the classical rule for recursion. Here,

K½rec X: K=X� denotes the process obtained by replacing in K

every free occurrence of the variable X with its recursive

definition rec X: K. For example, we can use rule ðRecÞ to
derive transitions such as

rec X: a:b:X �!haB;;;;;i
b:rec X: a:b:X. The rules ðSumlÞ and

ðSumrÞ select a move of either the left or the right com-

ponent and discard the other process.

The rule ðProÞ executes the reaction (R, I, P) (its reac-

tants, inhibitors and products are recorded in the label),

which remains available at the next step together with P.

The rule ðInhÞ applies when the reaction (R, I, P) should

not be executed; it records in the label the possible causes

for which the reaction is disabled: possibly some inhibiting

entities ðJ � IÞ are present or some reactants ðQ � RÞ are
missing, with J [ Q 6¼ ;, as at least one cause is needed for

explaining why the reaction is not enabled. The rule ðParÞ
puts two processes in parallel by pooling their labels and

joining all the set components of the labels. The sanity

check ‘1 _ ‘2 is required to guarantee that there is no

conflict between the two labels. The labels ‘1 and ‘2 are

Fig. 2 Full SOS derivation of a

transition for process P0 (see

Example 11)

Fig. 3 A second SOS derivation

of a different transition for

process P0 (see Example 11)

123

6340 Neural Computing and Applications (2023) 35:6335–6359



joined in the conclusion of ðParÞ, which carries the label

‘1 � ‘2.

Finally, the rule ðSysÞ requires that all the processes of

the systems have been considered, and also checks that all

the needed reactants are actually available in the system

(R � W). In fact, this constraint can only be met on top of

all processes. The check that inhibitors are absent (I#W) is

not necessary, as it is embedded in rule ðParÞ by the pre-

mise ‘1 _ ‘2.

Example 11 Let us consider the RS process

P0,½ðab; c; bÞ j rec X: c:0þ ab:X� from Example 7.

The process P0 has two outgoing transitions, depending on

the entities provided by the context. The case where the

context provides fa; bg is detailed in Fig. 2, where we use

the shorthand K0,rec X: c:0þ ab:X. Alternatively, the

context K0 can provide fcg, in which case we derive the

transition in Fig. 3.

The following theorem (from [19]) shows that the

rewrite steps of a RS exactly match the transitions of its

corresponding RS process.

Theorem 12 Given a RS A ¼ ðS;AÞ and an n-step inter-

active process p ¼ ðc; dÞ, with context sequence

c ¼ fCigi2½0;n�, result sequence d ¼ fDigi2½0;n� and state

sequence s ¼ fWigi2½0;n� (where, as usual, Wi,Ci [ Di for

any i 2 ½0; n�), let Pi,sA; pti. Then, 8i 2 ½0; n� 1�:

1. Pi �!hWBR;I;Pi
P implies W ¼ Wi, P ¼ Diþ1 and P � Piþ1;

2. there exists R; I � S such that Pi �!hWiBR;I;Diþ1i
Piþ1.

4 Quantitative variants of reaction systems

In the following, we will introduce two different features in

reaction systems.

The first extension is along the time dimension, to

handle the concept of delay and durations/decay for reac-

tion products. Instead of making the products of a reaction

immediately available at the next time unit and then vanish

in one step (as done in the original framework), we now

allow the possibility to specify that a reaction will make

available its products after a certain number of time units

and that such products will not decay after just one step,

but they can have a longer persistency. RS processes with

delays and durations will be exploited to experiment with

the first and third case studies.

The second extension adds some quantitative informa-

tion for modelling concentration levels and linear con-

straints over them. RS processes with concentration levels

will be exploited in the second and third case studies.

Both variants are obtained as simple modifications of the

process algebraic framework presented in Sect. 3. For the

sake of simplicity, both variations are described separately,

as enhancements of the original SOS semantics, but it

should be clear that they can be combined in a unique

integrated framework.

4.1 Delays, durations and timed processes

In biology, it is well known that reactions occur with

different frequencies. For example, since enzymes catal-

yse reactions, many reactions are more frequent when

some enzymes are present, and less frequent when such

enzymes are absent. Moreover, reactions describing

complex transformations may require time before releas-

ing their products. To capture these dynamical aspects in

our framework by preserving the discrete and abstract

nature of RS, we propose a discretisation of the delay

between two occurrences of a reaction by using a scale of

natural numbers, from 0 (smallest delay, highest fre-

quency) up to n (increasing delay, lower frequency).

Intuitively, the notation Dn stands for making the enti-

ties D available after n time units, and we use the shorthand

D for D0, meaning that the entities are immediately

available. Similarly, we can associate a delay value with

the product of each reaction by writing ðR; I;PÞn when the

product of the reaction will be available after n time units,

and we write (R, I, P) for ðR; I;PÞ0. The syntax for mixture

processes is thus extended as below and the operational

semantics is changed accordingly (see Fig. 4).

M:: ¼ ðR; I;PÞn
�� Dn

�� K �� MjM

In Fig. 4, we only report the rules that are new and those

that override the ones in Fig. 1. Note, e.g., that the

semantics of context processes is unchanged. Rule ðTickÞ
represents the passing of one time unit, while rule ðEntÞ
notifies the availability of entities whose delay has expired.

Rule ðProÞ attaches to the product of the reaction the same

delay as the one of the reaction itself, while rule ðInhÞ is

used when the reaction is not enabled.

In the following, we use the name timed processes for

processes with delays and durations. Our extension is

conservative, i.e., it does not change the semantics of

processes without delays and durations. Therefore, the

encoding of standard RSs described in Def. 6 still applies.

Proposition 13 Timed processes are a conservative

extension of RS processes.
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Example 14 Let us consider two RSs sharing the same

entity set S ¼ fa; b; c; dg and the same reactions

a1 ¼ ða; b; bÞ, a2 ¼ ðb; a; aÞ, a3 ¼ ðac; b; dÞ,
a4 ¼ ðd; a; cÞ, but working with different reaction speeds.

For simplicity, we assume only two speed levels are dis-

tinguished: 0 the fastest and 1 the slowest. The reaction

system A1 provides the following speed assignment to its

reactions: fa11; a2; a3; a14g. The reaction system A2 provides

the following speed assignment to its reactions:

fa1; a12; a13; a4g. We assume that the context process for

both reaction systems is just K,ac:;:0. The LTSs of their

corresponding timed processes are in Fig. 5, where, for

brevity we let:

M1,a11 j a2 j a3 j a14 M2,a1 j a12 j a13 j a4:

Additionally, inspired by [12], we can also provide

entities with a duration, i.e., entities that last a finite

number of steps. To this aim, we use the syntax D½n;m� to
represent the availability of D for m[ 0 time units starting

after n time units from the current time. By assuming that

each reaction only produces entities with the same dura-

tion, we can describe duration and delay also associated

with reactions: ðR; I;PÞ½n;m� means that all the entities in P

(the products) have a delay of n but will last m steps (once

they appear in the state). While we could easily define the

SOS rules for the above processes, we note that durations

are just syntax sugar, because they can be encoded in timed

processes as follows:

D½n;m�
,

Ynþm�1

k¼n

Dk ðR; I;PÞ½n;m�,
Ynþm�1

k¼n

ðR; I;PÞk:

For example, we have a½2;3� � a2 j a3 j a4 and

a½0;1� � a0 � a.

4.2 Concentration levels and linear processes

Quantitative modelling of chemical reaction requires tak-

ing molecule concentrations into account. An abstract

representation of concentrations that is considered in many

formalisms is based on concentration levels: rather than

representing such quantities as real numbers, a finite clas-

sification is considered (e.g., low/medium/high) with a

granularity that reflects the number of concentrations levels

at which significant changes in the behaviour of the

molecule are observed. In classical RSs, the modelling of

concentration levels would require using different entities

for the same molecule (e.g., al, am, and ah for low, medium

and high concentration of a, respectively). This may

introduce some additional complexity due to the need of

guaranteeing that only one of these entities is present at any

time for the state to be consistent. Moreover, consistency

would be put at risk whenever entities representing dif-

ferent levels of the same molecule (e.g., al and ah) could

be provided by the context.

We now enhance RS process by adding some quantita-

tive information associated with each entity of each reac-

tion, so that levels are just natural numbers and the

concentration levels of the products depend on the con-

centration levels of reactants. The idea is to associate linear

expressions, such as e ¼ m � xþ n (where m 2 N and n 2
Nþ are two constants and x stands for a variable ranging

over natural numbers),2 to reactants and products of each

reaction. In the following, we write s(e) to state that

expression e is associated with entity s. Expressions asso-

ciated with reactants are used as patterns to match the

current levels of the entities involved in the reaction. Pat-

tern matching allows to find the largest value for the

variable x (the same for all reactants) that is consistent with

the current concentration levels. Then, linear expressions

associated with products (that can contain, again, variable

Fig. 4 SOS semantics with

delays and durations

Fig. 5 Two transition sequences

of timed processes P1 and P2

(see Example 14)

2 To ease the presentation, we require n 2 Nþ to guarantee that e
evaluates to a positive number, even when x ¼ 0. Alternative choices

are possible to relax this constraint.
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x) can be evaluated to compute the concentration levels of

those entities. Expressions can be associated also with

reaction inhibitors in order to let such entities inhibit the

reaction only when their concentration level is above a

given threshold. However, we require inhibitor expressions

to be ground; namely, they cannot contain the m � x term

and simply correspond to a positive natural number n. Also

the state of the system has to take into account concen-

tration levels. Consequently, in the definition of states we

will exploit again ground expressions: each entity in the

state is paired with a natural number representing its con-

centration level.

Example 15 Assume that we want to write a reaction that

produces c with a concentration level that corresponds to

the current concentration level of a (but at least one

occurrence of a must be present), and that requires b not to

be present at a concentration level higher than 1. Such a

reaction would be r1 ¼ ðR; I;PÞ where R ¼ aðxþ 1Þ, I ¼
bð2Þ and P ¼ cðxþ 1Þ. In the state fað3Þ; bð1Þg. Reaction
r1 is enabled by taking x ¼ 2 (the maximum value for x

that satisfies aðxþ 1Þ	 að3Þ). Since bð1Þ\bð2Þ, entity c

will be produced with concentration level

cðxþ 1Þ ¼ cð2þ 1Þ ¼ cð3Þ. On the contrary, in the state

fað2Þ; bð2Þg the reaction a is not enabled because the

concentration of the inhibitor is too high (bð2Þ£bð2Þ).

To formalise the above linear constraints we introduce

some notation and terminology. A ground linear expression

is just a natural number, and e[v/x] represents the substi-

tution of variable x with the value v in e. A pattern T ¼
fs1ðe1Þ; :::; skðekÞg is a set of associations of linear

expressions to entities. We write TðsiÞ for the linear

expression associated with si in T. When s is not present in

T, we let TðsÞ ¼ 0 by default, and we write s 2 T whenever

TðsÞ 6¼ 0.

Definition 16 (Ground patterns) A pattern T ¼
fs1ðe1Þ; :::; skðekÞg is ground if TðsiÞ 2 N for any si 2 S

and we write bTc in this case. We denote by T[v/x] the

ground pattern such that T½v=x�ðsiÞ ¼ ei½v=x� for all si 2 S.

A ground pattern T is unitary if TðsiÞ 2 f0; 1g for any

si 2 S. Given two ground patterns T1; T2, we write T1 	 T2
if T1ðsÞ	 T2ðsÞ for all s 2 S.

Example 17 Let us consider the pattern T1 ¼ faðxþ
1Þ; bð2xþ 1Þg and the ground pattern T2 ¼ fað3Þ;
bð3Þ; cð2Þg. We have T1ðaÞ ¼ xþ 1, T1ðbÞ ¼ 2xþ 1 and

T1½2=x� ¼ fað3Þ; bð5Þg. It is immediate to verify that

T1½1=x� 	 T2, while T1½2=x�£T2.

We extend the syntax of reactions r ¼ ðR; I;PÞ by tak-

ing I as a ground pattern, and R and P as patterns such that

if R is ground then P is ground. Formally, r is valid iff bIc
and bRc ) bPc.

For example, the triple ðað1Þ; bðxþ 1Þ; cðxþ 1ÞÞ is not
valid because its inhibitor pattern fbðxþ 1Þg is not ground,
and moreover, the product pattern fcðxþ 1Þg is not ground

while the reactant pattern fað1Þg is ground. Vice versa, the

triple ðaðxþ 1Þ; bð1Þ; cðxþ 1ÞÞ is a valid reaction. We will

see later that it makes sense to allow for reactants sets R

and inhibitors sets I that are not disjoint (see Example 23).

As a special case, when all patterns of a reaction r ¼
ðR; I;PÞ are ground (respectively, unitary), we say r is

ground (respectively, unitary). Unitary reactions behave as

reactions of ordinary RSs. A RS whose reactions are all

ground (respectively, unitary) is also called ground (re-

spectively, unitary).

A state W is just a ground pattern. We write I#W and

overload the previously used notation for denoting disjoint

sets when the inhibitor pattern I does not conflict with the

state W, i.e., we let

I#W,8s 2 I: WðsÞ\IðsÞ:

The definition states that whenever the entity s is present in

the inhibitor pattern I (i.e., IðsÞ[ 0), then the threshold

required for s to inhibit the reaction is strictly larger than

the available concentration of s in the current state (i.e.,

WðsÞ\IðsÞ).3
At each step, starting from a given state, the semantics

verifies the enabled reactions using function enðÞ, com-

putes the multiplicity of each reaction application (the

value of x obtained by matching the current state W against

the pattern R) by function mulðÞ, and computes the

resulting state by function resðÞ. Formally, given a reaction

a ¼ ðR; I;PÞ and a state W, we define:

• the function enða;WÞ returns 1 if the reaction is

enabled, 0 otherwise

enða;WÞ,
1 if R½0=x� 	W and I#W

0 otherwise

(

• the function mulða;WÞ returns the value v that will

correctly bind x when applied to state W

mulða;WÞ,
1 if enða;WÞ ¼ 0 or bRc

maxfv 2 N j R½v=x� 	Wg otherwise

�

• the function resða;WÞ returns the product of the

reaction a on state W

resða;WÞ, enða;WÞ � P½mulða;WÞ=x�

3 Note that the predicate I#W is no longer commutative: the first

argument represents the inhibitors, while the second argument the

available entities.
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Example 18 Consider again the previous example, r1 ¼
ðR; I;PÞ with R ¼ aðxþ 1Þ, I ¼ bð2Þ and P ¼ cðxþ 1Þ
and the state W ¼ fað3Þ; bð1Þg, we compute:

• enðr1;WÞ ¼ 1, as R½0=x� ¼ að1Þ	 að3Þ and

WðbÞ ¼ 1\2 ¼ IðbÞ.
• mulðr1;WÞ ¼ 2, as maxfx 2 N j R½v=x� ¼ aðvþ 1Þ	

að3Þbð1Þ ¼ Wg ¼ 2:

• resðr1;WÞ ¼ enðr1;WÞ � P½mulðr1;WÞ=x� ¼
1 � cð2þ 1Þ ¼ cð3Þ:

Once the product of each enabled reaction has been calcu-

lated, we need to compute the next state. We consider the

operator t that computes the maximum between two ground

patterns by computing the point-wise maximum value of each

entity. Analogously, to combine inhibitor constraints, we con-

sider the operator u that computes the minimum between two

ground patterns. The two operators are defined as follows:4

ðT1tT2ÞðsÞ,maxfT1ðsÞ; T2ðsÞg

ðT1uT2ÞðsÞ,

T1ðsÞ if T2ðsÞ ¼ 0

T2ðsÞ if T1ðsÞ ¼ 0

minfT1ðsÞ; T2ðsÞg otherwise

8>><
>>:

Example 19 Assume we add a new reaction r2 ¼
ðR0; I0;P0Þ to the previous example, where

R0 ¼ aðxþ 2Þbð1Þ, I0 ¼ ;, P0 ¼ cð3xþ 2Þ. The reaction r2
is enabled in the state W ¼ fað3Þ; bð1Þg and it produces

resðr2;WÞ ¼ enðr2;WÞ � P0½mulðr2;WÞ=x�
¼ 1 � cð3xþ 2Þ½1=x� ¼ cð5Þ:

Since we already observed that resðr1;WÞ ¼ cð3Þ, we

conclude that the reactions r1 and r2 in the state W produce

the entities cð3Þ t cð5Þ ¼ cð5Þ.

In the SOS style, the hypotheses under which a reaction

is applied or inhibited are recorded in the label and their

consistency is verified by rule (Par) and (Sys). We stretch

here the fact that such hypotheses consist of constraints

over concentration levels. If we assume that a reaction a ¼
ðR; I;PÞ is enabled with multiplicity v, it means that it must

be 8s 2 I: WðsÞ\IðsÞ and 8s 2 S: R½v=x�ðsÞ	WðsÞ but

also that R½vþ 1=x�£W . The first two constraints can be

already represented in the ordinary labels. Instead, we note

that the property R½vþ 1=x�£W is quantified existentially

over the entities, i.e., it is equivalent to 9s 2 S:

R½vþ 1=x�ðsÞ[WðsÞ. Thus, in general, different con-

straints R1£W and R2£W due to the applications of dif-

ferent reactions cannot be combined in a single expression

of the form R£W . To account for such constraints, we need

to extend labels with a set of bounds B ¼ fR1; :::;Rng for

which we shall require that in the current state W we have

8i 2 ½1; n�: Ri£W . To this aim, for B ¼ fR1; :::;Rng and

‘ ¼ hWBR; I;Pi, we write B£‘ iff 8i 2 ½1; n�: Ri£W .

Definition 20 (Bounded Labels) A bound is a set B ¼
fR1; :::;Rng of ground patterns. A bounded label is a pair

B@‘, where B ¼ fR1; :::;Rng is a set of bounds and ‘ ¼
hWBR; I;Pi is an ordinary label. As a special case, we

abbreviate ;@‘ as ‘.

Our LTS will be defined in such a way that any transi-

tion will carry a bounded label B@hWBR; I;Pi such that

I#ðW t RÞ and B£‘.

To define the bound related to the application of a

reaction when the rule ðProÞ is applied, we define the

function bndðÞ as follows:

bndðR; vÞ, ; if Rb c
fR½vþ 1=x�g otherwise

�

To handle the presence of bounds, we update the operation

� and _, to combine and to compare extended labels, as

follows:

ðB1@‘1Þ � ðB2@‘2Þ,ðB1 [ B2Þ@ð‘1 � ‘2Þ
hW1BR1; I1;P1i � hW2BR2; I2;P2i

,hW1 tW2BR1 t R2; I1 u I2;P1 t P2i
ðB1@‘1Þ _ ðB2@‘2Þ

,‘1 _ ‘2 ^ ðB1 [ B2Þ£ð‘1 � ‘2Þ
hW1BR1; I1;P1i _ hW2BR2; I2;P2i

,ðI1 u I2Þ#ðW1 tW2 t R1 t R2Þ

Apparently, the syntax for linear processes is the same

as the ordinary one presented in Sect. 3.

M:: ¼ ðR; I;PÞ
�� D �� K �� MjM

K:: ¼ 0
�� X �� C:K �� Kþ K

�� rec X: K

The difference is that now C and D are ground patterns,

and in any reaction (R, I, P), we require that both bIc and

bRc ) bPc hold. The operational semantics for linear

4 We recall that TðsÞ ¼ 0 means that s is not mentioned in T. Fig. 6 SOS semantics for concentration levels
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processes is changed accordingly (see Fig. 6, where we

only report the rules that are modified).

A linear process is ground if it contains only ground

reactions. It is immediate to observe that if the reaction

(R, I, P) is ground, any application of rule ðProÞ will

produce a label of the form ;@‘, because bndðR; vÞ ¼ ; for

any v when bRc. Since nonempty bounds B can only be

produced by rule ðProÞ, it follows that any transition of a

ground RS process will also have the form ;@‘, i.e., only

ordinary labels are generated by ground linear processes.

A (ground) linear process is unitary if it contains only

unitary patterns. It is not difficult to see that unitary pro-

cesses behave as the ordinary RS processes in Sect. 3.

Hence, likewise timed processes, we have the following

result.

Proposition 21 Linear processes are a conservative

extension of RS processes.

Example 22 The unary process ½ðað1Þbð1Þ; cð1Þ; bð1ÞÞ j
rec X: cð1Þ:0þ að1Þbð1Þ:X� corresponds to the RS pro-

cess P0,½ðab; c; bÞ j rec X: c:0þ ab:X� from

Example 11.

Example 23 Let us consider the linear process

P1,½ðaðxþ 1Þ; að4Þ; aðxþ 2ÞÞ j K�

where K,rec X: að3Þ:X We remark that the reaction a ¼
ðaðxþ 1Þ;að4Þ; aðxþ 2ÞÞ contained in P1 has nondisjoint

reactants and inhibitors. This makes sense because the

inhibitor pattern að4Þ can be used to fix a boundary on the

maximum concentration level of a where the reaction is

still enabled. Letting R ¼ aðxþ 1Þ, I ¼ að4Þ, P ¼ aðxþ 2Þ
and W ¼ að3Þ, we have:

R½0=x� ¼ að1Þ	 að3Þ ¼ W R½2=x� ¼ að3Þ	 að3Þ ¼ W

R½1=x� ¼ að2Þ	 að3Þ ¼ W R½3=x� ¼ að4Þ£að3Þ ¼ W

Moreover I#W holds, because the condition 8s 2
I: WðsÞ\IðsÞ amounts to WðaÞ ¼ 3\4 ¼ IðaÞ. Therefore,
enða;WÞ ¼ 1, because R½0=x� 	W and I#W , mulða;WÞ ¼
maxfv 2 N j R½v=x� 	Wg ¼ 2 and

resða;WÞ ¼ enða;WÞ � P½mulða;WÞ=x� ¼ P½2=x� ¼ að4Þ:

Consequently, we can derive the transition P1 �!
B@‘

P2 as

shown in Fig. 7. Note that, at the next time unit, the

reaction a will not be enabled, because for W 0 ¼ að4Þ t
að3Þ ¼ að4Þ we have that I#W 0 is false (the condition 8s 2

I: W 0ðsÞ\IðsÞ amounts to W 0ðaÞ ¼ 4£4 ¼ IðaÞ). Thus, by
composing in parallel three transitions (derived using rule

(Inh), (Ent) and (Rec), respectively).

Since að3Þ t að4Þ ¼ að4Þ, we can conclude that

P2 �!
;@hað4ÞBað4Þ;;;;i

P1.

5 Related work

The model of RSs is qualitative as there is no direct rep-

resentation of the number of molecules involved in bio-

chemical reactions as well as of rate parameters influencing

the frequency of reactions. In [13], the authors introduce an

extension with discrete concentrations allowing for quan-

titative modelling. They demonstrate that although RSs

with discrete concentrations are semantically equivalent to

the original qualitative RSs, they provide much more

succinct representations in terms of the number of mole-

cules being used. They then define the problem of reach-

ability for RSs with discrete concentrations and provide its

suitable encoding in satisfiability modulo theory, together

with a verification method (bounded model checking) for

reachability properties. Experimental results show that

verifying RSs with discrete concentrations instead of the

corresponding basic RS is more efficient.

A crucial feature of a RS is that (unless introduced from

outside the system) an entity from the current state will

belong also to the next state only if it is in the product set of

an enabled reaction. In other words, an entity vanishes

unless it is sustained by a reaction. In [12], it is introduced

an extension where such a property is mitigated; indeed,

they provide each entity x with a duration d(x), which

guarantees that x will last through at least d(x) consecutive

states. The authors demonstrate that duration/decay is a

result of an interaction with a ‘structured environment’, and

they also investigate fundamental properties of state

sequences of reaction systems with duration.

Each of the above enhancements of the RS framework

requires complex changes in the syntax and semantics of

the original framework, and they cannot be easily com-

bined together. Our formal framework for RSs is more

flexible, since it allows us to define extensions by simply

playing with the defined SOS rules. We have shown this
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possibility by defining extensions with reaction delays and

durations in Sect. 4.1, and with concentration levels in

Sect. 4.2. Also adapting our prototype tool for RS execu-

tion as we discuss in Sect. 6 is made easier by the SOS

formalisation. It is worth noting that these and other

extensions can be combined and integrated in our frame-

work by following the same approach. There are several

approaches using process algebras for modelling biological

systems which are based on SOS formalisations (cf. the

survey [28]), but we are the first to combine the expres-

siveness and flexibility of process algebras and RSs.

There are some similarities between our mechanism for

delays and lazy transition systems introduced in [29] for

modelling asynchronous circuits. Indeed the work [29]

introduces a methodology to optimise asynchronous cir-

cuits by making the assumption that a gate introduces a

noninstantaneous delay and that two gate delays have

always a bigger delay than a single gate. This allows to

determine whether an event in the graph of the states

happens before another one, or at the same time. In order to

model this behaviour, lazy transition systems distinguish

between the enabling and the firing of an event in a tran-

sition system. This looks similar to the delay that we

impose on some entities in our framework. The method-

ology in [29] allows to show that some states (due to

precedence between events) can never be reached and the

state graph can be optimised. We believe that optimisation

of asynchronous circuits could be an interesting challenge

for applying our framework. We also note that the work in

[10] shows a tight relationship of reaction systems and

synchronous circuits, while our extension with delay and

duration might open the way to show a relationship of our

extension with asynchronous circuits.

6 The tool

A preliminary implementation of RSs in a logic program-

ming language (Prolog) was already presented in [19]

where the intended aim was rapid prototyping. In this

paper, we enrich such implementation by introducing

delays/durations and the concept of concentration levels in

RSs as they are formally defined in the previous sections.

In particular, we will describe how such extensions have

been integrated in the prototype resulting in a new tool

available for download.5 Thanks to the modular nature of

the SOS formalisation, the integration of new features into

the existing tool is facilitated. The use of a declarative

programming language reduces the distance between the

implementation and the mathematical specification given

in Sects. 3–4 in a significant way, which is important to

reduce the presence of bugs in the tool and thus offers a

convenient tradeoff between efficiency and correctness.

Our interpreter allows the combined use of delay and

duration with linear patterns in RS specifications and

exploits DCG (Declarative Clause Grammars) rules to offer

a friendly syntax to users. Internally, quantitative entities

are encoded in two ways as either the term e(Enti-

ty,Delay,Level) or the term e(Entity,De-

lay,M,N), where the parameters M and N are the

coefficients of a linear expression Mxþ N. The first format

is used for ground instances, while the second for linear

patterns. For efficiency reasons, sets of quantitative entities

are implemented as ordered lists and RS processes are

represented as tuples of the form sys(Del-

ta,Es,Ks,Rs) where Delta is the environment that

collects all recursive definitions exploited in contextual

processes, Es is the set of currently available entities, Ks

represents the parallel composition of all contextual pro-

cesses and Rs represents the parallel composition of all

reactions.

To experiment with the tool, the user can write a sepa-

rate specification file, say, e.g., , and then

change the directive for importing the specification in the

main file of our tool to something like

where \verb|\path[|

is the global path of myspec.pl in her file system. The

specification file requires the definition of four predicates,

one for each of the components in sys(Delta,

Es,Ks,Rs). All predicates expect a single string.

To briefly account for the syntax defined by our DCG

rules, a sample specification is shown in Fig. 8, together

with usage instructions. Roughly, an entity a has default

delay 0 and level 1, when we write a(2) it means a has

delay 2 but still level 1 and when we write a(1,2) we

declare that a has delay 1 and level 2. For nonground

Fig. 7 A transition for the linear

process P1 from Example 23

5 http://www.di.unipi.it/*bruni/LTSRS/.
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patterns, we use either the syntax a(2x?1) with implicit

delay 0, or a(1,2x?1) when an explicit delay must be

considered. We believe the rest of the syntax is self-ex-

planatory. Note that, in the product set of the same reac-

tion, we can specify different delays for each entity, as well

as multiple delays for the same entity, even noncontiguous

ones. When writing RS specifications, this adds a little

more flexibility w.r.t. to assigning the same delay and

duration to a whole reaction. (Otherwise, we would need to

repeat different instances of reactions with the same reac-

tants and inhibitors but different quantitative product sets.)

In the following three sections, we will exploit our tool

to study three models of biological systems, in which the

new features of reaction systems that we have introduced in

this paper can play an important role. In more details the

first biological system need timed reactions to be faithfully

modelled, while the second one requires the ability to

handle different levels of concentrations, which is accom-

plished by linear reactions. Finally, both features are used

to simulate neural transmission as the third case study.

All figures representing the LTS of the case studies have

been generated using the primitive

. There are many available options

to define different colours of nodes based on their textual

descriptions and to select which information is shown. Our

default choice is to print the entities provided by the con-

text as transition labels and just the entities currently pre-

sent in the system inside the nodes of the LTS. Whenever

nonrecursive contexts are considered, a single maximal run

can be generated using the primitive .

The neuron activity figures in Sect. 9 have been obtained

by generating automatically the description of the

concentration levels of all entities in the states of a run

through the directive and then import-

ing such raw data in a spreadsheet.

Fig. 8 A sample RS specification and its process like syntax
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7 Drug administration in tumour growth

The case study presented in this section is concerned with a

delay differential equation model of tumour growth as

proposed in [20]. We first will model the system using

timed processes and then will execute some simulations to

compare different drug administration strategies.

7.1 Biological phenomenon

The cell cycle is a series of sequential events leading to cell

duplication. It consists of four phases: G1, S, G2 and M. The

G1 phase is a resting phase (or gap period) called presynthetic

phase. G1 could last as long as 48 h and is the longest phase

of the cycle. The next phase is the S phase or synthetic period,

where the replication of DNA occurs. This phase may last

between 8 and 20 h. The cells complete the DNA replication

and enter another gap period G2 called the postsynthetic

phase. G2 is a preparation phase for mitosis. The first three

phases (G1, S and G2) are called interphase (I). The last phase

is mitosisM in which the cells segregate the duplicated sets of

chromosomes between daughter cells. Mitosis is the shortest

phase of all, lasting up to 1 h. The duration of the cell cycle is

very much dependent on the type of cell and their growth

conditions. The most typical (human) normal cell will have a

cell cycle duration of approximately 24 h, with various

exceptions (e.g., liver cells can take up to a year to complete

their cycle).

There are many checkpoints throughout the cell cycle

that prevent the cell from completing the cycle if it detects

an abnormality. A cancerous cell does not necessarily

divide more rapidly than their normal counterparts, but

they lose the ability to regulate the cell cycle, thus prolif-

eration of these cells is not controlled. Once mitosis is

completed, each daughter cell can enter the cycle again or

shift into a quiescent phase during which cells do not

divide for long periods. Phase-specific drugs alter the nat-

ural course of action for the active or cycling cells. Many

chemotherapeutic agents acting on the S phase aim to

suppress mitosis and therefore have no visible effect until

the M phase.

In [20], a delay differential equation model of tumour

growth has been proposed that includes the immune system

response and a phase-specific drug able to alter the natural

course of action of the cell cycle of the tumour cells. A

delay is used to model the duration of the interphase.

7.2 On encoding drug effects on cell cycles using
timed processes

Inspired from [20], we define a RS model of tumour growth

using delays and durations. We consider two populations of

tumour cells: those in the interphase of the cell cycle (TI)

and those in mitosis phase (TM). We assume that cells

reside in the interphase for r time units. Moreover, we

represent the drug with entity D and assume that, once

received from the environment, it takes an active form Da

and disappears after a delay of d time units. The reactions

of the model are the following:

a1 , ðTI;Da;TMÞr a2 , ðTM; ;;TIÞ a3 , ðD; ;;DaÞ½0;d�:

Let us assume that the system starts from a configuration in

which tumour cells are in the interphase. Hence, the cor-

responding timed process is

P, ½K j TI j A�

where A,a1 j a2 j a3 and K is a suitable context process.

Now, different drug administration strategies can be sim-

ulated by providing different definitions for K. As a first

experiment, let us consider r ¼ 1 and d ¼ 2 and two dif-

ferent context processes K0 , rec X: ;:X and

K3 , rec X:D:;:;:;:X.
The context K0 describes the case when no drug is

administered; in this case, tumour cells execute the cell

cycle infinitely:

P½ K0=K� ¼½K0 j TI j A� �!hTIBTI;DaTMD;TMi ½K0 j T1
M j A� �!h;B;;TITMD;;i

½K0 j TM j A� �!hTMBTM;TI&D;TIi½K0 j TI j A� �!hTIBTI;DaTMD;TMi
. . .

The context K3 describes the case when the drug is

administered every 4 time units. Here we observe that the

cell cycle is interrupted after two interphase–mitosis phases

and the cell dies (note that last state cannot evolve in a state

describing the cell at any phase):

P½ K3=K� ¼ ½K3 j TI j A� �!hTIDBTID;DaTM;TMDai

½;:;:;:K3 j D1
a j Da j T1

M j A� �!hDaBDa;TITMD;;i

½;:;:K3 j Da j TM j A� �!hDaTMBDaTM;TID;TIi

½;:K3 j TI j A� �!hTIBTI;DaTMD;TMi

½K3 j T1
M j A� �!hDBD;TITM;Dai

½;:;:;:K3 j D1
a j Da j TM j A� �!hTMDaBDaTM;TID;TIi

½;:;:K3 j Da j TI j A� �!hDaTIBDa;TMD;;i½;:K3 j A�. . .

We have performed several experiments dealing with

different drug administration strategies (including the two

that we have just discussed) using our tool where the

reaction system a1; a2; a3 is run in parallel with TI and with
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nondeterministic context
P

i2½0;3� Ki, where K1 ¼
rec X:D:;:X and K2 ¼ rec X:D:;:;:X. Each branch of the

tree of Fig. 9 depicts the evolution of the system driven by

a different context: from left to right, we see the effect of

K1, then K2, followed by K3 and finally K0. To improve

readability, each transition is labelled with just the entities

provided by the context (a transition labelled with 0 indi-

cates that no entity is provided by the context at that step)

and the states are labelled using just the available entities

using the format Entity(Delay,Level) (context

processes and reactions are hidden). For example,

da(0,1) da(1,1) tm(1,1) stands for

Da j Da1 j TM
1. A state labelled with 0 indicates that no

entity is present in such a state.

As expected, in the evolution with the context K3 the

cell dies after performing two cycles of interphase and

mitosis (observe that in the final cycle only the drug

remains in circle). More interestingly, a drug strategy that

gives the drug as described by context K2 (one drug

administration followed by two consecutive pauses) does

not lead to the death of the cell. Finally, when drug is

administrated as described by context K1 the result is the

death of the cell after just one complete cycle of interphase

and mitosis.

The parameter d can be varied to test alternative drug

activation times. Of course, if the drug remains in circu-

lation for a longer time its effects will be stronger. For

example, assuming a duration d ¼ 3 the experiment with

the context K3 describes the case in which the drug remains

active between two consecutive administrations, and this

leads the cell to die at an earlier stage (after just one cycle):

P½ K3=K� ¼ ½K3 j TI j A� �!hTIDBTID;DaTM;TMDai

½;:;:;:K3 j D½0;3�
a j T1

M j A� �!hDaBDa;TITMD;;i

½;:;:K3 j D½0;2�
a j TM j A� �!hDaTMBDaTM;TID;TIi

½;:K3 j D½0;1�
a j TI j A� �!hDaTIBDa;TMD;;i

½K3 j A�. . .

Repeating also the other set of experiments with all the

other different administration strategies represented by

nondeterministic context
P

i2½0;3� Ki, we depict the results

in Fig. 10. They show how the effect of the drug is much

stronger when d ¼ 3: as expected, both drug administration

strategies K1 and K3 stop the cell cycle but this time after

just one cycle of interphase and mitosis. Moreover, now

even the strategy K2 leads to the death of the cell, as

desired.

Finally, one may wonder which are the effects of

increasing the value for r that represents a slower mitosis

phase. The result of such experiments are reported in

Fig. 11, showing that the administration strategies K1, K2

and K3 are still successful in killing the cell.

8 Regulating differentiation in Th cells

The case study presented in this section is concerned

with a Boolean network model of the regulatory process for

differentiation in Th cells as proposed in [21] and recently

translated in a RS model [22]. While the RS model

from [22] is able to reproduce the most important

dynamics aspects of the regulatory process, it must encode

different levels of the same entity as separate objects. Here

we show that, using linear processes, the ability to directly

deal with concentration levels offers a more natural and

simple way to represent this biological phenomenon.

Fig. 9 Different drug administration strategies with delay r ¼ 1 and

duration d ¼ 2
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8.1 Biological phenomenon

The immune system is composed by various cell types,

including antigen cells and B and T lymphocytes. Among

the latter, T cells can be further sub-classified into T hel-

per 1 (Th1) or T helper 2 (Th2) cells, originating from a

common precursor Th0. The molecules secreted by Th1

cells lead to an inflammatory immune responses, while

those secreted by Th2 cells intervene in humoral immune

responses. Importantly, molecules produced by mature Th

cells promote their own differentiation and at the same

time inhibit the differentiation of cells of the other type.

This is illustrated in Fig. 12, where the Th1 differentiation

has as principal promoter IFN-c (such positive relation is

represented by a standard arrow from IFN-c to Th1) and

IL-4 as inhibitor (such negative relation is represented by

an arrows ending with a rhombus directed from IL-4 to

Th1), while, on the contrary, the Th2 differentiation has as

principal promoter IL-4 and IFN-c as inhibitor.

A complex gene network regulates the differentiation of

Th0 cells. Studying the molecular mechanisms of this

differentiation process is relevant since enhanced Th1 and

Th2 responses may cause autoimmune and allergic dis-

eases, respectively.

While a number of molecules were known to participate

in this process, before [21], it was not clearly understood

how they regulate each other to ensure differentiation.

Finally, in [21] a Boolean network model of such a regu-

latory process has been conceived from the large amount of

molecular data available in the literature. The proposed

network includes 17 nodes regulating the differentiation of

the Th0 precursor [30, 31].

The structure of the Boolean network which describes

how substances influence each other is depicted in Fig. 13,

where, as before, standard arrows describe a promoting

Fig. 12 Differentiation of Th cells

Fig. 13 Graphical representation of the Boolean network

Fig. 10 Different drug administration strategies with delay r ¼ 1 and

duration d ¼ 3

Fig. 11 Different drug administration strategies with delay r ¼ 3 and

duration d ¼ 3
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relation while arrows ending with a rhombus represent an

inhibiting relation.

The update functions that described how each influenced

substance changes at the following step are summed up in

Fig. 14. Without going into all details, the particularity of

this system is that some substances (the ones coloured in

grey in Fig. 13) admit different concentration levels of

activation: an object can be inactive, activated at the

medium level of concentration or activated at the high

(maximum) level of concentration. This is the reason why,

in Fig. 14, different update functions are used to describe

the behaviour of a single object. Indeed, the different

update functions describe how the different concentration

level of the substance influence the other entities. For

example, the behaviour of the object IFN-c (coloured grey

in Fig. 13) is described by two update functions in Fig. 14:

the one that updates IFN-c at the medium level (IFN-c-m)

and a second one that updates IFN-c at the high level

(IFN-c-h). The same holds for all the entities coloured in

grey in Fig. 13 since they admit different levels of

concentrations.

The above model identifies two key pathways involving

IFN-c and IL-4. In the pathway involving IFN-c, Th1 cells

produce IFN-c which acts on a membrane receptor

(IFN-cR). The transduction of the IFN-c/IFN-cR signal acts

via STAT-1, which can be activated also by IFN-b via

IFN-bR. STAT-1 cannot be activated by IL-4, but STAT-1

itself modulates IL-4 signal through other molecules.

Further down the IFN-c signal transduction pathway is

SOCS-1, a molecule that is highly expressed in Th1 cells,

but not in Th0 and Th2 cells. IFN-c strongly induces

SOCS-1 via a STAT-1-dependent pathway. SOCS-1, in

turn, influences both the IFN-c and IL-4 pathways. Finally,

it is known that SOCS-1 is able to block the capacity of

IL-4R to generate a signalling in response to IL-4. T-bet is

a transcription factor detected in Th1, but not in Th0 or Th2

cells. Its expression is up-regulated by IFN-c, via STAT-1.
In turn, T-bet is an IFN-c activator, thus creating an indi-

rect positive feedback. Furthermore, it has been shown that

T-bet is able to induce the transcription of its own gene.

The second pathway, involving IL-4, starts by the

binding of IL-4 to its receptor, IL-4R, which is highly

expressed in Th2 cells. The IL-4R signal is transduced by

STAT-6, which in turn activates GATA-3. GATA-3 is

capable of inducing IL-4, thus establishing a positive

feedback loop. The influence of the IL-4 pathway on the

IFN-c pathway is mediated by GATA-3, since T-bet is

down-regulated by GATA-3 expression. Conversely, T-bet

is capable of inhibiting GATA-3. This mutual inhibition

ensures that Th1 and Th2 cells express either one or the

other molecule (T-bet in Th1 and GATA-3 in Th2), but not

both.

Apart from previous two key pathways, there are other

molecules which affect the differentiation of Th0 cells and

we do not describe here.

8.2 On replacing distinct objects
by concentration levels in linear processes

A standard closed RS (that is a RS with empty environ-

ment) that uses different entities to model different levels

for the grey nodes in Fig. 13 was already defined in [22],

where the authors translated the Boolean network into a RS

able to reproduce the dynamics of the update functions in

Fig. 14. However, this encoding was ad hoc, because it

required the introduction of different objects to deal with

different levels of the same entity. For example, we needed

two different objects IFN-c-m and IFN-c-h to represent

IFN-c at the medium and high level. The use of two dif-

ferent objects to model different level of activation

required a particular care when considering sets of entities.

Indeed, in this case not all subsets can have a meaning

since a substance can either be activated at the medium or

at the high level but not both. The artificial concept of valid

state was introduced to avoid entities representing different

levels of the same object to be present at the same time.

We aim to show that linear processes (from Sect. 4.2)

allows us to seamlessly model the level of concentrations

that are the key feature of this biological system. We

express different concentrations levels with concentration

values f1; 2g, where 1 stands for medium and 2 for high.

For example, the state fSTAT-1ð1Þ;T-betð2Þg states that

we have a medium concentration of STAT-1 and a high

concentration of T-bet. The resulting linear RS contains the

26 reactions in Fig. 15 that model the system described in

Fig. 14. Since durations are not needed, we exploit the

Fig. 14 Boolean functions modelling the differentiation of Th cells

from time t to time t þ 1
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syntax from Sect. 4.2: a linear pattern is written as

aðm � xþ nÞ, while ground patterns just as aðnÞ.6
We now show that using the linear patterns framework

has many advantages compared to approaches where the

different levels are modelled using different objects. In the

following, we assume that the medium level of concen-

tration of an entity is represented by a new entity whose

name is obtained postponing the suffix -m to the name of

the original entity while the high level of concentration of

the entity is represented by a second new entity whose

name is obtained postponing the suffix -h.

For example, when using two objects such as STAT-1-h

and STAT-1-m to model the different levels of STAT-1, a

reaction like

ðfGATA-3g; fSTAT-1-h; STAT-1-mg; fIL-4gÞ needs to be

included in the reaction system to describe the production

of IL-4, which is inhibited by STAT-1 at any concentra-

tion. Such rule must include two objects as inhibitors (one

for each level of STAT-1, using suffixes -h and -m), which

seems somehow artificial, because both objects refer to the

same entity, although they carry different names. On the

contrary, in our framework based on linear patterns the

very same constraint can be modelled by the following

unary reaction: ð GATA-3ð1Þ ; STAT-1ð1Þ ; IL-4ð1Þ Þ.
Indeed, such reaction is enabled in any state containing

GATA-3, but no STAT-1 at any level of concentration, as

desired. Moreover, even it emerged the necessity to dif-

ferentiate among other levels of STAT-1 (e.g., low, or very

high) the above reaction would still remain valid. Simi-

larly, let us consider the reaction for the production of

SOCS-1 that is enabled when T-bet is present at any level

of concentration. When the different levels are modelled

using different objects, we need to write two different

reactions, one for each level, namely ðfT-bet-hg ;

; ; fSOCS-1gÞ and ðfT-bet-mg ; ; ; fSOCS-1gÞ. Instead,
using concentration levels, the production of SOCS-1 can

be expressed by the single unary reaction ð T-betð1Þ ;
; ; SOCS-1ð1Þ Þ. Likewise the previous rule, even it

emerged the necessity to differentiate among other

levels of T-bet the above reaction would still remain

unchanged.

But there are even more interesting consequences in

replacing different objects by different concentration

levels. In fact, it is very frequent that the level of one entity

that is produced is dependent upon the level of some

reactant. For example, using different objects, we need two

reactions such as ðfIFN-cR-mg ; ; ; fSTAT-1-mgÞ and

ðfIFN-cR-hg ; ; ; fSTAT-1-hgÞ to express the fact that

the levels of IFN-cR and STAT-1 are correlated. Using

linear patterns, one reaction suffices:

ð IFN-cRðxþ 1Þ ; ; ; STAT-1ðxþ 1Þ Þ.
As RS specifications can grow very large and complex,

having the ability to keep the number of reactions as small

as possible has many advantages, because reactions will be

easier to write, to maintain, to change, to study and to

extend and they will also be more flexible to experiment

with. For example, imagine a situation where one wants to

compare models based on different levels of some entities,

without having the knowledge for fixing in advance how

many levels is more convenient to use: building on the

above examples it should be evident that using linear

processes the comparison may be conducted even without

rewriting a new specification for each possible combination

of levels.

Fig. 15 Reactions with

concentration levels

6 The input for the tool should include a delay 0 as a first parameter,

like in að0; nÞ.
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Our prototype implementation allows us to compute the

LTS. We performed one in silico experiment that show all

the paths leading to Th1 differentiation (characterised by

the presence of T-bet as the marker of the differentiation of

the cell into Th1 form) and Th2 (characterised by the

presence of GATA-3 as the marker of the differentiation of

the cell into Th2 form).

Note that there are two possible paths that lead to the

expression of to Th1. The first one is driven by the up-

regulation of IFN-c that is expressed at the maximal level

at the initial state: IFN-cð2Þ. The second path leading to the

expression of Th1 is driven by the initial expression of both

IL-12 and IL-18. The initial state in this case is

IL-12ð1Þ j IL-18ð1Þ, and after 9 steps, the system reaches

the same stable state. Instead, the evolution leading to Th2

is activated by the initial state IL-4ð1Þ and after 6 evolution

steps reaches the stable state IL-4ð1Þ j GATA-3ð1Þ
j STAT-6ð1Þ j IL-4Rð1Þ.

Our tool allows us to inspect all different evolution paths

by starting with the reaction system in parallel with the

initial context

K, IFN-cð2Þ:K; þ IL-12ð1Þ IL-18ð1Þ:K; þ IL-4ð1Þ:K;

where K; , rec X: ;:X is the trivial recursive process that

provides an empty context at any step. The corresponding

LTS is given in Fig. 16, where it is possible to observe that

the evolution path triggered by the context

IL-12ð1Þ IL-18ð1Þ takes a few steps before joining the path

driven by the up-regulation of IFN-c. For the differentia-

tion leading to Th1, it can be observed that IL-4 needs to be

inactive; on the contrary, for the differentiation leading to

Th2, IFN-c needs to be inactive.

9 Synaptic transmission

The case study presented in this section requires the

combined use of duration and concentration levels in a

single RS. The case study is concerned with the modelling

of synaptic transmission in neural networks communica-

tion. Our goal is to show that with RSs it is possibile to

approximate spiking behaviours obtained by kinetic and

stochastic models such as those defined in [24, 32].

9.1 Biological phenomenon

Synaptic transmission is the process that allows two neu-

rons connected by a synapse to communicate. Communi-

cation consists in impulsive chemical signals that are sent

from the first neuron to the second. Chemical signals take

the form of neurotransmitters that are released from the

first neuron and perceived by the second one, and they are

stimulated by ionic currents.

The macroscopic dynamics of the currents involved in

synaptic transmission can be described by means of kinetic

models in which all the essential processes are expressed in

terms of reactions. Synaptic transmission can be described

as a two-phase phenomenon. The first phase (presynaptic

release) is the release of neurotransmitters by the first

neuron. It is stimulated by a calcium current that promotes

the release of neurotransmitters from vesicles in which they

are contained into the synaptic cleft. The second phase

Fig. 17 Rules for the pre- and the postsynaptic sides activity of a

neuron

Fig. 16 Evolution of Th0 cell
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(postsynaptic uptake) involves different receptors (e.g.,

AMPA, NMDA, GABAA and GABAB) that react to the

availability of the transmitters with the creation of new

currents in the second neuron. Different receptors generate

currents with different intensities and rise/decay times.

As an example of synaptic transmission we mention the

one mediated by the calyx of Held, which is a large

synapse in the mammalian auditory brainstem circuit that

synapses onto the cell body of the principal neuron of the

medial nucleus of the trapezoid body (MNTB). The

functional communication between the active sites of the

calyx of Held and the principal neuron of MNTB is

implemented by the release of a large number of synaptic

vesicles containing glutamate.

Roughly, the vesicle release (exocytosis) depends on the

amount of calcium, Ca2þ, in the presynaptic site. After the

exocytosis has took place, the vesicles release their content

that in turn bind the receptors of the postsynaptic sides.

Here, the AMPA receptors bind the neurotransmitter

released by the vesicle, the glutamate, and causes a chain

(a) (b)

Fig. 18 Neuron activities: a one

neuron; b synaptic transmission

between two neurons
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of reactions inside the postsynaptic side that ends with the

changing of the receptor configuration in its open form.

For a more detailed description of the biological phe-

nomenon and of mathematical models of the dynamics of

synaptic transmission, we refer to [23, 24, 32].

9.2 A discrete model of neural communication

In this paper, we present a simple functional model with a

quantitative abstraction that does not consider the kinetic

rates of the different biological reactions. We describe

three neural examples, consisting of one, two and three

neurons, respectively. The dynamics described by our

model can be qualitatively compared with those described

in [24, 32].

A single-neuron model

The synaptic activity concerning the presynaptic side is

described by the reactions in Fig. 17, together with the one

of the membrane receptor in the postsynaptic side. The

presynaptic activity is characterised by the growth of cal-

cium by doubling its quantity at each step, until the

threshold 10 is reached. This is modelled by reaction (r1).

Reactions (r4) and (r5) model the formation of the vesicles,

Ve
, that are then ejected via exocytosis releasing their

content T by reaction (r7). Reaction (r8) models the

binding of an external neurotransmitter T, opening of the

neural receptor, which changes its own state from c, closed,

to o, open, and (r9) models the closure of the receptor. The

remaining reactions (r2), (r3) and (r7) model the perma-

nency of vesicles, Ve, the calcium ligand, X, and the closed

receptor c. By abuse of notation, we indicate as T both the

whole content of the vesicle released by the presynaptic

side and the neurotransmitter that binds the receptors on the

postsynaptic membrane (causing the neuron to send the T

signal to itself).

Given the initial state cð1Þ j Cað1Þ j Xð10Þ j
Veð5Þ j Tð1Þ, the LTS showing the cyclic behaviour of the

neuron is shown in Fig. 18a, where the colour of each node

depends on the status (closed/open) of the receptor.

Figure 19 shows the peaks of the calcium quantity that

activate the release of the neurotransmitter that in turn

causes the opening of the receptor; then, the amount of the

calcium restarts to rise again.

A two-neuron model Here, we consider two neurons such

that the neurotransmitter released by the first neuron acti-

vates the receptor of the second one and vice versa. In this

model, we assume the two neurons have different speeds:

the receptor of the second neuron is slower to close. This

implies that it remains open for a longer time and this

allows a greater quantity of calcium to be produced. In

Fig. 20, we only present the modified rules for the two

neurons. Positive delays are represented as superscripts.

We use subscripts 1 and 2 to distinguish between the

entities belonging to neuron one and two, respectively.

The opening of the receptor of neuron one is modelled

by reaction ðr18Þ, and the opening of the receptor of neuron
two is described by reaction ðr28Þ. Reactions ðr29aÞ and

ðr29bÞ model the increase of calcium stimulated by the

open receptor, whose closure also depends on reaction

ðr28Þ (using delay 2). Given the initial state

Fig. 19 Activity chart of one

neuron

Fig. 20 Model of two interacting neurons: receptor of neuron two is

slower in closing
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cð1Þ j Cað1Þ j Xð10Þ j Veð5Þ j Tð1Þ, the LTS showing the

cyclic behaviour of the neuron is shown in Fig. 18b, where

states in which the receptors of each of the two neurons are

open are coloured differently.

Finally, the effect of the interaction between the two

neurons is shown by charts (1)–(4) of Fig. 21: in (1), the

calcium in the second neuron, ca2, grows more quickly

than ca1; in (2), the neurotransmitter T2 remains active

longer than T1; and consequently, in (4) the receptor of

neuron two remains open longer than the receptor of neu-

ron one, in chart (3).

A three-neuron model The three neurons in this example

are assumed to form a network with a ypsilon structure:

the neurotransmitters of neuron one and two, T1 and T2,

respectively, interact with the two receptors in neuron

three, c31, and c32, respectively. Then, the neurotrans-

mitter T3 of neuron three interacts with the receptors of

neurons one and two, c1 and c2, respectively. As done for

the case of two neurons, we use subscripts 1, 2 and 3 to

denote entities belonging to each of the three neurons, and

in Fig. 22, we only give the rules that change with respect

to the previous cases. In particular, reactions r39a, r39b and

r39c manage the opening of one or both of the two

receptors in neuron three. The charts in Fig. 23 show that

when only neurons one releases a neurotransmitter, T1 in

chart (2), only receptor (a) of neuron three will be open, as

shown by chart (5). Chart (1) shows that when only one

receptor in neuron three is open, the increase of calcium in

neuron three is slower with respect to when both the

receptors are open. Please note that in chart (2), the second

and the third activation of neurotransmitter T1 (the blue

one) is overlaid by the activation of neurotransmitter T2

(the orange one).

Fig. 21 Charts for the activity of two neurons

Fig. 22 Rules for three interacting neurons connected to form a

ypsilon
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10 Conclusions and future work

In this paper, we presented the formal theory of timed and

linear RS processes, we developed a tool where both

extensions are integrated and we used this tool to investi-

gate some biological pathways, gene regulation and neural

networks.

As future work, we plan to exploit our framework to

deepen the study of quantitative extensions of RSs without

abandoning the discrete and abstract nature of RSs.

Moreover, the availability of a formal semantics will allow

us to study and apply formal analysis techniques aimed at

assessing dynamical properties of the modelled biological

systems, like logical properties and behavioural

equivalences.

Finally, we plan to investigate the applicability of

abstract interpretation techniques [33–35] to study prop-

erties of quantitative reaction systems by exploiting under-

and over-approximations of current states, which is useful

to make the analysis of large systems tractable.
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