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Abstract: Artificial intelligence and machine learning (AI/ML) are playing increasingly important
roles, permeating the field of medical devices (MDs). This rapid progress has not yet been matched by
the Health Technology Assessment (HTA) process, which still needs to define a common methodology
for assessing AI/ML-based MDs. To collect existing evidence from the literature about the methods
used to assess AI-based MDs, with a specific focus on those used for the management of heart
failure (HF), the International Federation of Medical and Biological Engineering (IFMBE) conducted
a scoping meta-review. This manuscript presents the results of this search, which covered the
period from January 1974 to October 2022. After careful independent screening, 21 reviews, mainly
conducted in North America and Europe, were retained and included. Among the findings were that
deep learning is the most commonly utilised method and that electronic health records and registries
are among the most prevalent sources of data for AI/ML algorithms. Out of the 21 included reviews,
19 focused on risk prediction and/or the early diagnosis of HF. Furthermore, 10 reviews provided
evidence of the impact on the incidence/progression of HF, and 13 on the length of stay. From an
HTA perspective, the main areas requiring improvement are the quality assessment of studies on
AI/ML (included in 11 out of 21 reviews) and their data sources, as well as the definition of the
criteria used to assess the selection of the most appropriate AI/ML algorithm.

Keywords: artificial intelligence; machine learning; health technology assessment; heart failure;
scoping review; decision making; value assessment

1. Introduction

Heart failure (HF) is a multi-faceted and life-threatening syndrome and is one of the
leading causes of mortality and hospitalisation. According to statistics, 64.3 million people
suffered from HF globally in 2017 [1,2]. The most recent definition describes HF as a clinical
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syndrome with symptoms and/or signs caused by a structural and/or functional cardiac
abnormality, corroborated by elevated natriuretic peptide levels and/or objective evidence
of pulmonary or systemic congestion [3]. HF patients usually undergo numerous diagnostic
tests, procedures, and therapies that generate a large amount of data. These data have been
used in recent decades to train algorithms and develop artificial intelligence and machine
learning (AI/ML) applications for different purposes, ranging from the identification of
risk factors for incident HF to disease classification, early diagnosis, early detection of
decompensation, risk stratification, management, and the organisation of health services,
among others [4–7].

The widespread use of AI/ML solutions is expected to drastically change the domain
of medicine and healthcare systems, especially after the World Health Organisation (WHO)
included AI/ML-based medical devices (MDs) in the definition of “Health technology” [8,9].
As the implementation, adoption, and use of AI/ML MDs in healthcare settings are crucial
from several points of view (legal, ethical, social, economic, and organisational aspects),
their worth must be assessed using approaches, even if modified, that are similar to those
used to assess the value of other medical innovations.

Some barriers to the implementation of accurate AI/ML MDs for HF are already
known. For instance, it is often difficult to identify a population with high enough event
rates to demonstrate the effects of the solution [4]. Such a problem of representativeness
in trials is usually regarded as a methodological issue in both the quality of the data
collected and the study design. This issue, when identified, is often partially addressed
by meticulously specifying the inclusion criteria of participant selection [10]. On top of
methodological issues, another problem associated with AI solutions in the safety-critical
setting of HF is the lack of accurate confidence intervals for predictions. This is a potentially
serious issue that can affect the trustworthiness and robustness of AI solutions, as well as
the generalizability of the results [4,11]. There are ongoing research efforts to maximise
the accuracy of the confidence intervals of AI/ML MD solutions [12] and optimise these
solutions. Certainly, agreement on a common approach to assess and judge the quality of
these systems is missing.

For health technologies, this process is normally overseen by Health Technology As-
sessment (HTA) [13] principles and criteria. At the international level, healthcare experts are
trying to map and identify the key challenges (e.g., regulatory, ethical, etc.) involved in as-
sessing AI in the real world, and reach a consensus on HTA methods and frameworks used
to assess the quality of AI applications [14]. However, although specific HTA frameworks
for diagnostic technologies, medical and surgical interventions, and screening technologies
are publicly available, frameworks for telemedicine or mobile health [15,16] have only
recently been developed (e.g., the MAST-AI (Model for Assessing the value of Artificial
Intelligence in medical imaging) [17]). Moreover, even if HTA agencies, such as the Na-
tional Institute for Health and Care Excellence (NICE) in the UK, started defining standard
frameworks for digital technologies [16], there is currently no agreement on a common
HTA framework for the specific assessment of different types of AI/ML-based MDs.

The other aim of this manuscript is to explore and systematise all the methods available
in the literature that have been exploited by healthcare professionals to assess the quality
of AI-based MDs, specifically those related to heart failure (HF).

2. Methods

The International Federation of Medical and Biological Engineering (IFMBE) created
a multidisciplinary working group to discuss potential methods for assessing AI/ML-
based medical devices. The group was composed of 15 expert professionals in biomedical
engineering, human factors, health economics, and the HTA (with more than two years of
expertise). A series of focus groups were organised to establish the research question and
the inclusion and exclusion criteria, as well as come to an agreement on various definitions,
as reported in Box 1.
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Box 1. Glossary.

AI/ML-based medical devices (MDs)

Medical device software that includes AI/ML algorithms.

Artificial Intelligence (AI)
AI is broadly defined as the science and engineering of making intelligent machines,
especially intelligent computer programs [18].

Health technology
Health technology is an intervention developed to prevent, diagnose, or treat medical
conditions; promote health; provide rehabilitation; and organise healthcare delivery.
The intervention can be a test, device, medicine, vaccine, procedure, program, or
system [13].

Health Technology Assessment (HTA)
HTA is a multidisciplinary process that uses explicit methods to determine the value of
a specific health technology at different points in its lifecycle. The purpose is to inform
decision making to promote an equitable, efficient, and high-quality health system [13].

Heart failure (HF)
A clinical syndrome with symptoms and/or signs caused by a structural and/or
functional cardiac abnormality, corroborated by elevated natriuretic peptide levels
and/or objective evidence of pulmonary or systemic congestion [3]. The definition of
heart failure encompasses acute coronary syndromes and atrial fibrillation.

HTA framework
A methodological framework for the production and sharing of HTA information
based on a standardised set of HTA questions (the ontology) that allows users to
define their specific research questions within a hierarchical structure. (Definition
adapted from EUnetHTA Core Model® [19]).

Machine learning (ML)
ML, a branch of artificial intelligence (AI) and computer science, focuses on developing
systems that can learn and adapt without following explicit instructions, imitating
the way humans learn. It gradually improves its accuracy by using algorithms and
statistical models to analyse and draw inferences from patterns in data [20].

Medical device software (MDSW)
Medical device software is software that is intended to be used alone or in combination
for a purpose specified in the definition of a “medical device” in the medical devices
regulation (Article 2(1) of Regulation (EU) 2017/745—MDR) or in vitro diagnostic
medical devices regulation (Article 2(2) of Regulation (EU) 2017/746) [21].

The defined research question is as follows: “What are the methods used and evidence
collected to assess AI/ML-based medical devices for heart failure and what are their
strengths and limitations?”

A meta-review [22] of systematic reviews, scoping reviews, and meta-analyses was con-
ducted, which focused on the AI/ML algorithms developed for and used in the management
of adult patients with heart failure, with a particular focus on HTA techniques and methods
used, if any. The meta-review was conducted in line with the extended version of the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA-ScR) guidelines [23,24].

Embase and Scopus were searched for relevant literature. In addition, grey literature
published on major HTA agencies’ websites was included. The literature search covered
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the period from January 1974 to October 2022. The detailed search string is reported in
Appendixes A.1 and A.2.

2.1. PICO and Eligibility Criteria

The PICO (Population, Intervention, Comparator, Outcomes) elements used in our re-
view were as follows: Population—patients affected by HF; Intervention—AI/ML-based
MDs; Comparator—traditional methods used in clinical practice and conventional statistical
methods; Outcomes—accuracy, effectiveness, and organisational outcomes such as admis-
sions/readmissions and/or impact on the length of stay (LOS).

The inclusion and exclusion criteria were based on the publication type and topic.
Only studies reporting on AI/ML methods applied to the prediction of HF risk, monitoring,
and management of the disease were included. No limitation was considered for the setting
of their use (e.g., inpatient, outpatient, community). In addition, only systematic or scoping
reviews or meta-analyses were considered for inclusion. All the other publication types, as
well as all those out of our scope, were excluded.

2.2. Identification and Screening

The titles and abstracts of the retrieved articles and their full texts were screened by
two researchers independently. Any conflict between the reviewers was resolved by the
involvement of a third independent reviewer.

2.3. Data Extraction and Analysis

For the data extraction, an ad hoc table was created to collect data on both the re-
view and the AI/ML methodology, including data sources (literature database), quality
assessment, comparison of results, and clinical and organisational endpoints.

The included studies were categorised as (i) ‘meta analysis’, (ii) ‘systematic review’, or
(iii) ‘narrative review’.

To manage the data/evidence traceability, from each of the selected studies, we
extracted information regarding the specific literature search engines and the countries of
the items included in the review.

The AI/ML algorithms were categorised using the framework adopted by
Graili et al. [25] and proposed by Brownlee [26]. The algorithms were categorised based
on their function or form. The AI/ML framework includes more than 60 algorithms and
divides them into 12 types: deep learning, ensemble models, neural networks, regulation,
rule system, regression, Bayesian, decision trees, dimensionality reduction, instance-based,
and clustering.

Many guidelines have been proposed for reporting trials that evaluate AI-driven
technologies (i.e., TRIPOD-AI [27], STARD-AI [28], SPIRIT-AI [11], CONSORT-AI [29], and
DECIDE-AI [30]). They differ in many aspects, including the stage of development of the
technology and the study design. We recorded information regarding which guidelines, if
any, had been adopted in the selected papers. It was considered a proxy of the quality in
terms of the attention paid by the authors to the appraisal of the studies.

Since the EUnetHTA guidelines [31] mention the importance of identifying the appro-
priate comparator(s) in assessments, we also considered whether the studies included in
our review explicitly defined the comparators.

Finally, we developed a comprehensive overview and synthesis of the evidence,
without focusing on each study included in each review.

3. Results

The scoping review identified 524 potentially relevant papers. After removing dupli-
cates, 456 underwent title and abstract selection; 365 articles were excluded, as the items
did not match the eligibility criteria. A full-text review was conducted for 84 articles;
61 articles were excluded, as they were not related to AI or CHF or did not meet our
inclusion criteria. Overall, 21 reviewed studies met our inclusion criteria and were included
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in our analysis. The PRISMA flow diagram (Figure 1) reports this process and the reasons
for exclusion at each stage.

Figure 1. Screening and selection of papers included in the scoping meta-review.

3.1. Selected Papers

As shown in Table 1, out of 21 studies, 4 reported the results of a meta-analysis,
11 were systematic reviews, 1 was a scoping review, and 5 were narrative reviews. The
reviews included in the meta-review discussed and summarised data from a mean of
49 studies, spanning the five articles presented by Grün et al. [32] to the list of 122 studies
presented by Bazoukis et al. [33]. The earliest records available were published in 2018,
whereas the latest items were published in 2022.
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Table 1. Summary of papers included in the scoping meta-review.

Type Study ID Citations * Years Covered No. Studies Clinical
Indication **

Meta-analysis

Gruen et al., 2020 [32] 10 2017–2020 5 HF
Krittanawong et al., 2020 [34] 78 1966–2019 55 HF. ACS
Nadarajah et al., 2021 [35] 2 Till March 2021 11 HF, AI, stroke
Lee et al., 2022 [36] 6 1970-2021 102 HF, AI, Other

Systematic reviews

Mahajan et al., 2018 [37] 40 1948–2018 25 HF
Medic et al., 2019 [38] 25 2013–2018 20 HF
Banerjee et al., 2021 [39] 17 2000–2019 97 HF, ACS, AF
Bazoukis et al., 2021 [33] 31 2005–2019 122 HF
Mpanya et al., 2021 [40] 4 1993–2007 30 HF
Reading Turchioe et al., 2021 [41] 4 2015–2020 37 HF, ACS, Other
Shin et al., 2021 [42] 35 2000–2020 20 HF
Wu et al., 2021 [43] 0 2015–2021 38 HF, Other
Blaziak et al., 2022 [44] 1 Till March 2022 9 HF, ACS, AF
Javeed et al., 2022 [45] 9 1995–2021 105 HF, other
Sun et al., 2022 [46] 2 2010–2021 116 HF

Scoping reviews Sun et al., 2022 [47] 0 Till December
2021 47 HF, Other

Narrative reviews

Tripoliti et al., 2017 [48] 167 2000–2017 N/A HF
Safdar et al., 2018 [49] 96 Till–2015 20 HF, Other
Kilic, 2020 [50] 74 until 2019 N/A HF, Other
Maurya et al., 2021 [51] 1 N/A N/A HF
Shu et al., 2021 [52] 1 N/A 16 HF, Other

* Citations: Citations in Google Scholar (until March 2023); ** Clinical indications: HF—heart failure; ACS—acute
coronary syndromes; AF—atrial fibrillation.

The data sources of the selected reviews were quite diverse. The most frequently
adopted sources for item identification and selection were Medline (in 11 out of 21 studies),
Pubmed (n = 8), Cochrane Library (n = 6), Embase (n = 5), and Web of Science (n = 5).
In terms of geographical representation (Figure 2), the selected articles included studies
conducted mainly in North America (seven in the US and two in Canada) and Europe
(mainly in the United Kingdom (n = 5), Germany (n = 4), and the Netherlands (n = 4)).
Only a few studies were conducted in Asia (China (n = 3) and Korea (n = 2)) and Australia
(n = 3).

The majority of reviews (16 out of 21) aimed to provide an overview of methods and
AI/ML models developed for HF [32,33,35–38,41,43–51]. Eight reviews [33–35,37,39,42–44]
explicitly analysed the performance of the AI/ML algorithms. Eight reviews included addi-
tional goals, such as current utilisation of and barriers to the diffusion of AI/ML in clinical
practice, and future developments. [38,40–42,45,46,51,52]. In one review, the aim was also to
provide some tools or hints for evaluating the quality of studies on AI/ML applications for
HF [42].

3.2. Clinical Aspects

We adopted quite a vast definition of HF (as reported in Box 1), and some studies
covered more than one clinical indication. Sixteen out of 21 papers (Figure 3) focused
on (congestive) heart failure. Five studies also considered atrial fibrillation, whereas four
articles included acute coronary syndromes. Quite common (as indicated by the Others
category in Figure 3) was the inclusion under the HF umbrella of other clinical conditions
such as cardiovascular diseases (CVD), coronary artery disease (CAD), ischemic heart
diseases, stroke, and valvular heart diseases.
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Figure 2. Countries for which at least one study was included in the articles considered in the
scoping review.

In terms of clinical application, the majority of cases focused on risk prediction and/or
early diagnosis (n = 19). The classification of HF was considered in only seven cases, and
the prognosis was included in only five cases. In terms of the clinical setting making use of
AI/ML algorithms, in half of the cases, both the inpatients and outpatients were considered.
Ten studies did not report this information.

Figure 3. Cont.
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Figure 3. (a) Aims of selected studies. (b) Clinical indications.

3.3. AI/ML Algorithms

The datasets used as the base of AI/ML algorithms were different (Figure 4, Table A1).
Among the databases, electronic health records (EHR, n = 16) and registries (n = 14) were
the preferred ones. Among the studies, retrospective cohorts (n = 11), prospective cohorts
(n = 10), and randomised controlled trials (RCT, n = 10) were the most common data sources.
In three cases, other data sources were adopted (electrocardiogram datasets, claims data).
In four of the selected papers, all or one of the AI/ML datasets were not clearly specified.

To investigate the AI algorithm used category, the same framework reported in [25]
was adopted. According to our scoping review (Figure 4, Table A2), deep learning was the
most common type of algorithm used (reported in 18 papers), followed by neural networks
(n = 16), ensemble (n = 15), and regression techniques (n = 14).

Finally, in terms of the quality assessment of the studies included in the selected
reviews, in 11 cases ([33–37,39,41–44,47]), the quality assessment activity was clearly men-
tioned but no homogeneity emerged in terms of the adopted methods. Ad hoc approaches
or the adaptation of available tools were also employed [34,41,42]. No preference emerged
towards TRIPOD-AI or any other reporting guidelines. In five reviews, the risk of bias was
addressed using validated tools, such as PROBAST (Prediction model Risk Of Bias AS-
sessment Tool) [35,46] or QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies
2) [36,39,43]. Other reported scales included AI-TREE, CHARMS, AHA, PROGRESS, and
the Critical Appraisal Skills Program (CASP) checklist.

3.4. Performance, Effectiveness, and Safety

Great attention was paid to the assessment of test performance or the accuracy of
AI/ML algorithms. In 11 reviews, AUC/ROC or sensitivity/sensibility were explicitly
reported. In addition, the benefit–risk profile was investigated, with more than half of the
selected reviews (n = 12) paying great attention to the impact on mortality. The impact
on the incidence of progression of HF was assessed in 10 reviews, whereas the impact on
admission/readmissions or LOS was reported in 13 cases. In four publications, it was
unclear how efficacy or effectiveness had been investigated.
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Figure 4. (a) Datasets. (b) Methods.

Finally, the HTA requires a comparative assessment. EUnetHTA specifies that the
comparator should be the alternative intervention(s) against which the intervention under
assessment should be compared. As shown in Figure 5, current clinical practice was
included in six cases (21 per cent). Comparisons with other AI/ML algorithms or reporting
the results of conventional statistical methods were more common.
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Figure 5. Comparators of AI/ML algorithm-based MDs.

4. Discussion

The main finding of our scoping review is that when it comes to AI/ML models for
HF for different purposes (e.g., identification of risk factors, disease classification, early
diagnosis, etc.), there is a heterogeneous set of approaches adopted by developers in terms
of not only algorithm design but also evidence generated and reported on the characteristics
and performance of these algorithms. Such heterogeneity became clear when considering
the aims of the selected studies, as well as the methods and data sources of the AI/ML
algorithms, and identifying the comparators.

Our analysis mainly focused on the current types of evidence available in the assess-
ment of AI/ML-based MDs.

We did not discuss the details of the accuracy of AI/ML algorithms or the likelihood
of transition of AI/ML algorithms into clinical practice. In the same way, we did not
investigate the factors affecting the choice of quality assessment scales. Various quality
assessment scales are available for appraising the quality of clinical research related to
AI/ML technologies, but there seems to be no unified standard for choosing those scales.

4.1. Key Findings

The HTA is based on the available evidence for assessing a health technology in
comparison with current clinical practice [13]. Considering the evidence collected on
AI-based MDs for HF, some common gaps have emerged. They are:

• Generalisability and representativeness. The majority of the retrieved systematic
reviews mainly considered cases in developed countries (Figure 2), with an associated
risk of discrimination and lack of representativeness. From an HTA perspective, this
has consequences on the generalisability of both the trial results to other geographical
areas and the performance of AI/ML algorithms to other populations of patients, not
included in the data sources employed to develop the algorithms. This limits not
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only the recommendation an HTA can provide but also its transferability to other
settings [53].

• Quality of available evidence. Guidelines for reporting trials that evaluate inter-
ventions are increasingly used when it comes to modelling the impact of AI-driven
technologies. For instance, TRIPOD-AI [27] was developed to predict models, STARD-
AI [28] was developed for diagnostic accuracy studies, and SPIRIT-AI [11] and
CONSORT-AI [29] were developed for randomised controlled studies. Recently,
the Developmental and Exploratory Clinical Investigations of DEcision support sys-
tems driven by Artificial Intelligence (DECIDE-AI) approach [30] was proposed. This
approach aims to improve the reporting of early-stage clinical evaluations of AI-based
technologies, independently of the study design chosen. We encountered both a lack
of attention and variability in reporting quality assessment in reviews on AI/ML
algorithms for HF, as well as a lack of agreement on which criteria/scale should be
adopted to investigate quality. This is in line with the observation by Shazad et al. [54],
who highlighted that the quality of reporting of randomised controlled trials in AI
is suboptimal. It is also in line with the finding of Plana et al. [55], who reported
high variability in adherence to reporting standards. At the same time, available tools
adapted to AI are not yet fully able to capture the peculiarities of AI/ML algorithms
and trials. As an immediate consequence, practitioners should interpret with caution
the findings of studies regarding AI/ML algorithms for HF.

• AI/ML methods. Different models are currently being developed to manage HF, but
no guidelines are available for assessors to investigate in detail the reliability of each
algorithm and capture the added value of one AI/ML model in comparison to others.
Given the long list of methods currently used, as shown in Figure 4, the HTA is neither
able to select the most appropriate comparators nor conduct a comparative assessment
of AI/ML algorithms.

• Comparative evidence. Only a small proportion of studies evaluated AI/ML al-
gorithms without conducting any kind of comparison. This is a promising result
(Figure 5). However, the preferred comparator was not current clinical practice, as
requested by the HTA, but rather other AI/ML models or other statistical methods.
As occurs with any expected disruptive technology, the choice of the comparator is not
easy. It is not just a new active principle or MD, AI/ML promises to be a new paradigm,
able to redefine clinical pathways. In this case, direct or indirect comparisons with
current clinical practice are even more important and necessary.

• Data sources. Last but not least, the data at the core of AI/ML algorithms are cru-
cial. They are usually real-world data/evidence (RWD/RWE), which are becoming
more and more relevant for the HTA and decision makers. While investigating the
complexity of AI for the HTA, Alami et al. [14] mentioned not only data quality and
representativeness but also fragmented and unstructured data coming from different
sources. It becomes clear how that adds complexity to a scenario where the role of
RWD/RWE and issues such as real-world data availability, governance, and quality
are not fully addressed [56].

4.2. Strengths and Limitations

This study systematically analysed and synthesised data from multiple studies, provid-
ing a more robust and reliable analysis compared to a single study. We investigated whether
AI/ML research and development is relevant to the HTA. In a way, our analysis integrates
the analysis carried out by Sharma et al. [57], which demonstrates a dissonance between
research and practice. The HTA plays an intermediate role in the flow from research to
clinical practice. This study, therefore, provides an overview of the different methods used
to evaluate artificial intelligence-based medical devices for heart failure. It covers various
aspects, such as data collection, analysis, and evaluation of existing articles, providing
readers with a comprehensive understanding of the topic and suggesting that the lack of
relevant evidence for the HTA could impact market access and adoption. The insights
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gleaned from this study are highly applicable to medical professionals and researchers
involved in the development and evaluation of AI-based MDs for heart failure and can
potentially serve as a reference for those seeking to improve their evaluation methods.

However, due to the relatively new nature of AI-based MDs for HF, the data available
for review are limited. This limitation affects the completeness of the analysis and the con-
clusions drawn from the study. The quality of the data extracted from the articles included
may vary. The inclusion of low-quality studies may affect the overall conclusions drawn
from the review, as comprehensive control criteria were not established. In addition, the
methods used to evaluate artificial intelligence-based medical devices for heart failure may
vary depending on the device, data, and intended use. Therefore, our study does not cover
all areas of the HTA. Ethical and legal aspects are completely outside our scope. Finally, to
ensure that the selection process is as objective as possible, the lack of standardisation of
the methods and reporting needs to be better investigated.

4.3. Further Development

This scoping review allowed us to identify the challenges posed by AI/ML-based
MDs for a specific clinical condition (HF) and from the perspective of the HTA. The
situation is rapidly evolving, as demonstrated by the significant increase in the number of
studies on AI/ML algorithms and their implementation in clinical practice [58]. Therefore,
although our analysis requires an update in three to five years, it is a useful starting point
to investigate more aspects in detail, such as the quality and representativeness of data
sources, as well as the criteria used to select the comparators.

5. Conclusions

In our scoping meta-review of the methods used to assess artificial intelligence (AI)-
based medical devices (MDs) for heart failure (HF), we uncovered critical insights into
the dynamic landscape of AI applications in healthcare. Our analysis emphasised the
heterogeneity in the approaches taken by developers, highlighting the diversity in AI/ML
models designed for various HF management purposes. This diversity extends beyond
algorithms to encompass evidence generation and reporting, signifying the evolving nature
of this field.

We identified key challenges that warrant attention in the evaluation of AI-based MDs
for HF. Notably, the limited generalisability of the evidence due to a predominant focus
on developed countries poses a barrier to making recommendations applicable to diverse
healthcare settings. Additionally, the absence of standardised quality assessment practices
for AI/ML in clinical research raises concerns about result interpretation. It is crucial to
develop and agree on reporting standards and assessment tools tailored to the unique
features of AI/ML technologies.

The proliferation of AI/ML methods presents both promise and complexity. The
absence of guidelines for assessing reliability and value in these methods complicates
comparative assessments, hindering the ability to select the appropriate comparators and
conduct thorough evaluations. Moreover, our findings reveal a shift in comparison practices,
with AI/ML algorithms often benchmarked against each other or other statistical methods
rather than current clinical practice. This departure from standard health technology
assessment (HTA) practices underscores the need for comprehensive comparative evidence.

Real-world data/evidence (RWD/RWE) emerged as a vital consideration, with its use
becoming increasingly relevant to the HTA and decision makers. However, the challenges
associated with RWD/RWE, such as data quality, representativeness, and fragmentation,
amplify the complexity of AI/ML evaluation. Addressing these challenges will be pivotal
for harnessing the potential of AI in HF management.

In conclusion, our meta-review bridges the gap between AI/ML research and clinical
practice, offering a comprehensive overview of AI-based MDs for HF evaluation methods.
Although our study has strengths, including systematic analysis and an emphasis on the
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HTA’s intermediate role, it also has limitations due to the evolving nature of AI applications
and the variability in the data and methods used.

Looking forward, we recommend revisiting this analysis in three to five years to check
the progress and the emerging challenges. Future research should delve deeper into aspects
like data quality, representativeness, and the criteria used to select the appropriate com-
parators.

In summary, AI-based MDs hold promise for enhancing HF management, but as-
sessing them poses multi-faceted challenges. Our meta-review underscores the need
for standardised evaluation practices, greater attention to data quality, and the pursuit
of comprehensive comparative evidence. As AI/ML technologies continue to evolve,
so too must our evaluation methods to ensure their safe and effective integration into
clinical practice.

Author Contributions: Conceptualisation, methodology, formal analysis, writing—review and edit-
ing: E.I., R.D.B., D.P., S.B., and L.L.-P.; Support and revision: L.P. and G.F.; Literature search: A.M.;
Formal analysis, writing—review and editing: all other authors. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the International Federation for Medical and Biological
Engineering (IFMBE).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI/ML Artificial intelligence/machine learning
AUC/ROC Area under the ROC curve
EHR Electronic Health Records
HF Heart failure
HTA Health Technology Assessment
MD Medical device
MDSW Medical device software
RCT Randomised controlled trial

Appendix A

Appendix A.1. Search String—Embase

1 “heart failure”/
2 cardiomyopathy, dilated/
3 shock, cardiogenic/
4 exp ventricular dysfunction/
5 cardiac output, low/
6 ((heart or cardiac or coronary or myocardial) adj2 (failure or decompensation or death or
incompetence or insufficiency)).ti,ab.
7 ((dilated or congestive) adj2 cardiomyopath*).ti,ab.
8 cardiogenic shock.ti,ab.
9 ((ventricular or ventricle*) adj2 (failure or insufficien* or dysfunction*)).ti,ab.
10 ((left ventricular or left ventricle) adj2 (failure or insufficien* or dysfunction*)).ti,ab.
11 lvsd.ti,ab.
12 scd.ti,ab.
13 scd.ti,ab.
14 hf.ti,ab.
15 chf.ti,ab.
16 or/1–15
17 artificial intelligence/
18 model,neural network/
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19 models, neural network/
20 neural network model/
21 neural network models/
22 neural networks computer/
23 neural network computer/
24 Computational Intelligence/
25 Natural Language Processing/
26 (deep learn* or machine learn* or continuous learn*).ti,ab.
27 “neural network*”.ti,ab.
28 ((Artificial or Comput* or Machine) adj1 Intelligence).ti,ab.
29 Natural Language Processing*.ti,ab.
30 Computer Vision*.ti,ab.
31 or/17–30
32 16 and 31
33 (systematic review or meta-analysis).pt.
34 meta-analysis/ or systematic review/ or systematic reviews as topic/ or meta-analysis
as topic/ or “meta analysis (topic)”/ or “systematic review (topic)”/ or exp technology
assessment, biomedical/ or network meta-analysis/
35 ((systematic* adj3 (review* or overview*)) or (methodologic* adj3 (review* or overview*))).
ti,ab,kf,kw.
36 ((quantitative adj3 (review* or overview* or synthes*)) or (research adj3 (integrati* or
overview*))).ti,ab,kf,kw.
37 ((integrative adj3 (review* or overview*)) or (collaborative adj3 (review* or overview*))
or (pool* adj3 analy*)).ti,ab,kf,kw.
38 (data synthes* or data extraction* or data abstraction*).ti,ab,kf,kw.
39 (handsearch* or hand search*).ti,ab,kf,kw.
40 (mantel haenszel or peto or der simonian or dersimonian or fixed effect* or latin
square*).ti,ab,kf,kw.
41 (met analy* or metanaly* or technology assessment* or HTA or HTAs or technology
overview* or technology appraisal*).ti,ab,kf,kw.
42 (meta regression* or metaregression*).ti,ab,kf,kw.
43 (meta-analy* or metaanaly* or systematic review* or biomedical technology assessment*
or bio-medical technology assessment*).mp,hw.
44 (medline or cochrane or pubmed or medlars or embase or cinahl).ti,ab,hw.
45 (cochrane or (health adj2 technology assessment) or evidence report).jw.
46 (comparative adj3 (efficacy or effectiveness)).ti,ab,kf,kw.
47 (outcomes research or relative effectiveness).ti,ab,kf,kw.
48 ((indirect or indirect treatment or mixed-treatment or bayesian) adj3 comparison*).ti,ab,kf,kw.
49 [(meta-analysis or systematic review).md.]
50 (multi* adj3 treatment adj3 comparison*).ti,ab,kf,kw.
51 (mixed adj3 treatment adj3 (meta-analy* or metaanaly*)).ti,ab,kf,kw. 52 umbrella re-
view*.ti,ab,kf,kw.
53 (multi* adj2 paramet* adj2 evidence adj2 synthesis).ti,ab,kw,kf.
54 (multiparamet* adj2 evidence adj2 synthesis).ti,ab,kw,kf.
55 (multi-paramet* adj2 evidence adj2 synthesis).ti,ab,kw,kf.
56 or/33–55
57 56 and 32
58 remove duplicates from 57
59 limit 58 to yr=”2015 -Current”

Appendix A.2. Search String—Scopus

1 TITLE-ABS-KEY (“heart failure” OR “Cardiac Failure” OR “Heart Decompensation”
OR “Decompensation, Heart” OR “Heart Failure, Right-Sided” OR “Heart Failure, Right
Sided” OR “Right-Sided Heart Failure” OR “Right Sided Heart Failure” OR “Myocardial
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Failure” OR “Congestive Heart Failure” OR “Heart Failure, Congestive” OR “Heart Failure,
Left-Sided” OR “Heart Failure, Left Sided” OR “Left-Sided Heart Failure” OR “Left Sided
Heart Failure”)
2 TITLE-ABS-KEY (“cardiomyopathy, dilated” OR “Cardiomyopathies, Dilated” OR “Di-
lated Cardiomyopathies” OR “Dilated Cardiomyopathy” OR “Cardiomyopathy, Familial
Idiopathic” OR “Cardiomyopathies, Familial Idiopathic” OR “Familial Idiopathic Car-
diomyopathies” OR “Familial Idiopathic Cardiomyopathy” OR “Idiopathic Cardiomy-
opathies, Familial” OR “Idiopathic Cardiomyopathy, Familial” OR “Congestive Cardiomy-
opathy” OR “Cardiomyopathies, Congestive” OR “Congestive Cardiomyopathies” OR
“Cardiomyopathy, Congestive” OR “Cardiomyopathy, Idiopathic Dilated” OR “Cardiomy-
opathies, Idiopathic Dilated” OR “Dilated Cardiomyopathies, Idiopathic” OR “Dilated
Cardiomyopathy, Idiopathic” OR “Idiopathic Dilated Cardiomyopathies” OR “Idiopathic
Dilated Cardiomyopathy” OR “Cardiomyopathy, Dilated, LMNA” OR “Cardiomyopathy,
Dilated, Autosomal Recessive” OR “Cardiomyopathy, Dilated, 1a” OR “Cardiomyopathy,
Dilated, With Conduction Defect 1” OR “Cardiomyopathy, Dilated, with Conduction Def-
fect1” OR “Cardiomyopathy, Dilated, CMD1A”) 3 TITLE-ABS-KEY (“shock, cardiogenic”
OR “Cardiogenic Shock”)
4 TITLE-ABS-KEY (“ventricular dysfunction” OR “Dysfunction, Ventricular” OR “Dys-
functions, Ventricular” OR “Ventricular Dysfunctions” OR “Right Ventricular Dysfunction”
OR “Dysfunction, Right Ventricular” OR “Dysfunctions, Right Ventricular” OR “Right
Ventricular Dysfunctions” OR “Ventricular Dysfunctions, Right” OR “Left Ventricular
Dysfunction” OR “Dysfunction, Left Ventricular” OR “Dysfunctions, Left Ventricular” OR
“Left Ventricular Dysfunctions” OR “Ventricular Dysfunctions, Left”)
5 TITLE-ABS-KEY (“cardiac output, low” OR “Output, Low Cardiac” OR “Low Cardiac
Output” OR “Low Cardiac Output Syndrome”)
6 TITLE-ABS ((heart or cardiac or coronary or myocardial) W/2 (failure or decompensation
or death or incompetence or insufficiency))
7 TITLE-ABS ((dilated or congestive) W/2 cardiomyopath!)
8 TITLE-ABS (“cardiogenic shock”)
9 TITLE-ABS ((ventricular or ventricle!) W/2 (failure or insufficien! or dysfunction!))
10 TITLE-ABS ((“left ventricular” or “left ventricle”) W/2 (failure or insufficien! or dysfunction!))
11 TITLE-ABS (lvsd)
12 TITLE-ABS (scd)
13 TITLE-ABS (scd)
14 TITLE-ABS (hf)
15 TITLE-ABS (chf)
16 or/1–15
17 TITLE-ABS-KEY (“artificial intelligence” OR “Intelligence, Artificial” OR “Compu-
tational Intelligence” OR “Intelligence, Computational” OR “Machine Intelligence” OR
“Intelligence, Machine” OR “Computer Reasoning” OR “Reasoning, Computer” OR “AI
(Artificial Intelligence)” OR “Computer Vision Systems” OR “Computer Vision System”
OR “System, Computer Vision” OR “Systems, Computer Vision” OR “Vision System, Com-
puter” OR “Vision Systems, Computer” OR “Knowledge Acquisition (Computer)” OR
“Acquisition, Knowledge (Computer)” OR “Knowledge Representation (Computer)” OR
“Knowledge Representations (Computer)” OR “ Representation, Knowledge (Computer)”)
18 TITLE-ABS-KEY (“model,neural network” OR “Computer Neural Network” OR “Com-
puter Neural Networks” OR “Network, Computer Neural” OR “Networks, Computer
Neural” OR “Neural Network, Computer” OR “Models, Neural Network” OR “Model,
Neural Network” OR “Network Model, Neural” OR “Network Models, Neural” OR
“Neural Network Model” OR “Neural Network Models” OR “Computational Neural Net-
works” OR “Computational Neural Network” OR “Network, Computational Neural” OR
“Networks, Computational Neural” OR “Neural Network, Computational” OR “Neural
Networks, Computational” OR “Perceptrons” OR “Perceptron” OR “Connectionist Mod-
els” OR “Connectionist Model” OR “Model, Connectionist” OR “Models, Connectionist”
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OR “Neural Networks (Computer)” OR “Network, Neural (Computer)” OR “ Networks,
Neural (Computer)” OR “Neural Network (Computer)”)
19 TITLE-ABS-KEY (“Natural Language Processing” OR “Language Processing, Natural”
OR “Language Processings, Natural” OR “Natural Language Processings” OR “Processing,
Natural Language” OR “Processings, Natural Language” )
20 TITLE-ABS (“deep learn!” or “machine learn!” or “continuous learn!”)
21 TITLE-ABS (“neural network!”)
22 TITLE-ABS ((Artificial or Comput! or Machine) W/1 Intelligence)
23 TITLE-ABS (“Natural Language Processing!”)
24 TITLE-ABS (“Computer Vision!”)
25 or/17–24
26 16 and 25
27 (“systematic review” or “meta-analysis”)
28 TITLE-ABS-KEY ((“meta-analysis”) or (“systematic review” OR “Review, Systematic”) or
(“systematic reviews as topic” OR “Systematic Review as Topic” OR “Reviews Systematic
as Topic”) or (“meta-analysis as topic” OR “ Meta Analysis as Topic” OR “Data Pooling” OR
“Data Poolings” OR “Overviews, Clinical Trial” OR “Clinical Trial Overviews” OR “Clinical
Trial Overview” OR “Overview, Clinical Trial”) OR (“technology assessment, biomedi-
cal” OR “Biomedical Technology Assessment” OR “Technology Assessment, Health” OR
“Assessment, Health Technology” OR “Assessments, Health Technology” OR “Health
Technology Assessment” OR “Health Technology Assessments” OR “Technology Assess-
ments, Health” OR “Assessment, Biomedical Technology” OR “Assessments, Biomedical
Technology” OR “Biomedical Technology Assessments” OR “Technology Assessments,
Biomedical” OR “Technology Assessment” OR “Assessment, Technology” OR “Assess-
ments, Technology” OR “Technology Assessments” )OR (“network meta-analysis” OR
“Meta-Analyses, Network” OR “Meta-Analysis, Network” OR “Network Meta Analysis”
OR “Network Meta-Analyses” OR “Multiple Treatment Comparison Meta-Analysis” OR
“Multiple Treatment Comparison Meta Analysis” OR “Mixed Treatment Meta-Analysis”
OR “Meta-Analyses, Mixed Treatment” OR “Meta-Analysis, Mixed Treatment” OR “Mixed
Treatment Meta Analysis” OR “Mixed Treatment Meta-Analyses”))
29 TITLE-ABS-KEY ((systematic! W/3 (review! or overview!)) or (methodologic! W/3
(review! or overview!)))
30 TITLE-ABS-KEY ((quantitative W/3 (review! or overview! or synthes!)) or (research
W/3 (integrati! or overview!)))
31 TITLE-ABS-KEY ((integrative W/3 (review! or overview!)) or (collaborative W/3 (re-
view! or overview!)) or (pool! W/3 analy!))
32 TITLE-ABS-KEY (“data synthes!” or “data extraction!” or “data abstraction!”)
33 TITLE-ABS-KEY (handsearch! or “hand search!”)
34 TITLE-ABS-KEY (“mantel haenszel” or peto or “der simonian” or dersimonian or fixed
effect! or latin square!)
35 TITLE-ABS-KEY ((met AND analy!) or “metanaly!” or “technology assessment!” or HTA
or HTAs or “technology overview!” or “technology appraisal!”)
36 TITLE-ABS-KEY (“meta regression!” or metaregression!)
37 TITLE-ABS-KEY (“meta-analy!” or “metaanaly!” or “systematic review!” or “biomedical
technology assessment!” or “bio-medical technology assessment!”)
38 TITLE-ABS-KEY (comparative W/3 (efficacy or effectiveness))
39 TITLE-ABS-KEY (“outcomes research” or “relative effectiveness”)
40 TITLE-ABS-KEY ((indirect or “indirect treatment” or “mixed-treatment” or bayesian)
W/3 comparison!)
41 TITLE-ABS-KEY (multi! W/3 treatment W/3 comparison!)
42 TITLE-ABS-KEY (mixed W/3 treatment W/3 (“meta-analy!” or “metaanaly!”))
43 TITLE-ABS-KEY (“umbrella review!”)
44 TITLE-ABS-KEY (multi! W/2 paramet! W/2 evidence W/2 synthesis)
45 TITLE-ABS-KEY (multiparamet! W/2 evidence W/2 synthesis)
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46 TITLE-ABS-KEY (multi-paramet! W/2 evidence W/2 synthesis)
47 or/27–46
48 47 and 26
50 48 and (limit-to (pubyear, 2021) or limit-to (pubyear, 2020) or limit-to (pubyear, 2019) or limit-to
(pubyear, 2018) or limit-to (pubyear, 2017) or limit-to (pubyear, 2016) or limit-to (pubyear, 2015)

Table A1. Datasets.

Type Sub-Type N

Database

Electronic Health Records 16
Registry 14

Administrative Database 2
Other 3

Study

Retrospective Cohort 11
Randomised Controlled Trial 10

Prospective Cohort 10
Cross-sectional 7

Not Clearly Specified 4

Table A2. Methods *.

Category Type N

Machine Learning

Deep Learning 18
Neural Network 16

Ensemble 15
Regression 14

Decision Tree 13
Instance-Based 11

Bayesian 8

Artificial Intelligence

Clustering 6
Dimensionality Reduction 5

Rule System 4
Regularisation 2

* The AI/ML algorithms were categorised using the framework adopted by Graili et al. [25] and proposed by
Brownlee [26].

References
1. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and

years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the
Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [CrossRef] [PubMed]

2. Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.; Coats, A.J. Global burden of heart failure: A comprehensive
and updated review of epidemiology. Cardiovasc. Res. 2022, 118, 3272–3287. [CrossRef] [PubMed]

3. Bozkurt, B.; Coats, A.J.; Tsutsui, H.; Abdelhamid, M.; Adamopoulos, S.; Albert, N.; Anker, S.D.; Atherton, J.; Böhm, M.; Butler, J.;
et al. Universal Definition and Classification of Heart Failure: A Report of the Heart Failure Society of America, Heart Failure
Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal
Definition of Heart Failure. J. Card. Fail. 2021, 27, 387–413. [CrossRef]

4. Averbuch, T.; Sullivan, K.; Sauer, A.; Mamas, M.A.; Voors, A.A.; Gale, C.P.; Metra, M.; Ravindra, N.; Van Spall, H.G. Applications
of artificial intelligence and machine learning in heart failure. J. Eur. Heart J. Digit. Health 2022, 3, 311–322. [CrossRef]

5. Guidi, G.; Pettenati, M.; Miniati, R.; Iadanza, E. Heart Failure analysis Dashboard for patient’s remote monitoring combining
multiple artificial intelligence technologies. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, San Diego, CA, USA, 10 November 2012; pp. 2210–2213. [CrossRef]

6. Guidi, G.; Melillo, P.; Pettenati, M.; Milli, M.; Iadanza, E. Performance assessment of a Clinical Decision Support System for
analysis of Heart Failure. In XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013. IFMBE
Proceedings; Roa Romero, L., Ed.; Springer: Cham, Switzerland, 2014; Volume 41, pp. 1354–1357. [CrossRef]

7. Goretti, F.; Oronti, B.; Milli, M.; Iadanza, E. Deep Learning for Predicting Congestive Heart Failure. Electronics 2022, 11, 3996.
[CrossRef]

8. Kijo, A.; Leotsakos, A.; Sands, A. WHO Strengthens Medical Device Regulation as Machine Learning-Enabled Medical Devices
Gather Pace. Health Manag. 2023, 23, 79–82.

http://doi.org/10.1016/S0140-6736(18)32279-7
http://www.ncbi.nlm.nih.gov/pubmed/30496104
http://dx.doi.org/10.1093/cvr/cvac013
http://www.ncbi.nlm.nih.gov/pubmed/35150240
http://dx.doi.org/10.1016/j.cardfail.202
http://dx.doi.org/10.1093/ehjdh/ztac025
http://dx.doi.org/10.1109/EMBC.2012.6346401
http://dx.doi.org/10.1007/978-3-319-00846-2_335
http://dx.doi.org/10.3390/electronics11233996


Bioengineering 2023, 10, 1109 18 of 20

9. Pecchia, L.; Pallikarakis, N.; Magjarevic, R.; Iadanza, E. Health Technology Assessment and Biomedical Engineering: Global
trends, gaps and opportunities. Med. Eng. Phys. 2019, 72, 19–26. [CrossRef]

10. Van Spall, H.G.; Averbuch, T.; Damman, K.; Voors, A.A. Risk and risk reduction in trials of heart failure with reduced ejection
fraction: Absolute or relative? Eur. J. Heart Fail. 2021, 23, 1437–1444. [CrossRef]

11. Rivera, S.C.; Liu, X.; Chan, A.W.; Denniston, A.K.; Calvert, M.J.; Ashrafian, H.; Beam, A.L.; Collins, G.S.; Darzi, A.; Deeks, J.J.;
et al. Guidelines for clinical trial protocols for interventions involving artificial intelligence: The SPIRIT-AI extension. Lancet
Digit. Health 2020, 2, e549–e560. [CrossRef]

12. Murali, K.M.; Mullan, J.; Chen, J.H.; Roodenrys, S.; Lonergan, M. Medication adherence in randomized controlled trials evaluating
cardiovascular or mortality outcomes in dialysis patients: A systematic review. BMC Nephrol. 2017, 18, 1–11. [CrossRef]

13. O’Rourke, B.; Oortwijn, W.; Schuller, T. Announcing the new definition of health technology assessment. Value Health 2020,
23, 824–825. [CrossRef] [PubMed]

14. Alami, H.; Lehoux, P.; Auclair, Y.; de Guise, M.; Gagnon, M.P.; Shaw, J.; Roy, D.; Fleet, R.; Ag Ahmed, M.A.; Fortin, J.P. Artificial
Intelligence and Health Technology Assessment: Anticipating a New Level of Complexity. J. Med. Internet Res. 2020, 22, e17707.
[CrossRef] [PubMed]

15. Kidholm, K.; Ekel, A.G.; Jensen, L.K.; Rasmussen, J.; Pedersen, C.D.; Bowes, A.; Flottorp, S.A.; Bech, M. A model for assessment
of telemedicine applications: MAST. Int. J. Technol. Assess. Health Care 2012, 28, 44–51. [CrossRef] [PubMed]

16. National Institute for Health and Care Excellence (NICE). Evidence Standards Framework (ESF) for Digital Health Technologies.
2022. Available online: https://www.nice.org.uk/about/what-we-do/our-programmes/evidence-standards-framework-for-
digital-health-technologies (accessed on 20 September 2023).

17. Fasterholdt, I.; Kjølhede, T.; Naghavi-Behzad, M.; Schmidt, T.; Rautalammi, Q.T.; Hildebrandt, M.G.; Gerdes, A.; Barkler, A.;
Kidholm, K.; Rac, V.E.; et al. Model for ASsessing the value of Artificial Intelligence in medical imaging (MAS-AI). Int. J. Technol.
Assess. Health Care 2022, 38, e74. [CrossRef]

18. McCarthy, J. From here to human-level AI. Artif. Intell. 2007, 171, 1174–1182. [CrossRef]
19. Kristensen, F.B.; Lampe, K.; Wild, C.; Cerbo, M.; Goettsch, W.; Becla, L. The HTA Core Model®—10 years of developing an

international framework to share multidimensional value assessment. Value Health 2017, 20, 244–250. [CrossRef]
20. Estévez Almenzar, M.; Fernández Llorca, D.; Gómez, E.; Martinez Plumed, F. Glossary of Human-Centric Artificial Intelligence;

Technical report; Joint Research Centre (Seville Site): Sevilla, Spain, 2022.
21. Medical Device Coordination Group (MDCG). Guidance on Qualification and Classification of Software in Regulation (EU)

2017/745-MDR and Regulation (EU) 2017/746-IVDR. 2019. Available online: https://health.ec.europa.eu/system/files/2020-09/
md_mdcg_2019_11_guidance_qualification_classification_software_en_0.pdf (accessed on 20 September 2023).

22. Hunt, H.; Pollock, A.; Campbell, P.; Estcourt, L.; Brunton, G. An introduction to overviews of reviews: Planning a relevant
research question and objective for an overview. Syst. Rev. 2018, 7, 39. [CrossRef]

23. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.;
Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71.
[CrossRef]

24. Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L.;
et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473.
[CrossRef]

25. Graili, P.; Ieraci, L.; Hosseinkhah, N.; Argent-Katwala, M. Artificial intelligence in outcomes research: A systematic scoping
review. Expert Rev. Pharmacoecon. Outcomes Res. 2021, 21, 601–623. [CrossRef]

26. Brownlee, J. Supervised and Unsupervised Machine Learning Algorithms. 2020. Available online: https://machinelearningmastery.
com/supervised-and-unsupervised-machine-learning-algorithms/ (accessed on 20 September 2023).

27. Collins, G.S.; Dhiman, P.; Navarro, C.L.; Ma, J.; Hooft, L.; Reitsma, J.B.; Logullo, P.; Beam, A.L.; Peng, L.; Van Calster, B.; et al.
Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic
prediction model studies based on artificial intelligence. BMJ Open 2021, 11, e048008. [CrossRef] [PubMed]

28. Sounderajah, V.; Ashrafian, H.; Golub, R.M.; Shetty, S.; De Fauw, J.; Hooft, L.; Moons, K.; Collins, G.; Moher, D.; Bossuyt, P.M.;
et al. Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: The STARD-AI protocol.
BMJ Open 2021, 11, e047709. [CrossRef] [PubMed]

29. Ibrahim, H.; Liu, X.; Rivera, S.C.; Moher, D.; Chan, A.W.; Sydes, M.R.; Calvert, M.J.; Denniston, A.K. Reporting guidelines for
clinical trials of artificial intelligence interventions: The SPIRIT-AI and CONSORT-AI guidelines. Trials 2021, 22, 11. [CrossRef]
[PubMed]

30. Vasey, B.; Novak, A.; Ather, S.; Ibrahim, M.; McCulloch, P. DECIDE-AI: A new reporting guideline and its relevance to artificial
intelligence studies in radiology. Clin. Radiol. 2023, 78, 130–136. [CrossRef]

31. European network for Health Technology Assessment (EUnetHTA). Comparators & Comparisons: Criteria for the Choice of the Most
Appropriate Comparator(s); Adapted version; European network for Health Technology Assessment: Vienna, Austria, 2015.

32. Grün, D.; Rudolph, F.; Gumpfer, N.; Hannig, J.; Elsner, L.K.; von Jeinsen, B.; Hamm, C.W.; Rieth, A.; Guckert, M.; Keller, T.
Identifying Heart Failure in ECG Data With Artificial Intelligence—A Meta-Analysis. Front. Digit. Health 2021, 2, 584555.
[CrossRef]

http://dx.doi.org/10.1016/j.medengphy.2019.08.008
http://dx.doi.org/10.1002/ejhf.2248
http://dx.doi.org/10.1016/S2589-7500(20)30219-3
http://dx.doi.org/10.1186/s12882-017-0449-1
http://dx.doi.org/10.1016/j.jval.2020.05.001
http://www.ncbi.nlm.nih.gov/pubmed/32540240
http://dx.doi.org/10.2196/17707
http://www.ncbi.nlm.nih.gov/pubmed/32406850
http://dx.doi.org/10.1017/S0266462311000638
http://www.ncbi.nlm.nih.gov/pubmed/22617736
https://www.nice.org.uk/about/what-we-do/our-programmes/evidence-standards-framework-for-digital-health-technologies
https://www.nice.org.uk/about/what-we-do/our-programmes/evidence-standards-framework-for-digital-health-technologies
http://dx.doi.org/10.1017/S0266462322000551
http://dx.doi.org/10.1016/j.artint.2007.10.009
http://dx.doi.org/10.1016/j.jval.2016.12.010
https://health.ec.europa.eu/system/files/2020-09/md_mdcg_2019_11_guidance_qualification_classification_software_en_0.pdf
https://health.ec.europa.eu/system/files/2020-09/md_mdcg_2019_11_guidance_qualification_classification_software_en_0.pdf
http://dx.doi.org/10.1186/s13643-018-0695-8
http://dx.doi.org/10.1136/bmj.n71
http://dx.doi.org/10.7326/M18-0850
http://dx.doi.org/10.1080/14737167.2021.1886083
https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/
https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms/
http://dx.doi.org/10.1136/bmjopen-2020-048008
http://www.ncbi.nlm.nih.gov/pubmed/34244270
http://dx.doi.org/10.1136/bmjopen-2020-047709
http://www.ncbi.nlm.nih.gov/pubmed/34183345
http://dx.doi.org/10.1186/s13063-020-04951-6
http://www.ncbi.nlm.nih.gov/pubmed/33407780
http://dx.doi.org/10.1016/j.crad.2022.09.131
http://dx.doi.org/10.3389/fdgth.2020.584555


Bioengineering 2023, 10, 1109 19 of 20

33. Bazoukis, G.; Stavrakis, S.; Zhou, J.; Bollepalli, S.C.; Tse, G.; Zhang, Q.; Singh, J.P.; Armoundas, A.A. Machine learning versus
conventional clinical methods in guiding management of heart failure patients—A systematic review. Heart Fail. Rev. 2021,
26, 23–34. [CrossRef]

34. Krittanawong, C.; Virk, H.U.; Bangalore, S.; Wang, Z.; Johnson, K.W.; Pinotti, R.; Zhang, H.; Kaplin, S.; Narasimhan, B.; Kitai, T.;
et al. Machine learning prediction in cardiovascular diseases: A meta-analysis. Sci. Rep. 2020, 10, 16057. [CrossRef]

35. Nadarajah, R.; Alsaeed, E.; Hurdus, B.; Aktaa, S.; Hogg, D.; Bates, M.G.; Cowan, C.; Wu, J.; Gale, C.P. Prediction of incident atrial
fibrillation in community-based electronic health records: A systematic review with meta-analysis. Heart 2022, 108, 1020–1029.
[CrossRef]

36. Lee, S.; Chu, Y.; Ryu, J.; Park, Y.; Yang, S.; Koh, S. Artificial Intelligence for Detection of Cardiovascular-Related Diseases from
Wearable Devices: A Systematic Review and Meta-Analysis. Yonsei Med. J. 2022, 63, S93–S107. [CrossRef]

37. Mahajan, S.; Heidenreich, P.; Abbott, B.; Newton, A.; Ward, D. Predictive models for identifying risk of readmission after index
hospitalization for heart failure: A systematic review. Eur. J. Cardiovasc. Nurs. 2018, 17, 675–689. [CrossRef]

38. Medic, G.; Klieb, M.K.; Atallah, L.; Weichert, J.; Panda, S.; Postma, M.; Amer, E.K. Evidence-based Clinical Decision Support
Systems for the prediction and detection of three disease states in critical care: A systematic literature review [version 2; peer
review: 2 approved]. F1000Research 2019, 8, 1728. [CrossRef] [PubMed]

39. Banerjee, A.; Chen, S.; Fatemifar, G.; Zeina, M.; Lumbers, R.T.; Mielke, J.; Gill, S.; Kotecha, D.; Freitag, D.F.; Denaxas, S.; et al.
Machine learning for subtype definition and risk prediction in heart failure, acute coronary syndromes and atrial fibrillation:
Systematic review of validity and clinical utility. BMC Med. 2021, 19, 85. [CrossRef] [PubMed]

40. Mpanya, D.; Celik, T.; Klug, E.; Ntsinjana, H. Predicting mortality and hospitalization in heart failure using machine learning: A
systematic literature review. Int. J. Cardiol. Heart Vasc. 2021, 34, 100773. [CrossRef] [PubMed]

41. Reading Turchioe, M.; Volodarskiy, A.; Pathak, J.; Wright, D.; Tcheng, J.; Slotwiner, D. Systematic review of current natural
language processing methods and applications in cardiology. Int. Heart 2022, 8, 909–916. [CrossRef]

42. Shin, S.; Austin, P.C.; Ross, H.J.; Abdel-Qadir, H.; Freitas, C.; Tomlinson, G.; Chicco, D.; Mahendiran, M.; Lawler, P.R.; Billia, F.;
et al. Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality. Int. ESC Heart
Fail. 2021, 8, 106–115. [CrossRef]

43. Wu, Q.; Lu, Z.; Liu, Y.; Xu, Y.; Zhang, J.; Xiao, W.; Yang, M. Machine learning for early warning of cardiac arrest: A systematic
review. Chin. J. Evid.-Based Med. 2021, 21, 942–952. [CrossRef]

44. Błaziak, M.; Urban, S.; Wietrzyk, W.; Jura, M.; Iwanek, G.; Stańczykiewicz, B.; Kuliczkowski, W.; Zymliński, R.; Pondel, M.; Berka,
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