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A B S T R A C T 

Owing to the forecasted impro v ed sensitivity of ground-based gra vitational-wa ve detectors, new research avenues will become 
accessible. This is the case for gra vitational-wa ve strong lensing, predicted with a non-negligible observation rate in the coming 

years. Ho we ver, because one needs to investigate all the event pairs in the data, searches for strongly lensed gravitational waves 
are often computationally heavy, and one faces high false-alarm rates. In this paper, we present upgrades made to the GOLUM 

software, making it more reliable while increasing its speed by re-casting the look-up table, imposing a sample control, and 

implementing symmetric runs on the two lensed images. We show how the reco v ered posteriors hav e impro v ed co v erage of the 
parameter space and how we increase the pipeline’s stability . Finally , we show the results obtained by performing a joint analysis 
of all the events reported until the GWTC-3 catalogue, finding similar conclusions to the ones presented in the literature. 

Key words: gravitational lensing: strong – gravitational waves. 
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 I N T RO D U C T I O N  

ince the first detection of a binary black hole (BBH) merger
hrough gra vitational wa ve (GW) observation (Abbott et al. 2016 ),
he detectors have been upgraded continually, leading to the detection
f close to 100 compact binary coalescences (CBCs) reported
fter the third observing run (The LIGO Scientific Collaboration
021b ). These detections enabled us to study the population of
ompact binary mergers (The LIGO Scientific Collaboration 2023b ),
osmology (The LIGO Scientific Collaboration 2023a ), and test
eneral relativity (The LIGO Scientific Collaboration 2021c ). In the
oming years, the LIGO (Aasi et al. 2015 ) and Virgo (Acernese
t al. 2015 ) detectors should be upgraded further, improving their
ensiti vity e ven more. In addition, the KAGRA (Somiya 2012 ; Aso
t al. 2013 ; Akutsu et al. 2019 , 2021 ) detector should join the detector
etwork soon, and LIGO-India is under construction (Iyer et al.
011 ). The combination of increased detector number and impro v ed
ensitivity will open the way to new scientific avenues. 

A new type of observation, forecast for the coming years (Ng et al.
018 ; Oguri 2018 ; Wierda et al. 2021 ), is that of strongly lensed GWs.
trong lensing happens when the characteristic wavelength is larger

han the typical size of the lens (often described by its Schwarzchild
adius), which leads to multiple images with the same frequency
 volution. The dif ferent images are magnified, phase shifted, and
elayed in time (Ohanian 1974 ; Deguchi & Watson 1986 ; Wang,
tebbins & Turner 1996 ; Nakamura 1998 ; Takahashi & Nakamura
 E-mail: j.janquart@uu.nl 
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Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
003 ; Dai & Venumadhav 2017 ; Oguri 2018 ; Ezquiaga et al. 2021 ;
iu, Maga ̃ na Hernandez & Creighton 2021 ; Lo & Magana Hernandez
023 ; Janquart et al. 2021a ) . If the lens is a galaxy, the images are
ypically separated from minutes to months (Dai, Venumadhav &
igurdson 2017 ; Li et al. 2018 ; Ng et al. 2018 ; Oguri 2018 ; Wierda
t al. 2021 ). If it is a galaxy cluster, the time delay can grow
o years (Smith et al. 2018 , 2017 , 2019 ; Robertson et al. 2020 ;
yczanowski et al. 2020 ). If not accounted for, lensing effects can

ead to biased results. The magnification of the GW leads to a
odified amplitude which can bias the luminosity distance (Dai

t al. 2017 ; Ng et al. 2018 ; Pang et al. 2020 ). When higher order
odes (HOMs) are present, the o v erall phase-shift can lead to biased

osteriors (Dai & Venumadhav 2017 ; Ezquiaga et al. 2021 ; Janquart
t al. 2021b ; Vijaykumar, Mehta & Ganguly 2023 ). Consequently,
f a lensed event has a significant HOM contribution, strong lensing
an be identified more easily (Lo & Magana Hernandez 2023 ; Wang
t al. 2021 ; Janquart et al. 2021b ; Vijaykumar et al. 2023 ). Other
ypes of lensing are also possible. If the typical size of the lens is
omparable to the GW wavelength, one gets frequency-dependent
eating patterns, often referred to as microlensing (Takahashi &
akamura 2003 ; Cao, Li & Wang 2014 ; Christian, Vitale &
oeb 2018 ; Jit Singh et al. 2018 ; Lai et al. 2018 ; Hannuksela
t al. 2019 ; Kim et al. 2021 ; Meena & Bagla 2020 ; Pagano,
annuksela & Li 2020 ; Cheung et al. 2021 ; Wright & Hendry
022 ). 
Strongly lensed events would lead to new possibilities to probe

undamental physics. Because one gets multiple similar images,
he effect is similar to an enhanced detector network made by the
um of the detectors observing each image. An extended network
© The Author(s) 2023. 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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reatly impro v es the sk y localization for BBHs (Hannuksela et al.
020 ; Janquart et al. 2021a ; Lo & Magana Hernandez 2023 ),
ould allow for better probes of GW polarization (Goyal et al. 
021 ; Maga ̃ na Hernandez 2022 ), and to better probe HOMs should
hey be present (Janquart et al. 2021b ). In addition, it would be
ossible to match the lensed GW data with electromagnetic (EM) 
ata (Hannuksela et al. 2020 ; Wempe et al. 2022 ), leading to sub-
rcsecond precision localization capabilities (Hannuksela et al. 2020 ; 
empe et al. 2022 ). For galaxy lenses, finding the corresponding 

ens–source system in the EM band generally requires the detection 
f four images. For galaxy cluster lenses, thanks to their scarcity, 
he same could be obtained using only two images (Sereno et al.
011 ; Smith et al. 2017 ; Ryczanowski et al. 2020 ; Yu, Zhang &
ang 2020 ) . Finding an EM counterpart to a GW-lensed event
ould also confirm the lensed nature of the event. Observing the 

wo channels is also of interest for other tests of fundamental 
hysics (Baker & Trodden 2017 ; Fan et al. 2017 ). The milli-second
recision offered by strongly lensed events is complementary with 
he information given by the EM data, leading to the possibility
f performing precision cosmography if a joint detection was 
ade (Sereno et al. 2011 ; Liao et al. 2017 ; Cao et al. 2019 ; Li, Fan &
ou 2019 ). Even on its own, GW strong lensing offers interesting
erspectives. 
GW lensing searches are already ongoing (Hannuksela et al. 2019 ; 

bbott et al. 2021 ; The LIGO Scientific Collaboration 2023c ). 
o far, no confident detection has been reported, even if some 

ntriguing candidates have been identified (Dai et al. 2020 ). The main
hilosophy behind strong lensing searches is identifying event pairs 
ith the same intrinsic parameters, and originating from the same 

k y location. Sev eral approaches hav e been dev eloped to address
arious challenges. An intuitive approach, called posterior overlap, 
ompares the posteriors obtained from unlensed searches (Haris 
t al. 2018 ). One takes the posteriors for (a subgroup of) the bi-
aries’ parameters, makes a KDE reconstruction, and computes how 

di)similar the y are. F or a lensed pair, one expects the two to o v erlap
ignificantly. This method is relati vely fast. Ho we v er, o v erlaps can
appen by chance, leading to risks of false-alarms (Wierda et al. 
021 ; Caliskan et al. 2022 ; Janquart, More & Van Den Broeck
023 ). A significantly more accurate method is joint parameter 
stimation, where two data streams are analysed simultaneously, 
ssuming they have the same intrinsic parameters and are linked 
hrough their relative magnification, time delay, and overall phase 
hift (Liu et al. 2021 ; Lo & Magana Hernandez 2023 ). A faster
lternative was presented in Janquart et al. ( 2021a ). The idea is to
istribute the runs rather than doing them simultaneously, hence 
nalysing the first image under the lensed hypothesis and using the 
esults to analyse the second image. This leads to a faster parameter
stimation scheme, equi v alent under the lensed hypothesis. This 
pproach is implemented in a framework called GOLUM (Janquart 
t al. 2021a ; Janquart, Haris & Hannuksela 2022 ). In this work, we
ho w de velopments made to this frame work to enhance its speed and
eliability. 

One of the main issues faced when searching for strongly lensed 
Ws is the rapidly growing false alarm probability (FAP; Wierda 

t al. 2021 ; Caliskan et al. 2022 ; Janquart et al. 2023 ) related to
he fast increase in the number of pairs to analyse (Ng et al. 2018 ).
ndeed, when searching for strong lensing, one should consider all 
he pairs of events one can make from the single e vents, gi ving
 quadratically growing number of pairs. In past analyses (Abbott 
t al. 2021 ; The LIGO Scientific Collaboration 2023c ), the technique
as been to analyse the data in multiple steps, going from the fastest
nd least accurate method (posterior o v erlap) to the most accurate
nd computationally heavy one. Ho we ver, in upcoming runs, the
alse alarms given by posterior overlap could lead to many events
o follow up using joint parameter estimation as this analysis is
uite heavy, taking up to weeks to analyse pairs of lensed BBH
ignals. It could become impossible to follow, requiring an enhanced 
ntermediate step. Including a lens model in the detection statistic is
ne way to decrease the false-alarm risk (Haris et al. 2018 ; Wierda
t al. 2021 ; Janquart et al. 2023 ). Ho we ver, using the wrong model
an mean one misses a genuinely lensed event (Janquart et al.
023 ). The first way to decrease the FAP is to use more accurate
ethods (Janquart et al. 2023 ). Unfortunately, such methods are 

enerally computationally heavier than less accurate ones, leading 
o issues when trying to follow up. It has been suggested in Janquart
t al. ( 2023 ) that a method like GOLUM could bypass the most
 xpensiv e step – the first image run – under the condition that
OMs are not too strong. Then, the analysis of the first image could
e skipped, opening the door to the direct use of a more precise
ethodology. 
In this work, we demonstrate some impro v ements added to the

OLUM software to address some of the challenges still present in
he strong lensing data analysis. The work is structured as follows. In
ection 2 , we present the basics of strong lensing. In Sections 3
nd 4 , we present how one can perform Bayesian inference for
trongly lensed GWs and how it can be tweaked to lead to a faster
ethod. Sections 5 –8 outline the different updates implemented 

n GOLUM . We then compare the updated pipeline with joint
arameter estimation in Section 9 , and show our results for the
W data released by the LVK in Section 10 . Finally, we give our

onclusions in Section 11 . 

 STRO NGLY  LENSED  G R AV I TAT I O NA L  

AV ES  

trong lensing leads to several possible detectable images. These 
mages are modified in three ways. First, they can be (de)magnified,
ranslated by a magnification factor μj . Formally, the magnification is 
he inverse of the determinant of the lensing Jacobian matrix (Schnei-
er, Ehlers & Falco 1992 ; Haris et al. 2018 ). Additionally, the
mage can undergo an o v erall phase shift (Dai & Venumadhav 2017 ;
zquiaga et al. 2021 ), represented by a Morse factor n j . It can
nly take three different values, making for three types of lensed
mages. One has type I images when n j = 0. This happens when the
mage passes through the minimum of the Fermat potential and is
qui v alent to no phase shift. If the image passes through a saddle
oint, n j = 0.5, and the image is of type II. Finally, if n j = 1, one
as a type III image, and the lensed GW passes through a maximum
f the Fermat potential. When HOMs are present, the o v erall phase-
hift induced by the Morse factor for a type II image cannot be
istaken for change in the binary’s phase value. Therefore, it can

ead to the image identification and smoking-gun evidence for strong 
ensing (Ezquiaga et al. 2021 ; Janquart et al. 2021b ; Vijaykumar
t al. 2023 ). Since dif ferent images follo w a dif ferent geometric
ath, the y hav e an additional time delay t j . It depends on the nature
f the lens. For a galaxy lens, one expects minutes to month time
elays (Takahashi & Nakamura 2003 ; Dai & Venumadhav 2017 ;
g et al. 2018 ; Oguri 2018 ), while it can reach years for galaxy

luster lenses (Smith et al. 2018 , 2017 , 2019 ; Robertson et al. 2020 ;
yczanowski et al. 2020 ). 
Accounting for these different effects, the lensed h 

j 

L and unlensed 
 U waveforms for an image j are linked as 

˜ 
 

j 

L ( f ; �, � j ) = 

√ 

μj ̃
 h U ( f ; � ) e 

(
2 i πf t j −i πn j sign ( f ) 

)
, (1) 
MNRAS 526, 3088–3098 (2023) 
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here � represents the usual BBH parameters, � j = { μj , t j , n j }
epresents the lensing parameters, and the tilde specifies we are
orking in the frequency domain. 
Considering solely geometric optics, 1 the magnification and the

ime delay are generally not measurable on their own. For one image,
he magnification can be absorbed in an observed luminosity distance 

 

obs ,j 
L = 

D L √ 

μj 

, (2) 

here D L is the source luminosity distance. The time delay can also
e absorbed in an observed time of coalescence 

 

obs ,j 
c = t c + t j , (3) 

here t c is the unlensed time of coalescence. Formally, the Morse
actor cannot be absorbed in an ef fecti ve phase as the presence of
OMs would lift such a de generac y (Ezquiaga et al. 2021 ; Janquart

t al. 2021b ; Vijaykumar et al. 2023 ). Due to these degeneracies, one
tudies the images by pairs and relates them via the relative lensing
arameters � = { μ21 , t 21 , n 21 } , with 

t obs , 2 
c = t obs , 1 

c + t 21 , 

 

obs , 2 
L = 

√ 

μ21 D 

obs , 1 
L , 

n 2 = n 1 + n 21 . (4) 

ith these parameters, it is easy to express the waveform for one
mage as a function of the waveform of another one. 

An alternative possibility for the analysis is to sample directly the
bserved parameters (apparent luminosity distance, Morse factor,
nd coalescence time) for the two images. This does not account
ntirely for the lensing hypothesis since it does not link the observed
arameters. Ho we ver, this can be easier when including population
odels, and the correlation is added in the post-processing step
hen the models are added (Lo & Magana Hernandez 2023 ).
his paramtrization has been added to the GOLUM framework to

ncorporate selection effects in future studies. 

 BAYESIAN  ANALYSIS  F O R  STRO NGLY  

ENSED  G R AV I TAT I O NA L  WAV ES  

he search for strong lensing is a Bayesian model selection problem.
ne has to decide whether it is more likely to observe the data under

he lensed or the unlensed hypothesis. In GW lensing, one analyzes
wo data streams jointly to determine whether the GWs present are
ensed images of each other. One of the data streams can be written 

 j = n j ( t) + h 

j 

H 

(
� j 

)
, (5) 

here n j ( t ) is the noise realization for the stretch of data, and h 

j 

H ( � j )
s the GW signal buried in the noise. It can either be a lensed image
 h 

j 

H = h 

j 

L and � j = { � , � j } ) of a multiplet or an unlensed GW event
 h 

j 

H = h 

j 

U and � j = � j ). 
The goal is then to determine if it is more likely to be in the lensed

ypothesis H L , hence the two observed GWs are images of each
ther described by { � , � 1 , � 2 } , or to be in the unlensed hypothesis
 U , thus the two GWs are independent and described by { � 1 , � 2 } .

ypically, the comparison between the two hypotheses is done using
he Odds ratio 

 

H L 
H U 

= 

P ( H L | d 1 , d 2 ) 
P ( H U | d 1 , d 2 ) = 

P ( H L ) 

P ( H U ) 

P ( d 1 , d 2 | H L ) 

P ( d 1 , d 2 | H U ) 
, (6) 
NRAS 526, 3088–3098 (2023) 

 We do not consider inference from micro-lensing or effects such as the lifting 
f the mass-sheet de generac y (Cremonese, Ezquiaga & Salzano 2021 ). 

2

I
a

here we have just developed the Odds ratio’s definition using Bayes
heorem. P ( H L ) /P ( H U ) is the prior odds and tells how likely it is
o be in one of the two hypotheses before collecting any data. While
t may not al w ays be the correct thing to do (Hannuksela et al.,
n preparation), it often is disregarded, and only the second ratio,
sually called the Bayes factor, is used to decide whether an event is
ensed or not. In this work, we will use the conventions set by Lo &

agana Hernandez ( 2023 ) and Janquart et al. ( 2021a ), and call the
atio of evidence 

 

L 
U = 

P ( d 1 , d 2 | H L ) 

P ( d 1 , d 2 | H U ) 
, (7) 

he coherence ratio when it does not account for selection effects. 2 

he term Bayes factor refers to the case where selection effects are
ncluded. 

Under the lensed hypothesis and neglecting selection effects, the
oint evidence for two data streams 

( d 1 , d 2 | H L ) = 

∫ 
p( d 1 | �, � 1 ) p( d 2 | �, � 2 ) 

×p( �, � 1 , � 2 )d � d � 1 d � 2 , (8) 

here p ( � , � 1 , � 2 ) is the joint prior on the binary parameters and the
ensing parameters, and p ( d j | � , � j ) with j = { 1, 2 } are the individual
ikelihoods. When performing joint parameter estimation for lensed
ignals, equation ( 8 ) is the equation one seeks to solve (Dai et al.
020 ; Liu et al. 2021 ; Lo & Magana Hernandez 2023 ). 
Equation ( 8 ) can be recast by using the observed parameters ( 2 ), ( 3 )

nd the relative lensing parameters ( 4 ) 

( d 1 , d 2 | H L ) = 

∫ 
p ( d 1 | ϑ ) p ( d 2 | ϑ , � ) 

×p( ϑ , � )d ϑ d � , (9) 

here ϑ represents the binary parameters with the Morse factor and
he observed luminosity distance and time delay for the first image.
 is the set of relative lensing parameters linking the two images.
quations ( 8 ) and ( 9 ) are equi v alent and represent simply a different
ay of expressing the waveforms and the link between them. This

orm has the main advantage of being easier to distribute in the
OLUM framework (see Section 4 ). 
Under the unlensed hypothesis, the two data streams are simply

ncorrelated. Therefore, 

( d 1 , d 2 | H U ) = 

∫ 
p( d 1 | � 1 ) p( d 2 | � 2 ) p( � 1 , � 2 )d � 1 d � 2 

= 

∫ 
p( d 1 | � 1 ) p( � 1 )d � 1 

∫ 
p( d 2 | � 2 ) p( � 2 )d � 2 

= p ( d 1 | H U ) p ( d 2 | H U ) . (10) 

ere, the priors are unrelated, and we directly get the product of
he evidence under the unlensed hypothesis. This can, in principle,
irectly be obtained using the unlensed data analysis, generally
erformed by the LVK (The LIGO Scientific Collaboration 2021b ). 
Using equations ( 8 ) and ( 10 ) (or alternatively equations 9 and 10 )

ne can express the coherence ratio ( 7 ). Evaluating the coherence
atio in this form is the task performed by joint parameter estimation
ools (Dai et al. 2020 ; Liu et al. 2021 ; Lo & Magana Hernandez
023 ), where one formally e v aluates the joint likelihood. To make
he comparison with our faster approach possible, we also added
 See Lo & Magana Hernandez ( 2023 ) for a detailed discussion on the subject. 
n this work, the different quantities neglect them because they can simply be 
dded in a post-processing step. 
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 joint likelihood inference tool in the GOLUM package (Janquart 
t al. 2022 ). 

 GOLUM’S  T R I C K  

istributed joint parameter estimation makes use of the possibility to 
e-express the joint evidence (equation 9 ) 3 as (Janquart et al. 2021a ) 

( d 1 , d 2 | H L ) = p( d 2 | d 1 , H L ) p( d 1 | H L ) , (11) 

 product of the evidence for the first image only under the
ensed hypothesis, hence accounting for the Morse factor, and the 
onditional evidence of the second data set given the observation of
he first. Mathematically, 

( d 2 | d 1 , H L ) = 

∫ [∫ 
p( d 2 | ϑ , �, H L ) p( ϑ | d 1 , H L )d ϑ 

]
×p( � | H L )d � . (12) 

ow, p( ϑ | d 1 , H L ) is the probability of having a given observed
arameter in the first image given its data. It is nothing less than
he posteriors one would get by analyzing the first image under the
ensed hypothesis. Equation ( 12 ) has the main advantage of leading
o a faster e v aluation than the full likelihood, expressing it in terms
f a ‘marginalized’ likelihood 

( d 2 | d 1 , H L ) = 

∫ 
L ( � | H L ) p( � | H L )d � , (13) 

here 

 ( � | H L ) = 

〈
p( d 2 | ϑ , �, H L ) 

〉
p( ϑ | d 1 , H L ) 

. (14) 

hile being fully equi v alent to the joint likelihood, equation ( 13 )
as the advantage of having a faster e v aluation. Indeed, since we use
he posterior of the first image, the parameters are already sampled 
round the correct region of the parameter space, making for a 
etter conv ergence. Moreo v er, these posteriors are known in advance, 
aking it possible to generate a look-up table before the run, a v oiding 

he computationally e xpensiv e step of waveform generation during 
he sampling process. 

One issue at this stage is that we have not impacted the second
mage observation on the posteriors of the first image. This can be
one by applying an additional reweighting step using (Janquart et al. 
021a ) 

( ϑ , � | d 1 , d 2 ) ∝ 

p( d 2 | ϑ , � ) 

L ( � ) 
p ( ϑ | d 1 ) p ( � | d 1 , d 2 ) , (15) 

here only p( d 2 | ϑ , � ) is unknown since the other terms are the
osteriors for the first and second image runs, and the denominator 
s the lensed likelihood e v aluated for the various samples during the
econd image run. 

Using this method, Janquart et al. ( 2021a ) showed the possibility
f getting accurate posteriors with a run time of about 1 CPU
our for the second image. In the end, the time needed to analyze
he first image – corresponding to the time needed to analyse a 
ingle unlensed BBH – is the dominating factor in the analysis. It
s a major impro v ement compared to joint parameter estimation. 
o we ver, using the GOLUM approach in various works has shown

hat it sometimes has shortcomings due to assumptions made in the 
eri v ation. In the coming sections, we show how to o v ercome some
 The same developments work when parametrizing the evidence as in 
quation ( 8 ) but, for simplicity, we focus on one way to cast the problem. The 
esults for the other parametrization are obtained similarly. 

r  

4

C

f these. So we update GOLUM to get a pipeline with (at least) the
ame speed but an impro v ed conv ergence and reliability. 

 M A K I N G  G O L U M  M O R E  EFFICIENT  

he lookup table presented in Janquart et al. ( 2021a ) gives a faster
ay to e v aluate the likelihood for the second-image analysis. The
ain idea is to pre-compute the weighted inner products for each

ample coming from the first image run for each detector. Then,
uring the nested sampling run, it suffices to correct these sums by
he relative lensing parameters and put together the contribution of 
he different detectors. The evidence for the second event can be
ritten as (Janquart et al. 2021a ) 

 ln ( p( d 2 | ϑ , � )) = 

∑ 

ifo 

[〈
d ifo 2 | d ifo 2 

〉 + 

1 

μ21 

〈
h 

ifo 
2 ( ϑ ) | h 

ifo 
2 ( ϑ ) 

〉

−2 e iπn 21 

√ 

μ21 

〈
d ifo 2 | e 2 iπf t 21 h 

ifo 
2 ( ϑ ) 

〉]
, (16) 

here ‘ifo’ runs o v er the detectors in the network, and the weighted
nner product 

k| l 〉 = 4 
∫ +∞ 

−∞ 

˜ k ( f ) ̃ l ∗( f ) 

S n ( f ) 
. (17) 

means the complex conjugate and S n is the power spectral density
PSD). This is an intuitive way of constructing the lookup table as
t is a direct translation of the maths one would do. In the frequency
omain, one needs to make one such table for each possible value of
he Morse factor difference. So, we compute a value to store for each
ime sample in each detector for a given Morse factor difference and
epeat for all the possible differences. Two issues were encountered 
ith this version of the lookup table: it is memory extensive and
ot optimal. To reduce both of these issues, it suffices to realize the
ensing parameters (except the time delay) are just prefactor of the
arious sums 

 ln ( p( d 2 | ϑ , � )) = 

∑ 

ifo 

〈
d ifo 2 | d ifo 2 

〉 + 

1 

μ21 

∑ 

ifo 

〈
h 

ifo 
2 ( ϑ) | h 

ifo 
2 ( ϑ) 

〉

−2 e iπn 21 

√ 

μ21 

∑ 

ifo 

〈
d ifo 2 | e 2 iπf t 21 h 

ifo 
2 ( ϑ) 

〉
. (18) 

he first term in this equation is independent of the parameters as
t is the inner product of the data with itself. This can be computed
nce and for all at the start and used as a correction factor later
n. For the two other terms, instead of storing one value for each
etector and each time delay, we can save the sum o v er the detectors
irectly, reducing the memory. In addition, since we do not need to
erform the various sums for each sample in each iteration during
he sampling process, we also reduce the number of operations and,
hus, the computation time. Using this version of the lookup table
nd more efficient coding, we reduced the second image run by a
actor of 5 on average. 4 

Finally, since t 21 is convolved with the data, one has to compute
ach sum for each time-step in the data stretch. Ho we ver, this makes
or a large memory consumption, especially for longer duration, 
ence lower mass, events. Computing the sums for so many time
amples is not necessary. Indeed, one typically has quite a good
rior knowledge of the time delay, and the time-prior is often very
estricted (typically a uniform distribution in t measured ± 0 . 2 s at most)
MNRAS 526, 3088–3098 (2023) 

c 

 The comparison in computational speed is done using the same Intel(R) 
ore(TM) i7-9750H CPU @ 2.60 GHz processor as in Janquart et al. ( 2021a ). 
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Figure 1. Evolution of the variability on the likelihood in GOLUM as a 
function of the number of samples and the corresponding mean number of 
ef fecti ve samples. More samples lead to better stability from one iteration to 
the other. We reach stability once we are abo v e 1000 ef fecti ve samples. 
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nd values outside of the priors are unexplored. Therefore, we
pdated the lookup table to take in the time-prior and pre-compute
he different sums only for times included in the prior. The memory
ain depends on the data duration, but it is a minimum factor of 10,
aking GOLUM more accessible for more e xtensiv e studies, lower
ass systems and lower memory systems. 
The combination of the two impro v ements also enables one to

asily use a higher number of samples from the first image posterior
ithout drastically increasing the computational time and memory

equirements. In turn, it can be used to impro v e the analysis’
ccuracy. 

 SAMPLE  C O N T RO L  

hen passing from the first to the second image run, it is common
o sub-sample the posteriors to have a faster run. This approach can
e applied without hurdle as long as the samples co v er the parameter
pace. Afterward, each sample is used in equation ( 14 ), where it
ontributes to a weight in the sum. Therefore, each selected sample
oes not have the same final importance and contributes differently
o the analysis. As for a reweighting process, we can compute the
umber of ef fecti v e samples (Elvira, Martino & Robert 2018 ; F arr
019 ; Payne, Talbot & Thrane 2019 ; Golomb & Talbot 2022 ) we
ave when drawing N samples from the first image run. 
The generic expression for the number of ef fecti ve samples N eff 

or a process with weights w j is (Elvira et al. 2018 ; Payne et al. 2019 ) 

 eff = 

(∑ N 

j= 1 w j 

)2 

∑ N 

j= 1 w 

2 
j 

, (19) 

here N is the total number of samples selected. 
For GOLUM , 

 j = p( d 2 | ϑ j , � ) . (20) 

n equation ( 20 ), the weights do not depend only on the parameters
e are sub-sampling but also on the parameters we still need to

nfer. Therefore, we cannot directly e v aluate the number of ef fecti ve
amples. Still, one can estimate the number of ef fecti ve samples for
 given number of total samples as 

 eff � 

1 

N � 

N � ∑ 

i= 1 

[ (∑ N 

j= 1 p( d 2 | ϑ j , � i ) 
)2 ∑ N 

j= 1 p( d 2 | ϑ j , � i ) 2 

] 

, (21) 

here we pre-select N � 

lensing parameters from the prior and see the
umber of ef fecti v e samples obtained on av erage for the different sets
f prior values. Even if it provides an approximate number of ef fecti ve
amples, this relation is already useful to guide the number of samples
ne should select from the initial distributions to have a given number
f ef fecti ve samples in the analysis. So, by iterati vely increasing N
n equation ( 21 ), one can find the number of samples such that
he estimated N eff is bigger or equal to a target value. Typically,
aving about or more than 1000 ef fecti ve samples is enough for a
roper convergence of the likelihood. Ho we ver, the corresponding
umber of samples to take from the posteriors of the first image is not
ecessarily 1000. For nicely lensed images (high SNR, well-behaved
oise), taking around 1000–1500 samples is enough. Ho we ver, if one
ants stability when analysing unlensed events or fainter signals, the
umber of samples to take from the prior can grow to much more
amples. Fig. 1 shows the stability as a function of the number of
elected samples. Using 1000 samples leads to a likelihood close to
he converged value. Using 2000 samples already leads to much better
nd more stable results. The first case typically has a corresponding
NRAS 526, 3088–3098 (2023) 
f fecti ve number of samples between 700 and 900, while the second
ase al w ays has more than 1000 ef fecti ve samples. So, from these
 xperiences, GOLUM giv es stable evidence evaluation when using
ore than 1000 ef fecti v e samples. F or a typical lensed ev ent pair,

sing 2000 samples ensures this condition. 
Therefore, when analysing a large number of events, it is rec-

mmended to choose the number of ef fecti ve samples one wants
o use and adjust the number of sub-samples taken from the first
mage posterior for each pair accordingly, ensuring consistency
rom one analysis to the other. The option to compute the number
f ef fecti ve samples using equation ( 21 ) has been adapted to the
oftware (Janquart et al. 2022 ). 

 ADAPTI NG  G O L U M  TO  LOW-LATENCY  

sing the lookup table presented in Section 5 , the second image
un takes O(5 min ) for 1000 samples, and about O(20 min ) for 5000
amples applying the same experimental conditions as in Janquart
t al. ( 2021a ). This is to compare with O(1 hr ) for 1000 samples in
OLUM ’s previous implementation. Therefore, the second image

un is much closer to the posterior o v erlap computation time, and
he GOLUM run time is dominated by the first image analysis,
aking the same computational time as traditional single BBH
arameter estimation. Ho we ver, using the distributed e vidence ( 11 ),
he coherence ratio (Janquart et al. 2023 ) 

 

L 
U = 

p( d 2 | d 1 , H L ) 

p( d 2 H U ) 

p( d 1 | H L ) 

p( d 1 | H U ) 
≈ p( d 2 | d 1 , H L ) 

p( d 2 | H U ) 
, (22) 

here the ratio of evidence under the lensed and the unlensed
ypotheses for d 1 is approximated at one. This approximation
s valid only when no strong HOM contributions are present in
he data. This is generally the case for the current observation.
ndeed, up to now, only two BBH ev ents hav e been detected with
 significant HOM contribution: GW190412 (Abbott et al. 2020a )
nd GW190814 (Abbott et al. 2020b ), hence about one event out of
0. Moreo v er, it is not enough to have HOMs in the data. Their
mpact on the C L U would be significant only if one has a type
I image, leading to a significant de generac y lifting between the

orse phase and the signal’s phase (Ezquiaga et al. 2021 ; Janquart
t al. 2021b ; Vijaykumar et al. 2023 ). This can potentially lead



Improving fast JPE for strongly lensed GWs 3093 

Figure 2. Difference between the log evidence reco v ered for type II images 
using BILBY and GOLUM , corresponding the unlensed and lensed hypothesis, 
respectively. One sees that most of the evidence is well below 1, meaning 
that the error made is not big enough to miss a lensed pair due to this 
approximation. 
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Figure 3. Illustration of the co v erage of the joint parameter space for fiducial 
chirp mass reco v eries. We straightforwardly use Gaussians to show the effect. 
Sampling only one of the two images is not enough to fully co v er the 
joint results. Ho we ver, using the tw o images w orks, moti v ating the use of 
a symmetric version of GOLUM . 
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o the detection of the image type (Janquart et al. 2021b ; Wang
t al. 2021 ; Vijaykumar et al. 2023 ), and biases in the reco v ered
osteriors (Vijaykumar et al. 2023 ). Ho we ver, looking attenti vely
nto the details of Vijaykumar et al. ( 2022 ), the difference in evidence
etween lensed and unlensed events for second-generation detectors 
s large only for specific events, with a very low mass ratio and high
otal mass. Such systems are quite unlikely to be observed according 
o current population models (The LIGO Scientific Collaboration 
023b ). As a consequence, the approximation abo v e is generally
alid, and one can neglect the evidence ratio for the first image. 

We also show this in more detail ourselves. We injected 100 BBHs,
elected from the observed mass and redshift distributions given 
n The LIGO Scientific Collaboration ( 2023b ) and with a network
ignal-to-noise ratio (SNR) higher than 8 for a network of two LIGO
etectors (Aasi et al. 2015 ) and the Virgo detector (Acernese et al.
015 ) at design sensitivity. We then give an extra Morse phase
orresponding to a type II image to all signals and inject them
nto noise. We then do the reco v ery under H L , hence accounting
or a Morse factor, and once under H U , hence not accounting
or the Morse factor. We account for HOMs and precession by 
njecting and reco v ering the signals using the IMRPhenomXPHM 

aveform (Pratten et al. 2021 ). Fig. 2 shows the difference in
vidence under the lensed (noted Z GOLUM 

) and unlensed (noted Z Bilby )
ypotheses. The unlensed run uses BILBY (Ashton et al. 2019 ), while
he lensed runs use GOLUM . In the two cases, we use the DYNESTY

ampler (Speagle 2020 ). All the values are distributed around zero, 
howing that the approximation is valid in most cases when following 
he expected BBH population. Out of all the events, only three have
 deviation of more than one in ln ( Z), which are events with more
rominent HOMs. Looking at the coherence ratios found in other 
tudies for lensed events (Janquart et al. 2023 ), one sees lensed
vents typically have ln ( C L U ) ≥ 5. Therefore, a lensed event should
ot be discarded with this approximation, even if it has some non-
egligible HOM contribution. This was already hinted at by Janquart 
t al. ( 2023 ). We also note that outliers are possible and HOMs should
ormally be accounted for. Even if they would probably not modify 
he coherence ratio too much, one should treat them cautiously. 
hecking the results using the first image run would be helpful in
uch a case. Still, to follow the pace of the detections in low-latency,
eglecting the first image can be a valuable trick. 
Posterior o v erlap (Haris et al. 2018 ) also assumes that the pos-

eriors obtained through the unlensed analyses are unbiased and 
epresentative of the ones obtained under the lensed hypothesis. 
n event breaking the approximation made in equation ( 22 ) would

lso break the approximation made in the posterior o v erlap analysis.
herefore, our suggested method is not necessarily more keen on 

ssues when confronted with HOMs. On the other hand, our frame-
ork still accounts for more correlation between the events since we
o not have to perform KDE reconstruction or take a sub-part of the
arameter space. Therefore, using this fast GOLUM should reduce 
he number of false alarms and, thus, the number of events that
eed to be followed up by more complete joint parameter estimation
ethods. 
We also note it should be possible to convert the unlensed results

nto lensed ones using hybrid sampling (W olfe, T albot & Golomb
023 ), making it possible to change the dimensionality of the problem 

nd rapidly correct for the strong-lensing effects. This could make it
ossible to use the exact GOLUM framework in low-latency. This is
eft for future work. 

 SYMMETRIC  G O L U M  

ne remaining possible issue is the parameter space co v erage. In
rinciple, one expects the posteriors for the two events to match
erfectly. Ho we ver, in reality, noise effects, the number of online
etectors, etc. can lead to variations in the posteriors with changes
n the widths and shifts between the posteriors. Because of that,
OLUM can sometimes give slightly different posteriors than a joint 
arameter estimation tool. This does not mean we miss the correct
alue, but more that we can get o v erconfident in the final posteriors
nd miss a part of the lower significance region. An illustration of
his phenomenon is given in Fig. 3 , where we illustrate the different
MNRAS 526, 3088–3098 (2023) 
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osteriors as simple Gaussians. When considering only one of the two
mages, the final samples can miss a small part of the region obtained
or the joint analysis. Once we have acquired the posteriors for the
rst image, GOLUM uses them to probe the lensing parameters, but

hey are not re-sampled. Therefore, we cannot create new samples,
nd regions not covered by the samples taken for the first image are
ot considered in the joint distribution. Ho we ver, it can be the case
hat the joint parameter estimation extends to a region compatible
ith the second image but not co v ered by the first image. 5 

So, while in theory, the labels 1 and 2 in equation ( 11 ) should
ot matter, they do have a consequence on the final result due to the
if ference in observ ation condition. Ho we ver, one can easily sho w
hat 

( d 1 , d 2 | H L ) = p( d 2 | d 1 , H L ) p( d 1 | H L ) 

= p( d 1 | d 2 , H L ) p( d 2 | H L ) 

= 

1 

2 

(
p( d 2 | d 1 , H L ) p( d 1 | H L ) 

+ p( d 1 | d 2 , H L ) p( d 2 | H L ) 

)
, (23) 

here the conditional likelihood is re-expressed simply as the
onditional of d 1 given d 2 . Equation ( 23 ) is symmetric in the two
vents. Therefore, the parameter space is explored by the two events.
 or an y of the two terms, the conditional evidence is computed
sing equation ( 13 ), once using the samples from image 1 to analyse
mage 2, and once using samples from image 2 to analyse image 1. 6 

o, this conditioned likelihood now requires two usual BBH runs
accounting for the Morse factor) and two GOLUM runs. Since the
uns can be done in parallel, the total time of the run is the time
eeded to analyse a single BBH. In this case, the coherence ratio
akes the more complex form 

 

L 
U = 

1 

2 

p( d 2 | d 1 , H L ) p( d 1 | H L ) + p( d 1 | d 2 , H L ) p( d 2 | H L ) 

p ( d 1 | H U ) p ( d 2 | H U ) 

= 

1 

2 

[
p( d 2 | d 1 , H L ) 

p( d 2 | H U ) 

p( d 1 | H L ) 

p( d 1 | H U ) 
+ 

p( d 1 | d 2 , H L ) 

p( d 1 | H U ) 

p( d 2 | H L ) 

p( d 2 | H U ) 

]

� 

1 

2 

[
p( d 2 | d 1 , H L ) 

p( d 2 | H U ) 
+ 

p( d 1 | d 2 , H L ) 

p( d 1 | H U ) 

]
, (24) 

here the last line assumes a low HOM hypothesis, as detailed in
ection 7 . In this case, only two GOLUM runs are needed, leading

o something close to joint parameter estimation in less than an hour.
In addition to having evidence better accounting for the parameter

pace co v ered by the two images, one is generally also interested in
he posteriors from the joint analysis. The posteriors can be expressed
s 

( ϑ , � | d 1 , d 2 ) = p( ϑ | d 1 , d 2 ) p( � | d 1 , d 2 ) 
= 

1 

2 

(
p( ϑ | d 1 , d 2 ) p( � | d 1 , d 2 ) 

+ p( ϑ | d 1 , d 2 ) p( � | d 1 , d 2 ) 
)

. (25) 

n this expression, we write ( ϑ , � ) without indices as ( ϑ 1 , � 21 ) and
 ϑ 2 , � 12 ) are related by a simple deterministic operation, meaning
heir probability distributions are trivially related. Each p( ϑ | d 1 , d 2 )
n equation ( 25 ) can be expressed using equation ( 15 ). In our context,
NRAS 526, 3088–3098 (2023) 

 The effect can also be observed in fig. 9 of Lo & Magana Hernandez ( 2023 ). 
 Images 1 and 2 here are just arbitrary labels to make the difference between 
hem. 
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e
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i

ne of the terms is computed using p( ϑ 1 | d 1 ) and p( d 2 | ϑ 1 , � 21 ) and
he other is obtained by swapping images 1 and 2 in the computation.
ence, we account for ϑ samples coming from the two posteriors,

nd we more largely co v er the parameter space. This a v oids us from
issing a part of the parameter space because of narrower priors in

he first image analysis. 
This process pushes GOLUM closer to formal joint parameter

stimation while not significantly increasing the computational
ime, especially when accounting for the impro v ements detailed in
ection 5 . 

 C O N F RO N TAT I O N  WI TH  J O I N T  

A RAMETER  ESTIMATION  

n this section, we compare the results from the GOLUM analyses
sing the abo v e-mentioned updates. We require 2000 ef fecti ve
amples. The 15 analysed BBHs are generated following the rates
nd population models given in The LIGO Scientific Collaboration
 2023b ). The lensing parameters linking the two events are sampled
rom the expected distribution for a singular isothermal ellipsoid
ens model (More & More 2022 ). We use a uniform prior between
 and 100 M 	 for the chirp mass ( M c = ( m 1 m 2 ) 3 / 5 / ( m 1 + m 2 ) 1 / 5 )
nd between 0.1 and 1 for the mass ratio ( q = m 2 / m 1 ). The individual
asses are constrained between 1 and 1000 M 	. For the other

arameters, we use the usual priors. When considering individual
orse factors, we use a discrete prior on the three possible values,
hile for the Morse factor difference, we consider n 21 ∈ { 0, 0.5, 1,
.5 } . The prior on the relative magnification is uniform between 0.1
nd 50, while the prior on the time delay is U( t inj 

21 − 0 . 2 , t inj 
21 + 0 . 2).

he events are injected in a network made of the two LIGO detectors
nd the Virgo detector at design sensitivity. We require the network
NR to be higher than 8 for the two images 7 and perform the analysis.
he unlensed runs are done using BILBY (Ashton et al. 2019 ) with

he DYNESTY sampler (Speagle 2020 ). The joint parameter inference
s performed using the framework added into GOLUM (Janquart
t al. 2022 ), and the distributed runs use the updated version
f GOLUM e xplained abo v e, using the same sampler. Again, the
njections and analyses are performed using the IMRPhenomXPHM
aveform (Pratten et al. 2021 ). 
First, in Fig. 4 , we compare the difference in likelihood for the

ymmetric GOLUM framework and the joint parameter framework
nd the old GOLUM implementation. With the new design, we obtain
 difference in evidence between joint parameter estimation and
OLUM below the typical error on the evidence made by GOLUM . 8 

o, there is a real impro v ement in the stability of the framework
btained through symmetrization. Looking at the results for the old
mplementation, one sees it also performs relatively well, and can be
n ef fecti ve filter. We also note that, in the first approximation, one
hould consider as a lensed candidate all events with a coherence
atio superior to a threshold value [typically, 2 is a conservative
alue (Janquart et al. 2023 )]. Even with the largest difference, the
OLUM approximate version using only one image is not discarding

n y lensed ev ent. So, it can be used as a filtering algorithm and is
ndicative when studying a large-scale population. 

A second problem tackled by the use of symmetrization is posterior
o v erage. The main idea is that it enables one to co v er the parameter
 Application of GOLUM to sub-threshold pairs was illustrated in Janquart 
t al. ( 2021a ). 
 Since we sum contributions from different runs, there is an error cumulation 
n GOLUM leading larger uncertainties on the final value. 
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Figure 4. Comparison between the error on the evidence obtained through 
the symmetric GOLUM implementation and the old implementation. The 
1-image implementation already performs sensibly well. Ho we ver, there is 
an impro v ement when considering the symmetric v ersion, where nearly all 
the differences are below the evidence error present in GOLUM . 
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Figure 5. Sky recovery for the symmetric GOLUM framework (light blue) 
and complete joint inference (dark green). Top : GOLUM and joint parameter 
estimation have matching 90 per cent confidence interval reco v ery. Bottom : 
Scenario in which there are dominating samples in the reweighting process 
leading to a high-density region peaking away of the 90 per cent interval, 
artificially shrinking the region and exclusing the injected value. One can 
also see the clear presence of dominant samples in the 1D posteriors, where 
there are a couple of bins with much more importance. This issue is reduced 
when using symmetric GOLUM . 
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pace better than when using only one image. One of the issues found
ith the usual GOLUM is that it sometimes does not fully co v er the
arameter space. Jointly, the sampling process has inherent issues, 
uch as vanishing samples. The symmetric implementation naturally 
ddresses these issues. As represented in Fig. 3 , it helps in co v ering
he entire parameter space. Secondly, since it uses two GOLUM runs,

ore independent samples are directly available, and one reduces the 
ssue of vanishing samples. Therefore, we get a better match between 
he symmetric GOLUM posteriors and those coming from joint 
arameter estimation. This is shown in Fig. 5 , top panel, where we
epresent the sky location recovery. Another issue that can arise, and 
nly partially solved with symmetrization, is the domination of a re-
uced number of samples in the reweighting process. This can happen 
hen a couple of data points have weights p ( d i | ϑ , � ) /p ( d i , d j | � )

ignificantly higher than the others. In such a case, the selection 
rocess latches on them, and one gets scattered posteriors with 
iased dominant regions, leading to high-density points. This is less 
ikely to happen when considering more samples, which is why 
ymmetrization is helpful. Ho we ver, in some cases, scattering is still
ossible. The dominant value may be slightly away from the actual 
njected ones for some parameters. Therefore, the injected value is not 
n the highest density region. The posteriors are then more different 
etween joint parameter estimation and GOLUM . Still, we note that, 
ith symmetrization, we have not seen cases where the injected value 
ad no samples when the joint parameter estimation had. Several 
ossibilities to correct this exist. First, one could simply use more 
amples. Ho we v er, co v ering the full space requires testing millions
f combinations, which becomes computationally e xpensiv e. On the 
ther hand, since there are samples in the correct region, one can think
bout using importance sampling using the formal joint parameter 
stimation likelihood. An example of a case where the biased higher 
ensity region leads to different posteriors between joint parameter 
stimation and GOLUM is given in Fig. 5 , bottom panel. While the
njected value is not in the 90 per cent confidence interval, it is in the
5 per cent one. The scattered posteriors problem was also present 
n the old GOLUM framework and was more pro-eminent. So, even 
f it does not completely solve the issue, symmetrization helps in 
ignificantly reducing it. 
0  C O N F RO N TAT I O N  WI TH  R E A L  DATA  

he previous sections have shown symmetrization helps in getting 
OLUM closer to the actual joint parameter estimation, and that 
ne can generally skip the first image run to save time. In this
ection, we use the symmetric GOLUM and the publicly available 
ata (The LIGO Scientific Collaboration, Virgo Collaboration & KA- 
RA Collaboration 2021a ) from the GWTC-3 LVK catalogue (The 
IGO Scientific Collaboration 2021b ). We use the public samples 
nd evidence obtained with BILBY (Ashton et al. 2019 ) and the
MRPHENOMXPHM (Pratten et al. 2021 ) waveform as results for the
MNRAS 526, 3088–3098 (2023) 
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M

Figure 6. Histogram of the ln ( C L U ) values found for all the GW events using 
the symmetric GOLUM approach. Most of the ev ents hav e a coherence ratio 
below zero. We also reco v er the different intriguing candidates reported in 
the literature: GW191103–GW191105 and GW170104–GW170814. While 
probably not lensed, reco v ering them shows that our method is trustworthy. 
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Figure 7. Top : Posterior reco v ery for the relative magnification for 
GW191103–GW191105. Bottom : Posterior reco v ery for the difference in 
the Morse factor. The two events also have a time delay of ∼2.5 d. Therefore, 
the reco v ered parameters are compatible with the expectation for a galaxy 
lens (More & More 2022 ). 
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nlensed analysis. We also assume the HOMs to be negligible for
ll the events and do the approximate symmetric GOLUM analysis.
o make a fair comparison, we also reweight all the posteriors and
vidence from the initial data to correspond to values with the same
riors. This a v oids us from fa v oring some events because of the initial
rior volume. In total, 87 BBHs are considered hence we analyse
741 event pairs. The histogram of the ln ( C L U ) values, zoomed on the
100 to 14 value region, is presented in Fig. 6 . There is a tail of

vents going down to a few hundred, but it is not so informative. We
ee that the vast majority of the events are well below zero. Only 43
v ent pairs hav e a positiv e coherence ratio. Out of those, most have
n ( C L U ) < 5. 

We note, ho we ver, the presence of two particular events in
he higher tail, matching pre viously reported e vents. First, the
W191103–GW191105 event pair has a relatively high coherence

atio, ln ( C L U ) = 6 . 012. This event is also reported in The LIGO
cientific Collaboration ( 2023c ), where it is seen as an interesting
andidate due to its characteristics. It also has a time delay of only
bout two days and a relative magnification close to 1. In addition, the
wo images are likely to be the same type. Having two type-I images
lose to each other is a probable scenario for galaxy lensing (More &
ore 2022 ). Therefore, the values are compatible with the lensing
odels. Ho we ver, The LIGO Scientific Collaboration ( 2023c ) show

hat it is not lensed when accounting for the population models. The
osterior distribution we obtain for the relative magnification and the
ifference in Morse factor are represented in Fig. 7 . 
The other high value found is for GW170104–GW170814, where

n ( C L U ) = 11 . 153, which is much higher than all the others. This event
as already reported as significant in the literature (Hannuksela

t al. 2019 ; Dai et al. 2020 ; Liu et al. 2021 ). Ho we ver, it has a
ong time delay (we find 222.01 d) and a large difference in mag-
ifications ( μGW170814 −GW170104 = 0 . 37 + 0 . 08 

−0 . 07 , such that D 

GW170814 
L =

 

μGW170814 −GW170104 D 

GW170104 
L ). In addition, we find that the Morse

actor difference between the two events is 1. Therefore, one of the
wo images is a type III image. This is not compatible with the
xpectations for galaxy lenses (see Collett & Bacon 2016 ; Collett
t al. 2017 ; Wierda et al. 2021 ; More & More 2022 , for example).
his situation could be a bit more likely for a galaxy cluster lens,
NRAS 526, 3088–3098 (2023) 
ut this type of lensing has a low probability (see e.g. Smith et al.
017 , 2018 , 2019 ; Robertson et al. 2020 ; Ryczanowski et al. 2020 ).
herefore, it seems unlikely for the event to be lensed and we do not
ush its study further in this work. 
We do not report any new detections or claims. Ho we ver, we

ave shown that our method can reproduce the results presented in
iterature o v er the years on a much shorter time-scale, owing to its
nhanced speed. 

1  C O N C L U S I O N S  

n this work, we presented upgrades to the GOLUM framework, a
ool to analyse strongly lensed GWs. We have sho wn ho w recasting
he lookup table could reduce memory usage and computation time
nd how computing the number of ef fecti ve samples leads to better
tability. We then showed how the pipeline can be used in low latency
y showing the generally small impact of the first image contribution
o the coherence ratio. Finally, we have introduced a symmetrization
f the pipeline, solving some issues found in the framework, such
s difficulties in fully co v ering the parameter space when using only
ne image and vanishing samples in the reweighing process. 
For each of the upgrades, we have sho wn ho w they work and what

heir effects are. In particular, we have compared the performances
f the entire symmetric GOLUM framework with results coming
rom joint parameter estimation, also implemented in Janquart et al.
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 2022 ). We started by showing that, generally, the first image run does
ot impact too much the evidence computation. Therefore, one is not 
orced to do it and can use the samples from the unlensed searches.
ince the most computationally heavy part of GOLUM is the first

mage e v aluation, dropping the first image analysis significantly 
educes the computation time. In addition, the run time for the second
mage has been impro v ed by a factor of 10 thanks to the different
pgrades, making GOLUM quite suited for low-latency applications. 
his approach contains a certain degree of risk, as it can fail if

mportant HOM contributions are present in the data. Ho we ver, this
ould be flagged in the usual analyses, making the approximation 

vident. We also note that other low-latency methods, like posterior 
 v erlap, do not account for the Morse factor and are, consequently,
ensitive to HOMs. 

Using symmetrization leads to a clear impro v ement in the evidence 
ompared to a single image, with values much closer to those given
y joint analyses. In addition, we have shown that we get a better
ample co v erage with less scattered sk y reco v ery. A remaining issue,
nly partially solved via the symmetric run, is the domination of a
ew samples in the weights. Indeed, a reduced number of samples 
an have much higher probability ratios in the reweighting process, 
eading to an artificial high-density region in the final posterior. This
roblem is already significantly reduced when using symmetrization, 
ut there are still some cases where the final posterior is biased due
o dominant weights. We suggest two possible avenues to solve this:
se more samples to co v er the parameters space better or perform
mportance sampling to correct for the bias using the formal joint 
ikelihood. The main issue is that such methods are computationally 
eavy when applied to numerous samples. Still, it already gives a 
ood idea about the sky localization of the event in case one would
ike to perform a follow-up analysis. 

Finally, we have re-analysed all the GW BBH candidates released 
y the LVK since the first detection. Using the public samples and
et-up, we performed (approximate) symmetric GOLUM runs for all 
he possible pairs. Our results match those of the LVK collaboration 
nd other results given in the literature. Most events are certainly 
nlensed, and there are two notable event pairs: GW191103–
W191105 and GW170104–GW170814. The first has the second 
ighest C L U but also has the particular property of having apparent 
ensing parameters compatible with the current galaxy lens models. 
he O2 pair is the one with the highest coherence ratio in all the
airs: ln ( C L U ) = 11 . 153. While intriguingly high, other works have
hown why this event pair is probably not lensed. 

In the end, we have shown how improving our pipeline enables 
t to be faster and more reliable, making it possible to analyse large
hunks of data in an approximate (but still accurate) form. This is a
rucial step for future studies, where the number of events will grow
teadily, and more and more pairs will have to be tracked. Therefore,
sing a more precise method with comparable speed is an important 
tep forward to reduce the false-alarm probability. Let us also note 
hat, with this approach, only a fe w e v ents would hav e to be followed
p using joint parameter estimation and low-latency results could be 
ssued quickly in case an exceptional event is detected. 
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