
Abstract Monte Carlo simulation is widely used to numerically 

solve stochastic differential equations. Although the method is 

flexible and easy to implement, it may be slow to converge. More-

over, an inaccurate solution will result when using large time 

steps. The Seven League scheme [1], a deep learning-based 

numerical method, has been proposed to address these issues. 

This paper generalizes the scheme regarding parallel computing, 

particularly on Graphics Processing Units (GPUs), improving the 

computational speed. 

Introduction 

In this paper, we will develop a highly accurate numerical dis-

cretization scheme for stochastic differential equations (SDEs), 

which is based on taking possibly large discrete time steps. We 

“learn” to take large time steps [1] by using an artificial neural 

network (ANN), in the context of supervised machine learning, 

with the help of stochastic collocation polynomials (SCMC,  

see [2]). 

In many forms and flavors, the deep learning paradigm [3] 

receives much attention in science and engineering nowadays. 

The Physics-Informed Neural Networks (PiNN) [4], for example, 

combining physical and mathematical insights in an unsuper-

vised learning fashion, starts to enter the field of solving ordinary 

(ODEs) and partial differential equations (PDEs). The correspon-

ding computational costs are nontrivial, however, simply because 

the underlying equations need to be learned from scratch, and 

this costs time. Supervised learning, based on labels, on the 

other hand, is a classical form of machine learning, which is often 

more efficient as there is an offline stage, in which the input-

output labelled relations are being learned, followed by a highly 

efficient online stage, where the learned manifold of solutions 

is evaluated for new input values. In our work, supervised learn-

ing is employed, which, however, strongly relies on a sophisti-

cated numerical stochastic collocation technique, to achieve a 

challenging task within numerical analysis. In the present paper, 

we want to show that by parallelization the method’s efficiency 

can be greatly enhanced, thus computing times of both the 

online and the offline stages are significantly reduced, on a 

graphics processing unit (GPU). 

The basic idea of the 7L scheme is to learn a small number of 

(conditional) stochastic collocation points, and the learned neu-

ral network function is employed to forecast the unknown col-

location points for the next time step. Then, by means of the 

stochastic collocation Monte Carlo sampler (SCMC) [2], the ran-

dom paths are generated. Interestingly, the strong convergence 

error of the 7L scheme is independent of the size of the simula-

tion time step. In other words, different from classical numerical 
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schemes, the accuracy of the numerical solution does not 

decrease when solving SDEs with large time steps due to the 

learning stage. 

Parallel computing on GPUs is prevalent nowadays, especially 

for numerical simulations that require intensive computational 

resources. Regarding stochastic differential equations, parallel 

implementations of classical Monte Carlo simulations on GPUs 

have been well studied, for example, [5, 6]. In this paper, we 

extend the 7L scheme by parallel computing to further improve 

its computational speed. There is inherent parallelism in the 7L 

scheme, as a neural network consists of a large number of artificial 

neurons that can work in parallel. Moreover, required interpola-

tion functions are independent of each other. Thus, they can be 

easily distributed over different processing units. 

Methodology, the 7L Scheme 

Suppose a real-valued random variable Y (t) is defined on the prob-

ability space ( , , ℙ)  with  filtration t∈[0,T ],  sample  space  ,
-algebra   and  probability measure ℙ. For the time evolution 

of Y(t), consider the generic scalar Itô SDE, 

dY (t) = a(t, Y(t), )dt + b(t, Y(t), )dW(t), 0  t  T,                (6.1) 

with the drift term a(t, Y (t), ), the diffusion term b(t, Y (t), ), 

model parameters , Wiener process W (t), and given initial value 

Y0 := Y(t = 0). The solution of (6.1) is unique when the drift and 

diffusion terms meet some regularity conditions. 

The basic discretization for each Monte Carlo path, is the Euler-

Maruyama scheme [7], which reads, 

Ŷi+1|Ŷi = Ŷi + a(ti,Ŷi, ) t + b(ti, Ŷi , )√ tX̂i+1, (6.2) 

where  Ŷi+1 := Ŷ(ti+1)  is  a  realization  (i.e.,  a  number)  from

random  variable Ỹ(ti+1), which represents the numerical approx-

imation to exact solution Y(ti+1) at time point ti+1, and a real-

ization X̂i+1 is drawn from the random variable X, which here fol-

lows the standard normal distribution  (0, 1). The Euler-

Maruyama scheme will be used to generate the training data set. 

However, training will be based on tiny time steps (for accuracy 

reasons). 

Similarly, the 7L scheme reads Ŷi+1|Ŷi = ɡm(X̂i+1), where ɡm( )
stands for a mapping function, transforming a standard normal 

distribution to the target distribution at time ti+1. The function 

ɡm( )  can be obtained through an interpolation technique, based 

on m pairs of collocation points (xj, yj), where j = 0, . . . , m –1, xj 
are obtained from the standard norm distribution X (here Gauss-

Hermite quadrature points), and yj   are stochastic collocation 

points at time ti+1, conditional on the  previous  realization Ŷi .  

In  the  context  of  Markov  processes,  the  function  of computing 

yj  can be written as follows, 

yj(ti+1 ) | Ŷi = Hj (Ŷi, ti+1  ti ,  ) . (6.3) 

So, a neural network can be trained to approximate the function 

Hj( ). The two key components of the scheme refer to the func-

tion Hj( ) and the interpolation function ɡm( ) , both of which 

will be parallelized in Section 6.2. 

Parallelization 

Parallelization is carried out by the parallel implementation of 

the appearing interpolation functions and the neural network 

involved in the algorithm. 

Note that the parallelization of the 7L scheme is focused on the 

online stage, because the training stage is done offline and once. 

A variant, the 7L-CDC scheme, see the paper [1], with more inter-

polations in Step 3 above, can be parallelized similarly. In this 

work, we use the barycentric version [8] of Lagrange interpolation 

on GPUs and CPUs to fairly compare their speed performance. 
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Please refer to the original paper [1] for more interpolation tech-

niques. 

Algorithm I: A parallel algorithm of the 7L scheme 

1. Offline stage: Train the ANNs to predict the stochastic 

collocation points. At this stage, we choose different 

values, simulate corresponding Monte Carlo paths, with

small constant time increments  = i+1  i  in [0, max], 

generate the corresponding collocation points

ŷj|Ŷi   yj|Ŷi, and learn the relation between inputs and

outputs to obtain Ĥk  Hk.

2. Online stage: Partition time interval

[0,T], ti = i T/N, i = 0, . . . N, with equidistant “large” time

step t = ti+1 – ti, and output N sample paths.

3. Run the ANNs to compute m collocation points at time ti+1

for each path, 

ŷj(ti+1)|Ŷi  = Ĥj (Ŷi, ti+1  ti , ), j = 1, 2, . . . , m,           (6.4)

and form a vector

ŷi+1 = (ŷ1(ti+1)|Ŷi, ŷ2(ti+1)|Ŷi, . . . , ŷm(ti+1)|Ŷi).

This step is parallelized by running the ANNs in a batch 

model on the GPU. 

4. Divide N sample paths into NT
  groups, and allocate a 

group of  N_N
_
T

 paths to a certain thread on GPUs. 

5. For each of  N_N
_
T

  paths in a thread, compute interpolation 

function ɡm( ) , based on m pairs of (xj, ŷj ). 
6. Sample from X and obtain a sample Ŷi+1 |Ŷi = ɡm(X̂i+1 ).
7. Collect all paths Ŷi+1  from NT

  threads to form a compete

set at time ti+1.

8. Return to Step 3 by ti+1  ti, iterate until terminal time T .

Numerical Results 

In this section, we evaluate the computational performance of 

the parallized 7L scheme. Here we take the Ornstein-Uhlenbeck 

(OU) process as an example. The OU process is a mean reverting 

process, defined as follows, 

dY (t) = (Y (t)  Y–)dt + dW (t),      0  t  T, (6.5) 

with Y– the long term mean of Y(t),  the speed of mean reversion, 

and  the volatility. The initial value is Y0, and the model param-

eters are  := {Y–, , }. Its analytical solution is given by, 

     
(6.6)

with t0 = 0, X ~ (0, 1). Equation (6.6) is used to compute the

reference value to the path-wise error and the strong conver-

gence. 

In the training phase, the Euler-Maruyama scheme is used to 

discretize the OU dynamics and generate the data set (here five 

stochastic collocation points to learn within the ANN). After the 

training, the 7L scheme with the obtained ANNs is used to solve 

the OU process, as shown in Algorithm I. 

The ANN hyperparameters are set as follows here. We use 4 hid-

den layers, 50 neurons per layers, a Softplus activation function, 

a Glorot initialization, the Adam optimizer, a batch size of 1024, 

and a learning rate of 10−3. 

The parallized 7L scheme is evaluated on the GPU and CPU as 

follows, 

GPU Type: GeForce MX150, Graphic Cores: 384, Graphics 

clock: 1468 MHz, Memory speed: 6.01 GHz, Memory 

bandwidth: 48.06 Gb/s. 

CPU Type: Intel Core i7-8550U, Cores: 4, Maximum speed: 4.0 

GHz, Base clock speed: 1.80 GHz. 

The parallelization is done in CUDA (Compute Unified Device 

Architecture), the platform created by Nvidia. The threads, which 

are the basic operational units in CUDA, are computing processes 

Y (t) d=Y0e + Y (1 e ) +
1 e 2
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that run in parallel. The number of threads NT
  used for the  

parallelization is 256. Therefore, the number of paths NB
  per 

thread is proportional to the total number of simulated paths  

NP , NB =   N_N
_P
T

  . The speedup ratio is defined by the running time 

of the parallelized code (on the GPU) divided by the running time 

of the original code (on the CPU). The reported time is obtained 

by running the corresponding code 100 times and taking the 

averaged execution time. 

Table 6.1: Computational time (seconds) of the 7L and 7L-CDC 
schemes. 

Number the 7L scheme the 7L-CDC scheme 
of paths          Sequential      Parallel      Speedup         Sequential     Parallel      Speedup 

time                  time time                  time 

1,000                1.555                 0.268          5.8 1.296                0.062          20.9 

50,000             70.108              6.844          10.2                   64.731              2.828          22.9 

100,000           134.745            14.623       9.2 132.198           5.886          22.5 

200,000           282.456            21.545       13.1                   251.684           11.527        21.8 

As shown in Table 6.1, the speedup ratio appears to converge to 

10 when the number of the sample paths increases. However, 

this ratio may fluctuate due to the unstable performance of GPUs 

and CPUs. The major acceleration comes from the parallelization 

of the interpolation process (here based on five collocation 

points), as the ANN running times on the GPU and CPU have a 

small difference in this test. The 7L-CDC scheme employs a global 

interpolation technique which is based on the marginal collo-

cation points to compute the conditional collocation points for 

each random path, instead of using the ANNs for each path as 

the 7L scheme does in Step 3 of Algorithm I. The 7L-CDC scheme 

only requires the ANNs to compute a small number of marginal 

collocation points (here five marginal collocation points) along 

with the probability distribution. The 7L-CDC scheme can be 

used as a faster variant of the 7L scheme, as long as the global 

interpolation technique is computationally cheaper than the 

evaluation of the ANN. As shown in Table 6.1, the speedup ratio 

of the parallelized 7L-CDC scheme converges to 22. There are 

two interpolation processes (one for the five conditional collo-

cation points and another for five marginal collocation points) 

in the 7L-CDC scheme, which explains why the speedup ratio is 

as twice as that of the 7L scheme. 

The speedup ratio is also affected by other factors, for example, 

the number of threads and the configuration of the used GPU. 

The original paper [1] has proved that the numerical error does 

not grow when the simulation time step size increases. We find 

that the above property holds when the 7L scheme is imple-

mented on GPUs in a parallel way. 

Summarizing, a neural networks-based numerical solver for sto-

chastic differential equations, the 7L scheme, has been parallel-

ized to accurately carry out large time step simulations, with a 

further computational acceleration by a factor of 10 or even 20, 

on the used GPU. 
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