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Non-Hermitian systems exhibit interesting band structures, where novel topological phenomena arise from
the existence of exceptional points at which eigenvalues and eigenvectors coalesce. One important open question
is how this would manifest at noninteger dimension. Here, we report on the appearance of fractal eigenvalue
degeneracies and Fermi surfaces in Hermitian and non-Hermitian topological band structures. This might have
profound implications on the physics of black holes and Fermi surface instability driven phenomena, such as
superconductivity and charge density waves.

I. INTRODUCTION

The properties of fractal lines and surfaces comprise an
important field within complex dynamics [1] and topology
[2, 3], with wide applications in natural sciences. Prominent
and popular examples include the shapes of Romanesco broc-
coli and seahorse tails, but it has also entered the stage in
high-energy physics and the studies of black hole horizons
[4]. Another promising venue is condensed-matter physics
[5], where topology mainly has provided the classification
of Bloch bands [6] and the advent of topological insulators
[7, 8] and semimetals [9, 10]. Recent years have, however,
marked a paradigm shift within topological band theory as
non-Hermitian (NH) systems have gained vastly increased at-
tention [11]. Such models effectively describe dissipation or
gain and loss, and find applications ranging from ultracold
atoms [12] and mechanical systems [13] to optics [14–17].

A unique and ubiquitous feature of NH band structures is
the generic appearance of exceptional points (EPs), where
both eigenvalues and eigenvectors coalesce, leaving the corre-
sponding Hamiltonian defective and thus, nondiagonalizable
[18]. The topological properties of EPs have been intensively
studied, both in generic systems [19–21], but also in systems
subject to discrete symmetries, where higher-order EPs are
stabilized [22–27]. Furthermore, novel topological phenom-
ena has arisen following the studies of EPs [20, 28, 29], and
can be applied in sensing [30–36] and unidirectional lasing
[37–40], to cite just a few examples.

In this work, we merge studies on fractals and EPs by in-
troducing a phase of matter: fractal nodal band structures. We
show, through explicit constructions, that EPs can form Multi-
brot set boundaries in a range of different setups. Specifi-
cally, EPs of order two (EP2s) form fractal contours in generic
three-dimensional (3D) systems, while they form contours
and surfaces in NH parity-time (PT )-symmetric systems in
2D and 3D, respectively. Quite remarkably, the correspond-
ing Fermi surfaces (FSs) also take fractal shapes, as they ter-
minate at the EPs. Additionally, we show that PT symmetry
furthermore stabilize fractal contours of EP3s in NH systems,
and contours of ordinary nodal points (ONPs) in Hermitian
setups.

The implications of our work are multifold. First, by pro-
viding concrete ways to construct fractal nodal FSs, we open
the path to the realization of fractal superconductivity (SC)

[41, 42] and fractal charged density waves (CDWs), e.g., since
these are FS instability phenomena, and hence, strongly de-
pend on the shape of the FS. Second, it raises questions about
black holes and analog gravity, as the fractal FSs in this work
can be thought of as a tachyonic phase resembling the inte-
rior of a black hole with fractal horizon. Third, the number of
concrete models hosting fractal nodal structures further sug-
gests that our findings are of importance within various fields
of experimental relevance, in addition to providing a missing
piece in the understanding of both Hermitian and NH band
structures in topological band theory.

II. EXCEPTIONAL FRACTALS IN 2D BAND
STRUCTURES

The Multibrot set is defined as the Julia set given by the re-
cursive relation zn+1 = zdn + c for some complex zn and c.
The corresponding boundary can be visualized using various
methods including Jungreis functions and Newton methods
[43]. For the current purpose, the fractals are illustrated us-
ing Bernoulli lemniscates, or equipotential curves [44], where
the boundary is depicted by plotting the absolute value of the
function

F (x, y, d) = f(x, y) +
(
f(x, y) + (f(x, y) + ...)

d
)d

= r

(1)
with f(x, y) = x+ iy, r ∈ C and for the Multibrot set, which
will exemplify our findings, d ≥ 2 and integer valued, with
d = 2 corresponding exactly to the Mandelbrot set. We note
that our construction goes beyond d ≥ 2, as d in principle
can be generalized to both negative and fractional values. For
integer values, the generated images acquire a |d− 1|-fold ro-
tational symmetry. The fractal boundary of the Multibrot set
can be thought of as a line embedding in a 2D space specifi-
cally given by

Re [F (x, y, d)]
2
+ Im [F (x, y, d)]

2
= |r|2. (2)

In terms of NH band structures, this is reminiscent of what
is known for certain symmetry-protected exceptional struc-
tures. One such symmetry is PT symmetry, which due
to its high experimental relevance will be the focus of the
main text. We stress that similar features can be obtained
using pseudo-Hermiticity, particle-hole-symmetry, or chiral
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Figure 1. Fermi surfaces [the red region, defined as Re (E) = 0 ⇐⇒ E2 < 0] and their bounding EPs (in white) of the PT -symmetric
model given by Eq. (5), taking the form of fractals. Specifically, they form Multibrot sets with d = 2, 3, 5, 8 in (a), (b), (c), and (d), respectively.
In all panels, r = 2, and Eq. (1) is terminated after ten steps. We emphasize that due to the topological properties of the eigenvalues, the EPs
only comprise the line-shaped transition between the red (PT symmetry-broken) and blue (PT -symmetric) region, and its seemingly different
appearance in the various panels above is a consequence of the increasing energy gradient with d, in combination to numerical limitations.

symmetry [24, 26], and provide explicit models for those
cases in Appendix A 1. A PT -symmetric Hamiltonian has
to commute with the PT operator and consequently satisfies
UPT HU−1

PT = H∗, where ∗ denotes complex conjugation
and UPT is a unitary matrix. Choosing UPT = 1, the ma-
trix representation of a PT -symmetric Hamiltonian consists
of purely real entries. This will be the representation of PT
symmetry used throughout this work. A PT -symmetric two-
band Hamiltonian thus casts the form

H2b
PT = dR,xσ

x + idI,yσ
y + dR,zσ

z, (3)

where σi, i = x, y, z denotes Pauli matrices, and dR,x, dI,y
and dR,z are real-valued continuously differentiable func-
tions of the lattice momentum components kx, ky, and kz .
As the current study focuses on eigenvalue degeneracies, the
term proportional to the identity matrix has been neglected
in Eq. (3), as such a term will merely shift the EPs in en-
ergy space. The corresponding eigenvalues are E2b,±

PT =

±
√
d2R,x + d2R,z − d2I,y, and EP2s appear when

d2R,x + d2R,z = d2I,y. (4)

The similarities between Eqs. (4) and (2), indicate that the
EP2s ought to form the boundary of a Multibrot set if the cor-
responding Hamiltonian is defined as

dR,x = Re (F ) , dR,z = Im (F ) , dI,y = r, (5)

where we will use F := F (kx, ky, d) throughout for simplic-
ity. The resulting exceptional fractals and their corresponding
FSs (which take the form of the Multibrot set itself) are dis-
played in Fig. 1 for different values of d. Here we follow the
convention of Ref. [19], and define the FS as Re (E) = 0.
Apart from these polynomial models, fractallike exceptional
contours also appear in periodic models, as shown in Ap-
pendix B.

III. 3D EXTENSIONS OF FRACTAL CONTOURS OF EPS

When increasing the spatial dimension from two to three,
different things will happen depending on whether PT sym-

metry is preserved or not. We here consider several cases, all
implying straightforward generalizations of the fractal bound-
aries into embeddings in 3D.

In the absence of any symmetries, EP2s are of codimension
two and will therefore form contours in 3D. A generic such
two-band model can be written as H2b = dR · σ + idI · σ,
where dR,dI : R3 → R3 are continuously differentiable
functions of lattice momentum and σ denotes the vector of
Pauli matrices. The corresponding EPs occur as the intersec-
tion between two implicitly defined surfaces given by

Re
(
E2

)
= d2

R − d2
I = 0, Im

(
E2

)
= 2dR · dI = 0. (6)

The solutions to these equations will form fractals when they
are of the form given in Eq. (2). One such example is provided
by

dR = [Re (F ) , Im (F ) , g(kz)] , dI = (0, 0, r) , (7)

where F is defined in Eq. (1), and g(kz) is a continuously
differentiable function depending only on kz . The EPs then
corresponds to regions where g(kz) = 0 and Re (F )

2
+

Im (F )
2

= r2, simultaneously. Figures. 2(a) and 2(b) ex-
emplify one such solution, indicating that they form fractal

Figure 2. Fractal nodal band structures for the generic NH two-
band model given by Eq. (7). Panel (a) illustrates how the EP2s (red
curve) appear as the intersection between two surfaces, defined by
Re

(
E2

)
= 0 (blue) and Im

(
E2

)
= 0 (green). Panel (b) shows the

corresponding FS. This provides a straightforward 3D generalization
of the notion of the boundary of the Mandelbrot set, i.e., as the em-
bedding of a contour in 3D space. Here, d = 2, r = 2, and Eq. (1) is
terminated after ten steps.
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contours embedded in 3D. As before, the FS, depicted in
Fig. 2(b), forms the corresponding Multibrot set.

Figure 3. Fractal nodal band structures for various PT -symmetric
systems. Panel (a) displays the EP3s and ONPs (red curve) of the
systems given by Eq. (8) and Eq. (10), respectively. Consequently,
the blue surface illustrates either solutions to f1 = 0 or dx = 0,
while the green surface corresponds to either f2 = 0 or dz = 0.
Panels (b) and (c) illustrate the EP2s of a 3D PT -symmetric Hamil-
tonian defined by Eq. (5), with r interchanged for kz (b) and sin kz
(c), respectively. These fractallike surfaces intersect each other at
points known as nondefective EPs, in close analogy to how energy
bands in Weyl semimetals host point-like intersections. Here, d = 2
in all panels, r = 2 in panel (a), and Eq. (1) is terminated after ten
steps.

IV. EXCEPTIONAL FRACTALS IN 3D PT -SYMMETRIC
SYSTEMS

If the third dimension is instead introduced in a way that
preserves PT symmetry, the contours of EP2s are promoted
to surfaces accompanied by contours of EP3s and pointlike
EP4s. Thus, it is possible that fractal contours appear as three-
fold eigenvalue degeneracies. Inspired by the construction in-
troduced in Ref. [25], we consider a Hamiltonian represented
by

H3b
PT =

f2 0 Λ
α 0 β
f2 f1 −f2

 , (8)

with α, β,Λ ∈ R. The eigenvalues (here denoted λ) can then
be determined by solving the characteristic equation

f1 (αΛ− βf2) + λ
(
f2
2 + Λf2 + βf1

)
− λ3 = 0. (9)

Threefold eigenvalue degeneracies correspond to regions in
parameter space where both the constant term and the coeffi-
cient of the linear term in λ vanish. For |Λ| sufficiently large,
the solutions are given by f1 = f2 = 0, and by choosing,
e.g., f1 = Re (F )

2
+ Im (F )

2 − r2 and f2 = g(kz), the cor-
responding EP3s form fractal contours. One such example

Figure 4. Exceptional Newton fractals in 2D PT -symmetric mod-
els, given by Eq. (3), obtained by substituting Eq. (11) into Eq. (2)
using five iterations and r = 2. In both panels, p(z) = z3 − 1, while
a = 1 in panel (a) and a = − 1

2
in panel (b). This illustrates that our

construction goes beyond the Multibrot set, and can be applied for
any algebraic fractal.

is displayed in Fig. 3(a), which is of the exact same form as
the structure displayed in Fig. 2(a), where the red contour is a
collection of EP2s rather than EP3s, as is the case of Fig. 3(a).

Apart from appearing as exceptional eigenvalue degenera-
cies in NH systems, nodal fractals can also appear in Hermi-
tian band structures. Building further on the various construc-
tions presented above, a concrete example hosting nodal frac-
tals is given by the following 3D PT -symmetric Hermitian
two-band model,

H2b
PT ,H = dxσ

x + dzσ
z, (10)

with dx = Re (F )
2
+ Im (F )

2 − r2 and dz = g(kz). The
eigenvalue degeneracies occur when dx and dz vanish simul-
taneously, and will thus correspond to fractal contours embed-
ded in 3D momentum space. These are shown in Fig. 3(a). We
again note the similarities between Fig. 2(a) and Fig. 3(a), and
emphasize the physical difference in interpreting the pictures,
since the red contour in Fig. 3(a) is now to be interpreted as
ONPs, rather than EPs.

Lastly, it should furthermore be possible to obtain a fractal-
like surface of EP2s. A naive attempt would be to use a
Hamiltonian very similar to the one defined in Eq. (5), but
exchanging r for kz . This will result in a model whose EP2s
form “fractals”, in the sense that a given slice in kz host EP2s
similar to those displayed in Fig. 1. This surface however
extends to infinity, which is depicted in Fig. 3(b), since kz
is an unbounded function. Alternatively, the third dimension
can be introduced periodically, which at least naively, would
correspond to couple sheets of 2D models together in a NH
way. One such option is displayed in Fig. 3(c), where kz is
exchanged for sin kz . This results in two finite fractal-like
surfaces of EP2s. It should furthermore be noted that both the
surfaces displayed in Figs. 3(b) and 3(c) intersect each other at
the origin [and at k = (0, 0, π)]—an intersection that is stable
in the sense that it is protected by the symmetry. Such in-
tersection points have been studied earlier and are sometimes
referred to as nondefective EPs [45].
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Figure 5. Fermi surfaces [corresponding to E2 < 0] and their bounding EP2s in PT -symmetric models given by Eq. (5), with d = 2 and
r = 2. The different panels illustrate how the approximation in terms of lemniscates affect the form of the EP2s. The number of iterations of
Eq. (1) is 3, 5, 8 and 18 in (a), (b), (c) and (d), respectively, corresponding to approximating the boundary of the Mandelbrot set with 3, 5, 8,
and 18 lemniscates, respectively. As the complexity of the model increases with the number of iterations, it is more likely that EPs and FSs
measured in experiments take forms similar to those displayed in (a) or (b), rather than (c) or (d). Thus, the observations in experiments are
not expected to reproduce perfect fractals, but rather a contour reminiscent of a fractal approximation.

V. DISCUSSION

In this work, we extended the plethora of eigenvalue degen-
eracies in both Hermitian and NH systems to include fractal-
like structures. Through specific constructions, we showed
that boundaries of Multibrot sets appear as stable contours of
EP2s in 2D systems subject to PT symmetry, in generic sys-
tems in 3D, and as stable ONPs in Hermitian systems subject
to PT symmetry in 3D. Furthermore, we illustrated in specific
examples how NH PT -symmetric systems also generically
host fractal contours of EP3s as well as fractallike surfaces of
EP2s in 3D.

The nodal fractals and fractal FSs are as stable in the sense
that they are protected by the underlying symmetry. This
means that the fractal structures are stable toward any small
and symmetry-preserving perturbation to the parent Hamilto-
nian, but they will dissolve if a symmetry-breaking perturba-
tion is added. In Appendix A 2, we provide details and figures
further supporting this claim.

Our method is not limited to the Multibrot sets, but can in
principle be utilized to achieve systems whose nodal struc-
tures correspond to any algebraic fractal, i.e., a fractal that
can be described in terms of some function. To illustrate this
generality, we present a few examples of exceptional Newton
fractals in 2D PT -symmetric systems. Newton fractals are
defined as the Julia set of

zn+1 = zn − a
p(zn)

p′(zn)
, (11)

where a, p(z) ∈ C, and p′(z) is the derivative of p(z). The
Newton fractals shown in Fig. 4 merely comprise an addi-
tional example of structures arising from this method, but yet
again illustrate the potential of the presented arguments.

The large variety of models hosting nodal fractals suggests
an equally wide range of experimental setups for their poten-
tial realization. The presence of PT symmetry implies that
photonic crystals are good candidates for the observation of
fractal nodal structures both in 2D and 3D, where EPs can
be directly imaged using photoluminescence measurements
[46] or angle-resolved thermal emission spectroscopy [47].

For Hermitian systems, nodal lines have been observed in the
semimetal ZrB2 [48] and Mg3Bi2 [49], along with nodal links
in TiB2 [50]. Hence, similar materials are natural experimen-
tal candidates for more complicated nodal line structures. Re-
cent studies further suggest that phononic crystals are also of
significance, as they can host nodal rings [51], links [52], and
even chains [53]. The complexity of systems hosting nodal
fractals will, however, require high-precision tuning of the
studied system, a hurdle that could be difficult to overcome in
the above mentioned examples. Thus, a more promising can-
didate is single-photon interferometry, a technique that pro-
vides the ability to tune system parameters with remarkable
precision and has been utilized to realize knotted EP2s in 3D
and PT symmetry-protected second-order exceptional rings
in 2D [54]. This indicates that it could be used to realize the
fractal EPs and FSs displayed in Figs. 1, 2 and 4. Very re-
cently, using the same technique, the authors of Ref. [55] were
further able to realize EP3s in PT and chirally symmetric sys-
tems in 2D, suggesting that also fractal contours of EP3s and
surfaces of EP2s, such as those displayed in Fig. 3, could be
probed by modifying the current setup. It should be noted that
even though it will be impossible to observe a perfect frac-
tal (as it would require an approximation including infinitely
many lemniscates), fractallike nodal eigenvalue degeneracies
are experimentally feasible. In Fig. 5, we illustrate the tran-
sition into a more fractallike exceptional contour in the 2D
PT -symmetric systems given by Eq. (5), indicating what one
would expect to see in experiments.

A more phenomenological, yet interesting, observation is a
possible connection between fractal nodal band structures and
analog gravity, where recent studies have unraveled a relation
between the structures formed by the EPs in PT -symmetric
systems and certain black hole setups [56]. Although the main
focus there has been on observable analogs of Hawking radia-
tion, a link to gravitational systems is interesting since the NH
PT -symmetric FSs in 2D can be thought of as a tachyonic
phase, as it corresponds to a region where the square energy is
negative in PT -symmetric setups [57]. Similar case-studies
have been carried out in other aspects than analog gravity, un-
raveling the transport properties of such tachyonic phases in
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NH setups [58]. Taking into account that certain black hole
studies indicate that event horizons host fractal structures [4],
it is intriguing to think of the possibility for the exceptional
fractals to represent an analog black hole horizon, with the
corresponding interior mimicked by the tachyonic phase com-
prised of the FS.

The unraveling of fractal phases in band theory opens up
several further questions and research directions. Concrete
examples include the understanding of what it means for a
system to host FSs with infinite perimeter, and what physical
role is played by the corresponding Hausdorff (or fractal) di-
mension. The latter is interesting from another point of view,
as it is related to how these fractal structures are characterized.
This is not obvious as one could argue that they are all topo-
logically equivalent to circles or spheres. This suggests that a
classification scheme going beyond topological classification
is necessary to fully understand fractal nodal band structures.

Another very intriguing open question is the fate of FS in-
stability phenomena, such as SC and CDW in fractal FS. The
self-similarity of fractals implies that Cooper pairing, e.g.,
might occur recursively in self-similar parts of the FS, lead-
ing to a cascade of momenta pairing. Should one then ob-
serve fractal SC [41, 42]? Which new features could the self-

similarity of the momenta bring? Furthermore, competing
phenomena, such as CDW, which is rooted on the nesting k-
vector arising repeatedly at the FS could give rise to beatings
of the self-similar length scales, in addition to rotation. More
interestingly, there should be a diverging density of states at
the boundaries, since the perimeter of a fractal tends to infin-
ity. This infinite perimeter may also lead to new interesting
phenomena related to eigenstates, in particular, their collec-
tive coalescence. Finally, on a more generic level, this work
raises the question whether one could enlarge the portfolio of
qubits and qutrits into qufractits, and opens a path for a large
variety of phenomena unforeseen to present.

ACKNOWLEDGEMENTS

The authors acknowledge fruitful discussions with L. Rød-
land and V. Gritsev. CMS acknowledges the research program
“Materials for the Quantum Age” (QuMat) for financial sup-
port. This program (Registration No. 024.005.006) is part
of the Gravitation Program financed by the Dutch Ministry of
Education, Culture and Science (OCW).

[1] A. Gowrisankar, and S. Banerjee, Frontiers of fractals for com-
plex systems: recent advances and future challenges, Eur. Phys.
J. Spec. Top. 230, 3743–3745 (2021).

[2] M.E. Montiel, A.S. Aguado, and E. Zaluska, Topology in frac-
tals, Chaos, Solitons and Fractals 7, 8 (1996).

[3] H. Porchon, Fractal topology foundations, Topology and its
Applications 159, 14 (2012).

[4] M.S. El Naschie, Fractal black holes and information, Chaos,
Solitons and Fractals, 29, 1 (2006).

[5] M.N. Ivaki, I. Sahlberg, K. Pöyhönen, and T. Ojanen, Topolog-
ical random fractals, Commun. Phys. 5, 327 (2022).

[6] J.C. Budich and B. Trauzettel, From the adiabatic theorem of
quantum mechanics to topological states of matter, Physica Sta-
tus Solidi (RRL) 7, 109 (2013).

[7] M.Z. Hasan and C.L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[8] X.-L. Qi and S.-C. Zhang, Topological insulators and super-
conductors, Rev. Mod. Phys. 83, 1057 (2011).

[9] M.O. Goerbig, Electronic properties of graphene in strong
magnetic field, Rev. Mod. Phys. 83, 1193 (2011).

[10] N.P. Armitage, E.J. Mele, and A. Vishwanath, Weyl and Dirac
semimetals in three-dimensional solids, Rev. Mod. Phys. 90,
015001 (2018).

[11] E.J. Bergholtz, J.C. Budich, and F.K. Kunst, Exceptional topol-
ogy of non-Hermitian systems, Rev. Mod. Phys. 93, 015995
(2021).

[12] M. Kreibich, J. Main, H. Cartarius, and G. Wunner, Realizing
PT-symmetric non-Hermiticity with ultracold atoms and Her-
mitian multiwell potentials, Phys. Rev. A 90, 033630 (2014).

[13] A. Ghatak, M. Brandenbourger, J. van Wezel, and C. Coulais,
Observation of non-Hermitian topology and its bulk–edge cor-
respondence in an active mechanical metamaterial, Proc. Natl.
Acad. Sci. U.S.A. 117, 29561 (2020).
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Appendix A: Symmetry-protected fractal contours of EPs

1. Generalization to additional symmetries

A requirement for a symmetry to possibly allow for the ex-
istence of stable fractal contours of EPs in 2D, is that it re-
duces the number of constraints defining the location of the
EPs. Following the works in Refs. [24, 26], e.g., the relevant
symmetries are PT symmetry (as studied in the main text),
pseudo-Hermiticity (psH), chiral symmetry (CS) and particle-
hole symmetry (CP). Operators subject to these symmetries
are bound to satisfy

UPT HPT U−1
PT = H∗

PT , (A1)

UpsH HpsH U−1
psH = H†

psH, (A2)

UCS HCS U
−1
CS = −H†

CS, (A3)

UCP HCP U−1
CP = −H∗

CP , (A4)

respectively. Here, UA, A ∈ {PT , psH,CS, CP} denote uni-
tary operators. To illustrate the appearance of fractal contours
of EPs in these systems, we now consider specific two-band
systems. Using the representation UPT = σ0, UpsH = UCP =
σx, and UCS = σz , the respective twp-band Hamiltonians will
cast the form

HPT = dPT
R,xσ

x + idPT
I,y σ

y + dPT
R,zσ

z, (A5)

HpsH = dpsH
R,xσ

x + idpsH
I,yσ

y + idpsH
I,zσ

z, (A6)

HCS = dCS
R,xσ

x + dCS
R,yσ

y + idCS
I,zσ

z, (A7)

HCP = idCPI,xσ
x + idCPI,yσ

y + dCPR,zσ
z. (A8)

Thus, the corresponding EP2s will be given as solutions to the
following equations:

E2
PT = 0 ⇐⇒

(
dPT
R,x

)2
+
(
dPT
R,z

)2
=

(
dPT
I,y

)2
, (A9)

E2
psH = 0 ⇐⇒

(
dpsH
I,y

)2

+
(
dpsH
I,z

)2

=
(
dpsH
R,x

)2

, (A10)

E2
CS = 0 ⇐⇒

(
dCS
R,x

)2
+
(
dCS
R,y

)2
=

(
dCS
I,z

)2
, (A11)

E2
CP = 0 ⇐⇒

(
dCPI,x

)2
+
(
dCPI,y

)2
=

(
dCPR,z

)2
. (A12)

These will take the form of fractals if the Hamiltonian is de-
fined as, e.g.,

HPT = Re [F (kx, ky, d)]σ
x + Im [F (kx, ky, d)]σ

z + irσy,
(A13)

HpsH = iRe [F (kx, ky, d)]σ
y + iIm [F (kx, ky, d)]σ

z + rσx,
(A14)

HCS = Re [F (kx, ky, d)]σ
x + Im [F (kx, ky, d)]σ

y + irσz,
(A15)

HCP = iRe [F (kx, ky, d)]σ
x + iIm [F (kx, ky, d)]σ

y + rσz.
(A16)

The resulting squared spectra are displayed in Fig. 6 for vari-
ous values of d and r. The EPs take the same forms for all
these different models, but notably, the meaning of the FS

and the imaginary FS (which is defined as Im (E) = 0 ⇐⇒
E2 > 0 in these systems, following Ref. [19]) are exchanged
in systems subject to psH or CP symmetry, compared to those
subject to PT symmetry or CS.

2. Symmetry-protection and stability

The symmetry-protected nodal fractals are highly depen-
dent on the underlying symmetry of the system: if any ar-
bitrarily small, but finite, symmetry-breaking perturbation is
added to the parent Hamiltonian, the nodal fractal immedi-
ately disappears. To illustrate that the nodal fractals are indeed
stable and preserved as long as the relevant symmetry is pre-
served, we will here investigate the impact of both symmetry-
preserving and symmetry-breaking perturbations. As this
study is completely analogous for all the symmetries listed
above, as well as for the Hermitian version of PT -symmetry,
we will restrict the discussion to NH PT -symmetric systems
only, recalling that similar arguments can be applied for the
other symmetries as well. It should also be noted that the rea-
soning regarding stability also holds for fractal contours of
EPs in generic NH systems.

Consider the NH PT -symmetric two-band model given by

H = Re [F (kx, ky, 2)]σ
x + Im [F (kx, ky, 2)]σ

z + irσy,
(A17)

the squared spectrum of which is plotted in Fig. 6(a) for r = 2.
We now want to investigate what happens when we add small,
symmetry-preserving perturbations to this system. For the
sake of simplicity, we will allow one of the perturbations to
have constant terms and terms linear in momentum compo-
nents, while the other perturbation is kept constant. However,
we stress that the findings are valid for more general pertur-
bations as well. Fig. 7(a) shows that the spectrum still ex-
hibits a fractal FS and that the EPs form a fractal contour in
momentum space when applying a perturbation of the form
10−1 (αi + βikx + γiky)σ

i, where i = x, y, z is summed
over, and αi, βi and γi are randomly generated numbers be-
tween zero and one. In Fig. 7(b)–(d), a constant perturbation
δσx is added to Eq. (A17), showing how strong the perturba-
tion must be to break the fractal structure of the EPs and the
FS. In (b) δ = 1 and (c) δ = 1.5, and the fractality remains in-
tact, while in (d), where δ = 5, it is ruined. The EPs now form
a cascade of circles that bounds a family of disk-shaped FSs.
This means that the fractal FSs and EPs are intact in a finite
region of the symmetry-preserving perturbation-strength. Our
findings therefore do not rely on fine-tuning of system param-
eters, but rather on the ability to implement relevant symme-
tries in NH setups.

It is worth recalling that an arbitrarily small but finite
symmetry-breaking perturbation, i.e., a perturbation that does
not satisfy Eq. (A1) in the case of PT symmetry, will imme-
diately ruin the fractal structure, as the resulting EPs will be
of codimension two instead of one, making them form points
instead of contours in 2D momentum space. This can be
visualized straight-forwardly by investigating how the equa-
tions defining the EPs change upon adding such a perturba-
tion. Adding such a term, e.g., ϵσy , ϵ ∈ R \ {0} to Eq. (A17)
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Figure 6. Fermi surfaces [defined as Re (E) = 0 ⇐⇒ E2 < 0] and their bounding EPs of the models given by Eq. (A13) in panels (a), (b);
Eq. (A14) in panels (c), (d); Eq. (A15) in panels (e), (f); and Eq. (A16) in panels (g), (h), taking fractallike forms. In panels (a), (c), (e), and
(g) d = 2, and d = 3 in the remaining panels. The different symmetries give rise to very similar FS structures, with the important difference
being that the meaning of the FS and imaginary FS [defined as Im (E) = 0 ⇐⇒ E2 > 0] changes in psH and CP systems, as compared to
PT and CS systems. In all panels r = 2, and Eq. (1) is terminated after ten steps.

Figure 7. Fermi surfaces [defined as Re (E) = 0 ⇐⇒ E2 < 0] and their bounding EPs of the PT -symmetric model given by Eq. (A17)
with various perturbations added. (a) A perturbation of the form 10−1 (αi + βikx + γiky)σ

i, with i = x, y, z summed over, and αi, βi, and
γi randomly generated numbers between zero and one is added. Despite adding this perturbation, the fractal structure of the EPs and the FS
is intact. (b)–(d) A perturbation of the form δσx is added, where δ = 1, 1.5, 5 in (b), (c), and (d), respectively. Here, the fractal structure is
gradually dissolved, and eventually results in a cluster of small circles of EPs bounding disk-shaped FSs. This shows that the fractal structure
is stable under small enough symmetry-preserving perturbations, which means that it is protected by the underlying symmetry. In all panels,
r = 2, d = 2, and Eq. (1) is terminated after ten steps.

will give EPs corresponding to the solutions to,

Re [F (kx, ky, 2)]
2
+ Im [F (kx, ky, 2)]

2
+ ϵ2 = r2, (A18)
2iϵr = 0. (A19)

Since both r and ϵ are taken to be real non-zero constants,
Eq. (A19) is never fulfilled. Thus, all the EPs are gapped out,
and the fractal structure is completely dissolved.

Appendix B: Fractal eigenvalue degeneracies in periodic models

Apart from the polynomial models presented in the main
text and above, fractals are also of relevance in periodic mod-
els. One such example is obtained by thinking about each mo-
mentum component as an approximation of the corresponding
sine-function, which would directly yield a periodic model.
To illustrate this, we consider a PT -symmetric two-band
Hamiltonian on the form H = dpR,xσ

x + dpR,zσ
z + idpI,yσ

y ,
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with d-vector components given by

dpR,x = Re [F (sin kx, sin ky, d)] , (B1)

dpR,z = Im [F (sin kx, sin ky, d)] , (B2)

dpI,y = cos kx + cos ky. (B3)

Here, we stress that similar results can be obtained for the
other symmetries discussed above by identical reasoning. We
recall that dpR,x, d

p
R,z and dpI,y are now real-valued periodic

functions of the lattice momentum. The corresponding EP2s
and FSs are displayed in Fig. 8. Despite being less prominent
than their polynomial counterpart, the exceptional structures
are undoubtedly fractallike also in these systems, making a
more direct connection to experimental setups. It should be
stressed, however, that the models presented in Fig. 8 are in-
deed complicated to obtain in actual experiments, as the pow-

ers of the trigonometric functions in the Hamiltonian [which
will be as high as 18 in the model presented in Fig. 8(a)] rep-
resent hopping distance on a lattice.

Figure 8. Fermi surfaces [defined as Re (E) = 0 ⇐⇒ E2 < 0] and
their bounding EPs of the PT -symmetric model given by Eqs. (B1)-
(B3) with (a) d = 2 and (b) d = 8, taking fractallike forms. In both
panels, r = 2 and Eq. (1) is terminated after ten steps.
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