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Bank transactions are highly confidential. As a result, there are no real public data sets that can be 
used to investigate and compare anti-money laundering (AML) methods in banks. This severely limits 
research on important AML problems such as efficiency, effectiveness, class imbalance, concept drift, 
and interpretability. To address the issue, we present SynthAML: a synthetic data set to benchmark 
statistical and machine learning methods for AML. The data set builds on real data from Spar Nord, a 
systemically important Danish bank, and contains 20,000 AML alerts and over 16 million transactions. 
Experimental results indicate that performance on SynthAML can be transferred to the real world. As 
use cases, we present and discuss open problems in the AML literature.

Background & Summary
The global framework for anti-money laundering (AML) is regulated by the Financial Action Task Force, requir-
ing that banks monitor and report suspicious transactions1. In practice, monitoring is done with electronic AML 
systems. These often rely on simple business rules, raising alerts for investigation by human bank officers who 
either (i) dismiss or (ii) report the alerts to national authorities. Most authorities offer little guidance on AML 
systems, leaving banks to develop them on their own. Complicating matters, there exist no real public data 
sets with AML bank data2. This makes it hard to compare systems and assess their effectiveness, efficiency, and 
robustness. It also severely limits academic research on open AML problems such as class imbalance, concept 
drift, and interpretability (see our “Usage Notes” section).

The lack of public AML bank data sets is not without reason. Bank transactions are highly confidential, con-
taining information about sexuality and religious and political affiliations. For financial institutions to publish 
real data, they would need absolute anonymization guarantees. Unfortunately, the broader scientific literature 
contains multiple examples of successful de-anonymization attacks3–7. In light of this, we argue that simulated or 
synthetic data is the best viable option for open AML research. Previous work by Lopez-Rojas et al.8 proposed 
PaySim, a multi-agent simulator designed to emulate mobile phone transfers. Weber et al.9 further proposed 
AMLSim, augmenting and tailoring PaySim to a more classic bank setting where researchers, in addition to 
simulated normal transactions, can inject (hypothesized) money laundering patterns.

This paper presents SynthAML10, a synthetic data set to benchmark statistical and machine learning methods 
for AML. Our synthetization approach employs the Synthetic Data Vault11 (SDV) to tune a probabilistic model 
with real data. The real data comes from Spar Nord, a systemically important Danish bank with approximately 
440,000 clients. SynthAML10 contains 20,000 AML alerts and over 16 million transactions in two tables. Tables 1, 2  
illustrate the structure of our synthetic (and real) data. The first table holds information about individual AML 
alerts, including:

 1. an alert ID,
 2. the date the alert was raised,
 3. the outcome of the alert (i.e., if the alert was reported to the authorities or dismissed).

The second table holds transaction histories. We have a one-to-many relation where each alert is associated 
with a sequence of transactions (identifiable though the alert ID number). Each transaction has four features:
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 1. a transaction timestamp,
 2. the transaction entry (credit vs. debit),
 3. the transaction type (card, cash, international, or wire), and
 4. the transaction size (measured in log Danske Kroner (DKK) and standardized to have zero mean and unit 

variance).

In both our real and synthetic data, transaction types are encoded to be “mutually exclusive and collectively 
exhaustive”. We consider any transaction that is not a card, cash, or international transfer to be a wire trans-
fer. This means that transactions made with the popular Danish smartphone app MobilePay (equivalent to the 
American Venmo or Dutch Tikkie) are encoded as wire transfers. The same holds for checks (although they 
virtually never are used in Denmark). We define a credit transaction as any transaction that decreases a client’s 
bank balance. The opposite holds for a debit transaction. We finally stress that definitions of card, cash, and 
international transfers may vary between banks and even over time within a single bank. For instance, banks 
may treat transfers to self-governing territories differently and employ different logic regarding canceled or 
recalled transactions.

Methods
SynthAML10 builds on the SDV library11 with conditional parameter aggregation and Gaussian copulas. In the 
following subsections, we describe (i) our real data, (ii) our synthetization approach, and (iii) our pre- and 
post-processing steps. The real data was obtained directly from Spar Nord’s internal database. Data access (and 
usage permission) was obtained as part of some of the authors’ employment at the bank. Because of its sensi-
tive nature, the bank will generally turn down requests to access the real data. Due to confidentiality (and by 
agreement with the head of the bank’s AML department), we only share our synthetic data; not any real data or 
code used to transform it. Indeed, providing the real data or our specific transformation implementations would 
reveal sensitive information about the bank’s internal setup. We do, however, describe our transformations in 
detail below.

Real data from Spar Nord.  Our real data consists of 20,000 AML alerts sampled from a subset of the rules 
and models employed by Spar Nord’s AML department. All alerts pertain to private (i.e., non-business) clients 
and were raised between January 1, 2020, and December 31, 2021. For every alert, we collect all transactions made 
by the underlying client up to 365 days before the alert was raised. Note that some clients were subject to multiple 
alerts in the data collection period, see Fig. 1.

For confidentiality, we stratify the real data before we apply our synthetization approach (we always use 
the label “real data” to refer to the real, non-stratified data). We specifically use bootstrapping (i.e., random 
sampling with replacement) to ensure that the stratified data contains (i) a 50%–50% split of male and female 
clients and (ii) a 10%–90% split of high risk vs. non-high risk clients (from an AML perspective). We stress that 
the chosen proportions not necessarily reflect true client proportions. Furthermore, we emphasize that being a 
“high risk client” can mean vastly different things in different countries and in different banks. For more infor-
mation about AML operations and risk ratings in Denmark, we refer to the Danish National Risk Assessment 
on Money Laundering12 and the Financial Action Task Force’s report on AML and counter-terrorist financing 
in Denmark13.

Synthetization approach.  Below, we provide a brief description of our employed synthetization approach 
with conditional parameter aggregation and Gaussian copulas. For more information, we refer to the original 
SDV paper11.

AlertID Date Outcome

1 2020-01-01 Dismiss

2 2020-01-01 Report

3 2020-01-02 Dismiss

4 2020-01-04 Dismiss

⁝ ⁝ ⁝

Table 1. Alert table (example).

AlertID Timestamp Entry Type Size

1 2019-12-28 12:17:13 Credit Cash 5.70

1 2019-12-28 12:10:49 Credit Card 2.66

1 2019-12-27 19:33:59 Debit Wire 1.83

1 2019-12-23 18:01:02 Debit Wire 1.11

⁝ ⁝ ⁝ ⁝ ⁝

Table 2. Transaction table (example).

https://doi.org/10.1038/s41597-023-02569-2


3Scientific Data |          (2023) 10:661  | https://doi.org/10.1038/s41597-023-02569-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

Conditional parameter aggregation. Recall that our real data consists of two tables: a primary table with alerts 
and a secondary table with transactions (see Tables 1, 2). To capture dependencies between these, the SDV 
library employs conditional parameter aggregation. The approach iterates over every alert with the following 
steps:

 1. Find all transactions associated with an alert through a conditional lookup on the alert ID in the second 
table.

 2. Perform the Gaussian copula process (see the following subsection) on the resulting transactions, yielding 
a set of conditional distribution parameters and a conditional covariance matrix.

 3. Extend the alert table to hold all conditional parameters found in step 2. Furthermore, we also record the 
number of transactions associated with each alert.

The extended alert table is then subjected to the Gaussian copula process (see the following subsection). This 
gives a probabilistic model that accounts for covariances between (i) the original alert features and (ii) the con-
ditional distribution parameters of associated transactions. Simulating an observation is then a two-step process. 
We first sample an observation from the extended alert table. This immediately yields an alert date and outcome. 
It also yields conditional parameters that, secondly, are used to simulate associated transactions.

The gaussian copula process. Consider a table with i = 1, …,n observations (i.e., rows) and j = 1, …, m numer-
ical features (i.e., columns). A generative model for the table may be characterized by:

 1. the probability distribution over each feature xj, and
 2. the covariance between features xj and xh for j, h = 1, …, m, with j ≠ h.

To capture the distribution of each feature, the SDV library uses the Kolmogorov-Smirnov test3 to find the 
best fit from a set of standard distributions. To capture covariances, the SDV library relies on Gaussian copulas. 
Let Fj denote the cumulative distribution function (cdf) of feature j. It follows from the probability integral 
transform that Fj (xj) follows a standard uniform distribution. Furthermore, if we let Φ denote the standard 
Gaussian cdf, we have that = Φ … Φ− −X F x F x[ ( ( )) , , ( ( ))]m m

1
1 1

1  follows a multi-dimensional Gaussian distri-
bution. This gives rise to a Gaussian space in which the SDV library estimates a covariance matrix Σ. To synthe-
size a new observation x m∈   (relating to the single table considered), we (i) sample ×~v N 0 I( , )m m m , (ii) let 
u  =  Lv  w h e r e  L  i s  t h e  C h o l e s k y  d e c o mp o s i t i o n  s u c h  t h a t  = ΣLLT ,  a n d  ( i i i )  l e t 

= Φ … Φ− −x F u F u[ ( ( )) , , ( ( ))]m m1
1

1
1 .

Implementation: Pre- and postprocessing. The Gaussian copula process only works with numerical data: a prob-
lem when seeking to model datetime features (e.g., alert dates and transaction timestamps) and categorical fea-
tures (e.g., alert outcomes, transaction types, and transaction entries). To address this and improve the quality of 
our simulated data, we use a number of feature transformations:

 1. To model alert dates, we count the number of days between the date a given alert is raised and January 1, 
2020 (making alert dates a numerical feature).

 2. To model transaction timestamps, we count the number of seconds between each transaction’s timestamp 
and the date that any associated alert is raised (making transaction timestamps a numerical feature).

 3. To combat skewness and the stylized fact that financial data may span several orders of magnitude, we 
log transform transaction sizes. Let t>0 denote some (absolute) transaction size. We then employ the 
transformation

Fig. 1 Real alerts per unique client. A little more than 300 clients were associated with more than 4 alerts during 
the data collection period.
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z tln( ) (1)ε= +

where ε > 1 is a random constant (fixed for all transactions) we add to allow a positive transformation of 
transactions smaller than 1 DKK and to preserve confidentiality.

 4. To address categorical features (e.g., alert outcomes and transaction types and entries), the SDV library 
automatically employs numerical replacement. Let z ∈ {1, …, K} denote a categorical feature that can take 
K distinct values (ordered by decreasing frequencies f1, …, fK). Now, divide the interval [0,1] into brackets 
[ak, bk] based on the cumulative probability for each category k = 1, …, K. For every observation z = k, the 
SDV library automatically samples z� from the truncated Gaussian distribution with a mean μ and σ given 
by andb a b a

2 6
k k k kμ σ= =− − .

When we simulate our synthetic data, we use rejection sampling to ensure that any synthetic alert is asso-
ciated with a transaction within 7 days (604,800 seconds) of said alert being raised; discarding any synthetic 
alert and its associated transactions for which this is not the case, instead simulating a new alert and associated 
transactions.

After running our simulation, we employ a number of postprocessing steps:

 1. To convert categorical features back to categorical form, the relevant brackets found during numerical 
replacement are used (this is done automatically by the SDV library).

 2. To convert alert dates back to datetime format, we consider January 1, 2020, and count forward the number 
of simulated days for each alert. For confidentiality, we also add some random noise. Specifically, we re-
place the date that any synthetic alert is “raised” with a random date from the same quarter (all dates in the 
quarter having equal probability).

 3. To convert transaction timestamps back to datetime format, we consider the date that any associated alert 
is raised and count back the number of simulated seconds. For confidentiality, we also add some random 
noise to all transaction times.

 4. To improve simulation quality, we correct the means and variances of the synthetic transactions to approxi-
mately match the real transactions per transaction type, entry, and associated alert outcome. This is done 
under noise in the synthetic alert outcomes. Let r ∈ {0,1} denote that an alert is reported (with r = 1), we 
then add noise by updating

r r b r b(1 ) (1 ) (2)= − + −

where b follows a Bernoulli B(p) distribution (p is undisclosed for confidentiality). After adding this noise, 
we, for example, consider all debit wire transactions associated with reported alerts (i.e., where r = 1). Let sR

2 
and sS

2 denote the variances of the real and synthetic such transactions. We then correct the synthetic 
transactions z according to

z z
s
s (3)

R

S

2

2= × .

Next, we compute the means mR and mS of the real and synthetic transactions in question and update the 
synthetic transactions z according to

= + − .z z m m( ) (4)R S

We stress that the noisy synthetic alert outcomes obtained from (2) only are used to correct means and 
variances; they are not reflected in the synthetic alert outcomes in SynthAML10.

 5. For confidentiality, we add some random noise to all transaction sizes. Specifically, each transaction is 
multiplied by a random number drawn from a U(0.98,1.02) distribution.

 6. We clip the synthetic transactions such that the maximum of these, per type and entry, roughly match the 
real transactions. We also apply a lower clipping (uniform to all synthetic transactions) to keep the mini-
mum transaction size (corresponding to 0.01 DKK) confidential.

 7. Finally, we standardize all transactions to have a mean of zero and unit variance.

Data Records
SynthAML is stored at figshare10. The data consists of two files: “synthetic_alerts.csv” and “synthetic_trans-
actions.csv” corresponding to Tables 1, 2. The former file contains information about individual AML alerts, 
including, for each alert, an ID, a date when the alert was raised, and an outcome of the alert (i.e., if the alert was 
reported to the authorities or dismissed). The second file contains transaction histories with, for each transac-
tion, a timestamp, an entry type (credit vs. debit), a transaction type (card, cash, international, or wire), and a 
transaction size (measured in log Danske Kroner (DKK) and standardized to have zero mean and unit variance).

technical Validation
We validate our synthetic data in two ways. In the first subsection below, we compare the distribution of the 
synthetic data to the real data. In the second subsection, we conduct a series of machine learning experiments to 
investigate whether performance on the synthetic data can be transferred to the real world.
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Distributional comparison with the real data.  Figure 3 displays the number of synthetic alerts “raised” 
per day. Per our synthetization approach, the dates are only informative up to a quarterly division. Thus, Fig. 4 
displays the number of synthetic alerts raised per quarter. Compared with Fig. 2, our synthetic dates appear to 
follow a normal distribution around New Year’s Eve 2021. We believe this is due to our use of Gaussian copulas. 

Fig. 3 Synthetic alerts raised per day.

Fig. 4 Synthetic alerts raised per quarter.

Fig. 2 Real alerts raised per quarter throughout 2020 and 2021. Noise is added to keep the exact fractions of 
alerts per quarter confidential.
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However, we do note that AML operations have a seasonal nature: end-of-year financial activity tends to cause 
many alerts right before and right after New Year’s Eve. 

Figures 5, 6 illustrate the distribution of transaction sizes in our synthetic and real data per transaction type 
and entry. Notably, the real transactions appear to follow spiked distributions. We believe this reflects that bank 
clients have a tendency to make round, integer transactions (say, cash withdrawals of 100, 200, 500, or 1,000 
DKK). In our synthetic data, however, the distributional spikes and asymmetrical relations between credit and 
debit transactions are largely removed. Also, note that the synthetic card, cash, and international transactions 
lack their left distribution tails.

Figures 7, 8 display the distribution of the transaction types and entries in our synthetic and real data. The 
cash transactions appear overrepresented in our synthetic data. Furthermore, the card debit transactions appear 
overrepresented while the wire debit transactions appear undersampled.

Machine learning experiments: Performance transferability.  To investigate if performance on 
SynthAML can be transferred to the real world, we conduct machine learning experiments. The motivating idea 
is straightforward: train models on the synthetic data and see how they perform on the real data. To provide a 
baseline, we also train and test models exclusively on the real data.

All our models seek to classify alerts based on their outcomes. We use the same train-test split on both the 
synthetic and real alerts. As training data, we use alerts raised between January 1, 2020, and December 31, 2020. 
As test data, we use alerts raised between January 1, 2021, and December 31, 2021. Note that we use all alerts 
to simulate our synthetic data. Strictly speaking, this introduces a form of target leakage. However, we are not 
principally interested in predicting alert outcomes. Rather, our machine learning experiments aim to justify that 
performance on the synthetic data is transferable to the real world.

As features, we calculate the (i) minimum, (ii) mean, (iii) median, (iv) maximum, (v) standard deviation, (vi) 
count of, and (vii) sum per transaction type and entry for all transactions associated with each alert. This gives 
7 × 2 × 4 = 56 features per alert. If a given alert is not associated with any transactions of a particular type and 

Fig. 5 Synthetic transaction size per transaction type and entry.

Fig. 6 Real transaction size per transaction type and entry. Noise is added to keep minimum and spike values 
confidential in transformed space.
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entry, we set the count of such transactions equal to zero. All other features associated with the transaction type 
and entry (e.g., the average transaction size and median) are set equal to −3 (note that the minimum transaction 
size of any transaction in our synthetic data approximately equals −2.9). Finally, we scale all features to be mean 
zero and have unit variance using the training data.

Our experimental protocol makes no attempt to tune model hyperparameters. Unless explicitly stated below, 
we always keep all hyperparameters at the default values provided by the implementing libraries (library ver-
sions are listed in our “Code Availability” section). We consider the following six models:

 1. a simple decision tree,
 2. a random forest,
 3. a logistic regression,
 4. a support vector machine,
 5. a multilayer perceptron with two hidden layers of 32 neurons using ReLU activation functions,
 6. gradient boosted trees implemented with LightGBM.

The first five models are all implemented with the Scikit-learn library, the latter with the LightGBM library 
(see our “Code Availability” section for versions and links). For the logistic regression and multilayer percep-
tron, we allow a maximum number of 106 iterations to ensure convergence. All models are fitted and tested using 
ten different seed values, permutating the training data before each run. Motivated by the class imbalance in 
our synthetic data (containing approximately 17% reported alerts; not necessarily reflecting the proportion of 
reports in our real or stratified data) we use the area under receiver operating characteristic curves (ROC AUC) 
as an evaluation metric14. A receiver operating characteristic curve plots true positive versus false positive rates 
at various classification thresholds for a given model. The area under the curve (often just denoted as AUC) is 
then a one-dimensional measure of separability; a score of 50% implies a random classifier while a score of 100% 
implies a perfect classifier.

Fig. 7 Synthetic transactions per type and entry.

Fig. 8 Real transactions per type and entry. Noise is added to keep exact type and entry fractions confidential.
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Table 3 displays our results. Importantly, the relative ranking of the models trained on the synthetic data appears 
to be consistent: the better a given model performs on the synthetic test data, the better it also performs on the 
real test data. The relationship does not hold exactly when we consider models trained and tested on the real data. 
Furthermore, the decision tree, multi-layer perceptron, and random forest are associated with relatively large stand-
ard deviations. Finally, we note that all models trained on the synthetic data generally perform worse than models 
trained on the real data. Still, the results indicate that performances on SynthAML can be transferred to the real world.

Usage Notes
Our results, indicating that performance on SynthAML can be transferred to the real world, imply that 
SynthAML may be used to investigate a number of open problems in the AML literature. Here, we specifically 
focus on class imbalance, concept drift, and interpretability. Regardless of the addressed problem, we stress that 
the synthetic alert dates only are accurate up to a quarterly division: any train-test split of the data should respect 
this (i.e., splits should be made either January the 1st, April the 1st, July the 1st, or October the 1st). We also 
stress SynthAML is based on investigated AML alerts. Thus, clients that have never been subjected to alerts are 
not represented in the data. This is a potential selection bias, although we argue that the approach is reasonable; 
the alternative is a set of non-investigated clients without labels.

Class imbalance refers to the empirical fact that benevolent bank clients far outnumber money launders. 
While good for society, this is a potential problem when we train models to flag money laundering behavior. 
SynthAML contains approximately 17% reported alerts. This is considerably more than in real AML settings (a 
result of our stratification and synthetization approach), where false positive rates can be 95% to 98%15. To investi-
gate the impact of class imbalance, one may subset multiple different training data sets with different proportions 
of reported alerts. Possible mitigation strategies include under-, over-, and synthetic minority oversampling16,17.

Concept drift refers to the empirical fact that transaction and money laundering behavior changes over time. 
To investigate this, one may, for example, use alerts from one quarter to predict alert outcomes in multiple future 
quarters. A significant decrease in the test performance between the first and last test quarter would indicate the 
presence of concept drift. Possible mitigation strategies include active learning18 and periodic retaining.

Interpretability is a contested concept within machine learning with multiple overlapping (and sometimes 
vague) definitions19,20. Loosely speaking, the term may be understood as “the degree to which a human can 
understand why a particular prediction or decision is produced by a model”. In an AML context, this appears 
very beneficial. To investigate how advanced machine learning models for AML can be made “interpretable”, a 
researcher may apply different interpretability techniques like local interpretable model-agnostic explanations21, 
Shapley additive explanations22, or layer-wise relevance propagation23,24 to models trained on SynthAML10.

considerations on the adversarial nature of anti-money laundering.  Results from our technical 
validation might prompt a concern: could a synthetic AML data set be employed by money launderers to adjust 
their modus operandi and avoid detection? To answer this, note that all our data have undergone non-invertible 
transformations. In addition, our data stems from actual AML alerts raised and inquired at Spar Nord. Thus, it 
would be a bad idea for any criminals to mimic behavior present in SynthAML10. Furthermore, our data pertains 
to a random subset of alerts raised on a subset of the alert criteria and models employed by Spar Nord (i.e., alerts 
are also raised on behavior absent in SynthAML10). Thus, a money launderer cannot ensure that he or she evades 
detection by displaying a behavior absent in SynthAML10. On a more principal note, citing Claude Shannon  
(on cryptography), we believe that “one ought to design systems under the assumption that the enemy will imme-
diately gain full familiarity with them”. Certainly, examples of insiders helping criminals with information about 
AML and financial systems are plentiful25–27. In light of this, the lack of public AML data only seems to hinder the 
development of good AML systems and aid money launderers.

Data Model
Synthetic Test 
Data

Real Test 
Data

Synthetic Training Data

Decision Tree 52.00 (00.27) 52.26 (00.84)

Support Vector Machine 56.30 (00.01) 54.85 (00.01)

Multi-layer Perceptron 57.27 (00.82) 58.40 (03.57)

Random Forest 62.62 (00.34) 58.87 (00.71)

LGBM 63.69 (00.00) 63.09 (00.00)

Logistic Regression 64.10 (00.00) 64.48 (00.00)

Real Training Data

Decision Tree — 56.35 (00.29)

Support Vector Machine — 67.55 (00.01)

Multi-layer Perceptron — 66.50 (00.74)

Random Forest — 74.99 (00.36)

LGBM — 75.55 (00.00)

Logistic Regression — 74.75 (00.00)

Table 3. Mean ROC AUC scores (standard deviations in parenthesis), ordered by synthetic test performance. 
Alerts raised between January 1, 2020, and December 31, 2020, are used for training. Alerts raised between 
January 1, 2021, and December 31, 2021, are used for testing.

https://doi.org/10.1038/s41597-023-02569-2


9Scientific Data |          (2023) 10:661  | https://doi.org/10.1038/s41597-023-02569-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

code availability
All our simulations are made using version 0.14.1 of the SDV library (https://sdv.dev). We specifically employ 
the HMA1 model class using two tables as inputs: a primary table with alerts (see Table 1) and a secondary 
table with transactions (see Table 2). A demonstration by the SDV developers is available online (https://sdv.dev/
SDV/user_guides/relational/hma1; using data different from ours). Due to confidentiality, we do not share our 
code that (i) transforms the raw data so that it can be fed to the HMA1 model class and (ii) re-transforms and 
adds noise to the simulated data. The data-providing bank felt that providing this code would reveal sensitive 
information about its internal setup and the real data. All our transformations are, however, described in detail in 
our subsection “Implementation: Pre- and Postprocessing.” Our machine learning experiments were conducted 
with version 1.1.3 of the Scikit-learn library (https://scikit-learn.org) and version 3.3.3 of the LightGBM library 
(https://lightgbm.readthedocs.io/en/stable).
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