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A B S T R A C T

To accommodate the stochasticity of variable renewable energy sources (VRES) while efficiently dispatching
generation resources and procuring adequate reserves, previous research proposed co-optimizing energy and
reserves in the day-ahead (DA) using various uncertainty-based mechanisms. However, the co-optimized mar-
kets based on these mechanisms exhibit implementation limitations related to their high computational burden,
complex customized solution algorithms, and over-conservative solutions. To address these shortcomings, this
paper proposes a practical light robust optimization (LR) approach for the DA co-optimization of energy and
reserves. The method results in a linear market clearing mechanism that easily enables the control of the
robustness level of the solution through a tunable conservativeness parameter. In addition, the paper explores
three different formulations for specifying the system reserve requirements considering, namely, fixed reserve
requirements (LRF1), variable reserve requirements based on system uncertainty (LRF2), and a combined
approach (LRF3). The formulations integrate the uncertainty from VRES in the market setting using a new bid
format called uncertainty bid. The three formulations are then compared using a case study. The numerical
results show the effects of the variation of the conservativeness parameter and the reserve requirements on the
total socio-economic welfare (SEW), dispatched energy quantities, anticipated activation costs, and procured
reserves. Moreover, the analyses showcase that sizing reserves based on system uncertainty (in LRF2) results in
a 27%–61% decrease in reserve procurement costs when compared with LRF1, while the combined approach
(in LRF3) results in a better performance than LRF2 in terms of reserve activation costs, with costs 61%–263%
lower than in LRF2.
1. Introduction

The electricity sector is expected to provide an important contribu-
tion to the achievement of climate goals [1]. For this to be realized, a
large transformation of the sector has been taking place in recent years,
including the high penetration of variable renewable energy sources
(VRES). Given the uncertain and variable nature of VRES, additional
efforts are needed to safely maintain the balance between generation
and demand in a market originally designed for dispatchable, fully-
controllable power plants. In this regard, having generation or demand
willing to alter their production or consumption as a balancing resource
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(M. Gibescu).
1 Note that this work primarily focuses on European electricity markets and reserve procurement settings. However, the proposed framework extends beyond

the European scope to any future implementation of co-optimization of energy and reserves.

has proven to be a fundamental tool to handle uncertainty. To en-
sure the availability of adequate capacity to perform these balancing
functions, reserve procurement processes have been implemented by
transmission system operators (TSO) [2,3].

In its most traditional form, and as applied in most European mar-
kets1, reserves and energy are traded independently in two sequential
markets. In the markets where this setup is used, the interdependence
of energy and reserve procurement, in terms of the total resulting cost
to the system, as well as in terms of the constraints of the players
participating in both markets, are not considered when clearing the
markets [4]. As a consequence, sub-optimal energy dispatches and
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Nomenclature

Indexes

𝑑 Demand agent.
𝑔 Conventional producer.
𝑠 Stochastic producer.

Sets

 Demand agents.
 Stochastic producers.
 Conventional producers.

Parameters

𝑚𝑆
𝑠 , 𝑚

𝐺
𝑔 , 𝑚

𝐷
𝑑 Bid: offered energy quantity by agent 𝑠∕𝑔∕𝑑.

�̂�𝑛
𝑠 , �̂�

𝑝
𝑠 Bid: maximum anticipated nega-

tive/positive deviation by agent
𝑠.

𝑝𝑆𝑠 , 𝑝
𝐺
𝑔 , 𝑝

𝐷
𝑑 Bid: offered energy price by agent 𝑠∕𝑔∕𝑑.

𝑅𝑢𝐺,𝑚𝑎𝑥
𝑔 , 𝑅𝑑𝐺,𝑚𝑎𝑥

𝑔 Bid: maximum upward/downward reserve
quantities in bid by agent 𝑔.

𝑅𝑢𝑆,𝑚𝑎𝑥
𝑠 , 𝑅𝑑𝑆,𝑚𝑎𝑥

𝑠 Bid: maximum upward/downward reserve
quantities by agent 𝑠.

𝑝𝑢𝑅𝐺𝑔 , 𝑝𝑑𝑅𝐺𝑔 Bid: upward/downward reserve capacity
prices by agent 𝑔.

𝑝𝑢𝑅𝑆𝑠 , 𝑝𝑑𝑅𝑆𝑠 Bid: upward/downward reserve capacity
prices by agent 𝑠.

𝑝𝑢𝑟𝐺𝑔 , 𝑝𝑑𝑟𝐺𝑔 Bid: anticipated upward/ downward activa-
tion prices by agent 𝑔.

𝑝𝑢𝑟𝑆𝑠 , 𝑝𝑑𝑟𝑆𝑠 Bid: anticipated upward/ downward activa-
tion prices by agent 𝑠.

𝑧∗ Optimal solutions to the nominal problem.
𝜌 Conservativeness parameter.
𝑅𝑢
𝑓𝑖𝑥𝑒𝑑 , 𝑅

𝑑
𝑓𝑖𝑥𝑒𝑑 Predefined fixed upward/downward

reserve requirements.
𝑅𝑢
𝑟𝑒𝑞 , 𝑅

𝑑
𝑟𝑒𝑞 Upward/downward reserve requirements.

Variables

𝑞𝐷𝑑 , 𝑞
𝑆
𝑠 , 𝑞

𝐺
𝑔 Energy dispatch quantities of agent 𝑑∕𝑠∕𝑔.

𝑅𝑢𝑆
𝑠 , 𝑅𝑑𝑆

𝑠 Procured upward/downward reserve capac-
ity from agent 𝑠.

𝑅𝑑𝐺
𝑔 , 𝑅𝑢𝐺

𝑔 Procured upward/downward reserve capac-
ity from agent 𝑔.

𝑟𝑢𝐺𝑔 , 𝑟𝑑𝐺𝑔 Anticipated activation of up-
ward/downward reserves from agent
𝑔.

𝑟𝑑𝑆𝑠 , 𝑟𝑢𝑆𝑠 Anticipated activation of up-
ward/downward reserves from agent
𝑠.

𝛾𝑛𝑠 , 𝛾
𝑝
𝑠 Negative/positive slack variable for agent 𝑠.

𝜆 Energy prices.
𝜆𝑢 Upward reserve prices.
𝜆𝑑 Downward reserve prices.

reserve scheduling are obtained, resulting in inefficient use of gener-
ation and demand resources [5]. To improve this efficiency, a shift
towards a simultaneous, joint clearing of energy and reserves, hereafter
referred to as co-optimization of energy and reserves, is proposed in
the literature [6]. Real-life applications of co-optimization of energy
and reserves (in, for example, some markets in the U.S., Australia, New
2

Zealand, and Singapore) have shown a reduction in the overall costs of
reserves procurement when compared to a previously used sequential
independent market clearing [5,7–9]. These results are supported by a
number of analyses that indicate that the co-optimization of energy and
reserves is more efficient than the sequential mechanism [4,10].

Even though such co-optimization approaches enable a more effi-
cient energy and reserves procurement, they do not account for the
uncertainty present in the system. The presence of high amounts of
uncertainty – driven, for example, by the large-scale VRES integration
– increases the likelihood of last-minute expensive response actions
to maintain the system’s safe operation. Therefore, to ensure security
of supply and reduce operation costs, it is necessary to design and
implement mechanisms that allow to better account for the underlying
uncertainty when co-optimizing energy and reserves.

1.1. Literature review

Different methods using uncertainty-based approaches have been
proposed in the literature [9,11], which go beyond deterministic ap-
proaches that procure fixed reserves to meet, for example, pre-set
reliability criteria. Among the uncertainty-based approaches, stochastic
programming (SP) and adaptive robust optimization (ARO) have been
widely proposed.

In SP, the uncertainty is typically represented by a large set of
scenarios and their corresponding probability of occurrence [12,13].
In its particular application for the co-optimization of energy and
reserves in electricity markets, two-stage SP is commonly used. Under
this approach, the first stage represents the co-optimized energy and
reserves dispatch (i.e., what is referred to as the ‘‘here-and-now’’ deci-
sions), while the second stage corresponds to the real-time operation
(i.e., the ‘‘wait-and-see’’ decisions) [14]. In this regard, a linear two-
stage SP market-clearing formulation for the co-optimization of energy
and reserves is proposed in [14], while the works in [15,16] propose
and analyse a number of pricing mechanisms for electricity markets
cleared using two-stage SP. A comparison between electricity markets
using the two-stage SP formulation and the deterministic sequential
clearing is presented in [12]. Similarly, the work in [13] compares the
aforementioned formulations while identifying the possible incentives
for strategic behaviour.

Other electricity market applications of two-stage SP focus on solv-
ing the unit commitment (UC) problem, for example, the work in [17]
formulates a two-stage SP security-constrained UC problem that op-
timizes the pre-contingency social welfare and the expected costs of
reserves deployment. Moreover, the work in [18] proposes a nonlinear
programming model using SP that considers the network constraints
via an AC power flow formulation.

More recently and taking a different perspective, SP has been ex-
tensively used in the literature to optimize the participants’ decision-
making process. The work in [19] proposes a two-stage SP model to
optimize the participation of wind producers in the day-ahead (DA),
intraday, balancing and reserve markets. The work presented in [20]
proposes a data-driven method to derive meaningful scenarios and
uses a two-stage SP model to optimize the participation of wind and
storage technologies in the wholesale energy markets. Optimal intraday
bids of VRES considering generation and price uncertainty are derived
using a risk-aware two-stage SP model in [21]. A multi-stage SP model
to optimize the scheduling of conventional and virtual power plants
participating in the Italian DA and ancillary services market is proposed
in [22], while the intraday market is also considered in the work
in [23]. The optimal bidding strategies and operation of energy hubs
and wind-solar-hydro complementarity systems are determined using
two-stage SP in [24,25], respectively. Moreover, two-stage SP has also
been used to optimize the operation of microgrids. For example, the
work in [26] proposes a two-stage SP method to minimize the operation
costs of a microgrid in overloading conditions, while a two-stage SP

with piecewise affine correction rules is proposed in [27] to solve
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the UC problem in a microgrid with large amounts of uncertainty.
Moreover, the work in [28] uses a two-stage SP approach to determine
the optimal bidding strategy of a microgrid dealing with price and
generation uncertainty.

Though SP (and two-stage SP for co-optimization applications) has
proven to provide economic efficiency in expectation, it has con-
cerning implementation limitations related to, for example, the high
computational burden associated with the large number of required
scenarios [29,30]. Traditional decomposition techniques e.g., Benders
decomposition are commonly used to reduce the large computational
time, as in [31]. The work in [22] proposes a clustering-based two-
stage decomposition method for multi-stage SP problems. However,
optimality and feasibility of the solution cannot be always guaranteed,
and the proposed methods can lead to mechanisms that are com-
plex to understand and implement, which can obstruct their practical
implementation potential in actual markets.

In ARO, the uncertainty is represented by an uncertainty set instead
of scenarios. Under this approach, the optimal solution is feasible for
any realization within the uncertainty set and optimal for the worst-
case realization of the uncertain parameters in the real-time stage [32].
In this respect, the works in [14,32] account for the uncertainty in
the co-optimization process by proposing market clearing formulations
based on ARO.

ARO has also been used to solve the UC problem in electricity mar-
kets. In this regard, an ARO formulation is proposed in [33] to solve the
UC problem in a market with thermal and wind generation. The work
in [29] proposes an ARO formulation to solve the security-constrained
UC problem under the presence of demand and wind generation un-
certainty. A comparison of a number of robust security-constrained UC
models is presented in [34] to assess the impact of different worst-case
definitions. Moreover, the work in [35] proposes an ARO UC model that
incorporates data-driven disjunctive uncertainty sets in a multi-level
optimization structure for energy systems under uncertainty. Recently,
ARO has additionally been used for multiple applications, including, for
example, multi-energy systems, microgrids operations, and generation
expansion planning. The work in [36] proposes a so called affinely
ARO model to solve the UC problem for a microgrid with multi-energy
systems under uncertainty. A similar application is considered in [37]
where an ARO formulation is proposed to co-optimize the electricity
and heat systems for energy and reserves under wind uncertainty. An
ARO formulation is proposed in [38] to optimize the operation of an
integrated energy service provider which clears a multi-energy market.
Furthermore, the work in [39] proposes a multistage ARO generation
expansion planning model that takes into account the uncertainty of
the demand and VRES generation through bounded intervals.

The applications of ARO have shown that it provides a feasible
solution for any realization within the uncertainty set but, since ARO
focuses on the worst-case realization, its results are considered, in
general, highly conservative. Indeed, as investigated in [14], when used
for the co-optimization of energy and reserves problems, ARO was
shown to yield conservative scheduling of reserves, which translates
into high operational costs. A number of articles in the literature have
aimed to address the over-conservativeness aspect of the ARO formu-
lation. For example, the authors in [32,34] propose to use a so-called
uncertainty budget, which restricts the worst-case realization within a
defined uncertainty set. Even though these proposals hold key scientific
contributions, ARO results in a tri-level formulation (min–max–min)
that requires complex specific solution algorithms [32], which hinder
its practical implementation. In addition, a consistent mechanism to
derive market prices when using ARO methods remains a key challenge.

1.2. Contributions

To address the above shortcomings, this work introduces a novel
light robust (LR) uncertainty-based market formulation for the co-
3

optimization of energy and reserves in the DA market. Unlike the c
traditional ARO, the proposed LR co-optimization of energy and re-
serves results in a linear market-clearing mechanism that can be ef-
ficiently solved, not requiring complex solution algorithms. Different
from SP, the non-complex nature of this approach rapidly yields trace-
able solutions that can be clearly understood by market participants,
hence improving transparency, encouraging market participation, and
enabling the formulation’s practical implementation. Moreover, this
formulation accepts uncertainty bids [40], which enable stochastic (re-
newable) producers to reflect their uncertainty space in their submitted
bids for energy and reserves. More specifically, this work makes the
following key contributions.

• A novel linear LR co-optimization of energy and reserves market
clearing formulation under uncertainty is introduced, in which
the robustness level of the co-optimized solution can be dy-
namically specified through the control of a conservativeness
parameter. The latter allows the balance of the robustness and
economic efficiency of the co-optimized solution.

• To account for the stochasticity of VRES, this work introduces
three different formulations for the specification and sizing of the
reserve requirements. The proposed formulations consider either
a fixed reserve volume or a variable requirement based on the an-
ticipated reserve needs arising from the uncertainty of VRES and
the anticipated associated activation costs — the latter reserve
requirement is a novel formulation resulting from the developed
light-robust optimization framework. A hybrid approach is also
proposed considering the two (fixed and variable) requirements.

• A novel pricing mechanism is proposed, from which the market
clearing price (MCP) for energy and reserves for the proposed
market formulations can be readily derived. This is a feature
that is currently missing in robustness-based market clearing
formulations based on ARO.

A previous work [40] was the first to propose an LR formulation for
the market clearing of the DA electricity market. However, it focused
solely on the energy dispatch problem and did not consider the reserve
procurement dimension. This work expands on [40] not only through
the integration of the co-optimized reserve procurement stage in the
DA market, but also by proposing three different formulations for the
specification of the reserve requirements. Moreover, in the present
work, the maximum anticipated positive and negative deviations of
stochastic producers from their most probable production levels are
considered, whereas in [40] only negative deviations were included.

onsidering both sides of the uncertainty range allows the market to
ptimize the procurement of upward and downward reserves.

This paper is structured as follows. We first introduce the deter-
inistic nominal problem, which co-optimizes, in the DA, the energy

nd reserve procurement (Section 2). Then, the three alternative LR
ormulations co-optimizing energy and reserves under uncertainty are
resented (Section 3). Next, a pricing scheme for the proposed formu-
ations is introduced, from which dual prices can be readily derived
Section 4). Finally, a case study based on an updated version of the
EEE 24-bus system is presented (Section 5). The case study shows
nd compares the effects of the proposed LR formulations and the
onservativeness parameter on the total socio-economic welfare (SEW),
he anticipated activation costs in real-time (RT), and the dispatched
uantities and procured reserves. These results show that significant
conomic benefits are obtained when the uncertainty of the stochastic
roducers (captured via the uncertainty bids) is used endogenously
n the sizing of the reserve requirements of the system. Lastly, the
onclusions and future work are presented in Section 6.

. Co-optimization of energy and reserves: the nominal problem

In most European markets, the short-term electricity markets are

omposed of a DA energy market, an intraday market, and a balancing
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market (each cleared independently). One day before delivery, pro-
ducers and consumers submit their price-quantity bids to the market
operator (MO). The MO clears the DA energy market resulting in gen-
eration and demand hourly schedules for the next operating day along
with the hourly MCP. In the intraday market, market participants are
allowed to modify their DA positions by trading (bilaterally) in discrete
auctions or continuous trading schemes. The balancing market is run by
the TSO to maintain the balance between production and demand. The
balancing market enables the system balance by accounting for near RT
variations in generation and demand, whose occurrence is expected to
increase as more VRES production is deployed [14]. To ensure enough
resources are available in RT, the TSO procures reserve capacity well
in advance (from one day to months ahead). This work focuses on the
co-optimization of energy trading and reserve procurement in the DA,
due to the efficiency gains it introduces as compared to the sequential
market clearing [11] while anticipating reserve activation through the
balancing market.

In its most standard form, the deterministic co-optimization of
energy and reserves (hereafter referred to as ‘‘the nominal problem’’)
is formulated as Problem (1). In addition to achieving an optimal DA
energy market dispatch, Problem (1) aims at concurrently procuring
predefined volumes of upward and downward reserves, as described in
.g.,[14].

ax
𝜳

∑

𝑑∈
(𝑞𝐷𝑑 𝑝

𝐷
𝑑 ) −

∑

𝑠∈
(𝑞𝑆𝑠 𝑝

𝑆
𝑠 + 𝑅𝑑𝑆

𝑠 𝑝𝑑𝑅𝑆𝑠 + 𝑅𝑢𝑆
𝑠 𝑝𝑢𝑅𝑆𝑠 )

−
∑

𝑔∈
(𝑞𝐺𝑔 𝑝

𝐺
𝑔 + 𝑅𝑑𝐺

𝑔 𝑝𝑑𝑅𝐺𝑔 + 𝑅𝑢𝐺
𝑔 𝑝𝑢𝑅𝐺𝑔 ),

(1a)

ubject to:
∑

𝑑∈𝐷
𝑞𝐷𝑑 −

∑

𝑠∈𝑆
𝑞𝑆𝑠 −

∑

𝑔∈𝐺
𝑞𝐺𝑔 = 0, (1b)

∑

𝑠∈𝑆
𝑅𝑑𝑆
𝑠 +

∑

𝑔∈𝐺
𝑅𝑑𝐺
𝑔 = 𝑅𝑑

𝑟𝑒𝑞 , (1c)

∑

𝑠∈𝑆
𝑅𝑢𝑆
𝑠 +

∑

𝑔∈𝐺
𝑅𝑢𝐺
𝑔 = 𝑅𝑢

𝑟𝑒𝑞 , (1d)

𝑞𝐷𝑑 ≤ 𝑚𝐷
𝑑 ∀𝑑 ∈ , (1e)

𝑆
𝑠 + 𝑅𝑢𝑆

𝑠 ≤ 𝑚𝑆
𝑠 ∀𝑠 ∈  , (1f)

𝐺
𝑔 + 𝑅𝑢𝐺

𝑔 ≤ 𝑚𝐺
𝑔 ∀𝑔 ∈ , (1g)

𝑆
𝑠 − 𝑅𝑑𝑆

𝑠 ≥ 0 ∀𝑠 ∈  , (1h)

𝐺
𝑔 − 𝑅𝑑𝐺

𝑔 ≥ 0 ∀𝑔 ∈ , (1i)

𝑢𝑆
𝑠 ≤ 𝑅𝑢𝑆,𝑚𝑎𝑥

𝑠 ∀𝑠 ∈  , (1j)

𝑑𝑆
𝑠 ≤ 𝑅𝑑𝑆,𝑚𝑎𝑥

𝑠 ∀𝑠 ∈  , (1k)

𝑢𝐺
𝑔 ≤ 𝑅𝑢𝐺,𝑚𝑎𝑥

𝑔 ∀𝑔 ∈ , (1l)

𝑑𝐺
𝑔 ≤ 𝑅𝑑𝐺,𝑚𝑎𝑥

𝑔 ∀𝑔 ∈ , (1m)

𝐷
𝑑 , 𝑞

𝑆
𝑠 , 𝑞

𝐺
𝑔 , 𝑅

𝑢𝑆
𝑠 , 𝑅𝑢𝐺

𝑔 , 𝑅𝑑𝑆
𝑠 , 𝑅𝑑𝐺

𝑔 ≥ 0 ∀𝑑 ∈ ,∀𝑠 ∈  ,∀𝑔 ∈ , (1n)

here the demand (𝑑), and the stochastic (𝑠) and conventional (𝑔)
roducers participating in the market lie in the sets ,, and , respec-
ively. Moreover, 𝜳 is the set of decision variables 𝑞𝐷𝑑 , 𝑞

𝑆
𝑠 , 𝑞

𝐺
𝑔 , 𝑅

𝑑𝑆
𝑠 , 𝑅𝑢𝑆

𝑠 ,
𝑑𝐺
𝑔 , 𝑅𝑢𝐺

𝑔 corresponding to the accepted demand (𝑞𝐷𝑑 ), the quantities
f the dispatched generation from stochastic (𝑞𝑆𝑠 ) and conventional
𝑞𝐺𝑔 ) producers, and the procured upward and downward reserves from
tochastic (𝑅𝑢𝑆

𝑠 , 𝑅𝑑𝑆
𝑠 ) and conventional (𝑅𝑢𝐺

𝑔 , 𝑅𝑑𝐺
𝑔 ) producers. To partic-
4

pate in the market, participants submit in their bids energy quantities i
𝑚𝑆
𝑠 , 𝑚

𝐺
𝑔 , 𝑚

𝐷
𝑑 ), energy prices (𝑝𝑆𝑠 , 𝑝𝐺𝑔 , 𝑝

𝐷
𝑑 ), maximum reserve quantities

𝑅𝑢𝑆,𝑚𝑎𝑥
𝑠 , 𝑅𝑑𝑆,𝑚𝑎𝑥

𝑠 , 𝑅𝑢𝐺,𝑚𝑎𝑥
𝑔 , 𝑅𝑑𝐺,𝑚𝑎𝑥

𝑔 ), and reserve capacity prices (𝑝𝑑𝑅𝑆𝑠 ,
𝑢𝑅𝑆
𝑠 , 𝑝𝑑𝑅𝐺𝑔 , 𝑝𝑢𝑅𝐺𝑔 ). The reserve capacity prices are parameters that can
e adjusted or excluded to suit different market settings (e.g., in the
ase where a certain type of reserve is not explicitly procured).

As expressed in (1a), the objective function aims at maximizing the
otal SEW from the trading of energy and reserves in the DA market.
onstraint (1b) corresponds to the energy balance constraint, while
onstraints (1c) and (1d) guarantee that enough upward and downward
eserves are procured to meet the reserve requirements 𝑅𝑢

𝑟𝑒𝑞 and 𝑅𝑑
𝑟𝑒𝑞

2.
he maximum bid boundary constraints for the demand and generation
including both energy and upward reserves) are represented in (1e)–
1g), while constraints (1h) and (1i) ensure that enough dispatched
eneration is available to provide the procured downward reserves.
dditionally, the maximum bid boundary constraints for the procure-
ent of reserves are represented in (1j)–(1m). Finally, in (1n), the
on-negativity constraints for all the decision variables are included.
his general formulation reflects an emerging setup, expected to be
redominant in a future in which stochastic producers can provide
ifferent types of ancillary services [41–45]. The formulation can be
asily adjusted to limit the provision of reserves per technology if
eeded, either through the formulation itself (i.e., dropping respective
ecision variables) or through the set of bids accepted (reflecting
roduct requirements set by the TSO).

Regarding network constraints, we note that the formulations pro-
osed in this paper reflect the European DA electricity market setting,
hich considers a zonal market framework where internal (i.e., intra-

onal) network constraints are not considered when clearing the mar-
et. Network topology and operational constraints can be readily in-
luded at different levels of detail, using e.g., linearized DC power flow
odels to preserve the linearity of the formulation.

. Light robust co-optimization of energy and reserves

Although the nominal problem enables a more efficient energy
ispatch and reserves procurement by co-optimizing energy and re-
erves (compared with the sequential setup), it does not account for
he uncertain nature of VRES participating in the market. Therefore,
hen a mismatch between the actual delivery and the energy dispatch
uantities from the DA (i.e., imbalance) occurs, additional more expen-
ive (last-minute) reserves are needed to maintain the system balance,
esulting in additional costs for the system. This is the case, especially
hen the resulting imbalance is greater than initially estimated by the
SO, making the fixed predefined reserve requirements insufficient to
aintain the system balance.

To better consider the uncertainty present in the system, we propose
co-optimization of the energy and reserves market using a novel LR

pproach. LR optimization is a mathematical framework first intro-
uced in [46] to provide a balance between efficiency (i.e., the optimal
olution for the nominal, deterministic case) and robustness (i.e., the
easibility of the solution when uncertainty is considered) in linear
ptimization problems.

Taking into account the principles of LR optimization [46] and
he uncertain nature of VRES, we propose three different LR co-
ptimization formulations that differ in the specification of their re-
erve requirements. In the first formulation (LRF1), the reserve require-
ents are fixed and pre-defined by the TSO. In the second formulation

LRF2), the reserve requirements are defined, as a variable by-product,
irectly from the uncertainty present in the system as given by the
ncertainty bids. Lastly, the third formulation (LRF3) combines and
ncorporates both fixed and variable reserve requirements.

2 The reserve requirements can be defined in different ways, as proposed
n Section 3.
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s

−

3.1. LRF1-fixed reserve requirements

In most actual systems, the reserve requirements are defined well
in advance of the DA energy market clearing. These requirements
are usually determined by the TSO, subject to approval by regulat-
ing authorities, to ensure the reliable operation of the power system
during unforeseen events (e.g., failure of generation units, variable
loads, VRES variability) [47]. In alignment with this setup, a LR co-
optimization of energy and reserves that considers fixed reserve re-
quirements is presented next in Problem (2). Note that to capture
the uncertainty from VRES, stochastic producers participating in LRF1
are allowed to submit uncertainty bids. This bid format considers, in
addition to the bid elements required in the nominal problem, the
maximum anticipated negative deviation (�̂�𝑛

𝑠) from their most probable
production 𝑚𝑆

𝑠 , as proposed in [40]. Negative deviations are consid-
ered due to the high cost associated with the correction of negative
imbalances leading to upward regulation needs. In this regard, Fig. 1
illustrates the uncertainty range in the bid format from stochastic
producers in LRF1.

min
𝜳 ,𝜸𝒏𝒔

∑

𝑠∈
𝛾𝑛𝑠 , (2a)

ubject to:
∑

𝑑∈
(𝑞𝐷𝑑 𝑝

𝐷
𝑑 ) −

∑

𝑠∈
(𝑞𝑆𝑠 𝑝

𝑆
𝑠 + 𝑅𝑑𝑆

𝑠 𝑝𝑑𝑅𝑆𝑠 + 𝑅𝑢𝑆
𝑠 𝑝𝑢𝑅𝑆𝑠 )

∑

𝑔∈
(𝑞𝐺𝑔 𝑝

𝐺
𝑔 + 𝑅𝑑𝐺

𝑔 𝑝𝑑𝑅𝐺𝑔 + 𝑅𝑢𝐺
𝑔 𝑝𝑢𝑅𝐺𝑔 ) ≥ 𝑧∗(1 − 𝜌),

(2b)

∑

𝑑∈𝐷
𝑞𝐷𝑑 −

∑

𝑠∈𝑆
𝑞𝑆𝑠 −

∑

𝑔∈𝐺
𝑞𝐺𝑔 = 0, (2c)

∑

𝑠∈𝑆
𝑅𝑑𝑆
𝑠 +

∑

𝑔∈𝐺
𝑅𝑑𝐺
𝑔 = 𝑅𝑑

𝑓𝑖𝑥𝑒𝑑,𝑟𝑒𝑞 , (2d)

∑

𝑠∈𝑆
𝑅𝑢𝑆
𝑠 +

∑

𝑔∈𝐺
𝑅𝑢𝐺
𝑔 = 𝑅𝑢

𝑓𝑖𝑥𝑒𝑑,𝑟𝑒𝑞 , (2e)

𝑞𝐷𝑑 ≤ 𝑚𝐷
𝑑 ∀𝑑 ∈ , (2f)

𝑞𝑆𝑠 + 𝑅𝑢𝑆
𝑠 ≤ 𝑚𝑆

𝑠 ∀𝑠 ∈  , (2g)

𝑞𝑆𝑠 − 𝑅𝑑𝑆
𝑠 ≥ 0 ∀𝑠 ∈  , (2h)

𝑞𝐺𝑔 + 𝑅𝑢𝐺
𝑔 ≤ 𝑚𝐺

𝑔 ∀𝑔 ∈ , (2i)

𝑞𝐺𝑔 − 𝑅𝑑𝐺
𝑔 ≥ 0 ∀𝑔 ∈ , (2j)

𝑅𝑢𝑆
𝑠 ≤ 𝑅𝑢𝑆,𝑚𝑎𝑥

𝑠 ∀𝑠 ∈  , (2k)

𝑅𝑑𝑆
𝑠 ≤ 𝑅𝑑𝑆,𝑚𝑎𝑥

𝑠 ∀𝑠 ∈  , (2l)

𝑅𝑢𝐺
𝑔 ≤ 𝑅𝑢𝐺,𝑚𝑎𝑥

𝑔 ∀𝑔 ∈ , (2m)

𝑅𝑑𝐺
𝑔 ≤ 𝑅𝑑𝐺,𝑚𝑎𝑥

𝑔 ∀𝑔 ∈ , (2n)

𝑞𝑆𝑠 + 𝑅𝑢𝑆
𝑠 − 𝛾𝑛𝑠 ≤ 𝑚𝑆

𝑠 − �̂�𝑛
𝑠 ∀𝑠 ∈  , (2o)

𝑞𝐷𝑑 , 𝑞
𝑆
𝑠 , 𝑞

𝐺
𝑔 , 𝑅

𝑢𝑆
𝑠 , 𝑅𝑢𝐺

𝑔 , 𝑅𝑑𝑆
𝑠 , 𝑅𝑑𝐺

𝑔 , 𝛾𝑛𝑠 ≥ 0 ∀𝑑 ∈ , ∀𝑠 ∈  ,∀𝑔 ∈ , (2p)

where upward and downward reserves are procured to meet the pre-
defined fixed reserve requirements, as captured in constraints (2d) and
(2e). Constraints (2c)–(2n) guarantee feasibility for the nominal case,
while (2p) corresponds to the non-negativity constraints for all the
decision variables.

Moreover, 𝑧∗ is the optimal solution to the nominal problem (1),
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and 𝜌 is the conservativeness parameter defined by the MO (TSO)
to balance the robustness levels of the co-optimized solution. This
conservativeness parameter is used in (2b) to set the maximum allowed
deterioration from the nominal solution. In this regard, 𝜌 = 0 corre-
sponds to the optimal solution for the nominal case, while 𝜌 = 𝜌max
relates to the most robust solution. The most robust solution accounts
for the worst possible deviation from the most probable case where,
for each stochastic producer, this corresponds to the right-hand side
of (2o) (i.e., 𝑚𝑆

𝑠 − �̂�𝑛
𝑠). The conformity with the robustness goal of

each stochastic producer is defined by the dispatched energy quantities
(𝑞𝑆𝑠 ), the procured upward reserves (𝑅𝑢𝑆

𝑠 ) and the slack variable 𝛾𝑛𝑠 ,
which is in turn minimized by the objective function (2a). Indeed, the
variable 𝛾𝑛𝑠 in (2o) allows a deviation of the scheduled energy dispatch
and reserve levels of stochastic units from the most robust solution.
The objective function aims to drive the solution toward meeting the
robustness goal, while constraint (2b) maintains the required level of
economic efficiency, hence, striking a balance between robustness and
efficiency. This balance is controllable by the MO, through 𝜌, allowing
the formulation to span different possible settings (from most robust to
least robust) through a change in 𝜌. The link between the variables and
parameters in (2o) is illustrated in Fig. 2.

3.2. LRF2-variable reserve requirements

Fixed reserves requirements, as captured in LRF1, allow meeting
preset reliability goals, by ensuring the availability of a fixed amount
of reserve capacity. This formulation, however, does not account for
the influence of variations in stochastic generation on the optimal
procurement of reserves (reserve volumes and allocation among reserve
providers). Differently from LRF1, the next formulation introduces a
co-optimized market clearing problem that aims to link the reserve
requirements to the reserve needs from the uncertainty of the dis-
patched stochastic producers (captured by the uncertainty bids that the
stochastic producers submit).

Due to the uncertainty ranges revealed by the stochastic units, any
dispatch of a stochastic producer implies an expected need for upward
and/or downward reserve activation to cover the entire uncertainty
range. We refer to this concept as the upward and downward reserve
needs. Moreover, LRF2 creates a dispatch order that maximizes not only
the energy and reserve procurement in DA (given the allowed deviation
imposed by 𝜌 in (2b)) but also minimizes the anticipated activation
costs of the procured reserves. Since the reserve needs depend on the
uncertainty ranges submitted by the accepted stochastic producers, the
uncertainty bid format presented in LRF1 is expanded to also consider
the upper bounds of the uncertainty ranges. In other words, in LRF2,
the uncertainty range of a stochastic producer is composed of the
submitted maximum negative (�̂�𝑛

𝑠) and positive (�̂�𝑝
𝑠) deviations from

the most probable output (𝑚𝑆
𝑠 ), as illustrated in Fig. 3. In fact, �̂�𝑛

𝑠 and
�̂�𝑝
𝑠 can be defined by the producer using different approaches, ranging

from empirical observations to complex statistical analyses.
Moreover, in LRF2, conventional and stochastic producers also sub-

mit their anticipated upward and downward activation prices (𝑝𝑢𝑟𝐺𝑔 ,
𝑝𝑑𝑟𝐺𝑔 , 𝑝𝑢𝑟𝑆𝑠 , and 𝑝𝑑𝑟𝑆𝑠 ). Note that the anticipated activation prices 𝑝𝑢𝑟𝐺𝑔 ,
𝑝𝑑𝑟𝐺𝑔 , 𝑝𝑢𝑟𝑆𝑠 , and 𝑝𝑑𝑟𝑆𝑠 are defined and submitted by the producers, as part
of their submitted bids, during the DA bidding process. In that regard,
the anticipated upward (downward) activation prices correspond to the
minimum (respectively maximum) price each producer is willing to
receive (pay back) in exchange for the activation of upward (down-
ward) reserves. Table 2, provides an overview of the bid formats of
the market participants for each market formulation. The co-optimized
market clearing LRF2 is introduced in Problem (3) as follows.

min
𝜳,𝜩

∑

𝑠∈
(−𝑟𝑑𝑆𝑠 𝑝𝑑𝑟𝑆𝑠 + 𝑟𝑢𝑆𝑠 𝑝𝑢𝑟𝑆𝑠 ) +

∑

𝑔∈
(−𝑟𝑑𝐺𝑔 𝑝𝑑𝑟𝐺𝑔 + 𝑟𝑢𝐺𝑔 𝑝𝑢𝑟𝐺𝑔 ), (3a)

subject to:
(2b)–(2c), (2f)–(2n), (3b)
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Fig. 1. Quantities in the uncertainty bids of stochastic producers participating in LRF1. Maximum anticipated negative deviation (�̂�𝑛
𝑠 ) from their most probable production (𝑚𝑆

𝑠 ).
Fig. 2. Slack variable (𝛾𝑠), energy dispatch (𝑞𝑆𝑠 ) and reserve (𝑅𝑢𝑆
𝑠 ) bounds of stochastic units participating in LRF1.
Fig. 3. Quantities in the uncertainty bids of stochastic producers participating in LRF2 and LRF3. Maximum anticipated negative (�̂�𝑛
𝑠 ) and positive (�̂�𝑝

𝑠) deviations from their most
probable production (𝑚𝑆

𝑠 ).
𝑞𝑆𝑠 + 𝑅𝑢𝑆
𝑠 − 𝛾𝑛𝑠 ≤ 𝑚𝑆

𝑠 − �̂�𝑛
𝑠 ∀𝑠 ∈  , (3c)

𝑞𝑆𝑠 + 𝑅𝑢𝑆
𝑠 + 𝛾𝑝𝑠 = 𝑚𝑆

𝑠 + �̂�𝑝
𝑠 ∀𝑠 ∈  , (3d)

∑

𝑠∈
(𝑟𝑑𝑆𝑠 − 𝛾𝑝𝑠 ) +

∑

𝑔∈
𝑟𝑑𝐺𝑔 = 0, (3e)

∑

𝑠∈
(𝑟𝑢𝑆𝑠 − 𝛾𝑛𝑠 ) +

∑

𝑔∈
𝑟𝑢𝐺𝑔 = 0, (3f)

𝑟𝑢𝑆𝑠 ≤ 𝑅𝑢𝑆
𝑠 ∀𝑠 ∈  , (3g)

𝑟𝑑𝑆𝑠 ≤ 𝑅𝑑𝑆
𝑠 ∀𝑠 ∈  , (3h)

𝑟𝑢𝐺𝑔 ≤ 𝑅𝑢𝐺
𝑔 ∀𝑔 ∈ , (3i)

𝑟𝑑𝐺𝑔 ≤ 𝑅𝑑𝐺
𝑔 ∀𝑔 ∈ , (3j)

∑

𝑠∈𝑆
𝑅𝑑𝑆
𝑠 +

∑

𝑔∈𝐺
𝑅𝑑𝐺
𝑔 =

∑

𝑠∈𝑆
𝑟𝑑𝑆𝑠 +

∑

𝑔∈𝐺
𝑟𝑑𝐺𝑔 , (3k)

∑

𝑠∈𝑆
𝑅𝑢𝑆
𝑠 +

∑

𝑔∈𝐺
𝑅𝑢𝐺
𝑔 =

∑

𝑠∈𝑆
𝑟𝑢𝑆𝑠 +

∑

𝑔∈𝐺
𝑟𝑢𝐺𝑔 , (3l)

𝑞𝐷𝑑 , 𝑞
𝑆
𝑠 , 𝑞

𝐺
𝑔 , 𝑅

𝑢𝑆
𝑠 , 𝑅𝑢𝐺

𝑔 , 𝑅𝑑𝑆
𝑠 , 𝑅𝑑𝐺

𝑔 , 𝑟𝑢𝑆𝑠 , 𝑟𝑢𝐺𝑔 , 𝑟𝑑𝑆𝑠 , 𝑟𝑑𝐺𝑔 , 𝛾𝑝𝑠 , 𝛾
𝑛
𝑠 ≥ 0

∀𝑑 ∈ ,∀𝑠 ∈  ,∀𝑔 ∈ ,
(3m)

where 𝜩 is the set of decision variables 𝑟𝑑𝐺𝑔 , 𝑟𝑢𝐺𝑔 , 𝑟𝑑𝑆𝑠 , 𝑟𝑢𝑆𝑠 , corresponding
to the anticipated activation of downward and upward reserves from
conventional (𝐺) and stochastic producers (𝑆), and the slack variables
𝛾𝑝𝑠 and 𝛾𝑛𝑠 .

Due to the possibility that the output of a stochastic producer fall
anywhere in the range [𝑚𝑆

𝑠 − �̂�𝑛
𝑠 , 𝑚

𝑆
𝑠 + �̂�𝑝

𝑠], the energy dispatch and
reserve procurement from the stochastic producers creates an asso-
ciated need for upward and downward reserves. These upward and
downward reserve needs are captured by the slack variables 𝛾𝑛𝑠 and
𝛾𝑝𝑠 , respectively. In this respect, (3c) defines the level of compliance
with the robustness goal (i.e., lower bound of the uncertainty range)
by adjusting 𝛾𝑛𝑠 , setting in this manner the upward reserve needs from
each stochastic producer. Similarly, the downward reserve needs (𝛾𝑝𝑠 )
6

are calculated in (3d) as the difference between the upper bound of
the uncertainty range and the energy dispatch and reserve procurement
(𝑞𝑆𝑠 +𝑅𝑢𝑆

𝑠 ). The link between the variables and parameters in (3c) and
(3d) is illustrated in Fig. 4.

With reference to Fig. 5, in a nominal market clearing (i.e., 𝜌 = 0),
the slack variables 𝛾𝑝𝑠 and 𝛾𝑛𝑠 would correspond to the positive and
negative maximum deviations within the uncertainty range �̂�𝑝

𝑠 and �̂�𝑛
𝑠 ,

respectively, as illustrated in Fig. 5a. As 𝜌 increases and the market
clearing becomes more robust — moving towards the lower bound of
the uncertainty range, as in Fig. 5b, the needs for upward reserves
decrease (𝛾𝑛𝑠 ) while the downward reserve needs increase (𝛾𝑝𝑠 ). As such,
in the most robust market clearing, as illustrated in Fig. 5c, 𝛾𝑛𝑠 ≅ 0
and 𝛾𝑝𝑠 ≅ �̂�𝑛

𝑠 + �̂�𝑝
𝑠 . In other words, no upward reserves are required,

while enough downward reserves are needed to cover for additional
stochastic generation in the entire uncertainty range.

Constraints (3e) and (3f) guarantee that the anticipated reserve
needs would be met by activating enough downward and upward
reserves delivered by stochastic or conventional producers in RT. The
cost of this anticipated activation of reserves is minimized by the
objective function (3a). Since the problem is seen from the perspective
of the MO (or TSO), the activation of upward reserves represents a cost
for the system while the activation of downward reserves is included
as revenues. Moreover, constraints (3g)–(3l) guarantee that enough
reserves are procured (i.e., 𝑅𝑑𝐺

𝑔 , 𝑅𝑢𝐺
𝑔 , 𝑅𝑑𝑆

𝑠 , 𝑅𝑢𝑆
𝑠 ) in advance to meet

the anticipated activation of reserves (i.e., 𝑟𝑑𝐺𝑔 , 𝑟𝑢𝐺𝑔 , 𝑟𝑑𝑆𝑠 , 𝑟𝑢𝑆𝑠 ). Lastly, the
non-negativity constraints for all the decision variables are included in
(3m).

3.3. LRF3-combined reserve requirements

The two formulations LRF1 and LRF2 differ in the definition of the
reserve requirements. In LRF1, reserve requirements are included as a
deterministic fixed input to the optimization problem. In LRF2, reserve
requirements are a variable by-product of the optimization problem
and are calculated by looking at the anticipated uncertainty from
(dispatched) stochastic producers. Both approaches bring particular
advantages. In fact, fixed reserve requirements, captured in LRF1, allow
meeting preset reliability requirements, while LRF2 allows the sizing of
reserves based on the expected variability of VRES, and its allocation
based on anticipated activation costs. However, since in LRF2 the
reserve requirements depend entirely on the uncertainty bids submitted
by the participants, the presence of strategic behaviour, or inherent

forecast errors could represent a risk for the system’s security of supply.
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Fig. 4. Slack variables (𝛾𝑛𝑠 and 𝛾𝑝𝑠 ), energy dispatch (𝑞𝑆𝑠 ), and reserve (𝑅𝑢𝑆
𝑠 and 𝑅𝑑𝑆

𝑠 ) bounds of stochastic units participating in LRF2 and LRF3.
Fig. 5. Changes in variable reserve needs (𝛾𝑛𝑠 and 𝛾𝑝𝑠 ) under LRF2 and LRF3 for different levels of the conservatives parameter 𝜌. (a) deterministic solution 𝜌 = 0, (b) light robust
solution 𝜌 = 𝜌𝑛, (c) most robust solution 𝜌 = 𝜌𝑚𝑎𝑥.
Table 1
Main characteristics of the proposed formulations (N/A = not applicable).

Reserve
req.

Uncertainty
range

Objective
function

𝛾𝑛𝑠 𝛾𝑝𝑠 Anticipated
activation
costs

LRF1 Fixed Negative
deviations

Min. of slack
variable

Slack on
robustness
goal

N/A N/A

LRF2 Variable Negative and
positive
deviations

Min. of
anticipated
activation
costs

Upward
reserve needs
from player
𝑠 ∈ 

Downward
reserve needs
from player
𝑠 ∈ 

Minimized

LRF3 Fixed and
variable

Negative and
positive
deviations

Min. of
anticipated
activation
costs

Upward
reserve needs
from player
𝑠 ∈ 

Downward
reserve needs
from player
𝑠 ∈ 

Minimized
To capitalize on all the advantages of LRF1 and LRF2 and reduce
the aforementioned risk, we present next a combined formulation in
Problem (4), hereafter referred to as LRF3, that integrates fixed and
variable reserve requirements:

min
𝜳,𝜩

∑

𝑠∈
(−𝑟𝑑𝑆𝑠 𝑝𝑑𝑟𝑆𝑠 + 𝑟𝑢𝑆𝑠 𝑝𝑢𝑟𝑆𝑠 ) +

∑

𝑔∈
(−𝑟𝑑𝐺𝑔 𝑝𝑑𝑟𝐺𝑔 + 𝑟𝑢𝐺𝑔 𝑝𝑢𝑟𝐺𝑔 ), (4a)

subject to:

(2b)–(2c), (2f)–(2n), (4b)

(3c)–(3j), (3m), (4c)
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∑

𝑠∈
𝑅𝑢𝑆
𝑠 +

∑

𝑔∈
𝑅𝑢𝐺
𝑔 =

∑

𝑠∈
𝑟𝑢𝑆𝑠 +

∑

𝑔∈
𝑟𝑢𝐺𝑔 + 𝑅𝑢

𝑓𝑖𝑥𝑒𝑑,𝑟𝑒𝑞 , (4d)

∑

𝑠∈
𝑅𝑑𝑆
𝑠 +

∑

𝑔∈
𝑅𝑑𝐺
𝑔 =

∑

𝑠∈
𝑟𝑑𝑆𝑠 +

∑

𝑔∈
𝑟𝑑𝐺𝑔 + 𝑅𝑑

𝑓𝑖𝑥𝑒𝑑,𝑟𝑒𝑞 . (4e)

As observed, LRF3 is derived as a hybrid form of LRF1 and LRF2.
Differently from LRF2, in LRF3 constraints (4d) and (4e) guarantee
that enough reserves are procured to cover both: the fixed reserve
requirements according to national regulations, as well as a VRES-
dependent reserve component. As in LRF2, a complete uncertainty set

(including both the upper and lower bounds of the set, as illustrated
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Table 2
Summary of bid formats.

Demand Conventional producers Stochastic producers

Nominal 𝑚𝐷
𝑑 , 𝑝

𝐷
𝑑

𝑚𝐺
𝑔 , 𝑅

𝑢𝐺,𝑚𝑎𝑥
𝑔 , 𝑅𝑑𝐺,𝑚𝑎𝑥

𝑔 , 𝑚𝑆
𝑠 , 𝑅

𝑢𝑆,𝑚𝑎𝑥
𝑠 , 𝑅𝑑𝑆,𝑚𝑎𝑥

𝑠 ,
𝑝𝐺𝑔 , 𝑝

𝑑𝑅𝐺
𝑔 , 𝑝𝑢𝑅𝐺𝑔 𝑝𝑆𝑠 , 𝑝

𝑑𝑅𝑆
𝑠 , 𝑝𝑢𝑅𝑆𝑠

LRF1 𝑚𝐷
𝑑 , 𝑝

𝐷
𝑑

𝑚𝐺
𝑔 , 𝑅

𝑢𝐺,𝑚𝑎𝑥
𝑔 , 𝑅𝑑𝐺,𝑚𝑎𝑥

𝑔 , 𝑚𝑆
𝑠 , 𝑅

𝑢𝑆,𝑚𝑎𝑥
𝑠 , 𝑅𝑑𝑆,𝑚𝑎𝑥

𝑠 ,
𝑝𝐺𝑔 , 𝑝

𝑑𝑅𝐺
𝑔 , 𝑝𝑢𝑅𝐺𝑔 𝑝𝑆𝑠 , 𝑝

𝑑𝑅𝑆
𝑠 , 𝑝𝑢𝑅𝑆𝑠 ,

�̂�𝑛
𝑠

LRF2 𝑚𝐷
𝑑 , 𝑝

𝐷
𝑑

𝑚𝐺
𝑔 , 𝑅

𝑢𝐺,𝑚𝑎𝑥
𝑔 , 𝑅𝑑𝐺,𝑚𝑎𝑥

𝑔 , 𝑚𝑆
𝑠 , 𝑅

𝑢𝑆,𝑚𝑎𝑥
𝑠 , 𝑅𝑑𝑆,𝑚𝑎𝑥

𝑠 ,
𝑝𝐺𝑔 , 𝑝

𝑑𝑅𝐺
𝑔 , 𝑝𝑢𝑅𝐺𝑔 , 𝑝𝑆𝑠 , 𝑝

𝑑𝑅𝑆
𝑠 , 𝑝𝑢𝑅𝑆𝑠 , �̂�𝑛

𝑠 ,
𝑝𝑑𝑟𝐺𝑔 , 𝑝𝑢𝑟𝐺𝑔 �̂�𝑝

𝑠 , 𝑝𝑑𝑟𝑆𝑠 , 𝑝𝑢𝑟𝑆𝑠

LRF3 𝑚𝐷
𝑑 , 𝑝

𝐷
𝑑

𝑚𝐺
𝑔 , 𝑅

𝑢𝐺,𝑚𝑎𝑥
𝑔 , 𝑅𝑑𝐺,𝑚𝑎𝑥

𝑔 , 𝑚𝑆
𝑠 , 𝑅

𝑢𝑆,𝑚𝑎𝑥
𝑠 , 𝑅𝑑𝑆,𝑚𝑎𝑥

𝑠 ,
𝑝𝐺𝑔 , 𝑝

𝑑𝑅𝐺
𝑔 , 𝑝𝑢𝑅𝐺𝑔 , 𝑝𝑆𝑠 , 𝑝

𝑑𝑅𝑆
𝑠 , 𝑝𝑢𝑅𝑆𝑠 , �̂�𝑛

𝑠 ,
𝑝𝑑𝑟𝐺𝑔 , 𝑝𝑢𝑟𝐺𝑔 �̂�𝑝

𝑠 , 𝑝𝑑𝑟𝑆𝑠 , 𝑝𝑢𝑟𝑆𝑠

by Fig. 3) is considered here for the bids of the stochastic producers.
Table 1 provides a summary of the main characteristics of the proposed
three formulations, while Table 2 lists the bid format requirements of
each.

4. Pricing scheme

In the mathematical formulation of problems (2), (3), and (4), the
objective functions (2a), (3a), and (4a) do not represent the SEW of
the co-optimized markets. Hence, it is not possible to readily derive
meaningful prices from the dual variables of the energy and reserve
balance constraints, as is typically the case in uniform pay-as-clear
remuneration schemes. As such, a different pricing method is proposed
next to enable the extraction of dual variables to define the energy and
reserve prices.

The nominal problem (1) is taken as the starting point, which is
then modified to derive the prices for the three proposed formulations.
In this respect, three different modified nominal problems are derived
as follows. For LRF1, the modified problem is made of problem (1) in
which constraints (1c) and (1d) are replaced with constraints (2d), (2e)
and (2o) while using the optimal generated value of 𝛾𝑛𝑠 from problem
(2) (i.e., for 𝛾𝑛𝑠 = 𝛾𝑛∗𝑠 ). In the case of LRF2, constraints (1c) and (1d) are
replaced with constraints (3c), (3d), (3g)–(3l) for 𝛾𝑛𝑠 = 𝛾𝑛∗𝑠 , 𝛾𝑝𝑠 = 𝛾𝑝∗𝑠 ,
𝑟𝑢𝑆𝑠 = 𝑟𝑢𝑆∗𝑠 , 𝑟𝑢𝐺𝑔 = 𝑟𝑢𝐺∗

𝑔 , 𝑟𝑑𝑆𝑠 = 𝑟𝑑𝑆∗𝑠 , and 𝑟𝑑𝐺𝑔 = 𝑟𝑑𝐺∗
𝑔 . Lastly, when

using LRF3, constraints (1c) and (1d) are replaced with constraints
(3c), (3d), (3g)–(3l), (4d), and (4e), for 𝛾𝑛𝑠 = 𝛾𝑛∗𝑠 , 𝛾𝑝𝑠 = 𝛾𝑝∗𝑠 , 𝑟𝑢𝑆𝑠 =
𝑟𝑢𝑆∗𝑠 , 𝑟𝑢𝐺𝑔 = 𝑟𝑢𝐺∗

𝑔 , 𝑟𝑑𝑆𝑠 = 𝑟𝑑𝑆∗𝑠 , and 𝑟𝑑𝐺𝑔 = 𝑟𝑑𝐺∗
𝑔 .3 By implementing the

optimal indicated variables, obtained from the LR formulations in the
modified problem, meaningful prices can be derived from the balance
constraints, as shown next.

Indeed, incorporating the optimal LR slack variables from the LR
formulation in the modified problem yields the modified problem to
return the same optimal energy dispatch and reserve procurement
variables as the corresponding LR formulation, hence, enabling the
derivation of the prices. The equivalence between the decision variables
is expressed in the following theorem. Note that the decision variables
of the modified problem are identified with the subscript 𝑚.

Theorem 1. If upward and downward reserves are expected to be activated
in RT (∑𝑠∈ 𝑟𝑢𝑆𝑠 +

∑

𝑔∈ 𝑟
𝑢𝐺
𝑔 > 0 and ∑

𝑠∈ 𝑟𝑑𝑆𝑠 +
∑

𝑔∈ 𝑟
𝑑𝐺
𝑔 > 0) and at

east one conventional producer is dispatched, then 𝑞𝑆∗𝑚𝑠 = 𝑞𝑆∗𝑠 , 𝑅𝑢𝑆∗
𝑚𝑠 = 𝑅𝑢𝑆∗

𝑠 ,
𝑢𝐺∗
𝑚𝑔 = 𝑅𝑢𝐺∗

𝑔 , 𝑅𝑑𝑆∗
𝑚𝑠 = 𝑅𝑑𝑆∗

𝑠 , and 𝑅𝑑𝐺∗
𝑚𝑔 = 𝑅𝑑𝐺∗

𝑔 for all 𝑠 ∈  and 𝑔 ∈ .

roof. The proof of Theorem 1 is provided in Appendix. □

3 Note that 𝛾𝑝∗𝑠 , 𝛾𝑛∗𝑠 , 𝑟𝑢𝐺∗
𝑔 , 𝑟𝑢𝑆∗𝑠 , 𝑟𝑑𝐺∗

𝑔 , and 𝑟𝑑𝑆∗𝑠 correspond to the values of the
ecision variables of the LR problems at the optimal solution.
8

a

Given the equivalence of the energy dispatch and procured reserve
uantities in both problems (i.e., solving the modified problem will
eturn the same optimal decision variables as its corresponding LR for-
ulation), the derivation of the prices from the modified formulation

s possible.
A specific description of the process for each formulation is provided

n Fig. 6. In this regard, the energy prices are derived from the dual
ariables (𝜆𝐿𝑅𝐹1, 𝜆𝐿𝑅𝐹2, and 𝜆𝐿𝑅𝐹3) of the energy balance constraint

(1b) for each specific formulation. Moreover, the upward reserve prices
are derived from the dual variables (𝜆𝑢𝐿𝑅𝐹1, 𝜆

𝑢
𝐿𝑅𝐹2, and 𝜆𝑢𝐿𝑅𝐹3) of the

upward reserve balance constraints (2d), (3k), and (4d), while the
prices for the downward reserves are obtained from the duals (𝜆𝑑𝐿𝑅𝐹1,
𝜆𝑑𝐿𝑅𝐹2, and 𝜆𝑑𝐿𝑅𝐹3) of the constraints (2e), (3l), and (4e). The general
steps required to solve the formulations and derive the prices are
illustrated in Fig. 7. This proposed method allows the derivation of the
MCP (for energy and reserves) from the dual variables of the corre-
sponding balance constraints, also known as shadow pricing. Shadow
pricing has been traditionally used to calculate the prices in electricity
markets [14].

5. Case study

To showcase the effects of the proposed formulations on the market
clearing outcomes, the updated version of the IEEE RTS 24-bus system,
proposed in [48], is considered. In this case study, a DA market with
12 conventional generation players, 17 demand players, and 6 wind
farm producers with a capacity of 200 MW each is cleared for a given
hour (this is sufficient since we do not consider inter-temporal depen-
dencies through complex bids). The demand quantities (𝑚𝐷

𝑑 ), the prices
(𝑝𝐺𝑔 ) and quantities (𝑚𝐺

𝑔 ) for the energy bids, the maximum upward
(𝑅𝑢𝐺,𝑚𝑎𝑥

𝑔 ) and downward (𝑅𝑑𝐺,𝑚𝑎𝑥
𝑔 ) reserve capacity, and the bid prices

for the activation of upward (𝑝𝑢𝑟𝐺𝑠 ) and downward (𝑝𝑑𝑟𝐺𝑠 ) reserves of the
conventional players are taken directly from [48]. The demand prices
(𝑝𝐷𝑑 ) were randomly chosen from a uniform distribution in the range
[0, 50] €/MWh while the upward (𝑝𝑢𝑅𝐺𝑔 ) and downward (𝑝𝑑𝑅𝐺𝑔 ) reserve
capacity prices of the conventional players were randomly chosen from
uniform distributions in the range [0.076𝑝𝐺𝑔 – 0.235𝑝𝐺𝑔 ] and [0.001𝑝𝐺𝑔
– 0.04𝑝𝐺𝑔 ], respectively, to mirror pricing settings seen in practice4.
Regarding the fixed upward and downward reserve requirements for
LRF1 and LRF3, it is set equal to 154.33 MW which is calculated as
the 7.019% of the total demand of the test system, to also reflect
practical settings5. The input data corresponding to the bids from the
conventional players and the demand are presented in Table 3 and 4,
respectively.

Regarding the six stochastic players, historical wind power pro-
duction data from the Belgium TSO Elia [52] is used to define the
uncertainty bids. For each wind player, the selected historical data sets
correspond to the aggregated forecast and the measured wind produc-
tion in Belgium in a specific hour on a specific day, over ten years (from
2013 to 2022). The same hour (at 21:00 h), but a different day was
chosen for each player (from the same six-day period corresponding
to the windiest time of the year: 01–06 February). The most probable
generation quantities (𝑚𝑆

𝑠 ) correspond to the mean of the measured
capacity factors over the 10-year period. The maximum negative and
positive deviations (�̂�𝑛

𝑠 and �̂�𝑝
𝑠) are obtained from the minimum and

maximum difference between the forecasted and measured capacity

4 According to the Belgium Commission for Electricity and Gas Regulation
CREG) [49], in 2015–2020, the average procurement cost for manual Fre-
uency Restoration Reserves (mFRR) capacity ranged between 3.2 €/MW/h
nd 9.9 €/MW/h. These costs represented 7.6% and 23.51% of the average
A energy price in the same period, which was 42.1 €/MWh.
5 The percentage 7.019% corresponds to the ratio between the average
FRR volume to be procured and the electricity demand in Belgium, (as
pproved by the CREG) [50,51].
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Fig. 6. Summary of the proposed mathematical methods for deriving the market clearing prices from formulations LRF1, LRF2, and LRF3.
Fig. 7. General process to derive the market clearing prices in a light robust co-optimization model.
Table 3
Energy and reserve bids from conventional producers.

g 𝑝𝐺𝑔 𝑚𝐺
𝑔 𝑅𝑢𝐺,𝑚𝑎𝑥

𝑔 𝑝𝑢𝑅𝐺𝑔 𝑅𝑑𝐺,𝑚𝑎𝑥
𝑔 𝑝𝑑𝑅𝐺𝑔 𝑝𝑢𝑟𝐺𝑔 𝑝𝑑𝑟𝐺𝑔

(e/MWh) (MWh) (MW) (e/MW) (MW) (e/MW) (e/MWh) (e/MWh)

g1 13.32 152 40 1.38 40 0.28 15 11
g2 13.32 152 40 2.37 40 0.33 15 11
g3 20.70 350 70 2.51 70 0.31 24 16
g4 20.93 591 180 2.88 180 0.30 25 17
g5 26.11 60 60 3.78 60 0.96 28 23
g6 10.52 155 30 1.10 30 0.32 16 7
g7 10.52 155 30 2.05 30 0.36 16 7
g8 6.02 400 0 0.00 0 0.00 0 0
g9 5.47 400 0 0.00 0 0.00 0 0
g10 0.00 300 0 0.00 0 0.00 0 0
g11 10.52 310 60 2.48 60 0.28 14 8
g12 10.52 350 40 1.28 40 0.20 16 8
factors observed in the data set. Note that the producers may also
use other empirical and statistical methods to define their maximum
negative and positive deviations. For example, in the case the stochastic
generation is considered to follow a normal distribution, �̂�𝑛

𝑠 and �̂�𝑝
𝑠

can then be set equal to −2𝜎 and +2𝜎 to include around 95% of the
historical values. As such, the corresponding uncertainty bids from the
stochastic players are shown in Table 5. To align with the original case
study and for simplicity, it is assumed that no reserves are offered by
the stochastic producers.

To study the effect of the proposed formulations, the energy and
reserve markets were jointly cleared using LRF1, LRF2, and LRF3 for
different values of the conservativeness parameter 𝜌. The results of
9

the simulations are presented in the following three subsections. In
Section 5.1, three aspects are discussed from the system perspective:
(i) the evolution of the SEW; (ii) the anticipated activation costs;
and (iii) the aggregated dispatch and procured reserves. Section 5.2
discusses individual results for stochastic and conventional producers.
Final remarks are included in Section 5.3.

5.1. System results

Fig. 8 illustrates the evolution of the SEW in the DA under the
proposed formulations. The bars correspond to the SEW from the
energy dispatch (marked on the left-hand vertical axis as ‘SEW energy’),



Applied Energy 353 (2024) 121982L. Silva-Rodriguez et al.
Fig. 8. Comparison of the socio-economic welfare (SEW) from the energy dispatch and reserve procurement under LRF1, LRF2, and LRF3 for different levels of the conservativeness
parameter 𝜌.
Table 4
Energy bids from demand players.

d 𝑝𝐷𝑑 𝑚𝐷
𝑑 d 𝑝𝐷𝑑 𝑚𝐷

𝑑
(e/MWh) (MWh) (e/MWh) (MWh)

d1 15 83.55 d10 3 149.51
d2 13 74.75 d11 24 204.48
d3 44 138.52 d12 11 149.518
d4 16 57.16 d13 30 244.06
d5 30 54.97 d14 36 76.95
d6 33 105.54 d15 45 257.26
d7 23 96.74 d16 26 140.72
d8 40 131.92 d17 40 98.94
d9 29 134.12

Table 5
Uncertainty bids from stochastic producers.

s 𝑝𝑆𝑠 𝑚𝑆
𝑠 �̂�𝑛

𝑠 �̂�𝑝
𝑠

(e/MWh) (MWh) (MWh) (MWh)

s1 1 120.05 11.21 13.90
s2 1.5 103.08 24.11 14.46
s3 2 78.84 19.21 76.01
s4 3 115.68 29.65 26.56
s5 2.5 120.05 11.49 2.43
s6 3.5 121.52 4.98 23.67

while the lines represent the costs incurred to procure upward and
downward reserve capacity (marked on the right-hand side vertical axis
as ‘reserve procurement costs’). The combination of the SEW from the
energy dispatch minus the reserve procurement costs (also called ‘DA
SEW’ in the following) corresponds to the absolute value of the left side
of (2b). 𝜌0 corresponds to the nominal case in which the robustness goal
is entirely relaxed, resulting in the nominal DA SEW (1a). To obtain
more robust market clearings, deviations from these nominal solutions
are allowed by increasing 𝜌. When 𝜌 reaches its maximum value, the
maximum deviation from the nominal solution is permitted, resulting
in the most robust solution. Overall, the effect of the conservativeness
parameter in the ‘SEW energy’ and optimal dispatch coincide with the
expected performance of a market under LR optimization – the SEW
energy decreases as 𝜌 increases and the generation from stochastic
producers is constrained – confirming the results in [40].

Comparing the proposed formulations, the lowest SEW from the
energy dispatch is obtained when the market is cleared using LRF3.
10
For example, when 𝜌 = 𝜌𝑚𝑎𝑥 is chosen, LRF3 results in a ‘SEW
energy’ of €49,504 while LRF1 and LRF2 result in a ‘SEW energy’ of
€51,610 and €51,209, respectively. As expected, LRF3 procures more
reserves than the other two formulations (83.4% and 119.8% more than
LRF1 and LRF2, respectively), increasing the reserve procurement costs
and dispatching more expensive units whose downward reserves are
required. When LRF1 is used, the costs associated with the procurement
of reserves are constant (€278.4), due to the imposed fixed reserve
requirements (154.33 MW for upward and 154.33 MW for down-
ward reserves), contrary to the decreasing trend seen in the reserve
procurement costs of LRF2 and LRF3. Notably, reserve procurement
costs are the lowest in LRF2 with a maximum value of €171 and a
minimum of €75.5 (since LRF2 procures fewer reserves than the other
formulations) and ‘SEW energy’ remains relatively close to what is
found in LRF1. Still, ‘SEW energy’ is higher in LRF1 due to the fact that
it only maximizes the ‘DA SEW’ and does not consider the activation
costs, which have an effect on the dispatch and, therefore on the ‘SEW
energy’.

The anticipated activation costs also provide an insightful perspec-
tive. Fig. 9 presents the activation costs of reserves that would be paid
(positive) or received (negative) by the TSO if all the procured reserves
had been activated in RT. Since LRF2 and LRF3 minimize the activation
costs while meeting the robustness goal, their anticipated activation
costs are significantly lower when compared with LRF1 (€1,234.6),
which only aims at minimizing the level of relaxation of the robustness
goal, represented by the slack variable 𝛾𝑛𝑠 . Comparing LRF2 and LRF3,
it is observed that LRF3 results in lower activation costs than LRF2
(61% lower costs when 𝜌 = 𝜌𝑚𝑎𝑥) since LRF3 anticipates the activation
of more downward reserves (to cover the fixed and variable reserve
needs), which are represented as revenue for the operator.

Finally, since robustness is achieved by moving towards the lower
bound of the uncertainty ranges (i.e., robustness goals in (2o) and
(3c)), when 𝜌 increases, the dispatch of the accepted stochastic units is
constrained. This is illustrated in Fig. 10 for all three formulations. The
reduction in stochastic dispatch is covered by conventional producers,
which increase their production as a more robust solution is chosen
by the MO through the choice of 𝜌. Fig. 10 also depicts the aggre-
gated procurement of upward and downward reserves for different
robustness levels. In the case of LRF2, at 𝜌 = 0, enough upward and
downward reserves are procured to maintain the balance given any
realization within the aggregated negative (−100,65 MW) or positive
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Fig. 9. Comparison of the anticipated activation costs obtained under LRF1, LRF2, and LRF3 for different levels of the conservativeness parameter 𝜌.
Fig. 10. Aggregated energy dispatch (𝑞𝑆𝑠 , 𝑞
𝐺
𝑔 ) and procured upward (𝑅𝑢𝐺

𝑔 ) and downward (𝑅𝑑𝐺
𝑔 ) reserves for different levels of the conservativeness parameter (𝜌) under LRF1, LRF2

and LRF3.
(+157.03 MW) uncertainty ranges, respectively. As the co-optimized
market clearing moves toward a more robust solution (by increasing
𝜌), fewer upward reserves and more downward reserves are needed.
Therefore, at 𝜌 = 𝜌𝑚𝑎𝑥, no upward reserves are procured while 257.6
MW of downward reserves are purchased. A similar trend is observed
in LRF3, in which, in addition to the variable reserve needs, extra
reserve capacity is procured to cover the fixed reserve requirements.
In contrast, when only fixed reserve requirements are imposed (as in
LRF1), no change in the procurement of reserves is seen regardless of
variations in 𝜌.
11
5.2. Individual participant results

A detailed view of some of the results of LRF2 for the stochastic
producers is presented in Figs. 11 and 12 - similar trends in terms
of dispatched quantities and reserve needs are observed for the two
other formulations. Fig. 11 shows the reduction of the optimal dispatch
levels of each stochastic unit as greater values for 𝜌 are chosen, where
the dispatch of 𝑠6 (the most expensive stochastic player with a bid of
€3.5/MWh) and 𝑠1 (the cheapest with a bid of €1/MWh) are, respec-
tively, the first and last to reach the lower bound of their uncertainty
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Fig. 11. Dispatched quantities of stochastic producers (𝑞𝑆𝑠 ) participating in LRF2 for different levels of the conservativeness parameter 𝜌.
Fig. 12. Upward reserve (above) and downward reserve (below) needs as derived from the bids of the stochastic producers participating in LRF2 for different levels of the
conservativeness parameter 𝜌.
ranges. A similar trend is shown in Fig. 12, where the slack variables 𝛾𝑛𝑠
and 𝛾𝑝𝑠 , which in LRF2 represent the needs for upward and downward
reserves based on each uncertainty range, are presented. At the nominal
realization, when the robustness goal is relaxed, the slack variables
𝛾𝑛𝑠 and 𝛾𝑝𝑠 correspond to the negative and positive deviations of each
stochastic producer (�̂�𝑛

𝑠 and �̂�𝑝
𝑠), respectively. As greater levels of 𝜌

are chosen, 𝛾𝑛𝑠 constraints the dispatch 𝑞𝑆𝑠 towards the lower bound
of the uncertainty range, limiting the need for upward reserves and
increasing 𝛾𝑝𝑠 and, therefore, the need for downward reserves. When
the MO chooses the most robust market clearing setting, no need for
upward reserves is imposed (∑ 𝛾𝑛𝑠 ), since all the stochastic players
are constrained to their lower bound. On the contrary, the needs for
downward reserves are equivalent to the sum of the entire uncertainty
range of each stochastic producer (𝛾𝑛𝑠 = �̂�𝑛

𝑠 + �̂�𝑝
𝑠), to account for

additional stochastic generation at RT.
12
As for the conventional generators, differences across the three
proposed formulations are more pronounced. The energy dispatch and
the procurement of reserve capacity for each conventional producer
participating in the co-optimized market under LRF1 are depicted in
Fig. 13(a). Since the market is co-optimized, the optimal solution
corresponds to the best output for both the energy and the reserve
procurement markets. As expected, the cheapest players (𝑔8, 𝑔9 and
𝑔10 with bids of €6.02/MWh, €5.47/MWh, and €0/MWh, respectively),
which did not offer reserve services, are dispatched at 100% of their
capacity. Players that offered upward reserve services and energy at
very competitive prices are partially dispatched to set aside some
capacity in case upward reserves are needed, such as 𝑔6 and 𝑔7. On the
contrary, players offering cheap downward capacity, such as 𝑔12 with a
downward reserve price bid of €0.2/MW, are dispatched and preferred,
over other players with lower energy prices, in case downward reserves
are needed. As higher values of the conservativeness parameters are
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Fig. 13. Dispatched quantities (𝑞𝐺𝑔 ) and procured upward (𝑅𝑢𝐺
𝑔 ) and downward (𝑅𝑑𝐺

𝑔 ) reserves for conventional producers under LRF1 (a), LRF2 (b), and LRF3 (c) for different
levels of the conservativeness parameter 𝜌.
chosen, the production of players 𝑔7 and 𝑔11 increase to cover the
reduction of stochastic production. Overall, the outcomes are rather
stable for changes in 𝜌.

More dynamic results are observed when LRF2 is used. The main
difference in the results is caused first by the variable reserve needs
of the system. As illustrated in Fig. 13(b), the procurement of upward
13
reserves follows a downward trend as more robust results are chosen,
contrary to the case of downward reserves, in which an increasing
trend is observed. Second, LRF2 not only considers the maximization
of the DA SEW (i.e., energy and reserve procurement), as in LRF1,
but also aims at minimizing the anticipated activation costs in RT. As
expected, as more downward capacity is required, additional players,
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able to provide downward services, are dispatched. The selected players
– in this case 𝑔1, 𝑔2, and 𝑔4 – are dispatched not only due to their
ownward reserve capacity bid (𝑝𝑑𝑅𝐺𝑔 equal to €0.25/MW, €0.33/MW,

and €0.30/MW, respectively) but also due to the offered price for the
activation of downward reserves (𝑝𝑑𝑟𝐺𝑔 equal to €11/MWh, €11/MWh
and €17/MWh). Similarly, as less upward reserve capacity is needed,
the capacity procured by the selected players decreases. The order in
which the upward capacity procurement decreases depends on the bid
price for reserve procurement and activation of each producer. For
example, the provision of upward capacity from player 𝑔12 is the first
to decrease, as bid prices of 𝑔12 (𝑝𝑢𝑅𝐺𝑔 and 𝑝𝑢𝑟𝐺𝑔 ) are the least efficient
among the players providing upward services.

The dynamic of the results obtained for different values of 𝜌 in
RF3 is in between that observed for LRF1 and LRF2, as shown in
ig. 13(c). The results differ from the results of LRF2 due to the fact
hat additional fixed reserve capacity is required. Additional units are
equired to provide upward capacity, especially if a nominal market
learing is chosen. As less upward capacity is needed, the required
apacity from the more expensive units (𝑝𝑢𝑅𝐺𝑔 + 𝑝𝑢𝑟𝐺𝑔 ), among those
onsidered initially, decreases. In order to meet the additional down-
ard requirements, the dispatch is modified. For example, the dispatch
f cheap units 𝑔6, 𝑔7, and 𝑔8 decreases, when compared to the results
f LRF2 and LRF1, as additional generation (in this case from player
4 whose energy bid price is €20.93/MWh) is required to provide the
xtra downward capacity. Player 𝑔4 is then increasingly dispatched as
reater values of 𝜌 are chosen to guarantee that increasing downward
eserve needs are met.

.3. Discussion

The case study results clearly show the impact of the conservative-
ess parameter on the dispatch of the stochastic producers and the
ssociated system reserve needs. In practice, the choice of 𝜌 provides a
rade-off between the ‘SEW energy’ (which is at its greatest value when
ore VRES are dispatched, i.e. 𝜌 = 0) and the reserve procurement and

ctivation costs (which are at their lowest values when the dispatch
rom the stochastic producers is limited to the lower bound of the
ncertainty ranges, i.e. 𝜌 = 𝜌𝑚𝑎𝑥). As more robust solutions are chosen,
he dispatch from stochastic producers is constrained (within their un-
ertainty ranges) and, in LRF2 and LRF3, the estimation of the reserve
eeds changes, as illustrated in Figs. 10 and 12. Moreover, when the
eserve needs are based on the uncertainty range of the stochastic
roducers (as in LRF2 and LRF3), there is an effect of 𝜌 not only in
he total procured reserves, but also in the economic allocation of these
eserves across conventional producers and, correspondingly, on their
nergy dispatch (Figs. 13(b)–13(c)). When LRF1 is used, the reserve
rocurement quantities and allocation remain constant regardless of the
alue of 𝜌 (Fig. 13(a)).

The main difference between LRF2 and LRF3 is illustrated by the
ystem indicators discussed in Section 5.1: when LRF3 is used, more
eserves are scheduled than in LRF2, and expensive producers (willing
o provide more reserve capacity) are dispatched, resulting in a lower
SEW energy’ and higher reserve procurement cost when compared with
RF2. For example, when 𝜌 = 𝜌𝑚𝑎𝑥 is chosen, LRF2 results in a DA SEW
hich is 3.44% greater than in LRF3. This is mainly due to the dispatch

n LRF3 of more expensive units, such as 𝑔4, needed to cover additional
ownward reserve requirements.

Finally, when comparing LRF2 with LRF1, system results also sug-
est that there is a comparative benefit in using LRF2. Even though
RF1 performs slightly better than LRF2 in terms of ‘SEW energy’
with a maximum difference of 0.78%), LRF2 performs considerably
etter than LRF1 in terms of reserve procurement costs (between 27.1%
nd 61.4% lower) and anticipated activation costs (with costs that are
9.1% and 293% lower). Instead, LRF3 achieves even lower anticipated
ctivation costs , with costs 61% and 263% lower than LRF2, but it also
14

resents the lowest ‘SEW energy’ of the three formulations. i
. Conclusions and future work

This work has proposed to co-optimize the energy dispatch and
eserve procurement in a joint DA market setting under uncertainty
sing a novel LR market clearing formulation, which allows the market
perator to choose the robustness level of the co-optimized solution
ia a conservativeness parameter. Three different formulations were
roposed to specify the reserve requirements: LRF1 captured the tra-
itional situation in which fixed pre-defined reserve requirements are
onsidered. LRF2, on the other hand, proposed to define the reserve
equirements as variable by-products of the co-optimization problem.
hese reserve requirements reflect the system upward and downward
eserve needs, estimated based on the uncertainty stemming from the
RES participating in the market, which are captured using their
ubmitted uncertainty bids. Finally, LRF3 introduced a combined for-
ulation, including fixed and variable reserve requirements. To capture

he uncertainty from the stochastic producers, different uncertainty bid
ormats, that allow these producers to define their uncertainty ranges,
ave been proposed. A pricing mechanism to derive energy and reserve
rices from the dual variables of the proposed LR formulations was also
ntroduced.

The effects of the proposed formulations and the conservativeness
arameter on the total SEW, the dispatched quantities, and the pro-
ured reserves were showcased through a case study. The numerical
esults have illustrated the relative economic benefit of endogenizing
he uncertainty of the stochastic producers in the definition of the
eserve requirements (LRF2), compared to the case in which fixed
redefined reserve requirements were considered (LRF1 and, to a lesser
xtent, LRF3). However, it is essential to highlight that the sizing
f the reserves in LRF2 depends on the submitted uncertainty bids,
hich can be subject to strategic manipulation and therefore represent
risk for the system security of supply. This risk can be attenuated

hrough the use of the LRF3 formulation, which combines a fixed
eserve requirement with a variable requirement that depends on the
ncertainty stemming from VRES. As the volume of fixed requirement
an be adjusted, this can be a parameter tunable by the TSO, given its
wn security of supply analyses and the recommendations of the energy
egulatory entity.

This work sets the stage for a number of promising future re-
earch directions, such as the analysis of the impact of the proposed
ormulation on the total system imbalance costs. This would enable
he identification and investigation of the further potential economic
enefits that the co-optimization of energy and reserves under un-
ertainty can deliver. In addition, a game-theoretic analysis of the
articipants’ behaviour under this co-optimization setting can comple-
ent the current analysis by investigating the participants’ bidding

ehaviours (e.g., submitted maximum negative and positive deviations)
nd their effects on potential profits and system performance. Finally,
onsidering inter-temporal constraints and the link of the uncertainty
ids within different time periods is another future research direction.
he inclusion of inter-temporal constraints would allow, e.g., the assess-
ent of the compatibility of the proposed method with current market

etups where, e.g., block multi-temporal bids are allowed.
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Appendix. Proof of pricing mechanism

This section presents the mathematical proof of Theorem 1, required
for the introduced pricing mechanism in Section 4. The proof process
introduces four different Lemmas, whose proofs are also provided. The
proof of LRF2 is presented as an example, as a similar mechanism can
be derived for either LRF1 or LRF3, due to their similar mathematical
structure.

The Karush–Kuhn–Tucker (KKT) conditions of the LRF2 formulation
(problem (3)) required in the proof correspond to (A.1)–(A.3). Simi-
larly, the required KKT conditions of the modified nominal problem of
the LRF2 formulation (as described in Section 4) correspond to (A.4).
Note that the decision variables of the modified problem are identified
with the subscript m.
𝜕
𝜕𝛾𝑛𝑠

= −𝜆2 − 𝜇𝑠
10 − 𝜇𝑠

27 = 0 ∀𝑠 ∈  , (A.1)

0 ≤ −𝑞𝑆𝑠 − 𝑅𝑢𝑆
𝑠 + 𝑚𝑆

𝑠 − �̂�𝑛
𝑠 + 𝛾𝑛𝑠⊥𝜇10

𝑠 ≥ 0 ∀ 𝑠 ∈  , (A.2)

0 ≤ 𝛾𝑛𝑠⊥𝜇27
𝑠 ≥ 0 ∀ 𝑠 ∈  , (A.3)

0 ≤ −𝑞𝑆𝑚𝑠 − 𝑅𝑢𝑆
𝑚𝑠 + 𝑚𝑆

𝑠 − �̂�𝑛
𝑠 + 𝛾𝑛∗𝑠 ⊥𝜇𝑚9

𝑠 ≥ 0 ∀ 𝑠 ∈  . (A.4)

Theorem 1. If upward and downward reserves are expected to be
activated in RT (∑𝑠∈ 𝑟𝑢𝑆𝑠 +

∑

𝑔∈ 𝑟
𝑢𝐺
𝑔 > 0 and ∑

𝑠∈ 𝑟𝑑𝑆𝑠 +
∑

𝑔∈ 𝑟
𝑑𝐺
𝑔 > 0)

and at least one conventional producer is dispatched, then 𝑞𝑆∗𝑚𝑠 = 𝑞𝑆∗𝑠 ,
𝑢𝑆∗
𝑚𝑠 = 𝑅𝑢𝑆∗

𝑠 , 𝑅𝑢𝐺∗
𝑚𝑔 = 𝑅𝑢𝐺∗

𝑔 , 𝑅𝑑𝑆∗
𝑚𝑠 = 𝑅𝑑𝑆∗

𝑠 , and 𝑅𝑑𝐺∗
𝑚𝑔 = 𝑅𝑑𝐺∗

𝑔 for all
∈  and 𝑔 ∈ .

roof. Without loss of generality, let us consider stochastic producer
(i.e. 𝑠 ≜ 𝑖) to be the cheapest stochastic producer. For the derivation

of the proof of Theorem 1, we first begin by proving the following four
lemmas.

Lemma 1. If ∑𝑠∈ 𝑟𝑢𝑆𝑠 +
∑

𝑔∈ 𝑟
𝑢𝐺
𝑔 > 0, then (3c) is binding and at least

ne stochastic producer (i.e., 𝑖) is dispatched (𝑞𝑆𝑖 + 𝑅𝑢𝑆
𝑖 > 0).

roof. If ∑

𝑠∈ 𝑟𝑢𝑆𝑠 +
∑

𝑔∈ 𝑟
𝑢𝐺
𝑔 > 0, then ∑

𝑠∈𝑆 𝛾𝑛𝑠 > 0, see (3f). If
𝑠∈𝑆 𝛾𝑛𝑠 > 0, then at least one stochastic producer has an associated

𝑛
𝑠 > 0, namely, 𝛾𝑛𝑖 > 0. By complementary slackness, if 𝛾𝑛𝑖 > 0,
hen 𝜇27𝑠 = 0, see (A.3). If 𝜇27𝑠 = 0, then 𝜇10𝑠 = −𝜆2, see (A.1). By
efinition, we know that 𝜇10𝑠 ≤ 0. Therefore, 𝜆2 ≥ 0. However, from
3a), we know that if there is a marginal increment on the right side
f (3f), the objective function (3a) increases resulting on an increase
n the activation costs. Therefore, 𝜆2 > 0. If 𝜆2 > 0, then 𝜇10𝑠 < 0. By
omplementary slackness (A.2), if 𝜇10𝑠 < 0, then (3c) is binding:

𝑆
𝑠 + 𝑅𝑢𝑆

𝑠 − 𝛾𝑛𝑠 = 𝑚𝑆
𝑠 − �̂�𝑛

𝑠 . (A.5)

By definition, we know that 𝑚𝑆
𝑖 − �̂�𝑆

𝑖 > 0. Therefore, if 𝛾𝑛𝑖 > 0, then
𝑆
𝑖 + 𝑅𝑢𝑆

𝑠 > 0. This captures the case of stochastic producers, as their
ids are typically cheaper than the bids of conventional generators. □

emma 2. If ∑𝑠∈ 𝑟𝑢𝑆𝑠 +
∑

𝑔∈ 𝑟
𝑢𝐺
𝑔 > 0 and ∑

𝑠∈ 𝑟𝑑𝑆𝑠 +
∑

𝑔∈ 𝑟
𝑑𝐺
𝑔 > 0,

hen 𝑅𝑢𝑆
𝑠 = 𝑟𝑢𝑆𝑠 , 𝑅𝑑𝑆

𝑠 = 𝑟𝑑𝑆𝑠 , 𝑅𝑢𝐺
𝑔 = 𝑟𝑢𝐺𝑔 , and 𝑅𝑑𝐺

𝑔 = 𝑟𝑑𝐺𝑔 .

roof. If ∑𝑠∈ 𝑟𝑢𝑆𝑠 +
∑

𝑔∈ 𝑟
𝑢𝐺
𝑔 > 0 and ∑

𝑠∈ 𝑟𝑑𝑆𝑠 +
∑

𝑔∈ 𝑟
𝑑𝐺
𝑔 > 0, then

𝑠∈ 𝑅𝑢𝑆
𝑠 +

∑

𝑔∈ 𝑅
𝑢𝐺
𝑔 > 0 and ∑

𝑠∈ 𝑅𝑑𝑆
𝑠 +

∑

𝑔∈ 𝑅
𝑑𝐺
𝑔 > 0, see (3k)

nd (3l). Constraints (3h)–(3j) guarantee that at least enough reserve
apacity is procured per player to cover the anticipated activation of
15

eserves in RT. Since (3l) and (3m) ensure that the total quantity of
rocured reserves equals the anticipated activation quantities, then
onstraints (3h)–(3j) are always binding:
𝑢𝑆
𝑠 = 𝑅𝑢𝑆

𝑠 ∀𝑠 ∈  , (A.6)

𝑑𝑆
𝑠 = 𝑅𝑑𝑆

𝑠 ∀𝑠 ∈  , (A.7)

𝑟𝑢𝐺𝑔 = 𝑅𝑢𝐺
𝑔 ∀𝑔 ∈ , (A.8)

𝑟𝑑𝐺𝑔 = 𝑅𝑑𝐺
𝑔 ∀𝑔 ∈ . □ (A.9)

Lemma 3. If ∑𝑠∈ 𝑟𝑢𝑆∗𝑠 +
∑

𝑔∈ 𝑟
𝑢𝐺∗
𝑔 > 0, then (3c) (in the modified

problem) is binding.

Proof. As in Lemma 1, we know that if ∑𝑠∈ 𝑟𝑢𝑆𝑠 +
∑

𝑔∈ 𝑟
𝑢𝐺
𝑔 > 0, then

∑

𝑠∈𝑆 𝛾𝑛𝑠 > 0. If ∑𝑠∈𝑆 𝛾𝑛𝑠 > 0, then at least one stochastic producer has
an associated 𝛾𝑛𝑠 > 0, namely, 𝛾𝑛𝑖 > 0. Since all the decision variables
𝑟𝑢𝑆𝑠 , 𝑟𝑢𝐺𝑔 , 𝑟𝑑𝑆𝑠 , 𝑟𝑑𝐺𝑔 , and 𝛾𝑛𝑠 > 0 are passed to the modified problem as
parameters, the same logic applies. Looking at duality theory and the
effect of (3c) in the objective function (1a) of the modified problem, we
can deduct the following: since 𝑚𝑆

𝑖 − �̂�𝑛
𝑖 + 𝛾𝑛𝑖 is always positive, if there

is a marginal increment on the right side of (3c), 𝑞𝑆𝑚𝑠+𝑅𝑢𝑆
𝑚𝑠 increases. If

there is an increase in 𝑞𝑆𝑚𝑠+𝑅𝑢𝑆
𝑚𝑠 , then the total costs that are minimized

by the objective function increase (i.e., the total SEW decreases), then
𝜇𝑚9𝑠 < 0. By complementarity slackness (A.4), if 𝜇𝑚9𝑠 < 0, then (3c) is
binding:

𝑞𝑆𝑚𝑠 + 𝑅𝑢𝑆
𝑚𝑠 = 𝑚𝑆

𝑠 − �̂�𝑛
𝑠 + 𝛾𝑛∗𝑠 , □ (A.10)

Lemma 4. If∑𝑠∈ 𝑟𝑢𝑆∗𝑠 +
∑

𝑔∈ 𝑟
𝑢𝐺∗
𝑔 > 0 and∑𝑠∈ 𝑟𝑑𝑆∗𝑠 +

∑

𝑔∈ 𝑟
𝑑𝐺∗
𝑔 > 0,

then 𝑅𝑢𝑆
𝑚𝑠 = 𝑟𝑢𝑆∗𝑠 , 𝑅𝑑𝑆

𝑚𝑠 = 𝑟𝑑𝑆∗𝑠 , 𝑅𝑢𝐺
𝑚𝑔 = 𝑟𝑢𝐺∗

𝑔 , and 𝑅𝑑𝐺
𝑚𝑔 = 𝑟𝑑𝐺∗

𝑔 .

Proof. If ∑𝑠∈ 𝑟𝑢𝑆∗𝑠 +
∑

𝑔∈ 𝑟
𝑢𝐺∗
𝑔 > 0 and ∑

𝑠∈ 𝑟𝑑𝑆∗𝑠 +
∑

𝑔∈ 𝑟
𝑑𝐺∗
𝑔 > 0,

then ∑

𝑠∈ 𝑅𝑢𝑆
𝑚𝑠 +

∑

𝑔∈ 𝑅
𝑢𝐺
𝑚𝑔 > 0 and ∑

𝑠∈ 𝑅𝑑𝑆
𝑚𝑠 +

∑

𝑔∈ 𝑅
𝑑𝐺
𝑚𝑔 > 0, see (3k)

and (3l) in the modified problem. Constraints (3h)–(3j) (in the modified
problem) guarantee that at least enough reserve capacity is procured
per player to cover the anticipated activation of reserves in RT. Since
(3l) and (3m) ensure that the total quantity of procured reserves equals
the anticipated activation quantities, then constraints (3h)–(3j), in the
modified problem, are always binding:

𝑟𝑢𝑆∗𝑠 = 𝑅𝑢𝑆
𝑚𝑠 ∀𝑠 ∈  , (A.11)

𝑟𝑑𝑆∗𝑠 = 𝑅𝑑𝑆
𝑚𝑠 ∀𝑠 ∈  , (A.12)

𝑟𝑢𝐺∗
𝑔 = 𝑅𝑢𝐺

𝑚𝑔 ∀𝑔 ∈ , (A.13)

𝑟𝑑𝐺∗
𝑔 = 𝑅𝑑𝐺

𝑚𝑔 ∀𝑔 ∈ . □ (A.14)

Given the results of Lemmas 2 and 4, the equivalence between
the procured reserve quantities in the two formulations can be readily
shown. Indeed, since the decision variables from LRF2 (𝑟𝑢𝑆𝑠 , 𝑟𝑢𝐺𝑔 , 𝑟𝑑𝑆𝑠 ,
and 𝑟𝑑𝐺𝑔 ) are passed to the modified problem as parameters 𝑟𝑢𝑆∗𝑠 , 𝑟𝑢𝐺∗

𝑔 ,
𝑟𝑑𝑆∗𝑠 , and 𝑟𝑑𝐺∗

𝑔 then 𝑅𝑢𝑆
𝑚𝑠 = 𝑅𝑢𝑆∗

𝑠 , 𝑅𝑢𝐺∗
𝑚𝑔 = 𝑅𝑢𝐺∗

𝑔 , 𝑅𝑑𝑆∗
𝑚𝑠 = 𝑅𝑑𝑆∗

𝑠 , and
𝑅𝑑𝐺∗
𝑚𝑔 = 𝑅𝑑𝐺∗

𝑔 for all 𝑠 ∈  and 𝑔 ∈ .
Similarly, if (𝑅𝑢𝑆

𝑚𝑠 = 𝑅𝑢𝑆∗
𝑠 ) and given the results of Lemmas 1

and 3, the equivalence between the energy dispatch quantities for the
stochastic producers can be readily derived. Solving (A.10) for 𝛾𝑛𝑠 and
substituting it in (A.5), it follows that 𝑞𝑆∗𝑚𝑠 = 𝑞𝑆∗𝑠 , completing the proof
of Theorem 1
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