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A B S T R A C T   

The aim of the present study was to measure the apparent absorption of magnesium (Mg) orig
inating from Mg-butyrate. Six mid-lactation Holstein Friesian dairy cows were used with dietary 
treatments arranged in a cross-over design. Two different diets were fed during the experiment, 
consisting of a low Mg diet without Mg-butyrate (L-Mg, 3.1 g Mg/kg dry matter) or a high Mg diet 
with Mg-butyrate (H-Mg, 3.9 g Mg/kg dry matter). Cows offered the L-Mg diet ingested 54.7 g 
Mg/day while the cows fed the H-Mg diets ingested 66.3 g Mg/day (P < 0.001). The fecal 
excretion of Mg, however, was similar between the two experimental diets (P = 0.174). Conse
quently, apparent Mg absorption was found to be 7.9 % units greater (P = 0.038) when the cows 
were fed the diet supplemented with Mg-butyrate. The greater Mg absorption after feeding the H- 
Mg diet was, however, not reflected by a greater urinary Mg concentration (P = 0.228). The 
fractional Mg absorption from Mg-butyrate was calculated to be 71.6 %, which indicates that Mg 
from Mg-butyrate is readily available for absorption. In conclusion, Mg-butyrate is an attractive 
alternative to supplement dairy rations with Mg.   

1. Introduction 

Magnesium (Mg) is an essential nutrient for cows. This means that dairy rations need to supply a sufficient amount of absorbable 
Mg to safeguard the cow’s health. Currently, there is no experimental proof for any specific Mg regulating hormone (Martens and 
Schweigel, 2000). This implies that Mg intake as such does not downregulate the efficiency of Mg absorption. Consequently, the 
amount of absorbed Mg in excess of requirement is excreted in the urine in order to maintain Mg balance. The efficiency of Mg ab
sorption is considered the critical determinant in the Mg supply of dairy cows (Schonewille, 2013). The amount of Mg that is available 
for metabolism depends not only on the amount of Mg ingested by the animals but also on the solubility of the Mg source because only 
ionized Mg can be absorbed (Leonhard et al., 1990). Moreover, the amount of absorbable Mg also depends on the content of dietary 
potassium (K). It is well known that K inhibits Mg absorption in the rumen of the cow (Schonewille et al., 1999). This increases the risk 
of hypomagnesemia (Schonewille et al., 2000), and subsequently grass tetany or milk fever (Lean et al., 2006). 

In many countries, grass and its co-products are usually rich in K. Consequently, it is common practice in such countries to sup
plement dairy rations with Mg. Magnesium-oxide (MgO) is currently widely used as a source of supplemental Mg. The effectiveness of 

Abbreviations: DM, dry matter; K, potassium; Mg, magnesium; MgO, magnesium oxide; SE, standard error; SCFA, short chain fatty acids; Ti, 
titanium. 
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MgO in terms of supplying Mg, however, is limited (Jittakhot et al., 2004) and can vary greatly between different MgO sources (Jesse 
et al., 1981; Schonewille et al., 1992; Xin et al., 1989). As a consequence alternative Mg sources, such as Mg-butyrate, might be of 
interest. 

Currently, supplemental butyrate has gained interest for ruminants in both practice and research. This interest is related to the 
evidence that butyrate is a main stimulator of papillae growth and epithelial cell proliferation in the rumen (Mentschel et al., 2001; 
Malhi et al., 2013). By increasing the size of rumen papillae, and thus the rumen surface area, absorption of short chain fatty acids is 
enhanced. From this perspective, Mg supplementation in the form of Mg-butyrate can be considered opportune to use in the nutrition 
of dry cows due to the decrease in rumen surface area during the dry period (Dieho et al., 2016). Thus, the use of Mg-butyrate instead of 
MgO seems an attractive alternative to supplement dairy rations with Mg. However, the availability of Mg from Mg-butyrate is not 
known. The aim of the current experiment was, therefore, to measure the apparent Mg absorption when Mg-butyrate is used as a 
supplemental Mg source. 

2. Materials and methods 

The animal study protocol was approved by the Institutional Review Board of the Faculty of Veterinary Medicine, Utrecht Uni
versity (approval number 10803-2020-05). 

2.1. Experimental design 

Six, multiparous, mid-lactation cows (approx. 120 days in milk) producing around 30 kg of milk per day were used in the 
experiment. The experiment was designed as a cross-over with 2 experimental periods of 14 days each, preceded by a 14 day pre- 
experimental period to allow the cows to become adapted to the experimental rations. The cows were randomly assigned to the 
order of the two experimental treatments (N = 6 per dietary treatment). The cows were individually fed in a stanchion barn with 
unrestricted access to fresh water. 

2.2. Experimental rations 

During the pre-experimental period all six cows were fed a basal ration (Table 1) supplemented with 2.7 kg dry matter (DM) 
commercial compound feed and 1.8 kg DM low sugar beet pulp without any additives. During the experimental periods, the beet pulp 
was replaced by experimental beet pulp, i.e., beet pulp with or without supplemented Mg-butyrate (molar ratio of Mg: butyric acid= 1: 
2), which was termed either high or low Mg beet pulp, respectively (Table 1). The supplemental Mg-butyrate preparation used, Rumen- 
Ready® (Palital Feed Additives, Velddriel, The Netherlands), was in the form of a micro pellet with a diameter of ~ 1.2 mm and 
consists of (as fed) 70 % Mg-butyrate encapsulated in a fat matrix. Both types of experimental beet pulp contained titanium oxide 
(TiO2), which was used as an inert marker for determination of fecal output. 

2.3. Feeding procedure 

At 9:00 h the daily individual feed refusals, if any, were collected. These were then weighed and stored at − 18 ◦C. The rations were 

Table 1 
Ingredients and calculated chemical composition of the experimental rations.  

Items Treatment 

Low Mg High Mg 

Ingredient composition (kg DM):   
Basal rationa 13.6 13.6 
Compound feed 2.7 2.7 
Experimental beet pulp   
Low Mgb 1.8 - 
High Mgc - 1.8 

Total (kg DM) 18.1 18.1 
Calculated composition of the whole experimental ration 

NEL, MJ/kg DMd 6.91 6.91 
Mg, g/kg DM 3.1 3.9 
K, g/kg DM 23.7 23.7 
Ca, g/kg DM 6.0 6.0 
P, g/kg DM 3.3 3.3  

a Basal ration consisted of (% DM): grass silage, 66.9; corn silage, 26.5; bypass soybean meal, 5.9; 
mineral premix, 0.7. 

b Low Mg beet pulp; pellet containing 99.2 % low sugar beet pulp and 0.8 % TiO2. 
c High Mg beet pulp; pellet containing 91.7 % low sugar beet pulp, 0.8 % TiO2 and 7.5 % Rumen- 

Ready®. 
d NEL = Net Energy Lactation. 
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offered twice daily in two equal portions starting at ~ 9:15 h and ~ 16:30 h. At each feeding time, cows were first offered their 
allocated amounts of compound feed and beet pulp and then ~ 30 min later, half of the daily portion of the basal ration was offered 
(Table 1). 

2.4. Sampling procedure and chemical analysis 

During the last 4 days of each 14 day experimental period, all spontaneously voided feces and urine were collected between 9:00 
and 17:00. At the end of each collection day, the individual feces collections were stored at − 18 ◦C whereas the individual urine 
collections were stored at 5 ◦C. At the end of each experimental period, the individual feces collections were thawed. Then, all in
dividual feed refusals, feces and urine collections were pooled per cow and mixed thoroughly. Thereafter, the pooled fecal and urine 
samples were stored at − 18 ◦C pending chemical analysis. All pooled samples were air dried at 60 ◦C for 24 h, and the dry matter (DM) 
content of the air-dried samples was determined with the use of a forced-air oven (105 ◦C, 24 h) according to ISO (1999). The Mg 
content of feces, urine, feed and feed refusals was measured by means of inductively coupled plasma mass spectrometry. The titanium 
concentration of the experimental beet pulp and feces was analyzed using a spectrophotometer (Beckman Coulter Inc., Brea, USA) 
equipped with sipper module for 408 nm instead of 410 nm as reported by Myers et al. (2006). 

2.5. Statistical analysis 

All data were subjected to analysis of variance with the general linear model procedure in SPSS, using the model: Yij = μ + PERIODi 
+ TREATMENTj + eij. 

where Yij = a response variable (e.g., Mg intake, fecal Mg excretion, etc.); μ = overall mean; PERIODi = experimental period (i = 1 
or 2); TREATMENTj = level of dietary magnesium (j = low or high); and eij = residual error. Both, the PERIOD and TREATMENT were 
set as fixed factors in the statistical model. Throughout, the level of statistical significance was pre-set at P ≤ 0.05. 

3. Results 

3.1. Feed intake and milk yield 

The amount of DM offered was not fully consumed by the cows and the mean amounts of DM refused were 1.1 kg DM and 0.7 kg DM 
for the cows fed the high- and low Mg rations, respectively. Consequently, DM intakes were found to be 16.9 kg (SE ± 0.51) and 17.4 kg 
(SE ± 0.43) for high- and low Mg treatment groups (P = 0.543), respectively. The mean milk production was similar (P = 0.836) 
between the two treatments, i.e. 26.5 kg/day (SE ± 2.39) and 27.2 kg/day (SE ± 2.04) for the high- and low Mg treatments, 
respectively. 

3.2. Mg absorption and urinary Mg concentration 

The intake of Mg increased (P < 0.001) from 54.7 g/day to 66.3 g/day when the cows were fed the high- instead of the low Mg 
ration (Table 2). However, fecal Mg excretion was found to be similar (P = 0.174) between the two experimental rations. Conse
quently, Mg absorption, either expressed as g/day or as a % of intake, was greater (P ≤ 0.038) when the high Mg ration was fed. 
Numerically, the urinary Mg concentration increased by 31 % (Table 2) when the animals were fed the high Mg ration, however, the 
difference was not statistically significant (P = 0.228). 

4. Discussion 

In the current study, the amount of absorbed Mg was found to be 14.3 g/day when the low Mg ration, containing 23.7 g K/kg DM, 
was fed. The value on Mg absorption observed in the current study is 13.4 % greater than predicted based on the regression formula 
reported by Schonewille et al. (2008), i.e., Mg absorption (g/day) = 3.6 + 0.2 × Mg intake (g/day) – 0.08 × Dietary K (g/kg DM). Thus, 
when the low Mg ration was fed, absolute Mg absorption (g/day) was more or less in line with expectation. When the cows were fed the 
ration supplemented with Mg-butyrate, predicted Mg absorption (Schonewille et al., 2008) was calculated to be 15.0 g/day but 

Table 2 
Mg intake, fecal Mg excretion, Mg absorption and urinary Mg concentration in cows fed the experimental rations with or without Mg-butyrate 
supplementation (i.e., high Mg and low Mg, respectively).  

Items Low Mg High Mg SEM P-value 

Mg intake, g/day  54.7  66.3  1.40 <0.001 
Fecal Mg excretion, g/day  40.4  43.7  1.58 0.174 
Apparent Mg absorption        

g/day  14.3  22.6  1.66 0.006 
% of intake  26.2  34.1  2.30 0.038 

Urinary Mg concentration, mM  10.6  13.9  1.82 0.228  
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observed Mg absorption was found to be ~1.5 times greater than predicted (Schonewille et al., 2008). This indicates that Mg from 
Mg-butyrate is readily available for absorption. Indeed, the absolute difference in Mg absorption (ΔMg absorption) between the 
current low- and high Mg diet was 8.3 g/day while the absolute difference in Mg intake between the diets (ΔMg intake) was 11.6 
g/day. Thus, the fractional Mg absorption from Mg-butyrate was calculated to be 71.6 % (i.e., calculated as ΔMg absorption / ΔMg 
intake × 100 %). The calculated fractional Mg absorption from Mg-butyrate is much greater compared to the likewise derived values 
on the fractional Mg absorption from MgO (Table 3). Thus, it appears that Mg-butyrate, relative to MgO, is superior in rendering Mg 
available for absorption. 

For obvious reasons, the current study does not provide clues to explain the difference in Mg absorption between Mg-butyrate and 
MgO, but it is well known that only ionized Mg can be absorbed (Leonhard et al., 1990). In contrast to Mg-butyrate, the soluble part of 
MgO will react with water which results in Mg2+ and two hydroxyde ions (OH-). The latter is a strong base and will act as a sink for H+

ions which can be donated, amongst others, from short chain fatty acids (SCFA). This reasoning is in line with the observation that 
supplemental MgO increases the buffer capacity of rumen contents (Erdman, 1988). It can thus be speculated that the Mg2+ ions 
originating from solubilized MgO are absorbed in association with dissociated SCFA. Taking the aforementioned reasoning into ac
count, it is suggested that the greater Mg absorption from Mg-butyrate versus MgO is related to a greater solubility of Mg-butyrate. 

To the best of the authors’ knowledge, there are currently no published data reporting on the rumen solubility of Mg-butyrate or the 
availability of Mg from Mg-butyrate. However, Ross and Gibson (1969) reported that supplemental Mg in the form of either calcined 
magnesite or Mg-acetate prevented hypomagnesemia in grazing cows. Unfortunately, Mg intakes were not kept constant between 
supplemental Mg sources and Mg absorption was not measured in the Ross and Gibson (1969) study, thereby hindering proper 
interpretation of the data. Interestingly, Giduck and Fontenot (1987) reported on the stimulatory effect of readily fermentable car
bohydrates on Mg absorption in sheep. This observation in sheep fuels the idea that SCFA are instrumental in stimulating Mg ab
sorption in ruminants. This notion is in line with the outcome of fundamental in-vitro research on Mg transport across the rumen 
epithelium. 

The process of Mg uptake by rumen epithelial cells (Tomas and Potter, 1976) consists of two components, one sensitive and one 
insensitive to K (Leonhard-Marek and Martens, 1996). It was shown by Leonhard-Marek et al. (1998) that SCFA can stimulate Mg 
absorption in-vitro with butyrate, relative to acetate and propionate, being most effective. The authors suggested that SCFA absorption 
rate may play a role in this, as the ability of individual SCFA to stimulate Mg2+ absorption followed the same sequence as their ab
sorption rate. The study results prompted the authors (Leonhard-Marek et al., 1998; Leonhard-Marek et al., 2010) to propose that a 
K-independent transporter was located at the apical membrane of the rumen epithelial cell, which exchanges one Mg ion for two 
hydrogen ions. It can, therefore, be speculated that Mg butyrate provided the protons to stimulate the K-independent transport across 
the apical membrane of the epithelial cells in the rumen. However, Schweigel and Martens (2003) were not able to demonstrate a Mg2+

/ 2 H+ exchanger in isolated rumen epithelium cells and these authors suggested the involvement of H+-ATPase activity to explain the 
butyrate induced stimulation in Mg transport across rumen epithelial cells. The involvement of H+-ATPase activity implicates that 
SCFA-mediated Mg transport may also involve a voltage dependent pathway (Schweigel and Martens, 2003). Clearly, the mechanism 
underlying the stimulatory effect of SCFA/butyrate on Mg absorption is not settled yet (Martens et al., 2018). 

Magnesium transport across the basolateral membrane of rumen epithelial cells depends on a carrier mediated process based on the 
exchange of a Mg ion for two Na ions (Schweigel et al., 2000; Leonhard-Marek et al., 2010). In principle, the transport of Mg across the 
rumen epithelium can become saturated (Martens, 1983). Jittakhot et al. (2004) reported that the apparent Mg absorption in dry cows 
became saturated when a ration was fed containing ~12 g Mg/kg dry matter. Therefore, it can be speculated that the process of Mg 
absorption was not saturated in the current feeding experiment due to the rations containing a much lower amount of Mg. 

Despite the numerical increase in the urinary Mg concentration after the feeding of supplemental Mg-butyrate, the difference in the 
urinary Mg concentration did not reach statistical significance. This observation is not easy to explain because both DM intake and milk 
yield were found to be similar between the two experimental rations. It can be speculated that both Mg excretion with milk and the 
intake of electrolytes (i.e., Na and K), was similar between the two rations. In view of the latter, the volume of urine produced is likely 
to have been similar between the two treatments. It seems, therefore, fair to assume that the lack of response in urinary Mg excretion 

Table 3 
Mg intake, Mg absorption, ΔMg intake, ΔMg absorption in cows fed increasing amounts of Mg in the form of MgO (Jittakhot et al., 2004).  

Rationi Mg intake 
(g/day) 

Mg absorption 
(g/day) 

ΔMg intakea 

(g/day) 
ΔMg absorption 

(g/day)b (% of intake)c 

1d  27.1  3.4 - - - 
2  44.6  7.0 17.5 3.6 20.6 
3  64.6  11.9 20.0 4.9 24.5 
4  83.5  17.1 18.9 5.2 27.5 
5  100.4  20.2 16.9 3.1 18.3 
6  124.3  22.0 23.9 1.8 7.5  

a ΔMg intake is calculated as the difference in Mg intake between rationi+1 and rationi. For example, the difference in Mg intake between ration 2 
and ration 1 = 44.6 – 27.1 = 17.5 g Mg/day. 

b ΔMg absorption (g/day) is calculated as the difference in Mg absorption between rationi+1 and rationi. For example, the difference in Mg ab
sorption between ration 2 and ration 1 = 7.0 – 3.4 = 3.6 g Mg/day 

c ΔMg absorption expressed as % of intake is the percentage absorption of ΔMg intake, i.e. (ΔMg absorption / ΔMg intake) x 100 %. 
d Ration1 is the control ration, not supplemented with MgO. 
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cannot be explained by a difference in urine volume. Thus, the probability of type-1 error was most likely unfavorably affected by the 
high variation in the urinary Mg concentration. 

5. Conclusion 

Mg-butyrate is a readily available Mg source and can be considered an attractive alternative to MgO to supplement dairy rations 
with Mg. 
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