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Abstract 

Background  Some studies have established associations between the prevalence of new-onset asthma and asthma 
exacerbation and socioeconomic and environmental determinants. However, research remains limited concern-
ing the shape of these associations, the importance of the risk factors, and how these factors vary geographically.

Objective  We aimed (1) to examine ecological associations between asthma prevalence and multiple socio-physical 
determinants in the United States; and (2) to assess geographic variations in their relative importance.

Methods  Our study design is cross sectional based on county-level data for 2020 across the United States. We 
obtained self-reported asthma prevalence data of adults aged 18 years or older for each county. We applied conven-
tional and geographically weighted random forest (GWRF) to investigate the associations between asthma preva-
lence and socioeconomic (e.g., poverty) and environmental determinants (e.g., air pollution and green space). To 
enhance the interpretability of the GWRF, we (1) assessed the shape of the associations through partial dependence 
plots, (2) ranked the determinants according to their global importance scores, and (3) mapped the local variable 
importance spatially.

Results  Of the 3059 counties, the average asthma prevalence was 9.9 (standard deviation ± 0.99). The GWRF outper-
formed the conventional random forest. We found an indication, for example, that temperature was inversely associ-
ated with asthma prevalence, while poverty showed positive associations. The partial dependence plots showed 
that these associations had a non-linear shape. Ranking the socio-physical environmental factors concerning their 
global importance showed that smoking prevalence and depression prevalence were most relevant, while green 
space and limited language were of minor relevance. The local variable importance measures showed striking geo-
graphical differences.

Conclusion  Our findings strengthen the evidence that socio-physical environments play a role in explaining asthma 
prevalence, but their relevance seems to vary geographically. The results are vital for implementing future asthma 
prevention programs that should be tailor-made for specific areas.

*Correspondence:
Benyamin Hoseini
binyamin.hoseini@gmail.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12942-023-00343-6&domain=pdf
https://orcid.org/0000-0002-2967-3626
https://orcid.org/0000-0001-5714-9787
http://orcid.org/0000-0003-0392-8915
http://orcid.org/0000-0002-0355-6181


Page 2 of 16Lotfata et al. International Journal of Health Geographics           (2023) 22:18 

Highlights 

–	 Asthma risk and protective factors were assessed with explainable geospatial machine learning.
–	 The geographically weighted random forest outperformed its conventional aspatial counterpart. 
–	 We found striking non-linear environment-asthma associations. 
–	 Smoking and depression were the most influential risk factors; green space was among the least.
–	 The relevance of socioeconomic and environmental factors varied geographically.  

Keywords  Asthma prevalence, Risk factors, Geographically weighted modeling, Explainable machine learning, 
Geospatial artificial intelligence

Introduction
Asthma, a chronic inflammatory airway disease, is among 
the highest disease burdens globally, with an estimated 
262 million people worldwide diagnosed in 2019 [1]. In 
the United States, approximately 25 million adults have 
asthma. This equals about 1 in 13 people [2]. Notably, the 
number of asthmatics is expected to rise further [2], call-
ing for a better understanding of the risk and protective 
factors and the geographic variation in asthma risk.

“Besides aggregated area-level characteristics (e.g., eth-
nicity, age, and smoking) associated with asthma preva-
lence and asthma-related health outcomes [3–6], there 
is tentative evidence that also socioeconomic and envi-
ronmental determinants are at play [7, 8]. In the United 
States, for example, a yearly family income of less than 
$50,000, a lack of a high school education, and living in 
high-poverty areas were all connected to an increased 
risk of asthma [9]. Asthma and allergy disorders are 
disproportionately more common in minority racial/
ethnic groups and those with low socioeconomic lev-
els. Asthma frequency and severity are highest among 
Puerto Ricans (19.2%), American Indians/Alaska Natives 
(13%), and Black Americans (12.7%) in the United States, 
and greater in families living below the poverty line than 
those living above it (11% versus 8%-9%). Besides, asthma 
risk was associated with air pollutants (ozone [O3], Car-
bon monoxide [CO], Nitrogen Dioxide[NO2], Sulfur 
dioxide[SO2], particulate matter [PM10], and particulate 
matter [ PM2.5]) ([10–12]), intense vegetation [13, 14], cli-
matic factors (e.g., rainfall, temperature, humidity, pres-
sure, and wind speed) [15, 16], and distance to industrial 
corridors and streets (e.g., [17]). Further, it is debated 
among health professionals whether people’s underly-
ing health conditions (e.g., obesity and mental illness) 
also relate to asthma [18–22]. However, the empirical 
evidence concerning asthma’s socioeconomic and envi-
ronmental determinants remains inconclusive, and the 
results are partly contradictory.

Previous studies on asthma-environment associa-
tions were methodologically limited in two ways. First, 

we argue that the mixed results originate partly due to 
the application of conventional linear regression models 
[23–25]. Lacking theoretical support [26, 27], such linear 
models do not account for variable interactions, non-
linearities, etc. To overcome these deficits, data-driven 
machine learning models hold promise for environmen-
tal health research and have recently emerged as alter-
natives [28]. While the repertoire of machine learning 
algorithms is extensive [29, 30], tree-based approaches 
(e.g., random forest [RF]) can deal with numerous (pos-
sibly interacting) covariates, can incorporate non-linear 
associations, and do not rely on restrictive distributional 
assumptions of the input data [31]. The random forest 
algorithm is a powerful ensemble learning method to 
address both classification and regression problems [32]. 
In our study we used it for the latter. During the learn-
ing process, the algorithm minimizes residual sum of 
squares. Hastie et al. [33] provide an in-depth discussion 
and a software implementation is provided by Wright 
et al. [34]. That said, there is no need to stratify the out-
come variable into classes. The random forest algorithm 
also does not rely on restrictive model assumptions com-
pared to ordinary least squares (OLS). Regression models 
fitted through OLS assume spatially uncorrelated residu-
als, homoscedasticity, and normally distributed residuals 
to be the best linear unbiased estimator.

Second, previous studies applied global regressions to 
model asthma-environment associations [35]. This prac-
tice is problematic, especially when the study area is large, 
because global models assume that the estimated coef-
ficients are spatially stationary (i.e., they do not change 
across space regardless of the location) [36]. While there 
is no plausible reason for such a simplification, the novel 
geographically weighted random forest (GWRF) model 
[37] relaxes this constrain, as demonstrated in a few 
studies [37, 38]. Razavi-Termeh et  al. [17] used GWRF 
to predict asthma associated with a wide variety of envi-
ronmental data, such as PM2.5, ozone (O3), and humid-
ity in Tehran, Iran. Grekousis et al. [37] applied GWRF to 
predicting COVID-19 death rates using socioeconomic 
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and underlying health factors in US counties. Similarly, 
Quiñones et  al. [39] predicted spatial heterogeneity of 
type 2 diabetes mellitus (T2D) prevalence in the USA 
using socioeconomic US census data.

This flexible machine learning-based algorithm mod-
els spatial heterogeneity in asthma prevalence while 
accounting for the non-linear relationships and cap-
tures location-specific variable importance. Additionally, 
area-level asthma data are likely spatially patterned [40]. 
Such spatial correlations are explicitly integrated into 
the GWRF. Model comparisons between the GWRF and 
conventional (local) regressions favor the former [37], 
but we are unaware of a study applying this approach to 
assess asthma-environment associations.

To respond to both research gaps, the overall aim of our 
study was to evaluate the associations between asthma 
prevalence and numerous socioeconomic and environ-
mental risk and protective factors in an ecological study 
at the county level in the United States. Additionally, we 
assessed the overall importance of these socioeconomic 
and environmental factors and how the relative impor-
tance varies geographically. Our place-based insights are 
valuable for planning and sustaining healthcare strategies 
for vulnerable populations.

Materials and method
Study design and population
We obtained cross-sectional data on asthma rate per 
100,000 population for all 3059 census counties in the 
United States. Data were acquired through the Behavio-
ral Risk Factor Surveillance System (BRFSS), an annual 
statewide sampling telephone inquiry. Eligible respond-
ents were (a) aged at least 18 years and (b) living in a non-
institutionalized household. Respondents were randomly 
sampled from the target population and interviewed via 
their phones. On average, 400,000 adults were inter-
viewed each year between 347,000 and 506,000 to meas-
ure prevalence [41]. The average size of a county is 967 
square miles (standard deviation [SD] ± 1247), with an 
average population of 103,772. While small in size, we 
deemed counties a suitable analytical scale while facilitat-
ing nationwide analyses.

Asthma prevalence as the outcome variable
We used new-onset and exacerbation asthma prevalence 
reported as a percentage of cases per 100,000 people for 
each county as our outcome variable. Asthma-related 
information was self-reported using telephone sur-
veys. Adults were asked whether they were ever diag-
nosed with asthma by a health professional and still have 
asthma. Responses who answered with “don’t know” or 
“refused” to answer were excluded and not considered 
in the national estimates [41]. BRFSS uses person-level 

survey weights to estimate asthma prevalence, as the 
Additional file 1: Text indicates. We used the aggregated 
person-level survey weights per county by BRFSS when 
we fitted the RF model.

Covariates
We assessed eleven environmental and 5-year decennial 
social factors that have been shown to be associated to 
asthma prevalence. The social covariates focus on adults 
[12, 42–46]. First, we obtained data on area-level poverty 
from the American Community Survey [47]. The poverty 
rate is based on the income-to-poverty ratio, a measure of 
the annual total family income (adjusted for family size) 
divided by the poverty guidelines varying by state. The 
impoverished may face financial barriers that prohibit them 
from accessing basic healthcare and purchasing medication 
[48]. Second, proficiency in the English language was also 
obtained through the American Community Survey [47]. 
To measure people’s ability to speak English, they ask ques-
tions about whether a person speaks a language other than 
English at home, what language he/she speaks, and how 
well he/she speaks English. The total number of people 
with limited English proficiency is divided by the total pop-
ulation. Third, we obtained data from the American Com-
munity Survey on minorities capturing the proportions of 
all populations except white and non-Hispanic to the cor-
responding population of adults 18 years and older. Fourth, 
the proportion of total uninsured people (i.e., people with 
no health insurance or health coverage plan) to the popu-
lation in each census county was collected [47]. Asthma is 
widespread among minorities and persons who lack the 
linguistic skills to explain their symptoms [49], and various 
research (e.g., [50]) confirm the importance of insurance in 
asthma control.

Fifth, we included smoking prevalence, defined as people 
who reported smoking at least 100 cigarettes during their 
lifetime and who, at the time they participated in a sur-
vey, reported smoking every day or some days [51]. Sixth, 
depression prevalence was measured through the Patient 
Health Questionnaire, a nine-item depression-screening 
instrument that asks about the frequency of symptoms of 
depression in the past two weeks. The four response cat-
egories ranged from “not at all” to “nearly every day”. Sum-
mary scores ranged from 0 to 27. Depression was defined 
using a score of ≥ 10 [52]. Seventh, data on obesity preva-
lence (i.e., the percentage of cases per 100,000 people) 
was provided by the BRFSS [53]. Self-reported height and 
weight data were used for the body mass index calcula-
tions [53]. Unhealthy behavior such as smoking is linked to 
an increase in asthma rates [54], as are underlying health 
conditions such as obesity prevalence ([22]) and depres-
sion [55]. Eight, green space was captured through the 
Normalized Difference Vegetation Index (NDVI) obtained 
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from Google Earth Engine based on Landsat 8 imagery. 
The NDVI ranges from −  1 to + 1 where positive values 
refer to more vegetation. Ninth, we used secondary data 
to capture air pollution estimates. Air pollution data were 
obtained from U.S. EPA regulatory air monitors. At loca-
tions without PM2.5 measurements, PM2.5 concentrations 
were estimated using land use regression model and data 
(e.g., roads, elevation, urbanicity) complemented with sat-
ellite-derived air pollution estimates [56]. Tenth, we used 
annual ozone (O3) concentration (ppb) estimates from the 
v1 empirical models [56, 57]. Finally, we included annual 
mean air mean temperature (℃) from Oregon State Uni-
versity’s Parameter-elevation Regressions on Independent 
Slopes Model [58]. Environmental factors such as PM2.5 
and O3 concentrations, as well as green space, have been 
associated to an increase in asthma rates in various stud-
ies (e.g., [17, 59]). In addition, the relationship between 
temperature and its impacts on asthma rates has received 
public attention in recent years (e.g., [60]).” The area-level 
data were linked through a unique identifier. To process 
the raster layers, we computed the mean values of the pix-
els within an area.

Methods
Descriptive and exploratory analysis
We used summary statistics to describe the data. We also 
used Pearson correlations to assess covariate multicollin-
earity. Correlations above |0.8| were deemed critical [61]. 
However, none of the bivariate correlations has reached 
this threshold value. We applied the Moran’s I statistic for 
exploratory spatial analysis of our response variable. A 
positive Moran’s I value refers to positive spatial autocor-
relation, a negative one to negative spatial autocorrela-
tion, while values around zero indicate a spatially random 
pattern. Statistical significance was tested through 999 
Monte Carlo simulations [62]. For our analytical assess-
ment we used a row standardized queen’s contiguity. This 
definition of the weight matrix is predominantly used in 
several area-level studies [63, 64]. As a sensitivity test, we 
refitted our models with other weight specifications (i.e. 
rook’s case [65]) and the results were robust.

A random forest (RF) is a regression-based approach 
based on ensemble learning [32]. The algorithm comprises 
many regression trees grown to maximum size without 
pruning. Each tree is based on a bootstrap sample of the 
input data; at each node, only a subset of the covariates is 
selected randomly. The final predictions are obtained by 
averaging the predictions from the individual trees. Unlike 
traditional regression, the RF models complex associa-
tions, incorporates variable interaction, and does not rely 
on strict statistical assumptions. We used power transfor-
mations to achieve more Gaussian-like distributions of the 
covariates [66, 67].

Despite model comparisons have revealed that the RF 
model performs well, particularly on a moderately sized 
dataset compared to alternative algorithms [32], the algo-
rithm by design does not explicitly account for spatial 
variation in the regression function. To relax RF’s station-
arity assumption, we also fitted a geographical weighted 
random forest (GWRF) to assess spatial non-stationarity 
between asthma prevalence and the covariates [68].

Technically, GWRF is a locally calibrated RF based on a 
moving window approach. It includes only nearby observa-
tions using a spatial kernel and a spatial weights matrix [69]. 
Because our input data (i.e., the centroid of each county) 
were unevenly distributed across space, our GWRF was set 
up using an adaptive spatial kernel [68]. Thus, if the obser-
vations are more spatially dispersed, the bandwidth will be 
larger and vice versa. We minimized the out-of-bag (OOB) 
error to determine an optimal bandwidth. A GWRF has a 
set of hyperparameters that need to be tuned. Following 
in the footsteps of others [37, 38], we used Random Grid 
Search (RGS) on the RF model to optimize the hyperpa-
rameters of GWRF (’number of variables randomly sam-
pled’ and ’the number of trees’) (using CARET library in R). 
The proportion of randomly sampled features at each node 
ranged from 1 to 7, and the number of trees ranged from 
200 to 1000. We then kept these hyperparameters fixed 
on GWRF and used the tenfold cross-validation method 
to select the best bandwidth values (from a set of possible 
bandwidth values) and chose the one with the highest OOB 
R2. In addition, we set the weight (Weighted = True of the 
ranger R package) to weight each observation in the local 
data set. As performance metrics, we used the mean square 
error (MSE), mean absolute error (MAE), root-mean-
square error (RMSE), and coefficient of determination (R2). 
We then used the Moran’s I statistic to assess residual spatial 
autocorrelation. An in-depth description of the GWRF is 
provided elsewhere [68, 69].

Explainable machine learning
Machine learning algorithms are typically a black-box with 
no straightforward model interpretation. To enhance the 
interpretability of the GWRF, we implemented numer-
ous strategies from explainable machine learning [70]. 
First, we used partial dependence plots to character-
ize the directions and shapes of each association while 
accounting for the average effects of the other covariates 
[71, 72]. Second, we used the global permutation feature 
importance to evaluate each covariate’s role. The measure 
ranks the covariates by randomly permuting the covari-
ate values. The larger the loss in model performance when 
using the permuted covariate, the more important the 
covariate is deemed to be [32]. Third, GWRF also pro-
vides a local feature importance measure. Similar to the 
permutation-based feature importance of a conventional 
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RF, local feature importances are available in GWRF. In 
both GWRF and RF, the increase in mean square error 
(IncMSE) is determined to rank the variables [68]. Map-
ping the local variable importance allows us to examine 
how, where, and to what extent each variable affects the 
outcome geographically [37]. The analyses were conducted 
in the R Statistical Computing Environment (R Core Team 
[73]) using the “randomForest” and “SpatialML” packages 
[68]. For cartography purposes, we used ArcGIS 10.8.1.

Results
Descriptive and exploratory assessment
The untransformed median asthma rate per 1000 persons 
per area was 9.9, with a standard deviation (SD) of ± 0.99 
and an interquartile range of 9.2 and 10.6. Figure 1 illus-
trates the spatial distribution of the data. Geographically, 
the asthma prevalence was highest in the northwest-
ern, northwest, a few southwest and northeast coun-
ties (Fig.  1a). The impression of spatially autocorrelated 

Fig. 1  Spatial distribution of the data at the county level; a) Asthma prevalence (%) b) Poverty (%) c) Minority (%) d) Limited language (%) e) 
Uninsured (%) f) Obesity prevalence (%) g) Depression prevalence (%) h) Smoking prevalence (%) i) PM2.5 concentration (ug/m3) j) O3 concentration 
(ppb) k) Mean temperature (°C) l) NDVI (Normalized difference vegetation index).



Page 6 of 16Lotfata et al. International Journal of Health Geographics           (2023) 22:18 

asthma prevalence values was supported by a significant 
Moran’s I statistic (I = 0.5, p < 0.001).

While poverty is distributed unevenly across coun-
ties in the United States, minority rates were highest in 
southern counties (Fig.  1). People with limited English 
proficiency were concentrated in counties in the west 
and southwest. The uninsured were prevalent in the 
southern counties. While the Midwest had the highest 
prevalence of obesity, the northwestern and midwest-
ern counties had the highest prevalence of depression. 
Smoking was, however, prevalent in midwestern coun-
ties. PM2.5 concentrations were most substantial in 

western counties, whereas O3 concentrations were pre-
dominantly high across counties, except for a few places 
in the Midwest. Temperatures in the southern counties 
were relatively high than in the northern counties. The 
greenest counties were in the Midwest, North Midwest, 
and Northeast (Fig.  1). Additional file  1: Table  S1 con-
tains additional descriptive information.

Geographically weighted random forest
Model fits
There was no indication of pronounced covariate mul-
ticollinearity. As shown in Additional file 1: Table S1, all 

Fig. 1  continued
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Table 1  Cross-validated prediction accuracy

RF GWRF

MSE 17.62 10.61

MAE 3.02 2.80

RMSE 4.20 3.20

R2 0.82 0.89

Moran’s I (residuals) 0.28 (p < 0.05) 0.0008 (p > 0.05)

Fig. 2  Partial dependence plots based on the RF (The y axis represents asthma prevalence, while the x axis represents asthma determinants); a) 
Poverty (%) b) Minority (%) c) Limited language (%) d) Uninsured (%) e) Obesity prevalence (%) f) Depression prevalence (%) g) Smoking prevalence 
(%) h) PM2.5 concentration (ug/m3) i) O3 concentration (ppb) j) Mean temperature (°C) k) NDVI (Normalized difference vegetation index).

correlation coefficients were below our a priori-defined 
threshold value of |0.8|. The tenfold cross-validation 
suggested that a bandwidth of 108 observations, 1000 
trees, and five randomly sampled variables at each split 

had the highest prediction accuracy. An initial com-
parison with a traditional RF indicated that our GWRF 
resulted in lower cross-validated prediction errors 
(Table  1). In contrast to the non-spatial RF, residuals 
were spatial uncorrelated in the GWRF. The local R2 of 
the GWRF varied between 0.22 and 0.95, with an aver-
age of 0.31. The model tended to fit better in the north 
Midwest counties and some places in the eastern coun-
ties. Additional file  1: Fig. S1 shows the mapped local 
R2s.

Non‑linear associations
Figure 2 depicts the relationships between asthma preva-
lence and the covariates as partial dependence plots. We 
observed that most associations were non-linear and had 
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complex shapes. Some linear correlations only existed 
within specific variable ranges. Asthma prevalence was 
positively associated with poverty and minority status 
but not with limited language skills or being uninsured. 
Meanwhile, obesity, depression, and smoking were all 
associated with an increased risk of asthma. There were, 
however, inverse relationships between asthma preva-
lence and PM2.5, O3, and mean temperature. Further-
more, asthma prevalence was positively associated with 
NDVI.

Variable importance
Figure 3 ranks the importance of covariates in the GWRF 
model according to the global permutation-based feature 
importance. The results indicate that smoking is most 
critical to explain asthma prevalence, followed by depres-
sion, poverty, obesity, and minority. Others (e.g., NDVI) 
play a minor role.

Figure  4 shows the results of the local feature impor-
tance analysis. Poverty and minority determinants are 
most important in the Northern and Southwest counties, 
with poverty also important in the Southeast counties. 
Limited language proficiency is an important determi-
nant of asthma prevalence in Southwest counties, and the 
uninsured population in Northern counties may contrib-
ute to the risk of asthma. In terms of underlying health 
conditions, obesity prevalence is less important in the 
Midwest but significant in the Southwest. Meanwhile, 
the depression prevalence is most pronounced in West-
ern counties and a few Midwest and Northeast counties. 
Smoking, like obesity, is most important in the Southwest 
regarding population behavioral disorders. Although 
PM2.5 and O3 concentrations are more significant in the 
Northeast, PM2.5 is also more significant in the North 
and South Midwest and O3 is more important in the 
West and Southwest counties. In western counties, NDVI 
is a significant predictor of asthma prevalence, along with 
O3. Air temperature is particularly important in explain-
ing the prevalence of asthma in Midwest counties.

Discussion
Main findings
This cross-sectional study investigated the prevalence 
of asthma at the county level in the United States using 
explainable geospatial machine learning. GWRF outper-
formed the conventional RF model in terms of the cross-
validated prediction error. We found strong indications 
that asthma-environment associations are non-linear, 
likely not adequately captured through linear models. 
Asthma prevalence was, for example, positively associ-
ated with poverty, minorities, and green space. Similarly, 
we observed positive associations with obesity, depres-
sion, and smoking. In terms of the variable importance, 
our results suggested that behavioral disorders (e.g., 
smoking) and socioeconomic determinants (e.g., poverty) 
play a more critical role than environmental characteris-
tics (e.g., green space and air pollution). Furthermore, the 
local importance of these determinants showed remark-
able geographic variation suggesting that asthma preven-
tion programs to be effective should be tailor-made for 
specific areas at risk.

Interpretation of the results
Smoking prevalence
The positive non-linear association between asthma and 
smoking showed the importance of smoking as a risk fac-
tor. Tobacco use affects an estimated 30.8 million adults 
in the United States [51]. Smoking has been associated 
with more severe symptoms and hospitalizations and a 
lower response to treatment in asthmatic patients [74]. 
Thomson et al. [75] argue that around half of adults with 
asthma globally are current or former smokers.

When specific determinants co-occur, an area is more 
likely to develop as a health risk zone. While smoking is 
a factor in the Arizona asthma epidemic, poverty and O3 
are also factors. According to Drope et  al. [76], tobacco 
use, and disease burden are increasing among the low-
income population. Similarly, while smoking is a signifi-
cant contributor to the asthma rate in California, 16.6% 
of adults in the state currently have asthma. However, the 
California state quitline invests $3.04 per smoker, com-
pared to the national average of $2.28 [77]. Thereby, while 
in western counties, where smoking has an importance 
on asthma prevalence, other factors with the strongest 
importance of PM2.5 and O3 and obesity may exacerbate 
asthma prevalence [78]. Furthermore, language profi-
ciency in southwestern counties with a high minority 
population (32%) [47], where smoking is most preva-
lent, may contribute to the risk of asthma by preventing 
accurate diagnosis through communication barriers. The 
inability to communicate effectively with a healthcare 
provider restricts patient access, undermines trust in the Fig. 3  Mean Variable importance based on the GWRF
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Fig. 4  Spatial variation of the local feature importance. Higher values indicate increased importance; a) Poverty (%) b) Minority (%) c) Limited 
language (%) d) Uninsured (%) e) Obesity prevalence (%) f) Depression prevalence (%) g) Smoking prevalence (%) h) PM2.5 concentration (ug/m3) 
i) O3 concentration (ppb) j) Mean temperature (°C) k) NDVI (Normalized difference vegetation index).
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quality of medical care received, and reduces the likeli-
hood that patients will receive appropriate follow-ups 
[79]. Furthermore, the number of cigarettes smoked in 
regions is related to the severity of asthma risk, accord-
ing to the linear regression [54]. However, researchers 
do not have an accurate estimate of the number of ciga-
rettes smoked in relation to the prevalence of moderate 
to severe asthma. The non-linear associations help to 
break this generalization and consider that other social 
and environmental factors, in addition to the number of 
cigarettes smoked, may affect asthma rates [80]. In fact, 
while the association may be strictly linear in some areas, 
it may not be in others.

Depression prevalence
The overall predominately positive non-linear asthma-
depression association shows how vital depression is as 
an underlying health condition. Approximately 21 mil-
lion American adults (8.4% of people aged ≥ 18) had a 
mood disorder (e.g., depressive disorder, dysthymic dis-
order, and bipolar disorder) in 2020 (CDC, 2020c). How-
ever, the association between depression and asthma is 
not well understood. Our findings highlight the impor-
tance of mental health screening for people with asthma 
and the need for health professionals to alleviate psycho-
logical distress in asthma management. While it appears 

logical that having more severe asthma would be associ-
ated with an increased risk of depression, studies have 
yielded conflicting results. Urrutia et  al. [81] and Caul-
field [55] found that depressive disorder was common 
in asthma patients and was associated with increased 
asthma symptom burden and poor health-related qual-
ity of life. However, Janson et  al. [82] did not find this 
association. Because the association between depression 
and asthma is not straightforward, a non-linear link can 
help explain it better. Meanwhile, the study suggested 
by Sagmen et al. [83] that depression and anxiety symp-
toms, as well as strategies for coping with stress, should 
be assessed in order to improve asthma control in clini-
cal practice. Moreover, areas where asthma and depres-
sion co-occur are more likely to be obese [84], such as 
southwestern counties in Arizona. Additionally, adults in 
the west (California) who are exposed to poor air qual-
ity and suffer from poverty and depression may be at risk 
of developing severe asthma. The co-occurrence of dis-
eases, exposures, and social vulnerabilities necessitates 
the implementation of multiple policies in this regard.

Poverty
We found a positive non-linear association between 
asthma and poverty. Asthma is most common in 
poor people in the USA [85]. Poverty has the greatest 

Fig. 4  continued
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proportionate importance per census county in the north 
Midwest (North Dakota, South Dakota), southwest (Ari-
zona), and along southeast counties, while it has the least 
in the rest of the United States. The poor, with the highest 
asthma prevalence, live in neighborhoods that frequently 
lack access to basic services (e.g., clean water, sanitation, 
and healthcare resources) [86]. Living in such an envi-
ronment exposes the poor to various pathogens from an 
early age, including viral respiratory infections and high 
environmental irritants. Many factors are likely to play a 
role in developing asthma and disease exacerbations [87]. 
Financial barriers may prevent the poor from receiving 
appropriate care and limit their ability to purchase medi-
cation and access routine healthcare [48]. Poor urban 
facilities (e.g., access to sports equipment) and urban 
infrastructure (e.g., well-designed pedestrians, access to 
green space) obstruct a healthy lifestyle, and participa-
tion in physical activities exposes the population to psy-
chological and physical stresses that increase asthma risk 
[88]. Policymakers and planners should consider identify-
ing disease-burdening elements in poor neighborhoods. 
Deprivation encourages the development of negative 
habits, which are then passed down through generations.

Obesity prevalence
Asthma and obesity were predominantly positive and 
non-linear associated. However, the association was 
inverse asthma prevalence was low. These findings align 
with Wong et al. [89] and Shailesh and Janahi [90], who 
reported that obesity impairs lung airway function in 
asthmatics, leading to increased inflammation. Obesity’s 
systemic inflammatory reactions cause metabolic, car-
diovascular, and respiratory problems. Obesity is a major 
risk factor for the onset of asthma and contributes sig-
nificantly to the disease’s severity [22]. Nearly 60% of U.S. 
adults with severe asthma were obese in 2020 [2]. Obesity 
prevalence has the greatest proportionate importance 
per census county in the northern counties of North 
Dakota, South Dakota, and Minnesota, southwest coun-
ties (i.e., Arizona), and southeast counties (i.e., Florida), 
while it was of least importance in the rest of the country. 
Instead of designing practices and policies based on the 
likelihood of asthma exposure in healthy individuals, pol-
icymakers and health professionals should consider the 
underlying health conditions, social vulnerability (e.g., 
poverty), and PM2.5 and O3 in southwest counties that 
may trigger asthma incidence.

Other socio‑physical and environmental determinants
Our findings indicate that areas with a high propor-
tion of uninsured people are likely to have a prevalence 
of asthma. Furthermore, our results show that some 
areas with high asthma prevalence have relatively low 

uninsured populations. Accordingly, other social and 
physical determinants should be investigated in those 
areas to investigate the causes of the high asthma rate. 
Additionally, the frequency of healthcare visits should 
be a criterion for exploring the impact and importance 
of insurance on asthma rates. Although the purpose of 
our study was not to determine how health insurance 
improves asthma care, our findings shed light on poten-
tial mechanisms. In any case, several studies have empha-
sized the significance of insurance to control asthma, 
particularly, they suggested Asthma Health Care Program 
[50, 91]. The studies (e.g., [92]) found that individuals 
with severe permanent asthma may be unable to obtain 
health insurance or that the policy that supports them 
is prohibitively expensive, affecting asthma prevalence. 
Meanwhile, our findings show that association between 
asthma and minority population grows exponentially in 
a non-linear trend, which is consistent with studies that 
found no direct positive relationship between asthma 
and minority population [49]. Asthma outcomes vary 
geographically; it can be either a non-minority or minor-
ity population affected by the respiratory disease due to 
social and physical living conditions [49]. However, stud-
ies (e.g., [93]) show that minority groups are more likely 
to live in unhealthy environments with limited access to 
resources, which increases the risk of asthma.

Environmental factors such as outdoor air pollution or 
dust mites can trigger an asthma attack [94]. Air pollution 
is one of the world’s largest known environmental health 
threats and a significant cause of respiratory mortality 
and morbidity [95]. Several studies address air pollu-
tion, particularly PM2.5 and O3, as major causes of asthma 
[96]. While in our study PM2.5 had an inverse relation-
ship with asthma prevalence predominately. However, 
when the asthma rate is low in some areas, it has a posi-
tive relationship with rising asthma rates. We found that 
the PM2.5 importance on the risk of asthma varies among 
areas with moderate-to-severe asthma prevalence’s, 
while the significance of PM2.5 is not evident in areas with 
severe asthmatic patients. According to previous studies 
([93]), exposure to PM2.5 shows its impacts on respira-
tory disease in the long-term; however, our findings lack 
a longitudinal approval on the effects of PM2.5 on asthma 
risk. Similarly, the O3 association was mixed, partly linear 
and partly non-linear. Its importance varies among areas 
with moderate-to-severe asthma. Meanwhile, our find-
ings show that areas with low O3 does not show associa-
tion with the asthma prevalence. Accordingly, the studies 
(e.g., [97]) emphasize the importance of investigating the 
effects of air quality on respiratory disease within the 
defined term/episodes in which people are exposed to air 
pollutants, despite the fact that asthmatic people are sen-
sitive to any measure and episode of air pollutants [98]. 
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Hence, we propose that studies on respiratory diseases 
be divided into two categories: first, the effects of air pol-
lutants on healthy individuals who may develop asthma, 
and second, the effects of air pollutants on people who 
are already asthmatic to better control respiratory disease 
rate.

The predominantly positive association between NDVI 
and asthma prevalence has revealed that green space is 
significant in most areas across the United States. How-
ever, it is not among the critical variables to explain 
asthma prevalence. The effects of green space on respira-
tory health and allergy are limited, and the results vary 
depending on whether the person lives in urban or rural 
areas [99]. Additionally, exposure to and interaction 
with green spaces and biologically diverse environments 
are associated with physical and mental health benefits 
[100]. Several studies show that green spaces influence 
the incidence of asthma and allergies [59, 101]; however, 
some provide mixed results [23]. This could be due to the 
heterogeneity of the study settings, as it likely depends 
on, for example, how, where, and when green space was 
assessed, as well as other factors that may influence dis-
ease incidence (e.g., pollen season). In addition to the 
area’s size, the green spaces’ structure and characteristics 
appear important for developing asthma and allergies 
[102]. One advantage is improved air quality, as increased 
green spaces of all types of filter harmful particles and 
substances such as CO2 and NO2 from the air might 
reduce asthma and allergy prevalence [103].

The association between temperature and its effects on 
respiratory health has gained public attention [60]. While 
the literature significantly associates the temperature 
drop with asthma prevalence [16, 104, 105], our results 
evidenced an inverse relationship between asthma and 
temperature. Overall, the effects of physical determinants 
on asthma prevalence should be considered in conjunc-
tion with social determinants of health, such as poverty, 
to investigate the intensity of asthma rate per co-occur-
rence of determinants.

Strengths and limitations
As we are aware, our study is one of the first to use spatial 
machine learning to assess the association and co-occur-
rence of disease, environmental determinants, and social 
vulnerability in asthma epidemiology. Our data-driven 
study benefitted from the flexibility of the GWRF to 
examine non-linearities and variable interaction. While 
methodologically innovative, a key strength of our model 
was that the model explicitly assessed spatial heteroge-
neity, an aspect largely ignored in earlier studies [23]. 
Relatedly, as the comparison between RF and GWRF has 
demonstrated, we successfully removed spatial patterns 
in the model residuals, which otherwise possibly biased 

the results. Furthermore, this study, among initiative 
studies, employs interpretable machine learning models 
that provide a spatial dimension that helps better under-
stand the impact and performance of the variables across 
the study area [106].

Notwithstanding these strengths, some limitations 
must be acknowledged when interpreting the findings. 
While our results may be sensitive to the underlying ana-
lytical scale, causal inference is hampered by our data’s 
cross-sectional and ecological nature. The outcome vari-
able was collected using a telephone survey which likely 
faces problems due to recall bias and social desirability 
bias [107]. Furthermore, we did not have access to the 
person-level raw data, and BRFSS performed a person-
level weighting and aggregation of data on a county level. 
Although several previous research ([88, 108]) utilizing 
similar data did not include area-level survey weights, 
we indicate this as a study limitation. In addition to the 
data limitation, the GWRF implementation had some 
drawbacks. For example, we searched for optimal hyper-
parameters using a random grid search, which did not 
guarantee that we found the most appropriate setting. 
In some parts of the United States (e.g., counties in the 
south and west), the R2 was moderately high. In these 
areas, only a fraction of the variance of the outcome vari-
able was explained (about 50%). Alternative ones should 
be included in the future to improve the model’s explana-
tory power in these regions. Other optimization methods 
for tuning hyperparameters, such as bandit-based algo-
rithms, should be investigated as well. To save time and 
resources, poor performing hyperparameter configura-
tions are removed in each iteration of these algorithms 
[109]. The machine learning model’s hyper-parameters 
must be tuned efficiently and accurately to improve its 
practical application. Lastly, the results should only be 
interpreted at the county level, and not any other spatial 
granularity. Ecological fallacy prevents an interpretation 
on the individual level. Furthermore, we cannot rule out 
the possibility that our findings are not affected by the 
spatial scale and zoning used (i.e., the modifiable areal 
unit problem).

Conclusion
This paper demonstrates that multiple socio-physical 
determinants likely explain county-level asthma preva-
lence in the United States. Utilizing explainable geospatial 
machine learning, we found that poverty, minority, depres-
sion prevalence, obesity prevalence, smoking prevalence, 
and green space were positively and non-linearly associ-
ated with asthma prevalence, while limited language, unin-
sured, mean temperature, PM2.5 and O3 were inversely 
associated. Further, our nationwide assessment of the vari-
able importance indicated that smoking prevalence and 
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depression prevalence were the two most relevant, while 
green space and limited language were the least. However, 
notable geographical differences were observable when 
feature importance was assessed locally. Tackling asthma 
risk factors through specific health policies is challenging, 
but we advise that interventions carefully incorporate the 
co-occurrence of multiple socio-physical determinants and 
are tailor-made for particular areas.
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