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SUMMARY

Climate change impacts are increasingly complex owing to compounding, inter-
acting, and cascading risks across sectors. However, approaches to support
Disaster Risk Management (DRM) addressing the underlying (uncertain) risk
driver interactions are still lacking. We tailor the approach of Dynamic Adaptive
Policy Pathways (DAPP) to DAPP-MR to design DRM pathways for complex, dy-
namic multi-risk in multi-sector systems. We review the recent multi-hazard and
multi-sector research to identify relevant aspects of multi-risk management
frameworks and illustrate the suitability of DAPP-MR using a stylized case. It is
found that rearranging the analytical steps of DAPP by introducing three itera-
tion stages can help to capture interactions, trade-offs, and synergies across
hazards and sectors. We show that DAPP-MR may guide multi-sector processes
to stepwise integrate knowledge toward multi-risk management. DAPP-MR can
be seen as an analytical basis and first step toward an operational, integrative,
and interactive framework for short-to long-term multi-risk DRM.

INTRODUCTION

A variety of natural hazards continue to cause substantial damages. Since 1990, natural hazards have

caused annual economic losses of about $260-310 billion globally (Ward et al., 2020). Between 1980 and

2015, economic damages bymeteorological events alone totaled approximately 433 billion (in 2015 values)

in the European Union (de Groeve et al., 2017). The risk of climate extremes will increase as climate change

leads to further intensification of natural hazards (IPCC, 2021) while socioeconomic developments may

change the exposure and vulnerability of populations, assets, and infrastructures toward a variety of natural

hazards (Herman and Giuliani, 2018; Harrison et al., 2016).

In this context, the Intergovernmental Panel on Climate Change (IPCC) and the Sendai Framework in the

context of UN Disaster Risk Reduction (UNDRR) have called for a multi-hazard and multi-sectoral perspec-

tive to reduce the impact of natural hazards and avoid maladaptation (UNDRR, 2017; IPCC, 2021). We

follow the definition of multi-hazard as ‘‘the selection of multiple major hazards that the country faces,

and the specific contexts where hazardous events may occur simultaneously, cascadingly or cumulatively

over time, and taking into account the potential interrelated effects’’ (UNDRR, 2017). This definition is pri-

marily used in contexts where multiple natural hazards play a role, including climate extremes and slow-

onset events such as sea level rise (Gill and Malamud, 2014; Liu et al., 2016; van Westen and Greiving,

2017; Tilloy et al., 2019). Similarly, we define multi-sector in line with the concept of ‘‘system-of-systems’’

proposed by Maier (1998) as a set of socio-economic sectors, all possibly consisting of sub-systems char-

acterized by stakeholders and other elements, which are interconnected beyond the sector boundaries,

within and beyond the boundaries of the existing spatial system at stake (Reed et al., 2022; Klein and

van Vliet, 2013). An example of a multi-sector system is described in the STAR Methods. Multi-hazard,

multi-sector system characteristics can be captured by the term complex multi-risk, based on (Gallina

et al., 2016, p. 125), where multi-risk ‘‘determines the whole risk from several hazards, taking into account

possible hazards and vulnerability interactions entailing both a multi-hazard and multi-vulnerability

perspective.’’ Complex multi-risk hereby explicitly acknowledges that the interactions in a multi-risk setting

occur across sectoral boundaries. More key terms and definitions relevant in the context of multi-risk are

summarized in Box 1.

The call for a multi-risk approach in DRM follows a growing body of literature that has identified limitations

of the current single-hazard risk management approaches that lead to inappropriate risk reduction
iScience 25, 105219, October 21, 2022 ª 2022 The Author(s).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

mailto:julius.schlumberger@deltares.nl
mailto:julius.schlumberger@deltares.nl
https://doi.org/10.1016/j.isci.2022.105219
https://doi.org/10.1016/j.isci.2022.105219
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.105219&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Box 1. Key terms and definitions in the context of multi-risk

Complexity: ‘‘A causal chain with many intervening variables and feedback loops that do not allow the understanding

or prediction of the system’s behavior on the basis of each component’s behavior.’’ (Aven et al., 2018, p. 5)

Deep uncertainty: ‘‘That is, where analysts do not know, or the parties to a decision cannot agree on, (1) the

appropriate conceptual models that describe the relationships among the key driving forces that will shape the long-

term future, (2) the probability distributions used to represent uncertainty about key variables and parameters in the

mathematical representations of these conceptual models, and/or (3) how to value the desirability of alternative

outcomes.’’ (Lempert, 2003, p. 12)

Disaster Risk Management (DRM): ‘‘The application of disaster risk reduction policies and strategies to prevent new

disaster risk, reduce existing disaster risk andmanage residual risk, contributing to the strengthening of resilience and

reduction of disaster losses.’’ (UNDRR, 2017)

Exposure: ‘‘The situation of people, infrastructure, housing, production capacities and other tangible human assets

located in hazard-prone areas.’’ (UNDRR, 2017)

(Natural) Hazard: ‘‘A process, phenomenon or human activity that may cause loss of life, injury or other health impacts,

property damage, social and economic disruption, or environmental degradation. Natural hazards are predominantly

associated with natural processes and phenomena.’’ (UNDRR, 2017)

(Multi-)Hazard: ‘‘The selection of multiple major hazards that the country faces, and the specific contexts where

hazardous events may occur simultaneously, cascadingly or cumulatively over time, and taking into account the

potential interrelated effects.’’ (UNDRR, 2017)

Risk: ‘‘The potential loss of life, injury, or destroyed or damaged assets which could occur to a system, society, or a

community in a specific period of time, determined probabilistically as a function of hazard, exposure, vulnerability

and capacity.’’ (UNDRR, 2017)

System-of-system: ‘‘The term system of systems designates the case where the constituent elements are collaborating

systems that exhibit the properties of operational independence (each constituent systemoperates to achieve a useful

purpose independent of its’ participation in the system of systems) and managerial independence (each constituent

system is managed and evolved, at least in part, to achieve its’ own goals rather than the system of systems goals).’’

(Maier, 1998, p. 271)

Vulnerability: ‘‘The conditions determined by physical, social, economic, and environmental factors or processes

which increase the susceptibility of an individual, a community, assets, or systems to the impacts of hazards.’’ (UNDRR,

2017)

(Multi-)Vulnerability: ‘‘refers to (1) a variety of exposed sensitive targets (e.g. population, infrastructure, cultural

heritage, etc.) with possible different vulnerability degree against the various hazards and (2) time-dependent

vulnerabilities, in which the vulnerability of a specific class of exposed elements may change with time as consequence

of different factors (e.g. the of other hazardous events).’’ (Gallina et al., 2016, p. 125)
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strategies or enhanced vulnerabilities within a system (Schipper, 2020; Ciurean et al., 2018; Duncan et al.,

2016; de Ruiter et al., 2021; de Ruiter and van Loon, 2022; Suppasri et al., 2021; Koks et al., 2019; Goulart

et al., 2021; Pourghasemi et al., 2020; Tabari et al., 2021). Recently, it has been proposed to account for the

dynamics of multi-sector systems and responses to risk improving our current static understanding of risk to

define successful long-term risk management strategies (Simpson et al., 2021, 2022, in review; Reisinger

et al., 2020). The success of such strategies is also influenced and valued by various stakeholders because

of their potentially contested objectives and intensifying conflicts about limited resources (Reed et al.,

2022; Palutikof et al., 2019).

While multi-risk assessment has been advanced in recent years, a systematic approach to support action-

oriented DRM decision-making accounting for complexity, ambiguity, and uncertainty is still missing

(Schinko et al., 2017; Ward et al., 2022; Aven and Renn, 2020). However, support for short-to long-term

risk reduction is needed as the dynamic feedback between hazards and responses of sectors makes

DRM decision-making complex and deeply uncertain (UNDRR, 2017; Magnan et al., 2020). Such deep un-

certainties (Lempert, 2003) are for example caused by the lack of consensus about certain cause-–effect re-

lations in the system, or by the non-stationary and chaotic dynamics of future changes in the climate and

socio-economic systems (Haasnoot et al., 2013; Kwakkel et al., 2015; Herman and Giuliani, 2018; Baldwin,

2021; Wright et al., 2019; Molenveld et al., 2020; Bosomworth et al., 2017).
2 iScience 25, 105219, October 21, 2022



Box 2. Key terms and definitions in the context of DAPP

Path dependency: Path dependencies can be caused by a) certain scenarios with a critical event (like an extreme flood

or drought event) or because of b) self-reinforcing mechanisms (e.g. rigid institutionalization of risk governance) and

effect of previous decisions (e.g., large investment in a storm surge barrier) (Sydow et al., 2009; Hanger-Kopp et al.,

2022).

(Adaptation) Pathway:‘‘A series of adaptation choices involving trade-offs between short-term and long-term goals

and values. These are processes of deliberation to identify solutions that are meaningful to people in the context of

their daily lives and to avoid potential maladaptation.’’ (IPCC, 2022, p. 2917)

Policy: ‘‘Policy is the development, enactment, and implementation of a plan or course of action carried out through a

law, rule, code, or other mechanism in the public or private sector.’’ (Bogenschneider and Corbett, 2010, p. 3)

(Adaptation) Tipping Point: ‘‘An adaptation tipping point (ATP) is the moment when the magnitude of change is such

that a current management strategy can no longer meet its objectives. As a result, adaptive management is needed to

prevent or postpone these ATPs.’’ (Nanda et al., (2018), p. 3), based on Kwadijk et al., (2010))

(Opportunity) Tipping Point: ‘‘Points at which a particular action becomes feasible or attractive, for example because

of lower costs of actions or technical developments.’’ (Haasnoot et al., 2019, p. 86)

Transient scenario: ‘‘Represent a variety of relevant uncertainties and their development over time.’’ (Haasnoot et al.,

2013, p. 489)
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Dynamic Adaptive Policy Pathways (DAPP) is a framework that addresses dynamic systems and helps to

design long-term strategies that can be broken into manageable steps to be implemented and adapted

over time. DAPP produces and evaluates alternative sequences of policy actions (called ’pathways’, see

Box 2 for key definitions) under a range of (transient) scenarios. Pathways typically start with low-regret ac-

tions that are robust and/or flexible to further adapt. Transient scenarios describe the variety of plausible

temporal developments of hazards, exposure, and vulnerability over the considered time horizon driven by

climate change and socio-economic developments (Haasnoot et al., 2013). System parameters are used as

signposts to identify when a system is approaching an Adaptation Tipping Point (ATP) which requires the

implementation of additional policies to further comply with pre-defined system (performance) objectives.

As such, DAPP supports decision-making under deep uncertainty by designing strategies that performwell

in a wide range of plausible futures, and that can be adapted based on monitoring the changes and

advanced knowledge in the real-world system (Haasnoot et al., 2013; Lawrence et al., 2018; Kwakkel

et al., 2015). DAPP can follow a phased approach and uses various sources of evidence with increasing

levels of detail (from narratives to sophisticated computer models). As such, DAPP is able to deal with

limited knowledge of varying sources including different requirements for data, time, and other resources

(Haasnoot et al., 2019; Werners et al., 2021b).

DAPP methods have proven useful to make decision options and their effects comprehensible and acces-

sible (Lawrence and Haasnoot, 2017). One of the key strengths of DAPP is the explicit consideration and

visualization of decision-making over time in the form of metro-like maps of pathways as shown in Figure 1.

The pathways map is the main product to support policy analysis by visualizing different strategy options,

allowing laypeople to unravel the complexity of the analysis. For example, by considering various transient

scenarios, DAPP provides plausible implementation time frames for specific policy options (instead of one

definite point) as part of a specific policy pathway (Lawrence and Haasnoot, 2017). Thus, DAPP helps iden-

tify path dependencies, which reduce future decision options and ultimately lead to suboptimal, persistent

outcomes, also called ’lock-ins’ (Hanger-Kopp et al., 2022; Arthur, 1989). The pathways map is often accom-

panied by a scorecard used to comprehensively present benefits, costs, and other decisive criteria for the

various plausible pathways.

DAPP has been applied in a wide field of single-hazard considerations using a variety of qualitative and

quantitative stakeholder-driven co-production processes: river flood management (Buurman and Babovic,

2016; Haasnoot et al., 2013; Ranger et al., 2013; Jordhus-Lier et al., 2019), drought management (Haasnoot

et al., 2014; Vizinho et al., 2021; Totin et al., 2021; Burnham andMa, 2018), coastal planning (Haasnoot et al.,

2019; Kwakkel et al., 2016; Baldwin, 2021; Abel et al., 2016; Lawrence et al., 2018; Ramm et al., 2018a, 2018b;

Barnett et al., 2014; Buijs et al., 2018; Kuipers, 2017; Townend et al., 2021) and other applications (Costa

et al., 2021; Jacobs et al., 2019; Skrimizea and Parra, 2020; Jafino et al., 2021; Katz, 2020). In its applications,
iScience 25, 105219, October 21, 2022 3



Figure 1. Example adaptation pathways map along with a scorecard for qualitative analysis of costs and benefits

of chosen pathways

The pathways map indicates several possible routes to get to a desired point (target) in the future. The timing of decision

points is dependent on the transient scenario indicated by two timelines with different timescales. Circles indicate

unidirectional transfer stations and lines represent routes through time. Blocks indicate terminal stations at which an ATP

is reached and new policies need to be implemented. Map modified from Haasnoot et al. (2013).
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the limitations of the framework have been widely discussed: current applications of the framework simplify

complex problems and thus neglect relevant dynamic interrelations (Bosomworth et al., 2017; Jafino et al.,

2019) and contested objectives (Kwakkel et al., 2016; Head, 2019; Abel et al., 2016) within multi-risk con-

texts, or may face challenges in reporting their findings in a transparent and comprehensive way (Shavazi-

pour et al., 2021). As such, DAPP is not yet capable of dealing with the complexities and interdependencies

of multi-hazard, multi-sector systems.

The main objective of this article is to tailor the analytical framework of DAPP to design DRM pathways in

the context of complex and dynamic multi-risk settings. This tailored version is called DAPP-MR (DAPP for

multi-risk). Relevant aspects to characterize multi-risk systems presents relevant aspects for characterizing

multi-hazard, multi-sector systems. Integrating multi-risk elements into the DAPP framework presents the

analytical framework of DAPP and how complex multi-risk elements can be incorporated into this frame-

work. The DAPP-MR framework presents and discusses the proposed DAPP-MR framework. In Testing

the framework in a stylized case a stylized case is used to test the utility of some elements of DAPP-MR.

Conclusions and limitations of this study discusses the key findings, limitations, and open research

questions.

RELEVANT ASPECTS TO CHARACTERIZE MULTI-RISK SYSTEMS

In recent literature, three themes are detectable that are relevant to characterize multi-hazard and multi-

sector interactions to design pathways: 1) Effects of multiple, interacting hazards, 2) Dynamics and interde-

pendencies of sectors, 3) Trade-offs and synergies of DRM policy options across different sectors and

different spatial and temporal scales. In the following section, we provide more detailed elaborations on

relevant aspects of each of the themes.

Effects of multiple interacting hazards

To account for the potential effects of interacting hazards while developing adaptation pathways, it is

important to be able to characterize the natural hazards (see Box 3 for key definitions) in terms of hazard

drivers, and hazard-related impact drivers (Murray et al., 2021) and their temporal and spatial scales to

identify where interactions of hazards-related impact drivers can be expected (Gill and Malamud, 2014;

de Angeli et al., 2022). This information is necessary to understand what hazard processes influence the

extent and severity of certain hazards (e.g. floods: flow velocity, inundation depth, and duration). We define

hazard-related impact drivers as a property of the hazard that can be directly linked to a certain (adverse)

effect on the physical properties of an exposed element. Additionally, the level of correlation between haz-

ards is important: uncorrelated hazards will lead to random interactions, while bidirectionally correlated

hazards (e.g. owing to the same or correlated drivers) or uni-directionally correlated hazards (e.g. one haz-

ard might trigger another one) influence the probability of the combined occurrence (Ciurean et al., 2018;

Gill et al., 2020; Tilloy et al., 2019; Bevacqua et al., 2021). Nevertheless, the characterization of hazard
4 iScience 25, 105219, October 21, 2022



Box 3. Additional terms and definitions relevant in the context of multi-hazard effects and responses

(Disaster) Impact: ‘‘The total effect, including negative effects (e.g., economic losses) and positive effects (e.g.,

economic gains), of a hazardous event or a disaster. The term includes economic, human and environmental impacts.’’

(UNDRR, 2017)

(Disaster) Recovery: ‘‘The restoring or improving of livelihoods and health, as well as economic, physical, social,

cultural and environmental assets, systems and activities, of a disaster-affected community or society, aligningwith the

principles of sustainable development and ’build back better’, to avoid or reduce future disaster risk.’’ (UNDRR, 2017)
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interdependencies and quantification of hazard interaction effects are still a developing research field

(Zscheischler et al., 2020; Tilloy et al., 2019; Ward et al., 2022). Consequently, using or adapting existing

knowledge on hazard interactions also requires careful consideration of the related uncertainties. As a

result of the hazard interactions, two types of impact interactions can be identified in literature which

have been visualized in various ways (see e.g. Figure 2 in Balch et al. (2020), Figures 2–13 in Rimmer

et al. (2022) or Figure 5 in Matanó et al. (2022):

1. interacting impacts co-occurring in space and time can be aggravating and result in larger disasters

(Simpson et al., 2021; Reichstein et al., 2021) depending on the spatiotemporal variable exposure

and vulnerability of exposed elements (Gallina et al., 2016; Liu et al., 2015; Simpson et al., 2021).

2. consecutive impacts resulting from a sequence of hazard events can have aggravating effects on a

given exposed element depending on the temporal scales of the impacts, recovery, and persisting

effects on the exposed element (de Ruiter et al., 2020; de Angeli et al., 2022).
Dynamics and interdependencies of sectors

In DRM literature, the interrelations of stakeholders are mostly linked to impact interrelations, driven by

connectedness and multi-vulnerability characteristics (Gallina et al., 2016; Simpson et al., 2021). So-called

cascading impacts can have non-linear indirect effects on the system by causing additional damages and

escalation points (Pescaroli and Alexander, 2018; Carter et al., 2021; Terzi et al., 2019). Such cascading im-

pacts are not necessarily limited to one location, particularly if critical infrastructure is involved (Verschuur

et al., 2022). Furthermore, the time -delays of cascading impacts might contribute to impact interactions as

presented in the previous section (Pescaroli and Alexander, 2018; Amon et al., 2017). Those additional im-

pacts are mostly driven by the existing interrelations within the system.

Different types of multi-sectoral interrelations make sectoral systems differently prone to impact-driven in-

terrelations. Reed et al. (2022) highlight the importance of considering decision-making beyond risk man-

agement, as it drives changes in existing systems. It, therefore, affects the exposure and vulnerability of

interdependent system elements, influencing not only the individual risk of a sector but also the cross-sec-

toral systemic risk (Hochrainer-Stigler et al., 2020) (see Box 4 for key terms). In the literature, four different

intersectoral interrelations are discussed (Rimmer et al., 2022):

1. One system is connected to another system and relies on it to operate (Rinaldi et al., 2001; Galbusera

et al., 2020).

2. Spatial proximity can lead to bi-directionally correlated responses in multiple systems (Dawson,

2015; Crona et al., 2021).

3. Shared markets, implications of post-disaster consumption behavior (Lawrence et al., 2020), and

business interruptions can have consequences across scales (Meyer et al., 2013; Verschuur et al.,

2022; Sillmann et al., 2022).

4. Governance structures including, local communities (Gupta and Sharma, 2006), play a role in vulner-

ability characteristics and the effectiveness of response and recovery efforts (Dawson, 2015; Rana

et al., 2020; Ali et al., 2021).

Conversely, integratingmultiple sectors and their interrelations in risk governance also provides the oppor-

tunity to coordinate DRM across multiple stakeholders and sectors. As risk management is often seen as

a community issue, the cooperation of various stakeholders has been highlighted to overcome widely
iScience 25, 105219, October 21, 2022 5



Box 4. Key terms and definitions used in the context of multi-sector systems

Power: The (in)capacity of actors to mobilize means to achieve ends (Avelino, 2021).

Synergy: The pursuit of some targets can create additional resources that facilitate the pursuit of other targets. When

attempting to achieve one target improves other targets, that target has high pursuit synergies. If achievement of one

goal becomes easier as other goals are approached or achieved, that goal is synergy (Moyer and Bohl, 2019).

Systemic risk: ‘‘Risk that is endogenous to, or embedded in, a system that is not itself considered to be a risk and is

therefore not generally tracked or managed, but which is understood through systems analysis to have a latent or

cumulative risk potential to negatively impact overall system performance when some characteristics of the system

change.’’ (UNDRR, 2019, p. 45).

Trade-off: We define trade-offs in two ways. Interventions aimed at achieving one target that undermine the ability to

pursue a different target have high pursuit trade-offs. Second, an target can be harder to achieve when other goals are

pursued. These targets are trade-off vulnerable (Moyer and Bohl, 2019).
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acknowledged barriers such as limited resources, knowledge, or mandates (Butler et al., 2015; Scolobig

et al., 2017). Cross-sectoral coordination could provide leverage to joint investments (Gold et al., 2022),

offer flexibility and a wider range of adaptation options, enhance capacities to divert exposed assets to

other management options, and implement policy option compromises with small trade-offs across sec-

tors (Reed et al., 2022). However, identifying potential for cross-sectoral coordination entails additional

challenges: trade-offs and synergies of DRM policy options may be different across sectors and thus

may pose difficulties to the cooperative strategy of potentially competing interests (Aven and Renn,

2018; Gold et al., 2022). Additionally, the perception of risk might vary across sectors in spatiotemporal di-

mensions and thus influence the willingness to coordinate to take DRM actions (Di Baldassarre et al., 2021).

Furthermore, accounting for the long-term performance of certain measures could lead to suboptimal

short-term outcomes for stakeholders, highlighting the challenge to balance stakeholder needs across

different temporal scales (Butler et al., 2020; AghaKouchak et al., 2020). Moreover, power dynamics will

inherently affect the collaboration process, the development of cooperative strategies, and the coopera-

tive stability of compromises (Hilhorst et al., 2020; Colloff et al., 2021; Aven and Renn, 2018). Thus, power

dynamics shape the distributive justice and fairness of the developed pathways, such as the inclusion and

valuation of perspectives of certain stakeholder groups or the distribution of impacts and benefits (Thomas

et al., 2019; Araos et al., 2021; Head, 2019; Orlove et al., 2020).

Traditional approaches have assumed the stability of complex systems which allowed focusing on certain

aspects of sub-systems (e.g. flood risk to residential areas). However, this assumption has been challenged

because of unstable dynamics and observed non-linear effects in our increasingly interconnected world

(Hochrainer-Stigler et al., 2020). Particularly when analyzing existing systems for longer time periods, the

assumption of stable systems does not hold: new stakeholders appear, connections within and between

sectors change following socio-economic, technological, and political developments within their system

or broader context (Reed et al., 2022). Additionally, interdependencies within an existing system are not

only affected by long-term developments, but also by short-term dynamics of e.g. vulnerability character-

istics (Menk et al., 2022; de Ruiter and van Loon, 2022), effects of institutionalized governance structures

and rebound effects in processes of decision making (Head, 2019; Siders and Pierce, 2021). In combination

with a diverse understanding of interlinkages and interdependencies within systems (Menk et al., 2022;

Hochrainer-Stigler et al., 2020) above mentioned challenges imply that accounting for dynamics and inter-

dependencies of sectors, also requires diligent consideration of additional sources of (deep) uncertainty.

Trade-offs and synergies of Disaster Risk Managementpolicy options

As mentioned in the previous section, the choice of policy options can influence the collaborative stability

of the cross-sectoral process. Adaptation or risk reduction measures cannot be considered in isolation

because of synergies across time, space, and sectors (Magnan et al., 2020; Gold et al., 2022; Schipper,

2020) as well as because of potential asynergies, defined as ‘‘the potential adverse effects of measures

aimed to decrease the risk of one hazard on the risk of another hazard’’ (de Ruiter et al., 2021, p. 1). These

trade-offs and synergies require the balancing of needs and interests beyond risk management

(Buurman and Babovic, 2016). Different stakeholders will have mandates and resources for different policy

options and might value the benefit of adaptation differently in different contexts (Lorenz et al., 2019; Ma-

gnan et al., 2020). Similarly, certain policy options could decrease in effectiveness over time, become
6 iScience 25, 105219, October 21, 2022



Figure 2. Analytical framework of DAPP

Adapted from Haasnoot et al. (2019).
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unavoidable in the future, be not readily available now or become stranded assets (Magnan et al., 2020).

Consequently, policy options should be characterized in terms of their potential effectiveness,

readiness, lead time until full effectiveness, duration of benefits, societal acceptability, governability, po-

tential co-benefits, and potential negative collateral effects (Magnan et al., 2020). In this way, strategies

can be designed that pose no regret, are reversible/soft, have safety margins, reduce the decision-making

time horizons, or are considerate of conflicts and synergies between strategies (Hallegatte and Przyluski,

2010).

However, assessing adaptation options is the first step in a process where different adaptation options

are evaluated against each other. For such, often complex evaluation processes, a good understanding

of the decision context and multi-vulnerabilities is necessary to avoid maladaptation, identify path

dependencies and identify hard and soft adaptation limits (Schipper, 2020; Simpson et al., 2022, in re-

view). Yet, the effects of risk management measures are still poorly understood, and lack of tools to

quantify their effects on vulnerability as a systematic global stocktake on adaptation measures

suggests (Berrang-Ford et al., 2021; Lorenz et al., 2019). In that context, Simpson et al. (2021) highlight

that the financial, political, reputational, and technological risk of adaptation measures have received

significant attention in recent research and public discussions. The lack of knowledge about the

effectiveness of adaptation measures in terms of their temporal, spatial, and stakeholder-focused ef-

fects limits confidence in policy options (Magnan et al., 2020). As a result, not only the effectiveness

and vulernability of policy options but also the perception and preferences are subject to (deep)

uncertainties.

INTEGRATING MULTI-RISK ELEMENTS INTO THE DAPP FRAMEWORK

In the previous section, we discussed three themes and various relevant aspects that need to be addressed

in DAPP-MR. In this section, we analyze how these aspects can be integrated into the DAPP framework.

DAPP is an analytical framework consisting of seven steps, as shown in Figure 2. In the first step, the system

and its decision context are characterized usingmethods for participatory problem framing. This step iden-

tifies not only the objectives and constraints in the system but also the set of transient scenarios (see Box 5

for key terms related to DAPP) which capture the range of plausible future evolution of the system. In the

second step, vulnerabilities and opportunities in the system are identified to determine parameters and

threshold values as adaptation tipping points (ATPs), which indicate the need for additional measures,

and opportunity tipping points (OTPs), which indicate possibilities to leverage certain changes in the sys-

tem for additional actions. Using transient scenarios, the relative timing of reaching these tipping points is

determined, to inform the process of identifying contingent actions in Step 3. In Step 4, pathways are de-

signed using various methods (from storylines to exploratory modeling) where ATPs and OTPs determine

alternative routes depending on available and useful actions. Those pathways are then evaluated accord-

ing to the initially defined main objectives as well as costs, co-benefits, and trade-offs. Furthermore, path-

ways are evaluated upon their feasibility to be implemented, the flexibility to further adapt and shift to
iScience 25, 105219, October 21, 2022 7



Box 5. Key terms and definitions in the context of DAPP

Flexibility: ‘‘The inherent ability of the human and physical elements of a system to cope with, or adapt to, uncertain

and changing conditions, in a timely and cost-effective manner.’’ (DiFrancesco and Tullos, 2014, p. 1528).

Robustness: ‘‘The insensitivity [of a system] to future conditions and the ability to perform satisfactorily over a broad

range of future conditions.’’ (Beh et al., 2015, p. 1534).

Scenario: A plausible description of how the future may develop based on a coherent and internally consistent set of

assumptions about key driving forces (e.g., rate of technological change (TC), prices) and relationships. Scenarios are

neither predictions nor forecasts but are used to provide a view of the implications of developments and actions

(IPCC, 2021).

ll
OPEN ACCESS

iScience
Article
other pathways if needed, and the robustness to perform well under a range of plausible future states.

Whether follow-up adaptation options, when approaching an ATP, are still possible also depends on

the time available to plan and implement them, which then determines when decisions need to be taken

and in some case may mean a temporarily reduced performance of pathways. The feasibility of implemen-

tation can (sometimes) be shaped through supporting actions changing political support, technical

innovation, and law and regulations (Haasnoot et al., 2020). In Step 5, adaptive strategies are designed,

meaning that initiating decision points are determined based on preferred initial actions, long-term op-

tions, and potential signposts to ensure the flexibility of the identified strategy. Furthermore, contingency

actions are considered to ensure the feasibility of potential future actions. A monitoring plan is also set up.

In Steps 6 and 7, the strategy is implemented andmonitored. The steps are described in detail by Haasnoot

et al. (2019).
Analytical steps for DAPP-MR

In this section, we assess the capability of the analytical steps of DAPP to integrate the three themes. Table 1

summarizes the identified relevant aspects of multi-risk systems, grouped according to the three themes

discussed in Relevant aspects to characterize multi-risk systems. These aspects were attributed to one

or more analytical steps of DAPP. This was done by analyzing whether a certain aspect contributes infor-

mation directly relevant to the analytical step (indicated with an ‘‘X’’ in Table 1). In this way, aspects insuf-

ficiently captured by the DAPP steps are identified.

Some of the multi-risk aspects in Table 1 are marked with an asterisk to indicate that they are not specific to

multi-risk systems but are partly relevant in the original DAPP as well. Previous applications of DAPP incor-

porated knowledge about the vulnerability, exposure, and impact of one hazard at a time, identified the

relevant decision context in order to limit potential policy choices, then added additional criteria for the

selection and evaluation of a set of preferred pathways. For multi-risk considerations, the effort not only

adds up linearly depending on the number of hazards and sectors but requires additional considerations

to incorporate the increase in hazard- and vulnerability-related interactions and in the required perfor-

mance evaluation of all policy options. Consequently, the amount of information gathered per analytical

step increases significantly as shown in Table 1. Additionally, the number of required iterations across

analytical steps is expected to increase, particularly related to multi-vulnerability characteristics and

multi-sector pathway evaluations. For example, updating information between vulnerability and potential

policy options requires more iterations when accounting for many more interdependent elements that are

at risk with varying vulnerability toward different multi-hazard related impact drivers. Moreover, the level of

conflict between the objectives of different sectors might influence the number and means of iterations

required to reach a compromise and update the initially identified set of policy options.
Implications of interdependencies for the timing of adaptation tipping points and

opportunity tipping points

Many of the identified aspects of multi-risk systems touch upon the spatial and temporal dynamics of vul-

nerabilities and opportunities, which determine the ATPs and OTPs. Therefore, we investigated whether

ATPs and OTPs are capable of dealing with the increased level of interdependence. In Figure 3, four

different pathways are grouped together in varying combinations illustrating the implications of hazard in-

teractions, cross-sectoral interdependencies, and policy option interactions on the shape of different path-

ways. Colors represent different policy options. New policy options are implemented after an ATP (circle) or
8 iScience 25, 105219, October 21, 2022



Table 1. Summary of relevant aspects of multi-risk systems and their attribution to the analytical steps

Key elements 1 2 3 4 5 6 7

Multi-hazard dynamics * Hazard drivers x x

Temporal and spatial scales of hazard(s) x x

* Hazard-related impact drivers (spatial variable) x x

Type of hazard interaction x

Level of hazard correlation x x x

* Impact drivers of natural hazard(s) x

Effect of hazard interaction on hazard-related impact drivers x

Spatial variability of hazard-related impact driver interaction x x x x

* Vulnerability of element(s) to multi-hazard-related impact driver(s) x

Dynamics of exposure, vulnerability & multi-hazard related impact drivers x x x x

* (Deep) uncertainties regarding hazard characteristics x x

(Deep) uncertainties regarding hazard interaction (effects) x x

Interrelations of sectors * Sector-specific objectives & perceptions (multi-temporal dimensions) x x x x x x

Interdependencies between stakeholder objectives x x

Power dynamics between stakeholders x x x x

Type of cross-sectoral interdependencies x x

Dynamics of exposure and vulnerability across exposed elements x x x

Potential (dynamics of) spill-over chains x x

(Deep) uncertainties (as drivers of changes) in interrelations across sectors x x x

DRM policy options * Stakeholder mandates for PO x x x x

* Stakeholder preferences for PO x x x

* Characteristics & effects of PO x x x

Vulnerability of PO regarding multi-hazard impact drivers x

Trade-offs & synergies of PO across sectors x x x

Trade-offs & synergies of PO across hazards x x x

Collaborative potential regarding PO x x

(Deep) uncertainties of PO effectiveness & vulnerability x

(Deep) uncertainties regarding PO perception & preferences x x x

Aspects marked with * are already accounted for in DAPP. Numbered columns represent different analytical steps of the DAPP framework as proposed by Haas-

noot et al. (2019). 1: Define decision context, 2: Assess vulnerabilities & opportunities, 3: Identify & evaluate policy options (POs), 4: Develop & evaluate adap-

tation pathways, 5: Design adaptive plan, 6: Implement the plan, 7: Monitoring.
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OTP (triangle) is reached. Dotted lines indicate the potential effects of interactions (red dashed lines) on

pathways, ATPs and OTPs. Generally, four effects can be identified:

� The timing of ATPs can be delayed (circle moves to the right) because of synergies between policy

options (Figure 3A).

� New OTPs can emerge for various reasons (Figure 3B), e.g. multi-sector synergies could lead to

additional available resources or willingness to cooperate in other ways to implement policy options

that would not be feasible otherwise. Also, multi-hazard synergies (e.g., increased risk awareness)

could reduce resistance regarding certain protection measures.

� Conversely, the timing of ATPs can occur earlier (circle moves to the left) when trade-offs between

different policy options lead to asynergies or effects of multi-hazard interactions that exacerbate

impacts (Figure 3C).

� Finally, certain policy options can be inhibited (red cross cuts off pathway) because of trade-offs,

meaning that only one of the two measures can be implemented because of political, financial, or

spatial reasons Figure 3D). Policy options can also be inhibited by multi-sector trade-offs resulting

from contradicting objectives or perspectives.
iScience 25, 105219, October 21, 2022 9



Figure 3. Set of illustrative combinations of two pathways

The colored lines represent alternative portfolios of policy options (options A, B, C, D, E, F, G, and H). The panels visualize

the potential interaction effects on the timing of ATPs and OTPs caused by hazard interactions, cross-sectoral

interdependencies, and policy option interactions: (a) delaying ATPs, (b) new OTPs, (c) rushing ATPs, (d) and blocking

of ATPs.
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Themain implication of hazard interactions, cross-sectoral interdependencies, and policy option interactions

is that ATPs and OTPs can capture the implications of enhanced interactions in multi-risk systems. We show

that placing two pathways next to each other can support identifying trade-offs and synergies of certain pol-

icy options across hazards and sectors. For example, policy option A (light blue) in Figure 3A has a positive

effect on the performance of policy option D (pink; enhanced lifetime before ATP is reached). Consequently,

option A might be preferred over option B by the decision maker given the synergy across policy options (in

addition to the slightly longer lifetime of option A). However, such a pairwise analysis of interactions between

pathways might be sufficient as long as only a few individual pathway maps need to be considered. In more

complex systems with multiple sectors and multiple pathways for each hazard, a decision-maker could easily

lose track of which interactions exist and which cause more significant trade-offs or synergies.
THE DAPP-MR FRAMEWORK

In the previous sections, we showed how to enrich DAPP with contextual multi-risk elements without chang-

ing its step-wise approach. Furthermore, we discussed that the increased amount of information and cross-

step interconnectedness may require additional, iterative considerations when developing DRM pathways

for complex, dynamic multi-risk. Accordingly, we propose DAPP-MR consisting of a rearrangement of the

seven steps of DAPP, as shown in Figure 4. In addition to the original iterative steps of DAPP, three stages

of iterations are included to characterize the decision context, vulnerabilities, and opportunities, potential

promising policy options and promising pathways:

� Stage 1: DAPP-MR starts with a single-sector, single-hazard perspective.

� Stage 2: Subsequently, all single-hazard considerations are integrated per sector to result in a single-

sector, multi-hazard perspective.

� Stage 3: The single-sector, multi-hazard information is integrated into a multi-sector, multi-hazard

perspective.
10 iScience 25, 105219, October 21, 2022



Figure 4. The proposed DAPP-MR framework

It uses a rearranged set of analytical steps of the DAPP framework: Steps 1-4 are addressed in an interactive, staged

approach to guide the integration of knowledge from a single-sector, single-hazard perspective (pink arrows), to a single-

sector, multi-hazard perspective (purple arrows), to a multi-sector, multi-risk perspective (dark blue arrows) before

advancing to Steps 5-7. Adapted from (Haasnoot et al., 2013, 2019).
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The additional three stages aim to support users with the integration of information from various knowledge

sources to characterize the complex and interactive system before an adaptive plan of a certain strategy (Step

5, including preferred first actions, adaptive subsequent choices, and a plan to update the strategy depend-

ing on monitoring of the real-world system) can be developed. Although alternative ways to integrate the

additional required information were considered, the proposed staged approach was identified as the

most suitable one. For example, an alternative approach to integration could be step-wise by integrating sin-

gle hazard, single sector, and multiple-risk information within each step. However, it was found to be much

more difficult to keep track of all potential interactions when progressing to the next analytical step. The

objective of the analysis was less clear. In combination with the absence of broad awareness for multi-risk

across sectors as identified, this approach of integration is less favorable. The proposed framework proposes

a sector-focused stage 2 iteration as the most effortless entry point to integrate complexity. Within sectors,

more channels for communication and collaboration might exist facilitating the integration of knowledge

and perspectives (Menk et al., 2022). Additionally, as there is growing attention in research to better under-

stand hazard interactions (Zscheischler et al., 2020; Poljansek et al., 2021), the proposed framework to create

(intermediate-) adaptive pathways for single- or multi-hazard-related planning can already serve as useful in-

formation for sectoral users. This is expected to support the understanding of different sectoral stakeholders

for multi-risk and to increase their willingness to participate in the process (Butler et al., 2020; Zandvoort et al.,

2019; Head, 2019). On the other hand, the integration of cross-sectoral knowledge might cause additional

challenges owing to confidentiality requirements and lack of trust across sectors (Scolobig et al., 2017) which

complicates integrating knowledge and complexity. Nevertheless, DAPP-MR and the identified guiding

questions for analysis also permit to adapt the order of integrating knowledge across the three stages to a

specific context (i.e. first integrating information regarding a specific hazard across sectors). One drawback

of the proposed arrangement is the additional time required to revisit multiple analytical steps adapting

and extending the original system and problem definition while going through the stages. Additionally, start-

ing from a traditional single-sector, single-hazard perspective requires special consideration to avoid a com-

mon bias of too narrow a focus on traditional siloed system/problem definition, and choices of scenarios and

plausible policy options (Wright et al., 2019; Shepherd et al., 2018; Stanton and Roelich, 2021).

While DAPP-MR primarily aims to guide the analysis of complex multi-risk systems, its set-up is expected to

have implications on the distributive justice of the designed pathways and on the power dynamics affecting

the design process. Distributive justice across present stakeholders (intragenerational equity) and with the

consideration of future stakeholders (intergenerational equity) addresses the just distribution of negative

and positive outcomes (Vermunt and Törnblom, 1996). Jafino et al. (2021) highlight the importance to

disaggregate information regarding actors, their values, performance metrics, their policy options, and

the multi-temporal dimension of all these characteristics to allow for the assessment of distributive justice.
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Table 2. Indicative questions and answers to characterize the stylized case

Indicative questions Answers to characterize the stylized case

How are different sectors linked to each other? What are

the main types and channels of interaction under normal

conditions?

S1 and S2 are mostly independent regarding the

decisions they can take.

What type of multi-hazard interaction should be

considered?

H1 increases probability of H2 occurring

What are the effects of multi-hazard interactions on

ATPs?

S1: ATP regarding H1 remain unchanged; ATP regarding

H2 changes (timing of ATP occurs earlier)

S2: ATP regarding H1 remain unchanged & ATP

regarding H2 changes (timing of ATP occur earlier)

Do opportunities arise by accounting for multi-hazard

interactions?

S1: no opportunities arise

S2: opportunity to implement a new policy option

directed toward H1 (path-dependent on E as a previous

policy option)

Do opportunities arise by accounting for multi-sector

interactions?

Opportunity to implement a new policy option with

strong synergies regarding both hazards (ATP for S1-H1

and S1-H2 won’t be reached in the planning horizon,

action E benefits from new policy option)

How do we measure the success of the complex system? Cost, Target effects regarding both sectors, cooperative

stability, social acceptability, equity
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Although some of these requirements are inherent to DAPP (e.g. multi-temporal dimension of perfor-

mance metrics), the staged approach explicitly requires disaggregating information per sector, and can

therefore be expected to enhance the capability to account for distributive justice of decision-making.

At the same time, if sector systems are not adequately differentiated into its multiple stakeholders, the ag-

gregation on the sector level might inhibit accounting for distributive justice within sectors.

Power dynamics, on the other hand, play amuchmore relevant role in complexmulti-risk systems than in tradi-

tional DAPP applications. In amulti-sector system, it is relevant to identify who has i) the power to take a certain

policy action, ii) the power over other sectors (or stakeholderswithin) to initiate/inhibit certain decisions, and iii)

the power to collaboration to take specific action (Avelino, 2021). In DAPP-MR, these different perspectives on

power are also stagewise explored within and across sectors. This approach also allows us to investigate

enabling and constraining powers within sectors and the system (Avelino, 2021) as well as power relations

and corresponding power dynamics between stakeholders and sectors (Avelino and Wittmayer, 2016). At

the same time, putting the sector perspective first (stage 1 and stage 2) before integrating to and identifying

preferable complex multi-risk pathways might influence how stakeholders use their powers in the design and

implementation process. It is plausible that complex multi-risk pathways are designed less favorable for one

(or multiple) sectors to achieve better outcomes for everyone. Consequently, sectors might be incentivized to

diverge from the complex multi-risk pathways for their own interests and therefore pose challenges to other

sectors (Gold et al., 2022). Dealing with these circular feedbacks from a systemic perspective is thus required

when developing adaptive plans, e.g. by means of agreements, compensations, or alternative compromises.

TESTING THE FRAMEWORK IN A STYLIZED CASE

As introduced in the previous section, each stage concludes by identifying a set of preferred pathways ac-

counting for different degrees of interaction and complexity. As such, DAPP-MR builds on existing expertise

and provides intermediate results already relevant for sectoral DRM (Poljansek et al., 2021). In addition to the

staged approach, the focus per analytical step needs to be adjusted to capture the additional information as

presented in Table 1. A set of indicative questions to guide the analytical steps of the proposed DAPP-MR is

provided in Table S1.We used a stylized case (see ‘STARMethods’ section and Tables 2 and 3 for description)

to give illustrative pathways maps and scorecards for each of the three stages, to investigate how the existing

key elements of DAPP can deal with the increased complexity. The stylized case consists of two intercon-

nected sectors (S1, S2) and two interacting hazards (H1, H2). Each of the sectors has two policy options in
12 iScience 25, 105219, October 21, 2022



Table 3. Trade-offs and synergies of policy options of different sectors S1 and S2 regarding the different hazards

H1 and H2

S1 S2

H1 H2 H1 H2

A B C D E F G H

A 0 0 0 0 0 0 0

H1 B B benefits from C 0 E benefits from B 0 0 0

C 0 0 0 0 0

S1 H2 D D impeded by E 0 0 0

E 0 0 0

H1 F 0 0

G 0

S2 H2 H

Zero represents no interaction between the policy options.
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its portfolio to deal with H1 and H2. As discussed in Implications of interdependencies for the timing of adap-

tation tipping points and opportunity tipping points, combining the effects of interactions between multiple

single-sector, single-hazard pathways may be very complex. The use of scorecards can play a central role in

this process of short-listing promising sector-specific pathways throughout the staged approach.

Stage 1 pathways map and scorecard (single-sector, single-hazard pathways)

For the stylized case, two pathways maps (where each consists of two single-hazard, single-sector pathways)

can be created (S1-H1, S1-H2; S2-H1, S2-H2) (Figure 5). These pathways maps can be used as an intermediate

result to inform single-hazard risk DRM, but also to identify sector-specific interactions between the single-

hazard risk management pathways. Correspondingly, the scorecard can be used to identify preferred path-

ways for single-hazard risk DRM using evaluation criteria as commonly used in existing DAPP applications.

Furthermore, additional criteria can be considered to evaluate the multi-hazard effectiveness of and interac-

tion across policy options to screen out inadequate policy options. As a result, the possible pathway 4 (PP4)

seems promising given its good hazard-specific performance as well the potential synergy regarding policy

option B (yellow). Conversely, PP5 performs inadequately as an ATP is reached before the end of the planning

horizon with no additional policy option available to be implemented. The performance of PP5 can be ex-

pected to be further reduced owing to multi-hazard trade-offs (which result in earlier timing of reaching an

ATP). Stage 1 maps are useful for understanding and discussing the interconnectedness between different

single-sector, single-hazard pathways. However, given that comparisons can only be done one by one, it is

difficult to derive conclusions about which policy options and sector-hazard-specific pathways yield higher

synergies than trade-offs across sectors and hazards.

Stage 2 pathways map and scorecard (sector-specific, multi-hazard pathways)

Single-hazard pathways for each sector are integrated into two single-sector, multi-hazard pathways

(S1-H1H2, S2-H1H2) by accounting for the specific interactions identified in the previous stage as visual-

ized in Figure 6. For example, it was identified in the previous stage that a new OTP may emerge for S2

when considering a multi-hazard setting. Moreover, PP5 from Figure 5 is not considered in stage 2. The

effects and performance of PPs including the opportunity policy option are evaluated as part of stage 2.

These second-stage pathways integrate the perspectives and interests of each sector separately. As such,

these pathways are useful to develop sector-specific pathways to manage multi-hazard risk. Alternatively,

they can be used to discuss the implications of interactions between the single-sector, multi-hazard path-

ways. For example, PP2 performs well when just using a single-sector, multi-hazard perspective. However,

in case cross-sectoral interactions are accounted for, these pathways could perform inadequately, mak-

ing it a less promising pathway in stage 3.

Stage 3 pathways map and scorecard (complex multi-risk pathways)

After characterizing the corresponding additional policy options related to the new OTPs, the single-

sector, multi-hazard pathways can be integrated into multi-hazard, multi-sector pathways (S1S2-H1H2).
iScience 25, 105219, October 21, 2022 13



Figure 5. Pathways maps and scorecards for single-hazards per sector (S1-H1, S1-H2; S2-H1, S2-H2) with

interactions between pathways shown in gray colors and/or dotted lines indicate effects owing todue to sector-

specific interactions

The vertical line is the planning horizon from the present until the system performance should be maintained. Scorecard

consists of illustrative evaluation criteria. ’’MH effectiveness’’ captures trade-offs and synergies of possible pathways

regarding multiple hazards.
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However, fully integrated complex multi-risk pathways maps lack the required simplicity for stakeholders to

support decision making (see Figure S1). The amount of information in the pathways maps can overwhelm

an end-user visually and thus miss its purpose. As visible in Figure 6, interactions between partly integrated

pathways (single-sector, multi-hazard) already become increasingly complex and difficult to

understand. Similarly, while stage 1 and 2 pathways maps and scorecards are still explicitly relevant for

the stakeholders in a specific sector, the information derived from stage 3 is mostly relevant for an over-

arching decision-maker (e.g. a public authority) to steer DRM in line with overarching good governance

principles, including effectiveness (efficiency, and subsidiarity), equity (inter- and intragenerational), feasi-

bility (political, technical and legal) and public acceptance (Aven and Renn, 2010; Virtudes, 2016; Florin and

Bürkler, 2018; Chereni et al., 2020).

As such, stage 3 pathways maps (complex multi-risk) are necessary intermediate results, which are neces-

sary for the creation of the corresponding scorecard, but not as a means to visualize potential long-term

multi-risk strategies. The resulting scorecard of stage 3 in combination with the pathways maps of stage

2 can be used to disentangle the interconnections across hazards and sectors for each individual sector

and hazard, as shown in the right column of Figure 7. These multi-risk-informed pathways are informative

for sectoral decision-makers without the need to deal with the full complexity of combined multi-risk path-

ways as differences between the single-hazard pathways per sector with and without accounting for multi-

risk interactions can be compared and further investigated. These differences may occur in terms of the

number of available policy options and timing of their ATPs and OTPs.

CONCLUSIONS AND LIMITATIONS OF THIS STUDY

Interactions and interdependencies amongst natural hazards and sectors exacerbate risk across sectors,

space, and time. Ongoing climate change and socio-economic developments require that disaster risk

management strategies apply long-term perspectives to account for trade-offs and synergies driven by

these changing interactions to avoid maladaptation. Tools to support risk management and adaptation

need to be adjusted to address this increasing complexity. This article proposes DAPP-MR as a tailored

version of the analytical framework of DAPP to design adaptive DRM pathways in a complex and dynamic
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Figure 6. Pathways maps and scorecards for multi-hazards per sector

Gray colors and/or dotted lines indicate effects owing to cross-sector, cross-hazard interactions. The vertical line is the

planning horizon from the present until the system performance should be maintained. Scorecard consists of illustrative

evaluation criteria.

ll
OPEN ACCESS

iScience
Article
multi-risk context. DAPP was used as a promising basis for the framework development as it combined rele-

vant elements for risk-informed, precautionary, and discursive strategies. We analyzed relevant aspects of

multi-hazard, multi-sector systems to inform the development process of the new framework. We reason

that a pathways framework to manage complex multi-risk systems needs to explore trade-offs and syn-

ergies of policy options across multiple interacting hazards, across contested objectives of multiple sec-

tors, and accounting for interactions with other policy options. Furthermore, we also show that ATPs

and OTPs are useful tools to capture the effects of interactions between hazards, sectors, and policy

options.

The tailored framework uses the existing analytical steps of DAPP (Haasnoot et al., 2013), but extends the

scope of each analytical step for multi-risk DRM addressing multiple hazards and sectors. This tailored

version of DAPP is expected to address the complexity of multi-risk by guiding stakeholders through a

stepwise integration of knowledge, perspectives and evaluation boundaries starting from a sector-focused

entry point. As a result, developed pathways maps for different stages of integration can capture trade-offs

and synergies across hazards and sectors and help designing multi-risk informed pathways. Although

DAPP-MR has been tailored through the lens of long-term disaster risk management, it could also be appli-

cable in comparable contexts characterized by multi-objective problems and highly interconnected and

interdependent systems such as complex environmental systems, in the field of multi-sector dynamics

(Reed et al., 2022) or for the development of climate-resilient development pathways (Werners et al.,

2021a). Nevertheless, several aspects of DAPP-MR require further research and reflection for the operation-

alization of the framework as elaborated in the following paragraphs.

Consideration of further relevant elements and concepts of Dynamic Adaptive Policy

Pathways

The stylized case provides a first-order analysis of the utility of DAPP-MR under ideal ‘‘lab conditions’’ and

without stakeholder involvement. Thus, it may not represent real-world situations. Although the stylized

case suggests that both scorecards and pathways maps could be helpful to visualize and evaluate path-

ways, this conclusion should be confirmed by more detailed case studies and interactions with stake-

holders. At the same time, testing of DAPP-MR did not include considerations on how to deal with con-

tested objectives or the unwillingness of sector(s) to agree upon a multi-risk pathways strategy in case

their stage 1 or stage 2 pathways maps are more satisfactory. Similarly, the process of identifying ATP’s

and OTP’s has been neglected which can also have complex dependencies across the current state of
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Figure 7. Promising single-hazard pathways per sector without (pathways maps on the left) and with accounting

for multi-risk interactions (pathways maps on the right)
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the system, objectives and inter-actor conflicts/cooperation (Trindade et al., 2019; Gold et al., 2022). The

resulting implications for the process of developing adaptive plans, notably signals and triggers to initiate

decision points are also open questions. A starting point could be an approach proposed by Stephens

et al., (2018). They link signals and triggers directly with ATPs and use the number of certain hazard events

exceeding different thresholds within a specific monitoring period to initiate and take timely action.
Identifying a toolset for the implementation of DAPP-MR

Given the required extent of information to be collected, organized, analyzed, and comprehensively pre-

sented to support good multi-risk governance (Scolobig et al., 2017), useful tools and methods to aid this

process should be investigated. As we discussed that complex multi-risk systems have high degrees of in-

teractions, interdependence, and uncertainty (Relevant aspects to characterize multi-risk systems) on one

hand, and showed that already very simple systems can get rather complex in an analysis (Testing the frame-

work in a stylized case) on the other hand, it is questionable, if DRM pathways for complex multi-risk systems

can be designed in a purely qualitative, narrative-driven sense. Conversely, computational methods and

tools could be necessary to account for and keep track of the different hazard-, sector- or policy-driven in-

fluences for example on the timing of reaching ATPs, or multi-temporal dimensions of system interactions. A

promising starting point could be elements and tools from other approaches supporting decision-making

under deep uncertainty (Kwakkel and Haasnoot, 2019). For example, model-based elements of Many-

Objective Robust Decision Making (MORDM) (Kasprzyk et al., 2013) could be helpful for navigating the

complexity of generating and evaluating pathways (Lawrence et al., 2019). Robust Decision Making makes

use of models to simulate the implications of assumptions. In combination with approaches of scenario dis-

covery (Groves and Lempert, 2007), it identifies relevant uncertainties (e.g., from multiple hazards) and can

stress-test strategies against these scenarios to identify robust decision and contingency options. This has

for example been incorporated into the Deep Uncertainty pathways framework (Trindade et al., 2019) which

has been developed to discover robust pathway policies in the context of multi-actor systems.

Nevertheless, while DAPP-MR (with the right tool set) could provide support to find solutions for ‘‘difficult-

to-answer’’ questions, complex multi-risk systems also face the challenge that they are wicked (Rittel and
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Webber, 1973) meaning ‘‘difficult to define problems.’’ In our highly interconnected and interdependent

society, the problem definition (i.e., what types of compounding/cascading hazards could interact in com-

bination with growing multi-sectoral demands, or which elements do we include as exogenous forcing or

within endogenous dynamics in our system definition) already introduces significant uncertainty and ambi-

guity (Ringsmuth et al., 2022; Srikrishnan et al., 2022). A challenge remains whether informative pathways of

actions for navigating the problem can be developed in such difficult and highly uncertain systems. Hence,

while methods exist to investigate the relevance of multi-hazard interactions for risk management to avoid

unnecessary complex analysis (Liu et al., 2015), additional approachesmight be required to help identifying

the upper limits of considerable complexity in light of uncertainty.
Embedding DAPP-MR in practical decision-processes

Recent research shows that successful multi-risk DRM requires an inter- and transdisciplinary approach

(Schweizer and Renn, 2019). This means that knowledge from various natural, technical, social, and po-

litical science disciplines (interdisciplinarity) is combined with local knowledge and practices to enhance

the integrative and adaptive capabilities of risk governance processes. If adequately initiated and

managed, such processes can result in the co-production of knowledge, new relationships between

involved stakeholders, changes in institutionalization, and new practices or policies (Wyborn et al.,

2019). Conversely, if representatives in such co-production processes are not diligently selected to repre-

sent a variety of perspectives (Klenk et al., 2017; Dilling and Lemos, 2011) and carefully managed to ac-

count for institutional characteristics (e.g. inequalities of power and resources; Sutherland et al., 2017)

the outcomes can be suboptimal (Wyborn et al., 2019). These issues related to co-production processes

should be accounted for in approaches to support multi-risk DRM together with the attribution of multi-

hazard and multi-sector considerations. DAPP-MR implicitly assumes a functional and meaningful co-pro-

duction process to be used for inter- and transdisciplinary collaboration across sectors and hazards to

design pathways for complex multi-risk. Consequently, guidance on tailoring a co-production process

to the application for DAPP-MR is still needed for an operational decision support tool for complex

multi-risk DRM.
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METHOD DETAILS

Example of a multi-sector system as referred to in Introduction

In a study area, the sectors ‘‘transport and infrastructure’’ and ‘‘agriculture’’ are defined as a multi-sector

system. The ‘‘transport and infrastructure’’ sector is defined to consist of three sub-systems: ‘‘railways’’,

‘‘motorways’’, and ‘‘shipping’’. Each of these sub-systems consist of multiple elements. For example, ‘‘rail-

ways’’ is made up of elements at risk (‘‘railway tracks’’, ‘‘train stations’’ and ‘‘train equipment’’) and stake-

holders (‘‘public transport operator’’, ‘‘freight traffic operator’’). These elements at risk and stakeholders

could have interrelations amongst each other (in terms of use, maintenance responsibilities etc.), across

the sectoral sub-systems, cross-sectoral with regards to the elements and stakeholders of the ‘‘agriculture’’

sector, and beyond the sectoral and spatial boundaries of the study area.

Tailoring DAPP toward DAPP-MR

To further develop DAPP-MR we use a method that is inspired by findings of McMeekin et al. (2020) who

investigated common practice to develop methodological frameworks, following three steps: 1) charac-

terize DAPP as a promising basis for framework development in a multi-risk setting, 2) identify relevant

aspects that should be included in a DRM pathways framework for complex and dynamic multi-risk and

3) develop and test DAPP-MR. While McMeekin et al. (2020) proposed an additional, concluding develop-

ment step of evaluation for example based on a case study, it is beyond the scope of this study to evaluate

DAPP-MR as the application in a real-world test case would itself comprise a full study, given the complexity

of the topic. The following sections will give more context and specify methods used in the three develop-

ment steps used in this research.

The process of developing the DAPP-MR framework was the key focus of this paper. Given the limited avail-

ability of methodologies guiding such developments, it is difficult to assess whether our approach per-

formed well in comparison. We informed the development process mostly via findings from a literature re-

view, discussions between the authors and input from other experts. The top-down approach used to

identify relevant aspects in terms of conceptual, qualitative or quantitative discussions was chosen to allow

for the widest application of the framework, given that various case studies would have different and unique

interdependencies and dynamics that need to be considered. Similar approaches have been used by other

authors (see e.g., de Angeli et al. (2022)) and are in line with the common practice of developing frame-

works (McMeekin et al., 2020).

Characterize DAPP as a promising basis for framework development

DAPP was identified as a promising basis for framework development through discussions with experts

from the disaster risk community and sectoral practice as part of the activities of the MYRIAD_EU project.
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MYRIAD-EU (Multi-hazard and sYstemic framework for enhancing Risk-Informed mAnagement and Deci-

sion-making in the EU is a EU Horizon 2020 project taking place from 2021 to 2025 which aims to catalyze

a pardigm shift so that decision-makers will be able ’’to develop forward-looking DRMpathways’’ assessing

trade-offs and synergies of strategies under complex multi-risk conditions (Ward et al., 2022). As part of the

agenda of the first two annual meeting of the 17 consortium partners and a workshop engaging the wider

research community to present and discuss first findings of MYRIAD-EU with about 30 experts from disaster

risk research and sectoral practice, challenges of integrating multi-risk considerations in risk management

practices were discussed. Additional reflections on DAPP as a suitable basis for the framework were

derived from eight 1-h semi-structured interviews (Rubin and Rubin, 2012) with representatives from the

energy, finance, agriculture, ecosystems and transport sectors, along with other experts from the disaster

risk reduction context, taking stock of the existing risk management practices and perspectives toward

multi-risk governance. The interviews were prepared, conducted and evaluated in line with Hove and

Anda (2005) and in accordance with the Ethics Plan of MYRIAD-EU. A set of 10 guiding questions were

used to initiate the discussion:

� With which types of natural hazards are you dealing with on a regular basis in your role/organisation,

if any?

� Given the definition stated earlier (UNDRR, 2017), what is your understanding of and experience with

multi-hazards, multi-risks? Could you give some examples?

� In your organization and/or network, are natural hazards and risks considered individually or in

interaction in the disaster risk management cycle (response, recovery, mitigation, preparedness)?

For example, think about the following scenarios: an earthquake triggers multiple landslides or

intense rainfall and storm surges occurring simultaneously result in extensive inland and coastal

flooding.

� a) Are you aware of any policies or governance processes taking into account interactions between

natural hazards? b) What specific benefits and opportunities do they bring, if any?

� Can you share examples of (local/regional/national/EU-wide) good practices that consider multi-

hazard interactions and multi-risk as part of a risk management strategy? For example, think about

the institutions that have responsibility for assessing, warning for, and managing different hazards,

and the procedures and processes in place for managing multi-risk events.

� Are there any barriers or challenges you think decision-makers are facing in implementing multi-haz-

ard, multi-risk management guidelines and policies in sectors/areas you are familiar with? Can you

give some examples?

� What potential trade-offs or synergies do you anticipate or have experienced in the development

or implementation of policies and guidelines that take into account multi-hazard, multi-risk in

DRM actions?

� a) In your sectoral policies and strategy plans, do you consider dependencies or linkages between

different sectors and if so, b) do these policies and plans take into account potential interactions

between natural hazards? Please give some examples, if possible.

� To your knowledge, what tools, models, and frameworks are used in your sector to support multi-

hazard, multi-risk assessment and management? If possible, please give some examples keeping

in mind their potential inclusion in a Wiki-style platform (WP1, Task 1.2).

� Is there any further information or knowledge you would like to share with regards to policy, policy-

making processes and governance for multi-hazard, multi-risk management?

Interviewees were invited to share initial written reflections before the interview. Interview responses were

analyzed based on notes taken during the interviews.
Collecting evidence to inform the development of DAPP-MR

An integrative literature review (Snyder, 2019) was conducted to identify key aspects of multi-hazard and

multi-sector systems and critically analyze their interrelations to further assess requirements to a DAPP-

MR. This method has been reported to facilitate the development of new theoretical frameworks in the
24 iScience 25, 105219, October 21, 2022
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context of both mature and emerging topics (Snyder, 2019). We used a set of specific questions to structure

the review and identify search terms and relevant literature:

� How are the termsmulti-hazard,multi-sector,multi-risk, compounding hazards/risks (and synonyms)

defined?

� What elements are frequently mentioned to characterize these terms?

� What approaches accounting for multi-hazard dynamics are currently available in the context of

DRM?

� What concepts and approaches are currtly available to address multi-sector dynamics?

� What are the main challenges of multi-sector dynamics?

Relevant peer-reviewed literature in English were identified in the Google Scholar database (about 200 pa-

pers). As multi-hazards and multi-sector dynamics are emerging fields, we biased the research toward

recent publications (>. 2015). By clustering the papers, we found the following themes in relevant aspects

to characterize multi-risk systems: 1) Effects of multiple interacting hazards, 2) Dynamics and interdepen-

dencies of sectors, 3) Trade-offs and synergies of DRM policy options across different sectors and spatial

and temporal scales. These themes are used to present the findings in Relevant aspects to characterize

multi-risk systems.
Development and testing of DAPP-MR

We followed an iterative approach to develop DAPP-MR. We first investigated which relevant multi-risk as-

pects are already accounted for in the DAPP framework and which additional aspects need to be ad-

dressed. These findings were used to identify whether the existing analytical steps of DAPP are sufficient

to incorporate all relevant multi-risk information for DAPP-MR. As a final step, it was analyzed if DAPP-MR

can deal with the increased complexity of multi-risk settings most effectively. For this, different framework

versions were tested and evaluated using a stylized case. The testing focused on the development and

evaluation of the DRM pathways for complex, dynamic multi-risk. It investigated the suitability of key

DAPP concepts (ATPs, OTPs, pathways maps and scorecards) to deal with the complexity of multi-risk set-

tings. It was beyond the scope of this paper to test and evaluate the framework in a full (real-world) case

study. Therefore, a stylized case was characterized based on some of the indicative questions provided

in Table S1. It consists of two interconnected sectors (S1, S2) and two interacting hazards (H1, H2). Each

of the sectors has two policy options in their portfolio each to deal with H1 and H2. The Figure S2 presents

the single-hazard pathways per sector that will be considered for the testing. Details regarding the system

characterization are summarized in Tables 2 and 3.
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