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ABSTRACT
In this paper, we extend a recently proposed approach for inverse scattering with Neumann boundary conditions [Druskin et al., Inverse
Probl. 37, 075003 (2021)] to the 1D Schrödinger equation with impedance (Robin) boundary conditions. This method approaches inverse
scattering in two steps: first, to extract a reduced order model (ROM) directly from the data and, subsequently, to extract the scattering
potential from the ROM. We also propose a novel data-assimilation (DA) inversion method based on the ROM approach, thereby avoiding
the need for a Lanczos-orthogonalization (LO) step. Furthermore, we present a detailed numerical study and A comparison of the accuracy
and stability of the DA and LO methods.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0154182

I. INTRODUCTION

Inverse scattering appears in many applications, including
medical imaging, non-destructive testing, and geophysical explo-
ration.1 While acquisition setups differ at their core, all these inverse
problems involve a wave equation and require an estimation of its
variable coefficients from boundary data. Approaches to solving the
resulting inverse problem can be classified as either direct or indirect
methods. The direct methods originate in classical inverse scattering
theory and rely on formulating a linear relation between scattering
data and medium coefficients; see, e.g., Ref. 2. The indirect methods
formulate a non-linear data-fitting problem that needs to be solved
iteratively.3

The indirect methods have been extensively investigated in the
past decades with major breakthroughs addressing the computa-
tional cost and the non-linearity of the data-fitting problem.4,5 Still,
the non-linearity remains a major challenge for this approach.

The direct methods have recently attracted renewed attention,
as a means of addressing this non-linearity.6–8 A recent development
is the use of data-driven reduced-order models (ROMs) for solving
the inverse scattering problem.9 In this approach, a reduced-order
model is computed directly from the data via an orthogonalization
procedure, and from this, the underlying state is estimated. From the

estimated state, the corresponding coefficient is estimated by solv-
ing a Lippmann–Schwinger integral equation. Challenges for this
approach include the sensitivity of the orthogonalization approach
to noise in the measurements.

The ROM-based approach has been applied in various set-
tings, including time-domain wave propagation, see, e.g., Ref. 10,
and frequency-domain diffusion processes, see Ref. 9. As a first step
toward extending this procedure to frequency-domain wave prob-
lems, we extend the approach to a 1D Schrödinger equation with
impedance boundary conditions. It turns out that both reflection
and transmission measurements are needed to compute the ROM
from the data. Furthermore, we propose an alternative approach to
the orthogonalization-based state estimation approach described in
Ref. 9. To study the accuracy and stability properties of the resulting
methods, we present numerical experiments.

This paper is organized as follows. First, we review the forward
problem and present the relations between the boundary data and
required ROM matrices. Then, we discuss the two-step approach to
solve the inverse problem: state estimation and subsequent estima-
tion of the coefficients from the state. We then present numerical
experiments to illustrate the accuracy and stability of both methods
on noisy data. We conclude this paper with a brief summary of the
main findings and a discussion on further work.
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II. THE FORWARD PROBLEM
Consider the 1D Schrödinger equation,

− u′′(x; k) + q(x)u(x; k) − k2u(x; k) = 0, x ∈ (0, 1), (1)

with boundary conditions,

u′(0; k) + ıku(0; k) = 2ık, u′(1; k) − ıku(1; k) = 0, (2)

which corresponds to an incoming plane wave from −∞. The scat-
tering potential q is assumed to have compact support in (0,1). The
measurements are given by

f (k) = u(0; k), g(k) = u(1; k). (3)

Well-posedness of this forward problem has been well-established
(at least when q is continuous) since the boundary value problem
can be transformed to the Lippmann–Schwinger integral equation;
see, e.g., Ref. 11.

A. A reduced-order model
The point of departure for the ROM-based approach is the

weak formulation of (1) and (2),

⟨u′, ϕ′⟩ + ⟨qu, ϕ⟩ − k2⟨u, ϕ⟩ − ık( f (k)ϕ(0) + g(k)ϕ(1))

= −2ıkϕ(0) ∀ ϕ, (4)

where ⟨⋅, ⋅⟩ denotes the standard inner product in L2(0, 1) and
⋅ denotes the complex conjugation.

Representing the solution as a linear combination of solutions
{ui}m−1

i=0 with ui ≡ u(⋅; ki), and using the same as test functions, the
resulting system matrices are defined, correspondingly,

Sij = ⟨u′j , u′i⟩ + ⟨quj , ui⟩, (5)

Mij = ⟨uj , ui⟩, (6)

Bij = f jfi + gjgi, (7)

and right-hand side,

bi = −2ıkfi. (8)

Correspondingly, the approximate solution is then given by

ũ(x; k) =
m−1

∑
i=0

ci(k)ui(x), (9)

with the coefficients obeying

(S − k2M − ıkB)c(k) = b(k). (10)

We refer the reader to Refs. 12–15 for the discussion regarding the
approximation error of such ROM approximations.

The main feature making this approach useful for solving the
inverse problem is that the system matrices can be computed from
the data directly, as per the following lemma.

Lemma 1. The ROM system matrices S, M [Eqs. (5) and (6)] are
given in terms of the boundary data { fi}m−1

i=0 and {gi}m−1
i=0 [Eq. (3)] as

Sij = ı
⎛
⎝

kikjBij

ki − kj
− 2

k2
j ki f j + k2

i kjfi

k2
i − k2

j

⎞
⎠

, i ≠ j,

Sii = k2
i (R( fi)I( f ′i) − I( fi)R( f ′i) +R(gi)I(g′i )
− I(gi)R(g′i )) − I( f ′i) − I( fi)/ki.

Mij = ı(
Bij

ki − kj
− 2

ki f j + kjfi

k2
i − k2

j
), i ≠ j,

Mii = R( fi)I( f ′i) − I( fi)R( f ′i) +R(gi)I(g′i )
− I(gi)R(g′i ) − I( f ′i) + I( fi)/ki.

The proof of this lemma can be found in the Appendix.

Remark 1. From the Proof of Lemma 1, we see that ci(kj) = δij.
Thus, we have ũ(ki) = ui.

III. THE INVERSE PROBLEM
The inverse problem is now to retrieve the scattering potential,

q, from boundary measurements at wave numbers {ki}m−1
i=0 ,

f = ( f (k0), f (k1), . . . , f (km−1))

and

g = (g(k0), g(k1), . . . , g(km−1)).

This is achieved in a two-step procedure. First, the states {ui}m−1
i=0 are

estimated from the data, and subsequently, the scattering potential,
q, is estimated from these approximated states {ũi}m−1

i=0 .

A. Estimating the state
As outlined in Sec. II, we can compute the coefficients in (9)

directly from the data by solving (10) with S, M, B, b obtained from
the boundary data as stated in Lemma 1. Since the basis {ui}m−1

i=0
needed to evaluate (9) is unknown, however, we need to use a dif-
ferent basis. The basic idea is to use states {u(0)i }

m−1
i=0 corresponding

to a given q(0) instead. It is tempting to directly replace ui in (9) by
u(0)i corresponding to a reference scattering potential q(0). However,
this will not work as it would yield ũ(x; ki) = u(0)i (x), see Remark 1.
Below, we discuss two alternatives.

1. Lanczos orthogonalization
The authors of Ref. 9 propose to use an orthogonalization

procedure as follows. They first apply the M-orthogonal Lanczos
procedure to M−1S, which yields matrices Q ∈ Cm×r and T ∈ Cr×r ,
where r ≤ m, satisfying

Q∗SQ = T, Q∗MQ = I.

AIP Advances 13, 065310 (2023); doi: 10.1063/5.0154182 13, 065310-2
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ALGORITHM 1. Overview of the two-step inversion procedure to estimate the states and scattering potential from boundary
data.

Input: reference q(0), data f , g at wavenumbers {ki}m−1
i=0 , regularisation parameters ((ϵ, α) or (ρ, α))

Output: reconstructed states {ũi}m−1
i=0 and scattering potential q̃.

Step 1: state estimation
Compute ROM-matrices M, S, B according to Lemma 1
Compute reference states {u(0)i }

m−1
i=0 corresponding to q(0).

Compute approximate states {ũi}m−1
i=0 at wavenumbers {ki}m−1

i=0 according to the LO or
DA procedures (outlined in sections 3.1.1, 3.1.2 resp.)
Step 2: estimating the scattering potential

Reconstruct the scattering potential q̃ according to the procedure outlined in Sec. 3.1.3

Remark 2. In practice, we replace M by M + ϵI for some ϵ > 0 to
ensure it is invertible and to stabilize the Lanczos procedure.

The ROM approximation of the state (9) can then be expressed
as

ũ(x; k) =
m−1

∑
i=0

cLO
i (k)vi(x), (11)

with the coefficients cLO(k) satisfying

(T − k2I − ıkQ∗BQ)cLO(k) = Q∗b(k), (12)

and where {vi}r−1
i=0 defined by

vj =
m−1

∑
i=0

Qijui,

is an orthogonal (w.r.t. the regular L2-inner product) basis for the
span of {ui}m−1

i=0 . Because we do not have access to the states {ui}m−1
i=0

in practice, we cannot form the orthogonal basis {vi}r−1
i=0 . Instead, we

replace it by {v(0)i }
r−1
i=0 , as

v
(0)
j =

m−1

∑
i=0

Q(0)ij u(0)i ,

where the states u(0)i are the solutions for a reference scattering
potential q(0) and Q(0) is obtained by applying the Lanczos procedure
to the corresponding system matrices. The resulting approximation
of the state is then given by

ũ LO(x; k) =
m−1

∑
i=0

cLO
i (k)v(0)i (x). (13)

2. Data assimilation
An alternative approach is inspired by Ref. 16 and sets up an

overdetermined system of equations, which ensures that the result-
ing estimate of the internal solution closely matches the data. We

FIG. 1. From left to right, the scattering potential q, the real (blue) and imaginary (red) part of the reflection data, f , and the real and imaginary part of the transmission
data, g.
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FIG. 2. Results using the true state to reconstruct the scattering potential. The
top row shows the (reconstructed) states (solid) used in the subsequent step to
estimate the scattering potential as well as the true states (dashed). In the second
row, we see the reconstructed scattering potential (solid) and the corresponding
data. The real part of the quantities is shown in blue, while the imaginary part is
shown in red.

directly define the approximated state in terms of the reference
solutions,

ũ DA(x; k) =
m−1

∑
i=0

cDA
i (k)u(0)i (x),

where the coefficients cDA(k) are obtained by solving the following
least-squares problem:

cDA(k) = arg min
c

XXXXXXXXXXXXXXXXXXXX

⎛
⎜⎜⎜⎜
⎝

S − k2M − ıkB

ρf(0)
T

ρg(0)
T

⎞
⎟⎟⎟⎟
⎠

c −
⎛
⎜⎜⎜⎜
⎝

b(k)
ρ f (k)
ρg(k)

⎞
⎟⎟⎟⎟
⎠

XXXXXXXXXXXXXXXXXXXX2

, (14)

FIG. 3. Results using the reference state to reconstruct the scattering potential
(i.e., the Born approximation). The top row shows the (reconstructed) states (solid)
used in the subsequent step to estimate the scattering potential as well as the true
states (dashed). In the second row, we see the reconstructed scattering potential
(solid) and the corresponding data. The real part of the quantities is shown in blue,
while the imaginary part is shown in red.

where ρ > 0 is a penalty parameter controlling the trade-off between
data-fit and model-fit. Note that we can readily setup this least-
squares problem for k ∈ {ki}m−1

i=0 since the required data f (ki),
g(ki) for the right-hand-side is measured. If we want to evalu-
ate this approximation for k ∉ {ki}m−1

i=0 , we need to interpolate the
data first.

For ρ = 0, we will obtain ũ DA(x; ki) = u(0)i (x), and this will
not yield any additional information on the true state. For
ρ > 0, the additional terms aim to ensure that ũ DA(0; k) ≈ f (k)
and ũ DA(1; k) ≈ g(k). This is a fundamental difference with the
Lanczos-based approach, where data-fit is not enforced at all.

B. Estimating the scattering potential
Using the weak formulation of the differential equation, we

obtain a Lippmann–Schwinger-type equation for the scattering
potential,

f (k) − f (0)(k) = − 1
2ık∫

1

0
u(0)(x; k)u(x; k)(q(x) − q0(x))dx.

(15)
Representing q in terms of a suitable basis and enforcing the equa-
tion for wavenumbers {ki}m−1

i=0 yields a system of equations. In
practice, we replace u by its approximation ũ and solve it in a
least-squares sense to obtain an estimate of the scattering potential,

min
q
∥Kq − (f − f(0))∥2

2 + α∥q∥2
2. (16)

Remark 3. Note that replacing u by ũ in (15) induces an error
in K. To explicitly account for this, a Total Least-Squares (TLS) for-
mulation (see e.g., Ref. 17 for its use in inverse scattering) might be
beneficial.

IV. NUMERICAL RESULTS
The inversion procedure consists of two steps: state estima-

tion and estimation of the scattering potential from the states. For

FIG. 4. Results using the LO approach on noiseless data. The top row shows the
(reconstructed) states (solid) used in the subsequent step to estimate the scat-
tering potential as well as the true states (dashed). In the second row, we see the
reconstructed scattering potential (solid) and the corresponding data. The real part
of the quantities is shown in blue, while the imaginary part is shown in red.
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FIG. 5. Results using the DA approach on noiseless data. The top row shows the
(reconstructed) states (solid) used in the subsequent step to estimate the scat-
tering potential as well as the true states (dashed). In the second row, we see the
reconstructed scattering potential (solid) and the corresponding data. The real part
of the quantities is shown in blue, while the imaginary part is shown in red.

the first step, we use either the Lanczos orthogonalization approach
(LO) with parameter ϵ or the data-assimilation approach (DA) with
parameter ρ. With the approximated states, the scattering potential
is then estimated by solving the regularized Lippmann–Schwinger
equation, with parameter α. This two-step algorithm is outlined
in Algorithm 1. Implementation of the described method is fairly
straightforward. The code used to produce these results is available
at https://github.com/ucsi-consortium/1DInverseScatteringROM.

A. Experimental settings
To illustrate the methods, we use the scattering potential

depicted in Fig. 1. The data are obtained by numerically solving the
Schrödinger equation for m = 10 equispaced wave numbers in the
interval (0,10).

B. Benchmark results
As a benchmark, we reconstruct the scattering potential using

the approach described in Sec. III B using the true states (as the ideal
setting) and the reference states for q(0)(x) = 0 (which corresponds
to the Born approximation). The results are shown in Figs. 2 and 3.
Even using the true states, we do not obtain a perfect reconstruc-
tion of the scattering potential due to the band-limited nature of
the data. Furthermore, the inferior result obtained using the Born
approximation underlines the need for non-linear inversion.

C. Noiseless data
Next, we present the results yielded by the (LO) and (DA)

methods for noise-free data in Figs. 4 and 5, respectively. We observe
that the DA method gives slightly more accurate reconstructions
of the states. The corresponding reconstructed scattering potentials
are slightly different, but there seems to be little difference in the
accuracy of the reconstructions.

D. Noisy data
In this subsection, we compare the methods on noisy data. In

particular, we add i.d.d. normally distributed noise to the data with
mean zero and variance σ2. The parameters ϵ, ρ, α are chosen to yield
the best approximation (as measured by the L2 error between the
reconstructions and the ground truth, averaged over 100 realizations
of the noise). The corresponding plots showing the dependence of
the error on the parameters are included in the Appendix. In Table I,
we summarize the results for varying σ. The corresponding plots are
shown in Fig. 6. As expected, the noise influences the reconstruction
of the state and consequently the reconstruction of the scattering
potential. Overall, we see that the DA method gives superior esti-
mates of the state. In terms of the scattering potential, there is no
significant difference between both methods, however, for moderate
noise levels, the DA method gives more stable results with a much
smaller variance in the error.

TABLE I. Comparison between the relative errors in reconstructed states and scattering potential for both methods. We report
the average and standard deviation over 100 realizations of the noise.

σ Method Parameters Error in u Error in q

10−6 LO(ϵ, α) (10−3, 10−3) 1.5 ⋅ 10−1 (1.6 ⋅ 10−3) 4.7 ⋅ 10−1 (3.2 ⋅ 10−3)
DA(ρ, α) (10−2, 10−4) 6.1 ⋅ 10−3 (1.4 ⋅ 10−5) 3.9 ⋅ 10−1 (2.3 ⋅ 10−3)

10−5 LO(ϵ, α) (10−2, 10−3) 1.5 ⋅ 10−1 (5.3 ⋅ 10−4) 4.6 ⋅ 10−1 (2.3 ⋅ 10−3)
DA(ρ, α) (10−1, 10−3) 6.1 ⋅ 10−3 (3.0 ⋅ 10−5) 4.5 ⋅ 10−1 (2.8 ⋅ 10−3)

10−4 LO(ϵ, α) (10−2, 10−2) 1.8 ⋅ 10−1 (1.5 ⋅ 10−1) 5.7 ⋅ 10−1 (1.4 ⋅ 10−1)
DA(ρ, α) (10−1, 10−2) 6.2 ⋅ 10−3 (3.4 ⋅ 10−4) 5.3 ⋅ 10−1 (3.2 ⋅ 10−3)

10−3 LO(ϵ, α) (10−1, 10−2) 2.1 ⋅ 10−1 (1.2 ⋅ 10−1) 6.2 ⋅ 10−1 (1.3 ⋅ 10−1)
DA(ρ, α) (100, 10−2) 6.4 ⋅ 10−3 (7.0 ⋅ 10−4) 6.0 ⋅ 10−1 (5.9 ⋅ 10−2)

10−2 LO(ϵ, α) (10−1, 10−1) 2.6 ⋅ 10−1 (7.1 ⋅ 10−1) 9.2 ⋅ 10−1 (9.4 ⋅ 10−2)
DA(ρ, α) (101, 10−1) 1.4 ⋅ 10−2 (4.4 ⋅ 10−3) 9.2 ⋅ 10−1 (9.0 ⋅ 10−2)
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FIG. 6. Results for the LO (left) and DA (right) methods for varying noise levels (σ = 10−6, 10−5, 10−4, 10−3, respectively, from top to bottom). The subplots follow the same
layout as the previous figures. Individual results for different realizations of the noise are superimposed to clearly show the variation.
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V. DISCUSSION AND CONCLUSION
We treat the inverse problem of retrieving the scattering poten-

tial in a 1D Schrödinger equation from boundary data. To do this,
we propose a two-step approach inspired by a previously published
ROM-based method. We extend this method, previously applied to
1D diffusion problems with Neumann boundary conditions, to the
1D Schrödinger equation with impedance boundary conditions. In
particular, we presented explicit expressions for retrieving the ROM
matrices from boundary data and proposed a novel approach for
approximating the state from these matrices. This approach, based
on ideas from data assimilation, is an alternative to the previously
proposed method based on Lanczos orthogonalization. Given the
estimates of the states, the scattering potential is obtained by solving
an integral equation.

We compared the two approaches numerically on a simulated
example with varying noise levels. These experiments suggest that
the data-assimilation approach for estimating the state is more accu-
rate and stable and leads to a more stable estimate of the scattering
potential for moderate noise levels.

This work is the first step toward extending the ROM-
based approach to frequency-domain wave-like problems (e.g., the
Helmholtz equation) and 2D/3D. Our numerical experiments are
idealized as we have allowed ourselves to compute the optimal
values of the required regularization parameters. In practice, one
would need to resort to one of the many available parameter esti-
mation methods (e.g., the L-curve method, discrepancy principle,
or cross validation). It is not clear if the observed benefits of
the DA method remain if the parameters are not carefully tuned.
Other open questions for further research include the approxima-
tion error, stability estimates, and more practical aspects such as
an iterative approach where the reference potential is iteratively
updated.
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APPENDIX A: PROOFS

Proof of Lemma 1. From the weak form, we find

Sij − k2
j Mij − ıkjBij = −2ıkjfi

and

Sji − k2
i Mji − ıkiBji = −2ıkif j ,

from which (by taking the conjugate transpose and using the fact
that the matrices involved are Hermitian)

Sij − k2
i Mij + ıkiBij = 2ıki f j.

Combining these yields

(k2
i − k2

j )Mij − ı(ki + kj)Bij = −2ı(ki f j + kjfi)

and

(k2
i − k2

j )Sij − ı(k2
j ki + k2

i kj)Bij = −2ı(k2
j ki f j + k2

i kjfi),

from which, we can compute Mij and Sij,

Mij = ı(
Bij

ki − kj
− 2

ki f j + kjfi

k2
i − k2

j
),

Sij = ı
⎛
⎝

kikjBij

ki − kj
− 2

k2
j ki f j + k2

i kjfi

k2
i − k2

j

⎞
⎠

.

For the diagonal elements, we need to take a limit of the above
two relations. We first compute the diagonal elements of M. We set
λ = k2

j and k2
i = λ + h. We also define f (kj) = ϕ(λ) = ϕ1 + ıϕ2 and

ϕ(λ + h) = ϕh
1 + ıϕh

2 and, similarly, γ(λ) = g(kj). Since I(Mjj) = 0,
we obtain

Mjj = lim
h→0
{−2
√

λϕh
2 −
√

λ + hϕ2

h

− γ2γh
1 − γ1γh

2 + ϕ2ϕh
1 − ϕ1ϕh

2√
λ + h −

√
λ

⎫⎪⎪⎬⎪⎪⎭

= −2(
√

λ
dϕ2

dλ
(λ) − 1

2
λ−1/2ϕ2(λ)) − γ2(λ)2

√
λ

dγ1

dλ
(λ)

+ γ1(λ)2
√

λ
dγ2(λ)

dλ
− ϕ2(λ)2

√
λ

dϕ1

dλ
(λ)

+ ϕ1(λ)2
√

λ
dϕ2(λ)

dλ
. (A1)

The product rule gives that dϕ
dλ =

df
dk

dk
dk2 = f ′(k)(2k)−1 similarly for

γ. Combining gives

Mjj = {−2(k
1

2k
I( f ′) − 1

2k
I( f )) − I(g)2k

1
2k
R(g) +R(g)2k

× 1
2k
I(g) − I( f )2k

1
2k
R( f ) +R( f )2k

1
2k
I( f )}∣

k=kj

,
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FIG. 7. Average error for both meth-
ods (LO, left and DA, right) for various
noise levels (0, 10−6, 10−5, 10−4, 10−3,
respectively, from top to bottom).
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which gives

Mjj = R( f j)I( f ′j ) − I( f j)R( f ′j ) +R(g j)I(g′j)
− I(g j)R(g′j) − I( f ′j ) + I( f j)/kj.

We obtain similarly the relation for the diagonal of S. ◻

APPENDIX B: REGULARIZATION PARAMETER
SELECTION

The LO and DA methods both have two regularization para-
meters that regularize the problem. For the current experiments,
these parameters are chosen to minimize the expected reconstruc-
tion error for the given noise level. We approximate the expected
error by averaging the error over 100 realizations of the noise. The
plots corresponding to the results presented in Table I and Figs. 4–6
are shown in Fig. 7.

Obviously, this procedure can only be applied if the ground
truth is known and is chosen here to provide a best-case com-
parison of the methods. In practice, one would result to data-
driven or heuristic methods, such as the discrepancy principle, the
L-curve method, or generalized cross validation,18 to select appro-
priate values for the parameters.
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