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Multifractal properties of tribonacci chains

J. P. J. Krebbekx,1,2 A. Moustaj,1 K. Dajani ,2 and C. Morais Smith1

1Institute of Theoretical Physics, Utrecht University, 3584 CS Utrecht, the Netherlands
2Mathematical Institute, Utrecht University, 3584 CS Utrecht, the Netherlands

(Received 11 May 2023; accepted 18 August 2023; published 13 September 2023)

We introduce two one-dimensional tight-binding models based on the tribonacci substitution—the hopping
and on-site tribonacci chains—which generalize the Fibonacci chain. For both hopping and on-site models, a
perturbative real-space renormalization procedure is developed. We show that the two models are equivalent at
the fixed point of the renormalization-group flow, and that the renormalization procedure naturally gives the local
resonator modes. Additionally, the Rauzy fractal, inherent to the tribonacci substitution, is shown to serve as the
analog of conumbering for the tribonacci chain. The renormalization procedure is used to repeatedly subdivide
the Rauzy fractal into copies of itself, which can be used to describe the eigenstates in terms of local resonator
modes. Finally, the multifractal dimensions of the energy spectrum and eigenstates of the hopping tribonacci
chain are computed, from which it can be concluded that the tribonacci chains are critical.
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I. INTRODUCTION

The description of electrons in solids using Bloch’s the-
orem has allowed for a profound understanding of the
electronic band structure of regular crystalline materials [1].
The discovery of quasicrystals [2], aperiodic structures that
break translational symmetry, has pushed the field forward.
The Penrose tilings [3] or the aperiodic monotile discovered
recently by Smith et al. [4] are some of the typical exam-
ples that have fascinated physicists and mathematicians for
years. Quasicrystalline lattices have also been experimentally
realized using different quantum-simulator platforms, such as
ultracold atoms [5] or photonics [6].

The advent of topological insulators has reiterated the im-
portance of periodicity in solids because translation invariance
is at the core of the topological classification of these materials
[7–9]. It remains an open question how the notion of topology
translates to aperiodic structures such as quasicrystals, where
translation invariance is often replaced by scale invariance
[10]. The topological aspects of quasicrystals have recently
been investigated [10–14], but methods are often tailored to
each model, and a general framework to study topology in
these systems is lacking.

Arguably the most investigated quasicrystal is the
Fibonacci chain [15], a one-dimensional model based on the
Su-Schrieffer-Heeger (SSH) model [16]. The latter is a tight-
binding model in which alternating weak and strong hopping
parameters lead to a topological or trivial phase, depending on
whether the last bond in the chain corresponds to a weak or
strong hopping, respectively. The Fibonacci chain is a natural
extension of the SSH model to the aperiodic domain [17], in
which the weak and strong hopping parameters are distributed
according to a Fibonacci word. This one-dimensional (1D)
tight-binding chain hosts many interesting properties, such
as a multifractal energy spectrum and eigenstates [18–20].
In addition, it was shown to be equivalent to the Harper
model [21], from which it inherits its topological properties. In

particular, a description of the system in terms of conumbers
[22] has revealed hidden symmetries in Hilbert space and
allowed for a systematic prediction of the influence of random
disorder based on a renormalization-group (RG) scheme [17].
The interpretation of the system in terms of local symmetries
has also led to a more profound understanding of its physical
properties [23].

In this paper, we go beyond the realm of dimerized mod-
els, such as the SSH and Fibonacci chain, and introduce a
quantum chain based on the tribonacci substitution. Two tight-
binding chains, the hopping tribonacci chain (HTC) and the
on-site tribonacci chain (OTC), are defined analogously to
the Fibonacci chain. These chains are closely linked to the
Rauzy fractal, a well-known compact domain with fractal
boundary [24]. An RG scheme for the HTC and OTC is
developed along the lines proposed by Niu and Nori [17].
This allows for the same interpretation of the spectrum as
a multifractal set as for the Fibonacci chain [18]. The RG
scheme is also used to render the HTC and OTC equivalent
at the RG fixed point. We show how the Rauzy fractal orders
the lattice points according to their local environment, in
analogy with the conumbering scheme. Furthermore, the RG
procedure provides a natural way to enumerate all structures
in the local resonator mode (LRM) framework [23]. Finally,
we compute the multifractal dimensions of the energy spec-
trum and eigenstates of the HTC, and we compare them with
the Fibonacci chain. From these results, it can be concluded
that the tribonacci chains are critical in terms of Anderson
localization.

The paper is structured as follows. In Sec. II we introduce
the HTC, the OTC, and all elements that are needed to define
the model, such as the tribonacci word and the Rauzy fractal.
Section III is devoted to the RG scheme for the HTC and OTC,
and how the two models can be considered equivalent in the
infinite RG limit. In Sec. IV, the Rauzy fractal is proposed as
the analog of conumbering for the HTC and OTC. Multifractal
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properties of the spectrum and eigenstates of the HTC are
computed in Sec. V and compared to the Fibonacci chain.
Finally, the conclusion and outlook are presented in Sec. VI.

II. THE MODEL

In this section, we introduce the elements needed to define
the tribonacci chain. The main element is the tribonacci word,
which determines the quasiperiodic modulation in the tight-
binding chains.

A. The tribonacci word

1. The tribonacci sequence

Analogous to the Fibonacci sequence, one can define the
tribonacci sequence recursively as

TN+1 = TN + TN−1 + TN−2, (1)

with initial values T−2 = 0, T−1 = T0 = 1. The tribonacci
constant β, the analog of the golden ratio, is obtained as the
limit

β = lim
N→∞

TN+1

TN
≈ 1.8392 . . . , (2)

which is also the unique real root of the polynomial

P(x) = x3 − x2 − x − 1. (3)

The other two roots ω, ω̄ are complex and satisfy |ω| < 1.

2. The tribonacci substitution

The tribonacci substitution is the substitution ρ on the
alphabet A = {0, 1, 2} that reads

ρ :

⎧⎨
⎩

0 �→ 01,

1 �→ 02,

2 �→ 0.

(4)

The tribonacci word is obtained by repeatedly applying ρ

to the seed W0 = 0. The resulting word after N applications
WN := ρN (W0) is called the N th tribonacci approximant. The
tribonacci word is the limit W := limN→∞ WN . The first few
approximants read

W0 = 0,

W1 = 01,

W2 = 0102,

W3 = 0102010,

W4 = 0102010010201.

An alternative way to generate the tribonacci word is by con-
catenating the previous three approximants

WN+1 = WNWN−1WN−2, (5)

which is reminiscent of Eq. (1). Therefore, the tribonacci
constant is equivalently obtained by the limit

β = lim
N→∞

|WN+1|
|WN | ,

where | · | denotes the length of the word.

FIG. 1. A Rauzy fractal with T14 = 5768 points. Each region
corresponds to a symbol: red (0), green (1), and blue (2).

Another important tool when dealing with any substitution
ρ is the incidence matrix M = [mi j], where mi j = |ρ( j)|i, and
|w|k denotes the number of occurrences of the letter k in the
word w. The incidence matrix is used in the relation

N(N+1) = M · N(N ),

where N(N ) := (|WN |0, |WN |1, |WN |2)T is the vector that
counts how often each letter occurs in the approximant WN .
If M has precisely one eigenvalue λ with |λ| > 1 and all other
eigenvalues have modulus strictly less than 1, the substitution
is called Pisot. The incidence matrix for the tribonacci substi-
tution and its characteristic polynomial read

M =
⎛
⎝1 1 1

1 0 0
0 1 0

⎞
⎠, det(λI − M) = λ3 − λ2 − λ − 1,

(6)

which is identical to the tribonacci polynomial Eq. (3). Hence,
it is immediate that the tribonacci substitution is Pisot. The
eigenvalues are λ = β > 1 and λ = ω, ω̄, where |ω| < 1.

One can also define the bi-infinite tribonacci word W |W
in a consistent way (see Chap. 4 of Ref. [25]). Take the seed
ρ−1(0)|0 = 2|0 and apply σ = ρ3 infinitely often to the seed.
This results in the approximants W3N−1|W3N and the limit

W |W := lim
N→∞

W3N−1|W3N = · · · w−2w−1|w0w1 · · · . (7)

3. The Rauzy fractal

In 1982, Rauzy used the tribonacci substitution to define a
2D compact domain with fractal boundary, called the Rauzy
fractal [24] (see Fig. 1). The Rauzy fractal is obtained as a
subset of C via the valuation map. Let [W ]m denote the first m
letters of the tribonacci word and take the left eigenvector v =
(v0, v1, v2) of M in Eq. (6), corresponding to the eigenvalue
ω. Then, the mth point in the Rauzy fractal is given by

zm = E ([W ]m) =
∑

i∈{0,1,2}
|[W ]m|ivi ∈ C, (8)

where E is the valuation map and m � 0. Enumerating the
letters of W = w0w1w2 · · · , each point can be assigned a color
defined by the wm ∈ {0, 1, 2}, the (m + 1)th letter [26]. The
Rauzy fractal is the compact set R = {zm | m � 0}.
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Another way to obtain Fig. 1 is by starting at the origin
in R3, and for each letter in W , taking a unit step in the
x-, y-, or z-direction if the letter is 0, 1, or 2, respectively
[27]. This will create a staircase in R3 in the direction of
vβ = (β2, β, 1)T , which spans the expanding eigenspace L
of Eq. (6). Denote πint the projection along vβ onto the 2D
contracting eigenspace. Then, the mth point for m � 0 is
given by

xm = πint

m−1∑
i=0

ewi ∈ R2, (9)

where ei are the canonical basis vectors of R3. The Rauzy
fractal is the compact set R′ = {xm | m � 0}, which is not
precisely R, but related by an affine transformation (see
Appendix A for details of this transformation).

4. Cut-and-project sets

Bearing the Rauzy fractal R′ in mind, one can view the tri-
bonacci word as a quasicrystal. Consider again the tribonacci
staircase, which are the points ym = ∑m−1

i−0 ewi . Using the
bi-infinite word W |W , the staircase can also be defined for
m < 0 by ym = ∑−1

i=m ewi . From the bi-infinite staircase, one
can construct a 1D tribonacci quasicrystal

�trib = {πym | m ∈ Z} (10)

by projecting all staircase points along the stable eigenspace
onto the line spanned by vβ , where this projection is
denoted π .

One can see that �trib is a cut-and-project set in the follow-
ing sense. Take a cubic lattice in R3 and trace out a volume
by sliding the set R′, the acceptance set of the cut-and-project
scheme, along the space L. Note that all lattice points lying
in the traced out volume are exactly the staircase points ym,
which constitute �trib upon projecting onto L. A key result
is that any cut-and-project set has a point diffraction pattern
[25], which leads to the conclusion that the aperiodic lattice
�trib is a quasicrystal.

Finally, we would like to point out that there exists a
quasiperiodic 2D tiling, the Rauzy tiling, which is based on
the tribonacci numbers and is cut-and-project set from a 3D
space [28]. Several physical properties of tight-binding mod-
els on these lattices have been studied [29,30], in particular the
effect of a magnetic field [11,12,31]. The generalized Rauzy
tiling extends this construction to arbitrary dimension, and
this family of tilings can be viewed as a generalization of the
Fibonacci chain [28].

5. Recurrence properties

Another key property of the tribonacci W word is its self-
similarity [32]. Take any finite string s = s1 · · · sN of length N
that occurs somewhere in W . We say that s occurs at position
i in W if s1 · · · sN = wi · · · wi+N . Let i1, i2, . . . denote the
places where s occurs in W . Then, the words r j = wi j · · · wi j+1

between occurrences of s have useful properties. First, for
any choice s, the word r j ∈ {r (0), r (1), r (2)} takes one of three
values. Second, if we label r (i) such that r (0) occurs most
often, r (1) second most often, and r (2) least often, then the map

κ : r (i) �→ i maps the string r1r2 · · · back to W . In other words,

κ (r1)κ (r2) · · · = W, (11)

where ri are the words between subsequent occurrences of s in
W . This also works if s occurs in a tribonacci approximant WN .
By applying periodic boundary conditions when determining
r j , the map κ results in

κ (r1)κ (r2) · · · = WN−k, (12)

where k depends on the choice of s. Equations (11) and (12)
are the foundation of the perturbative RG scheme in Sec. III.
Proving Eqs. (11) and (12) for any word s is done in Ref. [32]
by Berté et al., but their result relies on an involved proof.
Here, we provide an explicit proof of the case s = 1, which is
applied to the tribonacci chain in Sec. III A 1.

For the infinite case, given by Eq. (11), consider w1
0 =

ρ2(0) = 0102, w1
1 = ρ2(1) = 010, and w1

2 = ρ2(2) = 01. To
study all possible words between occurrences of 1 in W , it is
sufficient to study w1

i 01 = 01x1 for i = 0, 1, 2 since ρ2(W ) =
W and each w1

i starts with 01. One can see that x can only read
r (0) = 020, r (1) = 00, or r (2) = 0. This proves that there are
exactly three possible words between 1’s in W .

To see that the words r (i) occur in a tribonacci sequence,
we define the map κ : r (i) �→ i ∈ A3. From the above, we saw
that under ρ2, any i ∈ A3 in W that is mapped to w1

i , leads to
the occurrence of the word r (i). Therefore, by mapping all r (i)

in W back to A3 using κ , we recover W exactly.
Now we discuss the finite case, given by Eq. (12). Note

that for N > 0, the finite tribonacci word reads WN = 01 · · · ,
and we need N > 1 for N − 2 � 0. From the proof of the
infinite case above, we know that for each i ∈ A3 in WN−2,
the word r (i) is completed by appending any next word w1

j to
ρ2(i), since any word reads w1

j = 01 · · · . Therefore, to form
all words r (i) corresponding to symbols i in WN−2, one needs
to append 01 to WN to complete the last r (i), which is the
same as taking periodic boundary conditions, i.e., attaching
the beginning and end of WN to form a ring. By doing this,
one obtains exactly WN−2 by counting words r (i) between
1’s in WN , using periodic boundary conditions, and mapping
κ : r (i) �→ i.

We would like to emphasize that there are other quantum
chains based on three-letter substitutions that are Pisot with
the same dominant λ = β. One such example is the system
studied by Ali et al. [33]. This is fundamentally different from
our work, since in their case there is not a natural RG scheme
and our connection to the Rauzy fractal is entirely new.

B. Tribonacci tight-binding models

The definition of the tribonacci chain, with aperiodic hop-
ping and on-site energy, generalizes the work by Niu and Nori
[17] on the Fibonacci chain to the HTC and OTC.

1. Hopping model

The infinite HTC is defined as a 1D tight-binding chain
with no on-site potentials and hopping parameters that are
modulated according to the tribonacci word W |W . The
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Hamiltonian reads

H =
∑
n∈Z

twn |n + 1〉 〈n| + H.c., (13)

where wn ∈ {0, 1, 2} are the letters of W |W in Eq. (7) and
the model is parametrized by one parameter ρ ∈ [0, 1] as
t0/t1 = t1/t2 = ρ. Note that Eq. (13) possesses chiral symme-
try 
H
 = −H , where 
2 = 1 and


 =
∑
n∈Z

|2n〉 〈2n| −
∑
n∈Z

|2n + 1〉 〈2n + 1| .

A direct consequence of chiral symmetry is a symmetric spec-
trum around E = 0. The model is studied in the regime where
ρ 
 1, i.e., 0 < t0 
 t1 
 t2, such that there is a hierarchy of
bond strengths, analogous to Ref. [17].

2. On-site model

The OTC is defined by the Hamiltonian

H =
∑
n∈Z

εwn |n〉 〈n| − t
∑
n∈Z

|n + 1〉 〈n| + H.c., (14)

where now the hopping parameters t are constant, and the
on-site potential εi is modulated according to the tribonacci
word W |W . This model is generally parametrized by two pa-
rameters, c1 = (ε1 − ε0)/t and c2 = (ε2 − ε0)/t . Analogous
to Ref. [17], we demand |c1|, |c2|, |c2 − c1| � 1, which phys-
ically means that the on-site potentials dominate and are
weakly coupled. One particular choice is c1 = c2/2 = c � 1,
which will be used when comparing to the HTC.

III. PERTURBATIVE RENORMALIZATION OF THE
TRIBONACCI CHAIN

We now present the perturbative RG scheme for the HTC
and OTC. The scheme is possible due to the self-similar recur-
rence properties of the tribonacci word (see Sec. II A 5), and it
is analogous to the RG of the Fibonacci chain proposed by Niu
and Nori [17] (see the review by Jagannathan [15] for more
details on the Fibonacci chain). The RG schemes presented
here only work for infinite chains or finite chains with periodic
boundary conditions. This is a direct consequence of the fact
that periodic boundary conditions are required for the RG of
finite tribonacci words.

A. Renormalization scheme

1. Hopping model

For the RG scheme, it is convenient to consider the N th
HTC approximant

HN =
TN −1∑
n=0

twn |n + 1 mod TN 〉 〈n| + H.c., (15)

where periodic boundary conditions are enforced. Further-
more, the Hamiltonian is split up in two parts,

HN = H0,N + H1,N , (16)

where H1,N contains only the terms with a t0 hopping, such
that H0,N can be regarded as the unperturbed Hamiltonian.
Note that H0,N has only five highly degenerate energy levels

FIG. 2. The energy spectrum of the HTC Eq. (15) with ρ =
0.2 and T13 = 3136 sites. The five main bands are located around
E = 0, ±t1,±t2. The inset shows a zoom-in on the top band, which
exhibits a similar spectrum, but with seemingly different t0, t1.

E = 0,±t1,±t2. The E = 0 states are the atoms, which are
isolated sites, corresponding to 00 in W . Type-1 molecules
are the E = ±t1 states, corresponding to 010 in W . These are
isolated dimers consisting of two neighboring sites, coupled
by a t1 bond, which can either bond or antibond. Similarly, the
E = ±t2 states correspond to 020 in W , and they are called
type-2 molecules.

Upon setting t0 nonzero, the atoms/molecules start to in-
teract. If one considers one type of atom or molecule as a
lattice site, one can compute the effective coupling between
subsequent sites using Brillouin-Wigner perturbation theory.
Figure 2 depicts the spectrum of Eq. (15), where one can see
five branches around E = 0,±t1,±t2 that would become fully
degenerate upon setting t0 = 0.

Now, we explain the simplest case, the type-1 molecule,
in detail. The procedure for the other bonds is exactly the
same, but with longer computations. Consider the tribonacci
approximant

W6 =01
r1

0201
r2

001
r3

020
r4

101
r5

0201
r6

001
r7

0201
r8

0201
r9

001
r10

020
r11

101
r12

0201
r13

0.

(17)

The first step is to tabulate all words ri occurring between 1’s
in W6, starting after the first occurrence of 1, and considering
periodic boundary conditions. The possibilities are 020, 00,
and 0, which occur 7, 4, and 2 times, respectively. Therefore,

{r} = {r1 = r (0), r2 = r (1), r3 = r (0), . . . , r13 = r (1)},
r (0) = 020, r (1) = 00, r (2) = 0. (18)

Finally, upon applying the map κ : r (i) �→ i, the tribonacci
approximant W4 is obtained as

W4 = κ (r1)κ (r2) · · · κ (r13) = 0102010010201, (19)

which has k = 2 in Eq. (12). The procedure in Eqs. (17), (18),
and (19), which is the s = 1 case, can be carried out for any s.
This is done for s = 0, 1, 2, 00 in Table I.

The procedure outlined in Eqs. (17), (18), and (19) is ap-
plied to the HTC Hamiltonian in Eq. (15) as follows. Consider
the approximant in Fig. 3. Each dimer of two sites coupled by
t1 is considered a lattice site in the renormalized chain, on
which an (anti)bonding state |±〉i can sit. Using perturbation
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TABLE I. For WN and particular strings s = 0, 1, 2, 00, the oc-
currences between s can be one of r (i), and map to WN−k under the
map κ : r (i) �→ i, i = 0, 1, 2.

s r (0) r (1) r (2) maps WN to

0 1 2 ∅ WN−1

1 020 00 0 WN−2

2 010010 01010 010 WN−3

00 10201010201 102010201 10201 WN−4

theory, the effective coupling between neighboring sites,

t ′
i = 〈±|i H1,N |±〉i+1 ,

is computed. The perturbation theory framework is explained
in Appendix B for the chain shown in Fig. 3. The com-
putations and results for the hopping and on-site chain are
presented in Appendixes B 1 and B 2, respectively.

The main result of the RG scheme can now be stated.
Denote H (p,q)

N given by Eq. (15) with t0/t1 = ρ p, t1/t2 = ρq,
where p, q ∈ [0,∞). Setting t0 = 0, the HTC Hamiltonian
H0,N has TN−3, TN−2, TN−4, TN−2, and TN−3 states with E =
−t2, E = −t1, E = 0, E = t1, and E = t2, respectively. To
each of these five energies, we associate an atomic (s = 00),
bonding, or antibonding chain (s = 1, 2). The result of the
perturbative calculation (see Appendix B 1) is

H (p,q)
N ≈ (

z2H (p+q,p+2q)
N−3 −t2

) ⊕ (
z1H (q,p)

N−2 −t1
) ⊕ (

z0H (p,2p+q)
N−4

)
× ⊕(

z1H (q,p)
N−2 + t1

) ⊕ (
z2H (p+q,p+2q)

N−3 + t2
)
, (20)

where the parameters read z0 = ρ4p+2q, z1 = ρ p+q/2, and
z2 = ρ2p+3q/2. The computation of the parameters zi and
the p, q exponents in each of the five blocks is identical to
Ref. [17], and is repeated in detail in Appendix B 1. The
HTC in Eq. (15) realizes the case p = q = 1. From the result
Eq. (20), it is clear that the spectrum consists not simply of
scaled and shifted versions of itself, but rather related spectra
of chains with various p, q values. Since one can identify each
of the five quasibands in Fig. 2 to a block in Eq. (20), the
spectrum can be interpreted as a multifractal set as Zheng [18]
did for the Fibonacci chain.

The words r (i) in Table I are longer than those in the RG
scheme for the Fibonacci chain, which requires higher orders
of perturbation theory to yield a nonzero result. This has the

FIG. 3. The third approximant HTC, with Hamiltonian H3 [see
Eq. (15)] and periodic boundary conditions. The single line denotes
a t0 bond, the double line a t1 bond, and the triple line a t2 bond. The
chain is renormalized by considering the type-1 molecules as the new
lattice sites, and the chain between these molecules as the new bonds,
which are t ′

0, t ′
1. The figure is inspired by Ref. [17].

FIG. 4. The energy spectrum of the OTC Eq. (21) with c = 5 and
T13 = 3136 sites. The three main bands sit around E/t = 0, c, 2c.
The inset shows that the main bands further split up like HTC
Hamiltonians with certain p, q values.

advantage that the error made in the approximate RG Eq. (20)
is smaller than the RG scheme for the Fibonacci chain.

2. On-site model

The N th approximant of the OTC is defined as

Ho
N =

TN −1∑
n=0

εwn |n〉 〈n| − t (|n + 1 mod TN 〉 〈n| + H.c.), (21)

where periodic boundary conditions are enforced. When
writing

Ho
N = Ho

0,N + Ho
1,N , (22)

the part Ho
1,N consists of all t bonds and Ho

0,N consists of
only the on-site energies. At t = 0, the chain consists of
TN−1, TN−2, and TN−3 isolated sites with energy E = 0, ε1, ε2,
respectively. When t is nonzero, the degeneracy is lifted and
the spectrum consists of three bands, as depicted in Fig. 4.

The analysis in Sec. III A 1 can be immediately carried over
to the three atomic chains of the on-site model, to approximate
each of the three bands as a general HTC H (p,q)

N−k . For a general
OTC parametrized by c1 and c2, the result of the perturbation
theory (see Appendix B 1) reads

Ho
N ≈(

z0H (p0,q0 )
N−1 +ε0

) ⊕ (
z1H (p1,q1 )

N−2 + ε1
) ⊕ (

z2H (p2,q2 )
N−3 +ε2

)
,

(23)

where z0 = t, z1 = t/c1, z2 = t/[c2
2(c2 − c1)], and pi =

log ai/ log ρ, qi = log bi/ log ρ for i = 0, 1, 2, where ai, bi

are given later in Table III.
As a final remark, by the recurrence property Eq. (11) of

the infinite word W , the approximations Eqs. (20) and (23) are
also valid in the infinite limit, where the subscripts N, N − k
are dropped.

B. Hopping and on-site equivalence

The RG scheme of the HTC Eq. (20) can be repeatedly ap-
plied to the five HTC Hamiltonians in the direct sum. For the
OTC, the same is true after one application of the RG Eq. (23).
Considering the infinite HTC and OTC, the Hamiltonian after
m applications of the RG is described by 5m and 3 × 5m−1

pairs of p, q values, respectively. We will show that the HTC
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TABLE II. Renormalized couplings for the HTC.

E0 t ′
0 c0(p, q) t ′

1 c1(p, q) t ′
2 c2(p, q) = zi |t ′

0/t ′
1| |t ′

1/t ′
2|

0
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0

t4
1 t2

2
ρ6p+2q − t6

0
t3
1 t2

2
ρ6p+2q − t4

0
t2
1 t2

ρ4p+2q ρ p ρ2p+q

±t1 ∓ t2
0 t2

2(t2
2 −t2

1 )
ρ p+q/2

t2
0

2t1
ρ2p/2 ± t0

2 ρ p+q/2 ρq ρ p

±t2
t4
0 t2

1
2t2 (t2

1 −t2
2 )2 ρ3p+5q/2 ± t3

0 t2
1

2(t2
1 −t2

2 )2 ρ3p+4q/2 ± t2
0 t1

2(t2
2 −t2

1 )
ρ2p+3q/2 ρ p+q ρ p+2q

and OTC are equivalent, in the sense that for both models,
the fraction of p, q values that escape to infinity tends to 1 as
m → ∞.

For the HTC, define Im = {pi, qi | i = 1, . . . , 5m}, the set
of p, q values in the direct sum after m RG applications.
Define the probability measure on the measurable space
(Im, 2Im ) as

μm(A) := |A|/|Im|, (24)

where 2Im denotes the powerset, A ⊂ Im, and | · | denotes the
cardinality of the set. To study the divergence of p, q values,
define the set of values smaller than m as

Jm := {x ∈ Im | x � m}. (25)

For the OTC, all objects Io
m, Jo

m, μo
m are similarly defined.

The mathematical statement of the equivalence, as proven
in Appendix C, reads

lim
m→∞ μm(Jm) = lim

m→∞ μo
m

(
Jo

m

) = 0. (26)

This proves that for both the HTC and OTC, the set of p and
q values that remain finite can be at most a set of measure
zero. This means that both the HTC and OTC are described
by an infinite direct sum of H (p,q) Hamiltonians with p = q =
∞, which are tribonacci chains where only the t2 bonds are
nonzero.

The similarity discussed in this work is a different notion
of similarity than Niu and Nori [17] proved for the Fibonacci
chain. In their case, all values would read p = 1 and q = 1 in
Eqs. (20) and (23). Since the Fibonacci chain perturbatively
renormalizes to exact scaled copies of itself, it can be viewed
as a critical model. The tribonacci chains renormalize pertur-
batively to different kinds of HTCs, viz. HTCs with p �= 1
and/or q �= 1. The limit of the RG procedure for the HTC
yields infinitely many copies of the HTC with p = q = ∞,
which is quite different from the original model where p =
q = 1. In this way, the HTC and OTC can be viewed as less
critical than the Fibonacci chain. Regardless of this fact, in
Sec. V it will be shown that the eigenstates of the HTC are
critical.

IV. EIGENSTATES ON THE RAUZY FRACTAL

Considering the Hamiltonian HN in Eq. (15) [or Eq. (21)],
the Schrödinger equation HN |ψ〉i = Ei |ψ〉i will have TN so-
lutions labeled by i = 0, . . . , TN − 1. Each eigenstate has the
form |ψ〉i = ∑TN −1

n=0 ψi(n) |n〉, where ψi(n) ∈ C. The eigen-
state |ψ〉i can be plotted on the Rauzy fractal by identifying
each point xn in Eq. (9) with the probability |ψi(n)|2, which
determines the size of a black triangle at that point.

A. Hopping model

When associating HTC lattice points |n〉 with Rauzy fractal
points xn, one has to apply a different coloring of the Rauzy
fractal. Each site has no on-site energy, and can have the
following local environments:

(i) Red: 01 (t0 on the left and t1 on the right) or 10.
(ii) Green: 02 or 20.
(iii) Blue: 00.
The eigenstate |ψ〉0 of the HTC H13 is plotted on the

Rauzy fractal in Fig. 5(a). Since the energy E0 comes from
the bottom branch of the spectrum in Fig. 2, it should be a
state that antibonds on sites connected with t2 bonds. This is
precisely reflected by the plot on the Rauzy fractal in Fig. 5(a),
since the eigenstate is mainly localized in the green region,
corresponding to a site neighboring a t2 bond. Generally, a
state from branch 1 (or 2,3,4,5), in this case from the lowest
set of eigenvalues at E = −t2 in Fig. 2, is primarily localized
in the green (or red, blue, red, green) region(s) in Fig. 5(a) (see
Appendix D for more examples). Finally, for any HN , each
red, green, and blue region contains exactly TN−2, TN−3, and
TN−4 points, matching the amount of points in each branch of
the spectrum.

For each local structure, there are again exactly five distinct
environments around that structure. For example, the environ-
ment of 01 or 10 is always x010y, where xy = 02, 20, 21, 12,
or 22. It turns out that these correspond exactly to the local
structures 01,10,02,20,00 of the type-1 molecular chain. The
subdivisions of the Rauzy fractal are carried out in Fig. 5(b).

We have shown that if one is interested in all possible
environments of a lattice site, it is enough to consider only
the nearest-neighbor environments and the RG scheme. Using

TABLE III. Effective hopping parameters for the OTC.

E0 t ′
0 t ′

1 t ′
2 ai = |t ′

0/t ′
1| bi = |t ′

1/t ′
2|

ε0 t2/(ε0 − ε1) t2/(ε0 − ε2) t |c2/c1| 1/|c2|
ε1 t4/(ε1 − ε0)2(ε1 − ε2) t3/(ε1 − ε0 )2 t2/(ε1 − ε0 ) 1/|c2 − c1| 1/|c1|
ε2 t7/(ε2 − ε0 )4(ε2 − ε1)2 t6/(ε2 − ε0 )3(ε2 − ε1)2 t4/(ε2 − ε0)2(ε2 − ε1) 1/|c2| 1/|c2(c2 − c1)|
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(a) (c)

(b) (d)

FIG. 5. The eigenstate |ψ〉0 on the Rauzy fractal of T13 = 3136 points. The regions are colored according to the local environment of a
lattice site n in the HTC (or OTC), and the length of the black triangles is proportional to |ψ0(n)|2. (a) |ψ〉0 of the HTC H13 with coupling
ρ = 0.2 and coloring according to nearest-neighbor bonds. (b) |ψ〉0 of the HTC H13 with coupling ρ = 0.2 and coloring according to the five
possible environments of the local structures in (a). (c) |ψ〉0 of the OTC Ho

13 with coupling c = 5 and coloring according the on-site potential
of a lattice site. (d) |ψ〉0 of the OTC Ho

13 with coupling c = 5 and coloring according to the five possible environments of the lattice sites in (c).

the RG scheme, next variations on the nearest-neighbor en-
vironments of a lattice site are given by the nearest-neighbor
environments of the renormalized chain to which that lattice
site belongs.

B. On-site model

When plotting the eigenstates of the OTC onto the Rauzy
fractal, the original coloring can be used, since each lattice
site |n〉 corresponds to some εwn . The state with index i = 0 is
plotted on the Rauzy fractal in Fig. 5(c). Since E0 comes from
the bottom branch of the spectrum in Fig. 4, the eigenstate is
localized on the red part of the Rauzy fractal, which corre-
sponds to 0 in W . It is again a general feature that states from
some branch in the spectrum localize on the corresponding
part of the Rauzy fractal (see Appendix D for more examples).

Since the on-site model renormalizes to three hopping
models in Eq. (23), additional subdivision of the Rauzy fractal
based on the next local environments yields a similar subdivi-
sion as for the hopping model. This is displayed in Fig. 5(d).

We would like to point out the similarity between the
eigenstates |ψ〉0 in Fig. 5(a) and in the red region in Fig. 5(d).
This can be understood by the fact that the eigenstate |ψ〉0 of
the OTC Ho

13 is approximately the eigenstate of the first block
of Eq. (23), which is an HTC.

Another observation is the self-similar structure of the
eigenstates on the Rauzy fractals in Fig. 5. This is a signature

of critical eigenstates [34], which are also characteristic of the
Fibonacci chain [15]. For the tribonacci chains, fractality is
discussed in Sec. V.

C. Equivalence local environment and local resonator modes

It is an interesting fact that all local environments are
known from only the nearest-neighbor structures and the RG
Eq. (20). This fact can be applied to elegantly categorize
all LRMs of the HTC and OTC. This LRM framework was
developed by Röntgen et al. [23] and applied to the Fibonacci
chain.

In Figs. 6 and 7, the eigenstate magnitude on each lattice
site with T7 = 81 sites is plotted for every energy level. The
green lines define regions that precisely correspond to the
diagonal blocks in Eqs. (20) and (23), so they correspond to
one application of the RG scheme. By applying Eq. (20) again
to each of these blocks of the Hamiltonian at hand, the regions
subdivide again into five smaller ones (see the black horizontal
lines). The connection with the LRM framework is that the
subsequent subdivisions order the eigenstates according to
their local structure, i.e., where they are mostly localized.
This classification is an essential step in the application of the
LRM framework, which is naturally carried out by the RG
equations.
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FIG. 6. The HTC eigenstates |ψ〉i of H7, ordered such that Ei <

Ei+1. The sign and magnitude on each site is represented by a color.
The green lines denote the splitting after one RG step; the black lines
denote two RG steps. Note that the states between two subsequent
lines localize on similar local environments, which is more accurate
for the black lines than for the green lines.

The RG scheme naturally gives all environments of a lat-
tice site, and at the same time categorizes the LRMs. This
simplification of the analysis is founded on the self-similarity
of the tribonacci word.

V. MULTIFRACTALITY

The perturbative RG scheme for the Fibonacci chain pro-
vided a natural way of explaining the multifractal properties
of the spectrum and of the eigenstates. Since an analogous RG

FIG. 7. The OTC eigenstates |ψ〉i of Ho
7 . The colors and

green/black lines have the same meaning as in Fig. 6.

scheme is derived for the tribonacci chains, multifractality is
expected to be present.

Since the multifractal properties of the HTC are compared
to the Fibonacci chain, the definition of the Fibonacci chain is
briefly reviewed here. The Fibonacci word W F = wF

0 wF
1 · · ·

is the fixed point of the binary substitution ρF : 0 → 01, 1 →
0. The Fibonacci approximants are given by W F

N := ρN
F (1).

The length of the approximants is given by the Fibonacci
numbers FN = FN−1 + FN−2, where F0 = F1 = 1. The
Hamiltonian for the periodic hopping Fibonacci chain reads

HF
N =

FN −1∑
n=0

twF
n
|n + 1 mod FN 〉 〈n| + H.c., (27)

where the hopping parameters t0, t1 are related by t0/t1 = ρ.
To study the multifractal properties of the spectrum of

any Hamiltonian, we compute the multifractal dimensions Dq,
also known as the multifractal spectrum, introduced by Halsey
et al. [35]. The multifractal spectrum is a family of dimensions
that is continuously parametrized by q ∈ R, where D0 recov-
ers the box-counting dimension. For the energy spectrum, the
multifractal dimensions are computed as follows. First, cover
the energy spectrum with a compact interval C ⊂ R. Then,
partition C into intervals Ki of length l . Let the measure μ(Ki )
denote the fraction of points that lie in Ki. The multifractal
dimensions are then given by

Dq = lim
l↓0

1

q − 1

log
∑

i μ(Ki )q

log l
. (28)

The result is shown in Fig. 8(a), where the multifractal dimen-
sions of the HTC H13 and the Fibonacci chain HF

19 are plotted.
One can see that the HTC energy spectrum is a multifractal,
since the spectrum Dq is a smooth curve of q. Moreover, the
multifractal dimensions of the HTC are strictly smaller than
that of the Fibonacci chain.

For the eigenstates, the average multifractal dimension is
computed. The average multifractal dimension of the eigen-
states is defined as [20,36]

Dψ
q = 1

q − 1

log 1
N

∑
i

∑
n |ψi(n)|2q

log 1/N
, (29)

where the sum over i ranges over all eigenstates, N denotes
the amount of eigenstates, and n ranges over the lattice sites.
The numerical results for the Fibonacci chain and HTC are
displayed in Fig. 8(b). The average multifractal dimension
of the HTC is lower than that of the Fibonacci chain. This
is to be expected, since Dψ

q is related to diffusive proper-
ties of the system [36]. The weakest bonds in the HTC are
O(ρ2), whereas in the Fibonacci they are O(ρ). This makes it
more difficult for a particle to diffuse in the HTC than in the
Fibonacci chain, which is in accordance with the fact that the
average multifractal dimension for the HTC is lower than of
the Fibonacci chain. Additionally, a lower average multifractal
dimension indicates that the eigenstates are more localized,
which is a consequence of the weaker bonds in the HTC. In
fact, there is evidence that the HTC is a critical chain in terms
of Anderson localization, since the eigenstates are multifractal

with 0 < Dψ
q < 1 [34]. To further substantiate this claim, we

study the inverse participation ratio (IPR) of HTC eigenstates
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(a) (b)

FIG. 8. Multifractal properties of the Fibonacci chain Eq. (27) and the HTC, at ρ = 0.2. (a) The multifractal dimensions of the energy
spectrum for the Fibonacci chain HF

19 and the HTC H13. The size of the chain is chosen such that they have approximately the same maximum
number of points in Ki. (b) The average multifractal dimensions of the eigenstates of the Fibonacci chain HF

14 and the HTC H10. The size of the
chains is chosen such that they have approximately the same number of lattice sites.

in the next section. Finally, because the OTC is approximately
a direct product of HTC Hamiltonians in Eq. (23), the multi-
fractal properties perturbatively carry over to the OTC.

IPR analysis

Given an eigenstate |ψ〉i of an HTC Hamiltonian HN , the
IPR of that eigenstate is defined as

Ii =
TN −1∑
n=0

|ψi(n)|4.

If the eigenstate |ψ〉i is fully localized, then Ii = 1. If, on the
other hand, the eigenstate is fully extended, then |ψi(n)|2 =
1/M for every n and Ii = M−1, where M = TN denotes the
number of lattice sites, i.e., the system size. Therefore, the
finite-size scaling behavior of the IPR is expressed as

Ii = M−a,

{
a = 0 localized,
a = 1 extended, 0 � a � 1.

By computing the exponent a for each eigenstate of HN , we
can conclude that the eigenstates of HN are critical if all
exponents obey 0 < a < 1.

To study the finite-size scaling behavior of the IPR and
obtain the values of the scaling exponent a, we compute the
IPR of each eigenstate |ψN

i 〉 of HN for increasing values of
approximant N . Because we want to compare the IPR of the
same eigenstate in different approximant chains, we take an
eigenvalue EN

i of HN and its eigenstate as the reference state,
and for every N ′ < N , we pick the eigenstate corresponding to
the eigenvalue EN ′

j of HN ′ that is closest to EN
i . This process is

carried out for the state E13
800 in Fig. 9(a), where the exponent

a of the expected scaling behavior I ∝ M−a is determined
using linear regression. Computing these slopes for all eigen-
values of H13 results in the histogram in Fig. 9(c). As an
additional check, we also compute the average IPR of the
HTC for increasing approximants in Fig. 9(b), and the scaling
exponent.

We clearly see that both the average as well as individ-
ual IPR values behave as M−a, with 0 < a < 1, indicating
that eigenstates of the HTC are indeed critical in terms of

localization. For different values of ρ, the same results can be
found in Appendix E, alongside with histograms of the IPR
values of all states of various HTC Hamiltonians.

VI. CONCLUSION

In this work, we introduced two tight-binding chains
Eqs. (13) and (14), based on the tribonacci substitution, which
generalizes the Fibonacci chain. One of the first steps to-
wards understanding these models are the RG Eqs. (20) and
(23), which are more accurate than those for the Fibonacci
chain due to the higher orders of perturbation theory required.
As shown in Sec. III B, the two models can be regarded as
equivalent at the RG fixed point. The Rauzy fractal, which
is inherent to the tribonacci word, is shown to serve as the
analog of the conumbers for the HTC and OTC, since it
orders the sites according to their local environment. The
structure of eigenstates, when plotted on the Rauzy fractal,
shows self-similar properties, which reflect the fractal nature
of the eigenstates. These self-similar structures can be system-
atically enumerated using the RG scheme, and they are exactly
the LRMs within the framework proposed by Röntgen et al.
[23]. The possibility to obtain all LRMs using the RG scheme
is an important result of this work. In addition, our work not
only establishes a connection between a physical system and
a mathematical object, namely the Rauzy fractal, but it also
explains how the Rauzy fractal can be used to understand the
multifractal structure of the eigenstates. Finally, the multifrac-
tal dimensions of both the energy spectrum and the eigenstates
of the HTC have been computed, and compared to those of
the Fibonacci chain. The multifractal properties are qualita-
tively similar to those of the Fibonacci chain, whereas the
multifractal dimensions of the HTC are generally smaller than
those of the Fibonacci chain. Furthermore, the eigenstates of
the HTC are shown to be critical in terms of localization. The
critical behavior was inferred from the study of the average
multifractal dimension of the eigenstates, which has a dimen-
sion between zero and one. Additionally, we have studied the
IPR of individual states, and its finite-size scaling behavior.
The results confirm that indeed the eigenstates of the HTC are
all critical, instead of being a mix of localized and extended
states.
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(a) (b) (c)

FIG. 9. IPR analysis of the HTC with ρ = 0.2. (a) IPR of the state |ψ13
800〉 with exponent a, (b) average IPR with exponent a, and

(c) histogram of the IPR scaling exponents of all eigenstates of H13.

We would like to emphasize that our work offers a
complementary generalization of the Fibonacci chain to the
generalized Rauzy tiling [28–30]. This can be understood as
follows. The Fibonacci chain has both dimension one in real
space and in the internal space of the cut-and-project scheme.
The generalized Rauzy tilings in Ref. [28] increase the spatial
dimension to d > 1 and fix the dimension of the internal space
at one. In our work, we keep the real-space dimension fixed at
one, and we increase the dimensionality of the internal space,
since the Rauzy fractal is a two-dimensional set. This can be
viewed as the first step towards generalizing the Fibonacci
chain by increasing the dimensionality of the internal space.

This work opens some interesting topics for further re-
search. First of all, it would be interesting to identify an
equivalence between the HTC and another model, such as
the one by Kraus and Zilberberg [21] for the Fibonacci chain.
Such an equivalence would be key to understanding the topo-
logical properties of the HTC. One could also generalize the
substitution to any Pisot substitution, or consider the gen-
eral k-bonacci substitution 0 → 01, 1 → 02, . . . , (k − 1) →
0. The latter would make the generalization of the Fibonacci
chain as complete as the complementary generalization in
Refs. [28–30]. Yet another proposition to check is whether
quasicrystals can generally be studied via their internal space,
which is conumbering for the Fibonacci chain and the Rauzy
fractal for the HTC, and how the RG scheme can be applied in
the internal space to understand the eigenstates. Since the RG
scheme originates from the self-similar structure, it could be
interesting to study if self-similarity can replace translational
invariance in the topological classification of quasicrystals
and/or fractals.

As a final remark, we would like to outline two possible
ways in which tight-binding systems, such as the HTC and
OTC, can be realized in an experiment. Two typical examples
are the work by Baboux et al. [37] using polaritonic waveg-
uides and the work by Reisner et al. [38] using dielectric
resonators. The polaritonic waveguide setup naturally imple-
ments an on-site chain, whereas the dielectric resonator setup
realizes a hopping chain. A common feature of both methods
is that any lattice configuration, i.e., configurations of on-site
energies or bond strengths, can be constructed using readily
available fabrication methods. Reisner et al. [38] measures
the multifractal properties of the local density of states and of
the eigenstates using their setup for a finite Fibonacci chain.
Baboux et al. [37] directly probe the energy spectrum of a

finite Fibonacci chain, and by varying the so-called phason
degree of freedom, they manage to experimentally show a
topological property of the Fibonacci chain that corresponds
to the gap-label. These two experimental techniques can be
directly applied to our predictions for the energy spectrum and
multifractal properties of the eigenstates in experiments.

ACKNOWLEDGMENTS

This publication is part of the project TOPCORE with
Project No. OCENW.GROOT.2019.048, which is financed by
the Dutch Research Council (NWO).

APPENDIX A: CONNECTION BETWEEN THE
VALUATION MAP AND THE PROJECTION METHOD

There are two main ways of generating the Rauzy fractal:
projecting on the contracting eigenspace of the tribonacci sub-
stitution, or using a valuation map. By using a bi-orthogonal
basis of eigenvectors of the adjacency matrix of the tri-
bonacci substitution, we can derive the affine transformation
that relates the two different methods of generating the
Rauzy fractal. It turns out that the valuation map generates
a Rauzy fractal where the domains are scaled versions of the
whole fractal; see Fig. 10, which is the canonical Rauzy frac-
tal. The projection method yields a skewed version of this
fractal (see Fig. 11). It is worth noting that many sources,
see [39] (section 7.4.3) and [27,40], claim that the canonical
Rauzy fractal is obtained using the projection method, which
is, strictly speaking, not the case.

The Rauzy fractal, as introduced in Sec. II A 3, was ob-
tained by Rauzy in 1982 [24] by means of a valuation map E .
Let A = {0, 1, 2} be the alphabet for the tribonacci substitu-
tion ρ and denote by A∗ the set of all finite words with letters
in A. Then the valuation map E : A∗ → C associates a com-
plex number to each finite word. For any u, v ∈ A∗, Rauzy
demanded that E (uv) = E (u) + E (v) and E (ρ(u)) = ωE (u)
for some constant ω ∈ C. Note that since ρ(W ) = W , it must
be true that E (W ) = 0. Denote by |u|i the number of times
that i ∈ A occurs in u. A crucial fact is that the tribonacci
substitution ρ is Pisot. This implies that the adjacency matrix
Eq. (6) has one eigenvalue |β| > 1 and all other eigenvalues
have |λ| < 1. The adjacency matrix M has one real eigenvalue

β = (1 + 3
√

19 + 3
√

33 + 3
√

19 − 3
√

33)/3 ≈ 1.8392, the tri-
bonacci constant, and two complex eigenvalues ω, ω̄, which
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FIG. 10. Rauzy fractal, using the valuation map Eq. (8).

are complex conjugates of each other. The corresponding nor-
malized right eigenvectors of M are denoted by |vβ〉 , |v〉 , |v〉.
The valuation map [identical to Eq. (8)] is given by

E (u) =
∑
i∈A

|u|ivi,

where 〈vt | = (v0, v1, v2) is the left eigenvector of M, cor-
responding to the eigenvalue ω. We emphasize that 〈vt | is
obtained via a bi-orthonormal construction. This means that
the left eigenvectors need not be normalized, but the left and
right eigenvectors form a bi-orthonormal set. Now, we can
define the Rauzy fractal using the valuation map. Let [W ]m

denote the first m symbols of the tribonacci word. The Rauzy
fractal is the set

R := {E ([W ]m) | ∀m ∈ N )}, (A1)

which is displayed in Fig. 10. This plot is made by taking
the complex number z = a + bi, where a, b ∈ R, and plotting
it as a point (a, b) ∈ R2. This set can be partitioned in three

FIG. 11. Rauzy fractal, using the projection method Eq. (9).

domains Ri, where i = 0, 1, 2 (red, green, and blue, respec-
tively), which are the same as R up to a factor β−(1+i), a
rotation and translation. These domains are defined by

Ri := {E ([W ]m) | wm = i, m ∈ N )}, (A2)

where wm denotes the mth symbol of W . See Ref. [26] for
more details on generating the Rauzy fractal.

The second method, which we refer to as the projec-
tion method, is the method explained in Sec. II A 3. Let
the unstable eigenspace Eu of M be the one-dimensional
real space spanned by |vβ〉, and the stable eigenspace Es

be spanned by {|re〉 , |im〉}, where |re〉 = Re|v〉 and |im〉 =
Im|v〉. Equivalently, one can define Es = {c |v〉 + c̄|v〉 | c ∈
C} ⊂ R3. Denote by π the projection along Eu onto Es.
Any |x〉 ∈ R3 can be uniquely decomposed as |x〉 = γ |vβ〉 +
c |v〉 + c̄|v〉, where γ ∈ R, c ∈ C. The map π then acts as
π |x〉 = c |v〉 + c̄|v〉. Denoting the mth point in the staircase
as |xm〉 = ∑m

i=0 |ewi〉, the projection method yields the Rauzy
fractal

R = {π |xm〉 | m ∈ N},
which is displayed in Fig. 11. One immediate connection
between the valuation and the projection method is the fact
that the valuation map can be written as

E ([W ]m) = 〈vt 〉 xm = c,

where we used |xm〉 = γ |vβ〉 + c |v〉 + c̄|v〉 and the fact that
{〈vt

β | , 〈vt | , 〈vt |} and {|vβ〉 , |v〉 , |v〉} form a bi-orthogonal
system.

The question now is, how are the sets in Figs. 10 and 11
related? We will derive an affine transformation that maps the
former to the latter as points in R2. We first need a choice
of basis to represent the points of R and R in R2. For the
complex numbers in R, we have the canonical representation
z = a + bi �→ (a, b) ∈ R2. In associating Es with R2, we have
some freedom. By applying a Gram-Schmidt procedure to the
real and imaginary parts of |v〉, we can define

|e1〉 = |re〉 /‖|re〉‖,
|e2〉 = |res〉 /‖|res〉‖, (A3)

where |res〉 = |im〉 − 〈e1〉 im |e1〉. Then we can represent any
|x〉 = a′ |e1〉 + b′ |e2〉 ∈ Es ⊂ R3 as (a′, b′) ∈ R2.

We can now answer the following question: for a given
|xm〉, how are (a, b) and (a′, b′) related? For a fixed m ∈ N, we
have seen that E ([W ]m) = c = a + bi and π |xm〉 = c |v〉 +
c̄|v〉 = a′ |e1〉 + b′ |e2〉. The answer is the matrix A that solves(

a′
b′

)
= A

(
a
b

)
. (A4)

By noting that

|x〉 = c |v〉 + c̄|v〉 = 2a |re〉 − 2b |im〉 , (A5)

and inverting Eqs. (A3) to obtain

|re〉 = ‖|re〉‖ |e1〉 ,

|im〉 = ‖|res〉‖ |e2〉 + 〈e1〉 im |e1〉 , (A6)

we can plug Eqs. (A6) into Eq. (A5) to obtain

|x〉 = (2a‖|re〉‖ − 2b 〈e1〉 im) |e1〉 − 2b‖|res〉‖ |e2〉 ,
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FIG. 12. Result of applying affine transformation Eq. (A7) to the
valuation map result in Fig. 10.

from which we can read off the matrix A as being given by

A =
(

2‖|re〉‖ −2 〈e1〉 im
0 −2‖|res〉‖

)
. (A7)

To demonstrate the correctness of Eq. (A4), the map in
Eq. (A7) is applied to R in Fig. 10, which yields the result in
Fig. 12. It is of no surprise that Figs. 12 and 11 are identical,
since we have just derived the mathematical correspondence
between the two.

APPENDIX B: BRILLOUIN-WIGNER PERTURBATION
THEORY COMPUTATIONS

This Appendix explains how perturbation theory can be ap-
plied to HN to compute the values of zi and the p, q-exponents
of the blocks in Eqs. (20) and (23). Canonical Rayleigh-
Schrödinger time-independent perturbation theory cannot be
applied here because of the degeneracy of the H0,N energy
levels. This problem also arose in the case of the Fibonacci
chain, for which Brillouin-Wigner perturbation theory was
used. The perturbation theory frameworks will be introduced,
after which we apply it to the tribonacci chain. We start by
writing the Hamiltonian as

H = H0 + H1,

analogous to Eq. (16). Denote Q as the projection operator
on the eigenspace of E0, which is spanned by all |ψ0〉 such

that H0 |ψ0〉 = E0 |ψ0〉. The goal is to derive some effective
Hamiltonian Heff that agrees with H on Q for each of the five
unperturbed energy levels E0 = ±t2,±t1, 0.

We start by fixing some |ψ〉 , E that satisfy H |ψ〉 = E |ψ〉.
Additionally, define P as

P = Id − Q,

i.e., the projection orthogonal to Q. Rewriting the Schrödinger
equation, we obtain

(E − H0) |ψ〉 = H1 |ψ〉 . (B1)

Using Eq. (B1), one can check that

P |ψ〉 = P
1

E − H0
H1 |ψ〉 (B2)

holds. We denote the inverse of an operator O as O−1 = 1
O

for clarity in future computations. By noting that H0P = PH0

such that

(E − H0)P |ψ〉 = PH1 |ψ〉 , (B3)

and using P2 = P and Eqs. (B1) and (B3), one can check the
following equalities:

P |ψ〉 = P
1

E − H0
H1 |ψ〉 = 1

E − H0
PH1 |ψ〉

= P
1

E − H0
PH1 |ψ〉 . (B4)

Note that 1
E−H0

is ill-defined (division by zero) precisely on
the kernel of P. Hence, every time one needs to find an
expression for P 1

E−H0
, the well-defined expression for 1

E−H0
P

can be used instead. Using P and Q, we write |ψ〉 as

|ψ〉 = (Q + P) |ψ〉 = Q |ψ〉 + P
1

E − H0
H1 |ψ〉 . (B5)

Realizing that Eq. (B5) is a self-consistent equation for |ψ〉,
one can sum all the terms that arise from iterating that equa-
tion to get

|ψ〉 =
[ ∞∑

n=0

(
P

1

E − H0
H1

)n
]

Q |ψ〉 . (B6)

(a)

(c)

(b)

FIG. 13. The different chains occurring in the HTC. The black dots denote the lattice sites; a single/double/triple line denotes a t0/t1/t2

bond. (a) The molecular-1 chains, (b) molecular-2 chains, and (c) atomic chains. The vertical numbers 0,1,2 denote the letter to which that
chain renormalizes; the horizontal numbers 1, 2, . . . denote the lattice site labeling in the perturbative calculations in Appendix B 1.
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FIG. 14. Three eigenstates of the HTC H13, plotted on the subdivided Rauzy fractal. The height of the black triangles on site n is
proportional to |ψi(n)|2. On the right-hand side, the eigenstate is plotted, together with the state (red dot) in the spectrum (blue). (a) i = 800,
(b) i = 1500, and (c) i = 2800.

To obtain an expression for Heff, one needs to multiply
Eq. (B6) with QH , which yields

EQ |ψ〉 =
[

QH0 + QH1

∞∑
n=0

(
P

1

E − H0
H1

)n
]

︸ ︷︷ ︸
Heff

Q |ψ〉 .

Using Q2 = Q, the expression for Heff can be written as

Heff = QH0Q + QH1

[ ∞∑
n=0

(
P

1

E − H0
H1

)n
]

Q. (B7)

Note that during the whole derivation, there was no need to
pick a certain unperturbed energy E0, which is strictly needed
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FIG. 15. Three eigenstates of the OTC Ho
13, plotted on the subdivided Rauzy fractal. The height of the black triangles on site n is

proportional to |ψi(n)|2. On the right-hand side, the eigenstate is plotted, together with the state (red dot) in the spectrum (blue). (a) i = 1500,
(b) i = 2300, and (c) i = 2800.

to define the projectors P, Q. If one now chooses some E0,
one might wonder what value to insert for E , which is the
unknown energy of the full system. It turns out that the energy
E0 of the unperturbed system can be used, as long as Heff is
used at the lowest nonvanishing order in H1 for that particular
computation.

For further reference, we start by writing down all the
orders of Eq. (B7) that we need in this Appendix:

H (0)
eff = QH0Q,

H (1)
eff = H (0)

eff + QH1Q,
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(a) (b)

FIG. 16. IPR analysis of the HTC with ρ = 0.5. (a) Average IPR with exponent a, (b) histogram of the IPR scaling exponents of all
eigenstates of H13.

H (2)
eff = H (1)

eff + QH1P
1

E − H0
H1Q,

H (3)
eff = H (2)

eff + QH1P
1

E − H0
H1P

1

E − H0
H1Q,

...

H (n)
eff = H (n−1)

eff + QH1

(
P

1

E − H0
H1

)n−1

Q.

Before showing the computations for all renormalized cou-
plings, let us work out one simple example of how the RG
scheme is applied to a small tribonacci approximant. Consider
the HTC chain H3 with T3 = 7 sites with PBC, which is
displayed in Fig. 3. In the unperturbed Hamiltonian

H0,3 = t1 |2〉 〈3| + t2 |4〉 〈5| + t1 |6〉 〈7| + H.c., (B8)

the type-1 molecules are the sites of the Hamiltonian coupled
by a t1 bond, on which the eigenstates read

Hm,1
1 |±〉1 = ±t1, |±〉1 = |2〉 ± |3〉√

2
, (B9)

Hm,1
2 |±〉3 = ±t1, |±〉3 = |6〉 ± |7〉√

2
. (B10)

The new lattice sites |+〉1 , |+〉3 constitute the type-1
molecular bonding chain, and |−〉1 , |−〉3 constitute the cor-
responding antibonding chain. The renormalized hopping
parameters are

t ′
0 = 〈+|1 H020 |+〉3 , t ′

1 = 〈+|3 H00 |+〉1 , (B11)

where H020 = t0(|3〉 〈4| + |5〉 〈6|) + t2 |4〉 〈5| + H.c. and
H00 = t0(|7〉 〈1| + |1〉 〈2|) + H.c. and the matrix elements are
evaluated using perturbation theory. In this case, the projector
Q reads

Q± = |±〉1 〈±|1 + |±〉3 〈±|3 ,

which projects out all states except the unperturbed eigen-
states with E0 = ±t1. How to evaluate the matrix elements in
Eq. (B11) using perturbation theory is explained in the next
section.

1. Hopping model

The results of the perturbative calculations for the renor-
malized couplings t ′

i are summarized in Table II. In this
table, the function c(p, q) is the leading order in ρ in t ′

i =
c(p, q)ti. The last two columns give the new ρ pi = |t ′

0/t ′
1| and

ρqi = |t ′
1/t ′

2|.
We can now explain how Eq. (20) is obtained. Let t0 = 0.

Take one of the five unperturbed energies E0 = 0,±t1,±t2,
and consider the chain formed by the unperturbed eigenstates
with that energy. First, the pi and qi corresponding to that
chain are exactly the exponents in the block ziH

(pi,qi )
N−k + E0.

The value k corresponding to E0 can be read off from the
last column of Table I, and is given by k = 2, 3, 4 for E0 =
±t1,±t2, 0 for the HTC, respectively. The value of zi is the
ratio between the chain under consideration and H (pi,qi )

N−k . Note

that if all bonds in H (pi,qi )
N−k are divided by t2, the spectrum is

bounded and of size O(1). So in order to match the energy
scale of the chain under consideration and H (pi,qi )

N−k , we divide
all renormalized couplings in the chain by t ′

2 and all couplings
in H (pi,qi )

N−k by t2. This is equivalent to multiplying H (pi,qi )
N−k by

t ′
2/t2 = c2(p, q) = zi, which means that ziH

(pi,qi )
N−k is now an

approximation of the HTC with renormalized couplings t ′
i .

Finally, the result is shifted by the value of E0, since the new
lattice sites of each chain have the on-site energy E0. This
procedure is carried out for each of the five E0 values, thereby
obtaining five blocks in Eq. (20).

The remainder of this section is devoted to computing the
t ′
i values in Table II. All calculations are done for the HTC

H (p,q)
N , where p, q > 0 are assumed to be integers. It turns

out that the order of perturbation theory needed is equal to
the amount of t0 in the chain that is considered in Fig. 13.
This means that in the worst case, which is the top chain in
Fig. 13(c), one needs seven orders of perturbation theory. We
show all computational details for the type-1 molecular chain.
For the other chains, the computational steps are identical,
but we give only the operators H1,

1
E−H0

P, and eigenstates,
and we skip the computational steps of repeatedly applying
these operators. This is enough, because if the operators and
eigenstates are known, the computation can be carried out
using a computer algebra program such as MATHEMATICA.
Because of the repetitive nature of the calculations, we show
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(a) (b)

FIG. 17. IPR analysis of the HTC with ρ = 0.8. (a) Average IPR with exponent a, (b) histogram of the IPR scaling exponents of all
eigenstates of H13.

only one example, and we refer the reader to Ref. [41] for the
remaining eight cases.

Type-1 molecules

Computation of t ′
0.. Consider the top chain in Fig. 13(a),

for which the Hamiltonian H = H0 + H1 reads

H0 = t1 |1〉 〈2| + t2 |3〉 〈4| + t1 |5〉 〈6| + H.c.,

H1 = t0 |2〉 〈3| + t0 |4〉 〈5| + H.c.,

and the six eigenstates of H0 read

|±〉1 = (|1〉 ± |2〉)/
√

2, E0 = ±t1,

|±〉2 = (|3〉 ± |4〉)/
√

2, E0 = ±t2,

|±〉3 = (|5〉 ± |6〉)/
√

2, E0 = ±t1,

from which we can read off

Q = |±〉1 〈±|1 + |±〉3 〈±|3 .

The perturbation theory gives

〈±|1 H (0)
eff |±〉3 = 〈±|1 H0 |±〉3 = ±t1 〈±|1 |±〉3 = 0,

〈±|1 H (1)
eff |±〉3 = 〈±|1 H1 |±〉3 = ± t0√

2
〈3| |±〉3 = 0,

〈±|1 H (2)
eff |±〉3 = 〈±|1 H1P

1

±t1 − H0
H1 |±〉3

= ± t2
0

2
〈3| P

1

±t1 − H0
|4〉 .

We can write 1
±t1−H0

P as

1

±t1 − H0
P = 1

±2t1
|∓〉1 〈∓|1 + 1

±t1 ∓ t2
|±〉2 〈±|2

+ 1

±t1 ± t2
|∓〉2 〈∓|2 + 1

±2t1
|∓〉3 〈∓|3 ,

and by using |4〉 = ±|±〉2−|∓〉2√
2

we can proceed as

〈±|1 H (2)
eff |±〉3 = t2

0

2
√

2
〈3| 1

±t1 − H0
P(|±〉2 − |∓〉2)

= ± t2
0

2
√

2
〈3|

(
1

t1 − t2
|±〉2 − 1

t1 + t2
|∓〉2

)

= ∓ t2
0

2

t2
t2
2 − t2

1

= t ′
0.

This can be approximated as

t ′
0 = ∓ t2

0

2t2

[
1 + O

(
t2
1

t2
2

)]
≈ ∓ t2

0

2t2
= ∓ρ p+q

2
t0,

such that c0(p, q) = ρ p+q/2 can be read off.

2. On-site model

The results of the perturbative calculations for the renor-
malized couplings t ′

i are summarized in Table II. The
construction of Eq. (23) from Table III is entirely analogous to
the HTC case. Since the values ai, bi in the last two columns
are not represented as powers of ρ, we use the mathemati-
cal identity a = ρ log a/ log ρ for any real number a > 0. Using
this trick, the values ai, bi can be converted to the exponents
pi = log ai/ log ρ and qi = log bi/ log ρ in Eq. (23).

The remainder of this section is devoted to computing the
t ′
i values in Table III. All calculations are done for the OTC

Ho
N , for arbitrary real c1 and c2 that satisfy |c1| � 1, |c2| � 1,

and |c2 − c1| � 1. The perturbative calculations will be easier
than for the hopping model, since the unperturbed OTC is di-
agonal. We refer the reader to Ref. [41] for the computations.

APPENDIX C: PROOF OF EQUIVALENCE
OF HTC AND OTC

This Appendix is devoted to proving Eq. (26). The dynam-
ical system on the values p, q generated by Eq. (20) can be
represented by the map

f : R2 → R10, (p, q) �→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(p + q, p + 2q)
(q, p)

(p, 2p+ q)
(q, p)

(p + q, p + 2q)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (C1)
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FIG. 18. Histograms showing the values of the exponent a of all eigenstates of a particular HTC Hamiltonian HN for three different values
of the parameter ρ.

We can modify Eq. (C1) to the following function, which
yields the same, or smaller, values:

f̃ : R2 → R10, (p, q) �→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(2 p̃, 2 p̃)
( p̃, p̃)
( p̃, p̃)
( p̃, p̃)

(2 p̃, 2 p̃)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (C2)

where p̃ := min{p, q}. Note that Eq. (C2) is symmetric with
respect to the permutation p ←−−→ q in its arguments, as well
as in each of the five tuples of the output, which allows us to
write as a function of only one variable:

g : R → R5, p̃ �→ {2 p̃, p̃, p̃, p̃, 2 p̃}. (C3)

Starting with any p, q, p̃ ∈ R, note that after N applications
of f to p, q and g to p̃, it is true that p(N )

i , q(N )
i � p̃(N )

i for
each i. Note that after N applications of g to some initial value
p̃, we have a set Ig

N of 5N different real values. Similarly,
define Jg

N := {x ∈ Ig
N | x � N}. We can now rigorously show

limN→∞ |Jg
N |/|Ig

N | = 0, which implies that Eq. (26) holds.
Note that the map g leaves 3/5 of its output constant and
multiplies 2/5 with a factor of 2. For x ∈ Jg

N to hold, it can
be multiplied by a factor of 2 at most �log2 N� times. By this
argument, |Jg

N | can be computed exactly by counting the pos-
sible ways that g can be successively applied to a single initial
value p̃0 > 0. First, let ñ = �log2 p̃0�, such that 2ñ � p̃0. Then

we have the exact combinatorial argument

∣∣Jg
N

∣∣/∣∣Ig
N

∣∣ =
�log2 N�−ñ∑

n=0

(
N

n

)
(3/5)N−n(2/5)n

<

�log2 N�∑
n=0

(
N

n

)
(3/5)N−n(2/5)n,

which can be bounded from above as

�log2 N�∑
n=0

(
N

n

)
(3/5)N−n(2/5)n �

(
N

log2 N

)
(3/5)N log2 N.

(C4)

Now we need to approximate
( N

log2 N

)
, for which we can use

Stirling’s approximation log n! = n log n − n + O(log n):

log

(
N

log2 N

)
= log N! − log(N − log2 N )! − log(log2 N )!

= N log N − (N − log2 N ) log(N − log2 N ) + O(log N )

= N log N − (N − log2 N )

[
log N + log

(
1 − log2 N

N

)]
+ O(log N )

104204-17



J. P. J. KREBBEKX et al. PHYSICAL REVIEW B 108, 104204 (2023)

= log2 N

log 2
+ (N − log2 N )

[
log2 N

N
+ O

(
log2

2 N

N2

)]

+ O(log N )

= log2 N

log 2
+ O(log N ).

Since we are interested in the large-N limit, it is enough to
know the divergent behavior of

( N
log2 N

)
. We can now further

approximate Eq. (C4) as

(
N

log2 N

)
(3/5)N log2 N

= elog2 N/ log 2+O(log n)eN (log 3−log 5)elog log2 N

= eN (log 3−log 5)+O(log2 N ) N→∞−−−→ 0,

since log 3 − log 5 < 0. This means that

0 � |JN |/|IN | � |Jg
N |/|Ig

N | N→∞−−−→ 0,

proving the statement in Eq. (26).

APPENDIX D: EIGENSTATES ON THE RAUZY FRACTAL

Figures 14 and 15 contain more examples of eigenstates
plotted on the Rauzy fractal, where the Rauzy fractal is subdi-
vided again according to environments of the local structures.
These figures give more evidence for the observation that
the eigenstates localize on the Rauzy fractal in regions that
correspond to the branch of the spectrum of the eigenstate.
For example, in Figs. 15(a)–15(c), the state belongs to the
bottom/middle/top branch of the spectrum, hence it localizes
on the red/green/blue area of the Rauzy fractal.

APPENDIX E: IPR ANALYSIS OF THE HTC

In this Appendix, we show additional numerical evidence
that the HTC eigenstates are critical. Figures 16 and 17 are
analogous to Fig. 9 in the main text, but for a different value
of ρ.

To further verify the finite-size scaling in more detail, we
compute the exponents a for various values of M = TN by tak-
ing different tribonacci approximants N . The results of these
calculations are shown in Fig. 18. From these histograms, we
can conclude that all exponents obey 0 < a < 1, making them
critical eigenstates. Moreover, there seems to be a converging
behavior in the histograms, indicating that the finite-size scal-
ing of the IPR as Ii = M−a is satisfied.
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