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A B S T R A C T   

This study investigates the surface parameters and environmental factors affecting the energy production of a 
500 kWp photovoltaic (PV) solar power plant in Igdir province. Using both the PV panel characteristics and the 
weather conditions specific to the power plant location, a total of 7 detailed features were included. The esti-
mation of the power plant efficiency, a novel contribution not found in previous studies, is also a major focus. 
The performance evaluation of different models, including feed-forward neural networks and multiple linear 
regression, demonstrates the effectiveness of artificial neural networks in capturing the complex relationships 
between features and efficiency despite limited data availability. Principal Component Analysis (PCA) was used 
to reduce feature dimensions, showing that even with a reduced feature set, accurate efficiency prediction is still 
achievable. Prediction using PCA is one of the novelties of the paper. The effects of solar irradiation, module 
power, and module temperature on power plant efficiency are revealed. The results provide valuable insights for 
optimizing energy investments in the Igdir region and highlight the potential of artificial neural networks in 
energy forecasting, demonstrating their suitability for capturing complex patterns in solar power plant efficiency.   

1. Introduction 

Energy is a fundamental requirement for human life, and its con-
sumption increases with the development of countries (Nadimi and 
Tokimatsu, 2018). However, the predominant reliance on fossil fuels, 
hydroelectric, and nuclear power plants to meet energy demands has 
resulted in significant environmental challenges. Fossil fuels contribute 
to global warming through carbon emissions, hydroelectric power 
plants cause ecological damage and droughts, and nuclear power plants 
pose threats to the environment and human health. Consequently, the 
importance of renewable and environmentally friendly green technol-
ogies has become evident due to environmental concerns, the rising 
energy needs, fluctuating fuel prices, increasing costs, and the risk of 
fossil fuel depletion (Ikram et al., 2021; Nazir et al., 2019). 

Among renewable energy sources, solar energy stands out as a well- 
known clean energy option (Hosseini and Wahid, 2016). Solar power 
production does not release harmful gases, and it offers the advantage of 
low maintenance and repair costs. Furthermore, solar power plants are 
supported by initiatives such as the Kyoto Protocol and various green 

energy-related laws, including tariff and premium models (Karatayev 
et al., 2021; Bersalli et al., 2020). However, despite its efficiency, the 
widespread adoption of solar energy has been hindered. The high initial 
setup costs, dependence on weather conditions, hourly variations, and 
drop rates at dawn and dusk contribute to random variability and impact 
the cost-effectiveness and capacity of solar applications (Eltamaly and 
Mohamed, 2018). 

The selection of an appropriate location for solar power plant 
establishment plays a crucial role in addressing these challenges. Esti-
mating the impact of environmental conditions associated with a chosen 
location on energy efficiency becomes essential (Skiba et al., 2021; 
Evangelista et al., 2020). Additionally, with the emergence of “smart 
grid” concepts, planning and operating power systems have increasingly 
emphasized the deployment of renewable energy sources to achieve 
more reliable, efficient, and environmentally friendly systems (Zame 
et al., 2018; Bhattarai et al., 2023). However, due to the uncertain na-
ture of renewable energy sources, advanced techniques are necessary for 
establishing and controlling optimal smart grids (Khalil et al., 2021). 

In this context, the present study aims to estimate the power output 
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of an exemplary photovoltaic (PV) system and assess the influence of 
various environmental factors on panel efficiency. Artificial neural 
networks (ANNs), a popular machine learning method, are employed to 
estimate the power output. ANN models have shown superior perfor-
mance compared to linear regression models, as indicated by higher R2 

values and accuracy rates. While machine learning applications in en-
ergy prediction remain limited (Liu et al., 2019), recent studies have 
demonstrated their potential. For instance, neural networks and fuzzy 
logic have been used to predict solar irradiation in grid-connected solar 
PV plants (Shuvho et al., 2019), while support vector regression and 
feed-forward neural networks have been employed for short-term solar 
PV power plant forecasting (Fentis et al., 2017; Rana et al., 2016). 
Sharifzadeh et al. (2019) has conducted an extensive review of machine 
learning methods in renewable energy modeling and found neural net-
works as the best model. Li et al. (2019) estimated the PV output power 
using SVM. Verma et al. (2016), Varanasi and Tripathi (2019), Yadav 
and Chandel (2017); and Heydari et al. (2019) used various regression 
methods with annual data in predicting solar power plants. Gensler et al. 
(2016) made predictions with LSTM neural networks from deep learning 
algorithms in the same area and obtained good results compared to 
other techniques. Wang et al. (2019) and Sharma et al. (2011) analyzed 
weather variables in solar power prediction. More recently, AlShafeey 
and Csáki (2021) investigate the predictive capabilities of multiple 
regression (MR) and artificial neural network (ANN) models for photo-
voltaic (PV) energy generation, utilizing various input methods. By 
analyzing three years of PV power and weather data, the research 
demonstrates that ANN models consistently outperform MR models, 
with the hybrid input method showing the highest prediction accuracy. 
Additionally, the study emphasizes the adverse influence of poor data 
quality on forecasting accuracy, particularly in the structural approach. 

In our investigation, we incorporated seven key variables into our 
analysis to comprehensively assess the performance of photovoltaic (PV) 
solar power plants. These variables were thoughtfully selected based on 
a rigorous review of pertinent literature within the field of PV solar 
power plant performance modeling. The chosen variables encompass 
five environmental factors, namely solar irradiation, air temperature, wind 
speed, relative humidity, and air pressure, which play pivotal roles in 
influencing the energy output of PV systems (Ghimire et al., 2019). 
Additionally, we included two module-related features, module power, 

and module temperature (Hwang et al., 2021). The selection of these 
seven variables was guided by their well-established recognition as 
influential factors in PV power generation within the scholarly domain. 
Detailed explanations of these variables, including their definitions and 
significance, can be found in Section 2. 

By examining the power estimation capabilities of artificial neural 
networks and multiple linear regression, this study aims to contribute to 
the development of accurate and efficient methods for evaluating the 
performance of PV solar power plants under varying weather conditions 
and environmental factors. The objective is to forecast PV solar power 
efficiency in Igdir province under different weather conditions and 
provide valuable insights into the feasibility assessment and optimiza-
tion of solar power plant projects (Fig. 1 and Table 1). In this study, 
MATLAB, Keras, and SPSS software were utilized for the experiments, 
with Keras and MATLAB employed for ANN modeling and SPSS for 
linear regression analysis. 

Our approach highlights the following key aspects:  

• Inclusion of both PV panel characteristics and specific weather 
conditions as detailed features for power plant efficiency estimation. 

• Novel contribution in estimating power plant efficiency, not previ-
ously explored in similar studies.  

• Utilization of Principal Component Analysis (PCA) to reduce feature 
dimensions while maintaining accurate efficiency prediction.  

• Introduction of prediction using PCA as a novelty in the field of 
power plant efficiency analysis.  

2. Methodology 

In this section, we shall initiate by presenting the definition of var-
iables followed by elucidating the data collection process. Subsequently, 
we will explicate the concept of artificial neural networks and multiple 
linear regression, providing a succinct overview of their underlying 
mechanisms. Furthermore, we will furnish a detailed exposition on the 
architecture and configuration of the artificial neural network model 
utilized in this study. Additionally, we will discuss the methodology 
employed for training and validating the model, encompassing pertinent 

Fig. 1. 500 kWp grid-connected solar power plant at Igdir University.  
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aspects such as data preprocessing and the application of evaluation 
techniques to assess the model’s performance. 

2.1. Variables used for PV solar power plant efficiency 

The efficiency of photovoltaic systems is the ratio of the total amount 
of electricity generated (e.g., in kWh per year) and the global solar ra-
diation coming to that area (in the same unit, i.e., kWh/year) (Koc et al., 
2019; Kaya et al., 2021; Sahin et al., 2020; Khandakar et al., 2019). It 
depends on several environmental factors (solar irradiation, air tem-
perature, wind speed, relative humidity, and air pressure) and module 
features (module power, module temperature), which are described 
below. 

Solar Irradiation (W/m2): Solar irradiation refers to the amount of 
solar energy received per unit area over a given time period. It repre-
sents the intensity of sunlight reaching the photovoltaic panels and plays 
a crucial role in determining the energy output of the system. Higher 
solar irradiation levels generally result in increased electricity genera-
tion by photovoltaic systems. It is expressed in W/m2 and typically 
measured with pyranometers (Koc et al., 2019; Kaya et al., 2021; Sahin 
et al., 2020; Notton et al., 2019; Sudirman et al., 2012). 

Air Temperature (◦C): Air temperature represents the degree of 
hotness or coldness of the surrounding air. It affects the efficiency of 
photovoltaic panels, as their performance is sensitive to temperature 
variations. Typically, photovoltaic systems experience a decrease in ef-
ficiency as the temperature rises due to the negative temperature coef-
ficient of the panel’s electrical characteristics. Energy production and 
efficiency increase when the temperature of the panel due to air circu-
lation decreases in hot places that receive sunlight (Koc et al., 2019; 
Sahin et al., 2020; Türk et al., 2021). 

Wind speed (m/s): Wind speed refers to the rate at which air mol-
ecules move in a particular direction. It influences the convective heat 
transfer from the photovoltaic panels, thereby affecting their operating 
temperature. Higher wind speeds can enhance heat dissipation, leading 
to lower panel temperatures and improved system performance. In order 
to get high efficiency from solar panels in hot climates, it is required to 
be mounted a few centimeters above the ground or roof, to ensure 
continuous air flow (from wind) and to prevent the panels from over-
heating. For this reason, wind speed and direction are important for 
solar energy efficiency (Koc et al., 2019; Türk et al., 2021) 

Relative Humidity (g/m3): Relative humidity represents the 
amount of moisture present in the air relative to its maximum capacity at 
a given temperature. While relative humidity does not have a direct 
impact on the electricity generation of photovoltaic systems, it can in-
fluence the soiling or accumulation of dust and other particles on the 
panel surfaces. Higher humidity levels may contribute to increased 
soiling, which can reduce the system’s overall efficiency. 

Air Pressure (millibars): Air pressure refers to the force exerted by 
the atmosphere on a unit area. While air pressure does not directly affect 
the efficiency of photovoltaic systems, it can influence the mechanical 
stress on the panels and their structural integrity. Significant changes in 
air pressure, such as those associated with extreme weather conditions, 

may impact the long-term reliability and performance of the system. 
Module Power (kW): Module power represents the maximum 

electrical output that a photovoltaic module can deliver under standard 
test conditions. It is typically expressed in watts (W) or kilowatts (kW) 
and indicates the capacity or rating of the module. The module power 
directly influences the energy generation potential of the photovoltaic 
system (Kaya et al., 2021). 

Module Temperature (◦C): Module temperature refers to the tem-
perature of the photovoltaic module itself during operation. It is influ-
enced by factors such as solar irradiation, ambient temperature, wind 
speed, and heat dissipation mechanisms. Monitoring and controlling 
module temperature are essential for optimizing the performance and 
efficiency of photovoltaic systems, as higher temperatures can lead to 
reduced electrical output and accelerated module degradation. 

2.2. Data collection process 

The data utilized in this study was collected from a real photovoltaic 
(PV) power plant farm located in Igdir province. The data collection 
process involved the acquisition of PV panel features and historical 
weather data specific to the farm’s location. The following steps were 
undertaken to ensure comprehensive data collection: 

PV Panel Feature Data: Detailed information regarding the PV panel 
features was collected on a daily basis. This included parameters such as 
panel temperature and panel power. The data collection spanned a 
duration of three months to capture long-term trends. 

Historical Weather Data: To analyze the impact of weather condi-
tions on PV power generation, historical weather data for the same 
location was obtained. This encompassed variables such as solar irra-
diation, air temperature, wind speed, relative humidity, and air pres-
sure. The weather data covered the same three-months period as the PV 
panel feature data. 

Data Validation and Quality Assurance: Rigorous validation pro-
cedures were implemented to ensure the accuracy and reliability of the 
collected data. Data outliers, inconsistencies, and missing values were 
identified and addressed appropriately. Quality assurance measures 
were employed to minimize errors and uncertainties in the dataset. 

Data Organization and Storage: The collected data was organized 
and stored in a structured manner to facilitate subsequent analysis. 
Proper documentation and labeling were employed to ensure the 
traceability and integrity of the dataset. 

By following this systematic data collection process, a comprehen-
sive and reliable dataset comprising PV panel features and historical 
weather data specific to the selected PV power plant farm in Igdir 
province was obtained. This dataset serves as the foundation for the 
subsequent analysis and modeling tasks conducted in this study. 

2.3. Artificial neural networks 

In this study, we employed feed-forward neural networks, which are 
a specific type of artificial neural networks (Sahin et al., 2020). Feed- 
forward neural networks, also known as multi-layer perceptrons 
(MLPs), are a fundamental type of artificial neural network widely used 
in machine learning and pattern recognition tasks. Feed-forward neural 
networks are a class of artificial neural networks where information 
flows in one direction, from the input layer to the output layer, without 
forming cycles. They are composed of multiple layers of interconnected 
nodes, also called neurons or units. The first layer is the input layer, 
which receives the initial data or features. Following the input layer, 
there are one or more hidden layers responsible for processing the input 
and extracting relevant features. The last layer is the output layer, which 
produces the final predictions or classifications. Neurons within a layer 
are connected to neurons in the subsequent layer through weighted 
connections, which represent the strength of the connection. Each 
neuron in a layer receives inputs from the previous layer, applies a non- 
linear activation function to produce an output, and passes it to the next 

Table 1 
PV panel technical specifications. Rs: Series Resistance, Rsh: Shunt Resistance, 
Isc: Short Circuit Current, Voc: Open Circuit Voltage, Vmax: Voltage at Maximum 
Power, Imax: Current at Maximum Power, Pmax: Maximum Power, FF: Fill Factor.  

PV module 

Parameters Specification Parameters Specification 

Type of module Poly-crystalline Weight/module, 
kg 

19.6 kg 

Rs 0.385 (Ohm) Rsh 5994.137 Ohm 
Voc 38.2285 V Isc 8.954 A 
Pmax 287.999 W Vmax 33.316 V 
Dimension 1480 × 670 × 30 mm Imax 8.644 A 
FF 0.841 Efficiency 18%  
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layer. 
Activation functions introduce non-linearity to the network, 

enabling it to model complex relationships in the data. Common acti-
vation functions used in feed-forward neural networks include the sig-
moid, hyperbolic tangent, and rectified linear unit (ReLU) (Nair and Hinton, 
2010). During the training process, the network learns the optimal 
weights and biases for the connections by minimizing a predefined loss 
or error function. This learning is typically performed using optimiza-
tion algorithms such as gradient descent or its variants. Backpropagation 
(Rumelhart et al., 1986) is a widely used algorithm for computing the 
gradients of the loss function with respect to the network parameters, 
facilitating efficient weight updates. Feed-forward neural networks are 
universal approximators, meaning they can approximate any continuous 
function given enough neurons in the hidden layers. They have been 
successfully applied in various domains, including pattern recognition 
and forecasting (Ahmed et al., 2020; Wang et al., 2018). However, the 
performance and generalization of feed-forward neural networks 
heavily depend on appropriate architecture design, regularization 
techniques, and hyperparameter tuning. 

Feed Forward Neural Networks (FFNN) map an input data (xi) to an 
output (yi) given in (x,y) pairs. Here (xi,yi) pairs can be specific to any 
problem. For example, in this study, x shows various features taken daily 
from the solar power plant, and y shows the calculated efficiency values 
based on these features. All phases of classical neural networks are 
shown in Fig. 2. 

The Mean Squared Error (MSE) is utilized to measure the discrepancy 
between the predicted output generated by the neural network and the 
actual output (Sahin et al., 2020; Chicco et al., 2021). The aim is to 
minimize this error, with N representing the total number of samples.  

MSE =
1
N

∑N

t=1
(actualt − predictiont)

2 (1) 

An optimization process is conducted to minimize the value of MSE. 
In this study, the Adam optimization (Kingma and Ba, 2014) algorithm is 
employed for this purpose.  

2.4. Multiple linear regression 

In the multiple linear regression method, how multiple input pa-
rameters (independent variables, predictors) affect an output parameter 
(dependent variable, response) is analyzed. In this study, the seven pa-
rameters collected were given as input to MLR and the efficiency 
parameter was tried to be estimated. The multiple linear regression 
formula as follows:  

Yi = b0 + b1X1 + ⋯ + biXi + ⋯ + bkXk + ε, i = 1, 2,…, k (2)  

In Eq. (2), Yi is the dependent variable observed in multiple linear 
regression, Xi’s are the independent variables, b’s are the regression 
coefficients, ε is a fixed number. Using the least squares method, esti-
mates of the regression coefficient in the multiple linear regression 
model are obtained as follows (Eq. (3)) (Maulud and Abdulazeez, 2020; 
Kaytez, 2020).  

Ŷ i = b̂0 + b̂1 X1 + b̂2X2 + ⋯ + b̂kXk + ε, i = 1, 2,…, k (3)  

Ŷ i is the dependent variable in non-multiple linear regression, b̂’s are 
regression coefficients squared, ε is a fixed number. 

2.5. Data scaling for preprocessing 

The data obtained from the PV system was scaled using the following 
equation (Sahin et al., 2020), where Z represents the scaled values and X 
represents the raw values. Mean refers to the mean of X, and std refers to 
the standard deviation of X. Data scaling is used to normalize the range 
of data and bring all features to a similar scale, ensuring that no single 
feature dominates the learning process in machine learning models.  

Z =
X − X(mean)

X(std)
(4)  

2.6. Performance metrics 

In evaluating the performance of the artificial neural network (ANN) 

Fig. 2. The classical ANN flowchart.  
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and multiple linear regression (MLR) models, several metrics were uti-
lized. The metrics used to evaluate the performance of the models are as 
follows: 

Correlation Coefficient (r): The correlation coefficient ranges be-
tween − 1 and 1, where a positive value indicates a positive linear 
relationship, a negative value indicates a negative linear relationship, 
and a value of 0 indicates no linear relationship between the variables 
(Eq. (5)).  

r =
(Σ[(xi − x)(yi − y) ] )
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Σ(xi − x)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Σ(yi − y)2
√ (5)  

Here xi and yi are individual data points in variables x and y, respec-
tively. And x and y are the means of variables x and y, respectively. 

∑

represents the summation operator, indicating the sum of values across 
the dataset. 

Mean Absolute Error (MAE): The mean absolute error measures the 
average magnitude of the differences between the predicted and 
observed values. It provides a measure of the average absolute deviation 
from the actual values, disregarding the direction of the errors (Eq. (6)) 
(Willmott and Matsuura, 2005).  

MAE =

(
1
n

)
∑

|yi − xi| (6)  

where yi represents the observed or actual value, xi represents the pre-
dicted value, and n is the total number of data points. 

Root Mean Square Error (RMSE): The root mean square error 
measures the square root of the average of the squared differences be-
tween the predicted and observed values. It provides a measure of the 
average magnitude of the errors, giving more weight to larger errors due 
to the squaring operation. The RMSE is a commonly used metric for 
evaluating the accuracy of predictive models (Eq. (7)) (Willmott and 
Matsuura, 2005; Chicco et al., 2021).  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[(
1
n

)
∑

(yi − xi)
2
]√

(7) 

Coefficient of Determination (r2): The coefficient of determination 
(r-squared or r2) represents the proportion of the total variation in the 
dependent variable that can be explained by the independent variables 
in the model. It ranges from 0 to 1, where a value closer to 1 indicates a 
better fit of the model to the data (Eq. (8)) (Chicco et al., 2021).  

r2 = 1 −

(
SSres
SStot

)

(8)  

where SSres is the sum of squares of residuals or errors and SStot is the 
total sum of squares. 

Mean Absolute Percentage Error (MAPE): The MAPE is calculated 
by taking the absolute difference between the actual and predicted 
values, dividing it by the actual value, and multiplying by 100 to express 
the error as a percentage. The average of these percentage errors is then 
computed to obtain the overall MAPE (Eq. (9)) (Chicco et al., 2021).  

MAPE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒
yi − ŷi

yi

⃒
⃒
⃒
⃒× 100 (9)  

where n is the total number of samples, yi represents the actual value, 
and ŷi represents the predicted value. 

3. Experimental details 

In this research, the performance of feed forward neural networks 
and multiple linear regression models was evaluated using data from a 
500 kWp Photovoltaic (PV) Solar Power Plant. Before feeding the data 
into the models, a series of preprocessing steps were carried out to 

ensure the quality and compatibility of the dataset. These steps included 
data cleaning, normalization, and splitting into training and test sets 
using k-fold cross-validation. The dataset used in the study consisted of 
daily average measurements from January, February, and March 2018, 
obtained from the General Directorate of State Meteorology Affairs for 
the Igdir province. A total of 90 samples were collected daily from the 
solar panel, and the dataset was divided into training and test sets using 
k-fold cross-validation with k set to 10. This process involved dividing 
the data into 10-folds, with 9-folds used for training and 1-fold for 
testing. This separation of training and test sets was repeated 10 times to 
ensure consistency of the results and to reduce randomness. In the case 
of the FNN model, the seven input features, including solar irradiation, 
air temperature, wind speed, relative humidity, air pressure, module 
power, and module temperature, were used to predict the efficiency of 
the photovoltaic (PV) solar power plant. These features were normalized 
to ensure consistent scaling across variables. The FNN model consisted 
of an input layer with seven neurons, a single hidden layer with 15 
neurons, and an output layer with one neuron responsible for predicting 
efficiency values. Based on the results, it was found that using 15 neu-
rons in a single hidden layer yielded the best performance (Fig. 3). 
However, when the number of hidden layers was increased to two, the 
network’s performance declined, indicating an issue of overfitting. The 
Adam optimization (Kingma and Ba, 2014) algorithm was employed 
with a learning rate (α) of 0.001. The neural network was trained using 
the Keras library (Chollet, 2015), which is implemented in Python and 
provides a convenient API for neural network operations, on the Ten-
sorFlow framework (Abadi et al., 2016). 

Principal Component Analysis (PCA) was employed as a dimen-
sionality reduction technique to eliminate less significant features from 
the data. 

For the MLR model, the same seven input features were used to 
predict the efficiency of the PV solar power plant. The dataset was 
preprocessed similarly, with features normalized for consistency. Unlike 
the FNN, the MLR model relied on linear relationships between the input 
features and the target variable (efficiency). Regression analysis was 
performed to estimate continuous numerical values in the output layer. 

In both models, the training data were used to train the models, and 
the test data were employed to evaluate their predictive performance. 
Various performance metrics, including R-squared (R2), root mean 
square error (RMSE), mean absolute error (MAE), and mean absolute 
percentage error (MAPE), were used to assess and compare the perfor-
mance of the FNN and MLR models. 

In this study, we employed ANNs not as variable selection tools but 
as predictive models to assess the impact of various environmental 
factors and module features on the efficiency of a photovoltaic (PV) solar 
power plant. ANNs were utilized to estimate the power output and 
evaluate the influence of the selected variables on solar panel efficiency. 
It is essential to emphasize that ANNs were not employed for variable 
selection; instead, they served as advanced predictive tools capable of 
capturing intricate, non-linear dependencies within the data. 

The choice of ANNs over traditional linear regression methods was 
motivated by the inherent limitations of linear models in capturing non- 
linear relationships among variables. Traditional linear regression relies 
on predefined assumptions and may not effectively represent the com-
plex, non-linear interactions observed in the data. In contrast, ANNs 
have the capacity to model and predict outcomes in situations where 
linear methods may fall short, making them a valuable asset in 
addressing the research objectives. 

4. Results and discussion 

In this study, Neural Network Regression and Multiple Linear 
Regression analysis were compared. The most commonly used envi-
ronmental parameters affecting solar panel efficiency were selected and 
examined. The objective of this study is to examine how environmental 
parameters impact the efficiency of panel power through the utilization 
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of machine learning techniques, and the above metrics were used to 
compare them. Based on the findings, the artificial neural network 
model demonstrated an R2 value of 0.9628, while the multiple linear 
regression model yielded a value of 0.901. In addition, the root of mean 
square error (RMSE), mean absolute error (MAE) and mean absolute 
percentage error (MAPE) results can be seen in Table 2. Consequently, 
the artificial neural network model demonstrated superior performance 
compared to the multiple linear regression model, as it achieved better 
results across all evaluation criteria.  

Table 3 presents the correlation coefficients between PV solar power 
efficiency and other variables. The results indicate a significant positive 
correlation between PV solar power efficiency and solar irradiation as well 
as PV module power. Conversely, there is a strong negative correlation 
between PV solar power efficiency and air pressure. These correlations are 
visually depicted in Fig. 4.  

Fig. 5 illustrates the regression curves for the validation and test 
data, as well as the results for all data, showcasing the modeling per-
formance by comparing the neural network output with the training 
output. The regression values for all data demonstrate a strong corre-
lation, with values close to 1, indicating a good fit of the data to the 
model. The artificial neural network output closely aligns with the real 
data, as evidenced by the high R2 and correlation coefficient (r =

0.9628) values. Additionally, the MAE and RMSE values are expected to 
be low, further confirming the accuracy of the model. The specific re-
sults are presented in Fig. 5. 

The mean absolute error (MAE) value in the test set was found to be 
25.09 as seen in Table 4. This result is within the appropriate range of 
500 kWp Photovoltaic (PV) solar power plant efficiency values. In the 
test set, the coefficient of determination (R2) was found to be 0.901, 
indicating a strong level of correlation between the predicted values and 
the actual values. The root mean square error (RMSE) was calculated 
using the same method and yielded a value of 23.89, representing the 
average magnitude of the prediction errors. By applying Principal 
Component Analysis (PCA), the number of features was reduced to two 
dimensions. Although the performance criteria decreased after applying 
PCA, the results indicate that utilizing only two dimensions is sufficient 
for predicting the efficiency of the solar power plant (Table 4). 

To provide a clear visualization of the results, Table 5 displays the 
predicted values for 10 randomly selected samples. The table demon-
strates the close proximity between the actual and predicted values of 

the 500 kWp photovoltaic (PV) solar power plant efficiency. 
In Fig. 6(a) and (b), the distribution of residuals is very close to the 

Gaussian curve, which means errors are concentrated around nearly 
zero. This error distribution is close to ideal state in data science ex-
periments. According to these graphs, the error distribution of ANN is 
smoother than Multiple Linear Regression Model. 

In Fig. 7, it is shown that, the variables such as solar irradiation, 
module power and module temperature have the largest effects on the 
estimation of efficiency. The status of these variables can be seen in the 
simple regression plots. Another point is that the wind speed and air 
pressure variables have less effect as in the simple regression plot (Fig. 7 
and Table 6). Figs. 6 and 7 were generated using SPSS (IBM SPSS version 
23 licensed program) analysis program. 

Multiple Non-Linear Regression Model 
The coefficients of the regression equation show the effect of input 

variables on the result in Table 7. 
We have interpreted the analysis results in Table 7 and we found Eq. 

(8):  

Efficiency = − 47934, 12 + 21, 05 × b1 + 7, 8 × b2 − 55, 76 × b3 + 50, 61

× b4 + 20, 14 × b5 + 5, 58 × b6 − 1, 26 × b7

(10)  

The correlation values for all parameters are presented in Table 8, along 
with the coefficients of the regression equation calculated based on the 
parameter estimates for binary interactions. 

Based on the regression equation, the panel efficiency of all param-
eters and the identified binary interactions exhibited a significantly high 
value of 0.901. This observation is further supported by the ANOVA 
(Analysis of Variance) (Table 9), which indicates a high calculated F 
value. The F value represents the ratio of the variation between groups 
to the variation within groups. It is used to test the null hypothesis that 
there is no significant difference between the means of the groups being 
compared. A higher F value indicates a larger difference between the 
group means and suggests a greater likelihood of rejecting the null hy-
pothesis. The specific value of F = 37.509 indicates a significant 

Fig. 3. Feed Forward Neural Network (FFNN) model used in the experiment.  

Table 2 
Performance criteria for artificial neural network and multiple linear regression 
models.  

Artificial neural network Multiple linear regression analysis 

R2 RMSE MAE MAPE R2 RMSE MAE MAPE 

0,9628 0,881 1450,03 9,215 0,901 1,105 1864,4 10,86  

Table 3 
The correlation coefficients between PV Module Efficiency and other 
variables.  

Input parameters PV solar power efficiency 

Solar irradiation ＋0.316 
Module power ＋0.308 
Module temperature ＋0.121 
Air temperature ＋0.096 
Relative humidity ＋0.064 
Wind speed ＋0.058 
Air pressure − 0.052  
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difference between the groups being analyzed.  

F =
15310000

408173.343
= 37.509 (11)  

Figs. 8 to 12 depict the relationship between changing input con-
ditions and the variation of panel efficiency. The spider web represen-
tation, displayed in column (a) of these figures, illustrates the change of 

the dependent variable (panel efficiency) in response to different inde-
pendent variables (environmental and module factors). The focus is on 
observing the coherence of the variables represented in red and blue, 
indicating whether they change in a synchronized manner. In column 
(b) of the figures, the correlation between these variables is demon-
strated. A strong correlation suggests that the variables move together in 
either a positive or negative direction. 

Fig. 4. Variables with strong correlations with PV solar power efficiency.  

Fig. 5. Regression curve fitting of (a) training, (b) test and (c) all data for the ANN.  
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In Fig. 8a, the spider web representation is compared with the per-
centage yield and panel efficiency. The correlation between the two 
variables is clearly visible. Also, in Fig. 7b, the linear regression is 
compared with the percentage yield and panel efficiency. According to 

the linear regression plot, a positive strong correlation was shown be-
tween the two variables. The nova’s smaller than 0.0001 (p < 0.0001) 
due to in Fig. 8b indicates a significant increase in panel efficiency. The 
percentage of panel activity was determined to be approximately R2 =

0.841. 
In Fig. 9a, the solar irradiation effects to solar efficiency, clearly. In 

Fig. 9b, according to the linear regression plot, a positive strong corre-
lation was shown between the two variables. The anovas smaller than 
0.0001 (p < 0.0001) due to in Fig. 8b indicates a significant increase in 
panel efficiency. The percentage of disclosure was about R2 = 0.651. 

In Fig. 10a, the relationship between the two variables is not clearly 
visible. Also, according to the linear regression plot (Fig. 10b), a positive 
but loose correlation was shown between the two variables. The per-
centage of disclosure was about R2 = 0.411. 

In Fig. 11a, spider web representation clearly shows the correlation 
between parameters. In Fig. 11b, according to the linear regression plot, 

Table 4 
Experimental results with neural networks. Best values are in bold in each category.  

Experiments with (#Exp. 
Id) 

Neural network layer 
sizes 

Correlation between true values and 
predictions 

Testing set Mean Absolute Error 
(MAE) 

Testing set R2 Testing set  
RMSE 

Normal data  
(7 dimensions) 

#1 7–8–1 0.932 27.49 0.837 27.91 
#2 7–16–1 0.934 26.43 0.867 24.89 
#3 7–32–1 0.9628 25.09 0.901 23.89 
#4 7–64–1 0.937 25.39 0.871 24.09 

PCA applied data  
(2 dimensions) 

#5 2–8–1 0.921 30.10 0.860 28.26 
#6 2–16–1 0.908 31.60 0.802 30.86 
#7 2–32–1 0.908 31.78 0.828 31.86 
#8 2–64–1 0.912 31.29 0.845 31.55  

Table 5 
Randomly selected 10 samples (Solar Irradiation, Module Temperature, Wind Speed, Air Temperature, Relative Humidity, Module Power, PV Module Efficiency) and 
produced predictions.  

Solar irradiation 
(W/m2) 

Module temperature 
(◦C) 

Wind speed 
(m/s) 

Air temperature 
(◦C) 

Relative humidity 
(%) 

Module power 
(W) 

Solar power plant 
efficiency (kWh) 

Predicted 
efficiency 

721 67 4,04 2,19 43,2 493,15 1219 1219,52 
612 51 6,6 5,4 85,98 449,44 1696,63 1692,61 
617 52 5,07 4,66 70,84 429,21 1575,28 1585,1 
672 57 3,29 3,84 69,91 467,19 1803,15 1785,2 
659 34 2,35 4,2 79,12 464,48 1780,9 1793,12 
658 24 1,48 5,21 80,74 494,38 1966,29 1968,36 
666 36 1,49 4,45 84,02 478,31 1826,52 1810,81 
654 34 2,6 2,86 79,82 464,72 1788,3 1793,2 
646 35 1,88 2,9 92 456,07 1648,54 1658,39 
685 34 2,08 3,94 88 463,48 1853,93 1855,68  

Fig. 6. (a) Regression standardized residual histogram of ANN regression, (b) Regression standardized residual histogram of multiple linear regression model.  

Table 6 
Independent variable importance (percentage).   

Importance Normalized importance 

Module power ,308 100,0% 
Solar irradiation ,316 37,1% 
Module temperature ,121 96,5% 
Relative humidity ,064 20,5% 
Air temperature ,096 30,8% 
Air pressure ,052 16,6% 
Wind speed ,058 18,5%  
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a positive strong correlation was shown between the two variables. The 
anovas smaller than 0.0001 (p < 0.0001) due to in Fig. 11b indicates a 
significant increase in panel efficiency. The percentage of disclosure of 
panel efficiency was determined to be about R2 = 0.654. 

In Fig. 12(a), spider web representation clearly shows very weak 
correlation between parameters. In Fig. 12b, the same weak and nega-
tive relationship is also seen in the linear regression plot. The percentage 
of disclosure was about R2 = 0.143. 

In Fig. 13(a), it is seen that there is a very weak relationship between 
the variables in both plots. The percentage of disclosure of panel effi-
ciency was determined to be about R2 = 0.012. The wind speed does not 

affect to increase or decrease of the panel efficiency. 

5. Conclusion 

This study investigated the surface parameters and environmental 
factors influencing the energy production of a 500 kWp Photovoltaic 
(PV) solar power plant in Igdir province. The use of feed forward neural 
networks and multiple linear regressions allowed for modeling of solar 
power plant efficiency. The results demonstrated that the system per-
formed well despite limited data availability. Artificial neural networks 
have gained popularity in recent years, and in this study, they were 
utilized to estimate the efficiency of the solar power plant alongside 
multiple linear regression. The regression values indicated a successful 
performance of the network, with a convergence towards 1 suggesting 
strong regression capabilities. Performance criteria such as R2, RMSE, 
MAE, and MAPE were used to evaluate the models, and the artificial 

Fig. 7. Importance of input parameters for ANN regression.  

Table 7 
Parameter estimates of multiple nonlinear regression analysis.  

Parameter estimates 

Parameter Estimate Std. Error 95% confidence interval    

Lower bound Upper bound 

b0 − 47 934,119 19 249,557 − 88 087,992 − 7780,246 
b1 21,055 15,001 − 10,236 52,346 
b2 7,800 106,486 − 214,326 229,926 
b3 − 55,764 141,342 − 350,599 239,071 
b4 50,610 20,784 7,256 93,964 
b5 20,138 12,296 − 5,512 45,788 
b6 5,582 1,249 2,976 8,187 
b7 − 1,266 1,040 − 3,436 ,904 

b0: Bias (Intercept), b1: Module Temperature, b2: Wind Speed, b3: Air Temper-
ature, b4: Pressure, b5: Relative Humidity, b6: Power, b7: Solar Irradiation. 

Table 8 
Correlations of parameter estimates.  

Correlations of parameter estimates  

b0 b1 b2 b3 b4 b5 b6 b7 

b0 1,000        
b1 − ,212 1,000       
b2 − ,251 − ,430 1,000      
b3 ,022 ,185 − ,231 1,000     
b4 − ,998 ,200 ,242 − ,052 1,000    
b5 − ,095 ,222 ,123 − ,326 ,063 1,000   
b6 ,097 − ,292 − ,023 ,295 − ,103 − ,300 1,000  
b7 ,131 − ,519 ,236 ,087 − ,145 − ,111 − ,230 1,000  

Table 9 
ANOVA results for multiple linear regression analysis.  

ANOVA 

Source Sum of squares df Mean squares 

Regression 1,225E8 8 1,531E7 
Residual 8 163 466,859 20 408 173,343 

Dependent variable: Efficiency 
R squared = 1 - (Residual Sum of Squares)/(Corrected Sum of Squares) = 0,901 
(R2 = 0,901). df: Degree of freedom, R2: Adjusted coefficient of determination. 
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neural network model outperformed multiple linear regression analysis 
with an R2 value of 0.9628. The Mean Absolute Error (MAE) and Root 
Mean Square Error (RMSE) were found to be 25.09 and 23.89, respec-
tively, for the artificial neural network model. These findings align with 
previous studies indicating the effectiveness of artificial neural networks 
in solar panel efficiency analysis. Principal Component Analysis (PCA) 
was applied to reduce the number of features to two dimensions, and 

although there was a decrease in performance criteria, it demonstrated 
that utilizing only two dimensions was sufficient for efficiency predic-
tion. This study highlights the underutilization of artificial neural net-
works in panel efficiency studies in our country and emphasizes their 
potential contribution to the energy prediction literature. Furthermore, 
incorporating weather parameters as input variables could enhance the 
performance of neural networks for better short-term forecasting. The 

Fig. 8. (a) Percentage yield and panel efficiency comparison in spider web representation. (b) The scatter plot of Percentage efficiency versus panel yield with Simple 
Linear Regression. . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. (a) The comparison of solar irradiation using spider web representation and its relationship with solar panel efficiency. (b) The scatter plot of solar efficiency 
versus solar irradiation with Simple Linear Regression. . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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three parameters found to have the greatest impact on the efficiency of 
the 500 kWp Photovoltaic (PV) Solar Power Plant were solar irradiation, 
module power, and module temperature. Overall, this study contributes 
to the understanding and potential optimization of energy investments 
in the Igdir region and provides insights into the application of artificial 
neural networks in energy forecasting. 

Declaration of competing interest 

There is no conflict of interest. 

Fig. 10. (a) The solar temperature of spider web representation and panel solar efficiency (b) The scatter plot of solar efficiency versus module temperature with 
Simple Linear Regression. . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. (a) The solar module power of spider web representation and panel solar efficiency (b) The scatter plot of solar efficiency versus module power with Simple 
Linear Regression. . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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