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Abstract. Gradual semantics are methods that evaluate overall
strengths of individual arguments in graphs. In this paper, we investig-
ate gradual semantics for extended frameworks in which probabilities
are used to quantify the uncertainty about arguments and attacks
belonging to the graph. We define the likelihoods of an argument’s
possible strengths when facing uncertainty about the topology of the
argumentation framework. We also define an approach to compare
the strengths of arguments in this probabilistic setting. Finally, we
propose a method to calculate the overall strength of each argument in
the framework, and we evaluate this method against a set of principles.

1 Introduction

Within the last couple of decades, argumentation has emerged as a
popular field in Artificial Intelligence [9, 12]. It has been shown to be
useful in several domains, such as decision making [40], reasoning
under inconsistency [13] and non-monotonic reasoning [29] and is
applicable in the domains of law and medicine [9]. The underlying
structure of formal models of abstract argumentation takes the form of
directed graphs, whose nodes represent arguments and whose directed
edges indicate attacks between attacks.

Two main classes of semantics were proposed to reason about such
structures and to evaluate arguments in the graphs. Extension-based
semantics are proposed with the goal of identifying jointly acceptable
sets of arguments (extensions) based on specific properties within
the graph [18]. The acceptability status of an argument is then de-
rived from these extensions. The argument is sceptically accepted
if it belongs to all extensions, credulously accepted if it belongs to
some of the extensions, and rejected otherwise. On the other hand,
gradual semantics [17] focus on individual arguments and quantify
their strengths in graphs, using a richer scale (usually the unit inter-
val of reals [0, 1]). They typically define strength of an argument to
depend on strengths of its direct attackers. One intuitive difference
between gradual and extension-based semantics is that, in the latter
approach, the attack relation is used to destroy its target (two con-
flicting arguments cannot be in the same extension), while in ranking
based semantics it is often used to only weaken its target. Examples of
gradual semantics are h-Categoriser [13], Simple product semantics
[27], Trust-based semantics[32], Iterative Schema [20], Max-based
and Cardinality-based semantics [8]. Some of the approaches were
adapted to frameworks where arguments and/or attacks have a base
weight [5, 6, 7, 8], bipolar frameworks in which both support and
attack relations are present in a graph [4, 34, 35], and weighted bi-
polar SETAFs where a set of arguments can attack or support a target
together [39]. Gradual semantics are similar in spirit to ranking se-

mantics [2, 16], which focus on the strength of arguments relative
to that of other arguments, and return a preorder on arguments, thus
ranking them from the strongest to the weakest ones. Obviously, each
gradual semantics can be used to generate a ranking semantics (but
not vice versa).

For many applications in which there is uncertainty about topology
of the argumentation graph, simple attack frameworks appear too
simple for convenient modelling of those aspects of an argumentation
problem. There are different scenarios in which uncertainty about
presence or arguments and attacks in a graph arises naturally: at times,
ambiguities in the language used for presenting an argument, or the
presentation of arguments with incomplete premises or claims may
lead to uncertainty about the correct interpretation of attacks between
arguments [23]; other times, arguments are presented with explicit
uncertainty in their claims [23]; an audience to some argumentation
is often unsure of the exact set of arguments being put forward, and a
participant in in some argumentation may be unsure which arguments
the audience has in mind [25]. In order to handle these uncertainties,
Li, Oren and Norman [28] proposed Probabilistic Argumentation
Frameworks which augment argumentation graphs with probabilities.
In this approach, named the constellations approach by Hunter1[22],
probability values are added to the arguments and attacks, allowing
for the modelling of uncertainty in which elements should be present
in the argumentation framework. In the constellations approach, a
considered extension semantics is used to determine the probability of
an argument being (credulously/sceptically) accepted. This approach
to probabilistic argumentation has been extensively investigated from
an extension-based semantic point of view [21, 22, 23, 25, 33, 14, 30,
24, 31, 15, 19], but never from the perspective of gradual semantics.
Therefore, the current results on the constellations approach are well
suited to answering the question of probability of (joint) acceptance of
(sets of) arguments, but not the questions about probability of strength
of an individual argument, or the question which argument is stronger
in a probabilistic setting. Such questions are instead a particularly
good match for applications of gradual semantics to graphs augmented
with probabilities.

In this paper we study gradual semantics in probabilistic argument-
ation frameworks, following the constellations approach. This allows
us to define semantics that return probabilities of an argument’s ac-
ceptance with respect to any strength threshold, providing a richer
scale of acceptability statuses than would be possible using Dung se-
mantics (Section 3). In addition, we extend the approach to calculate

1 In the same paper, the author introduces the notion of the epistemic approach
to probabilistic argumentation, which can be used to represent the degree to
which an argument is believed [22, 26, 37].
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the probability of an argument being stronger than another argument.
Moreover, we extend that notion of probabilistic ranking by defining
the probabilities of certain ranking queries of interest. For example,
we can calculate probability that the argument a is stronger then either
b or c (Section 4). We investigate formal properties of both approaches
and connections between them.

We also investigate the challenging problem of defining semantics
that assign unique overall strength to each argument in a probabilistic
argumentation framework (Section 5). Following the constellations ap-
proach, we propose desirable principles for such semantics2, inspired
by existing principles for gradual semantics from the literature [5]. We
investigate properties of those principles and show their compatibility.
Finally, we propose the first family of such semantics, by providing a
method for generalising gradual semantics for argumentation graphs
to our probabilistic framework. We show that if the considered un-
derlying gradual semantics satisfies existing principles [5], then its
generalisation satisfies our novel principles.

2 Background

2.1 Gradual semantics for argumentation frameworks

Arguments can be defeasible and may conflict with one another. Argu-
mentation graphs, introduced by Dung under the name argumentation
frameworks [18], are directed graphs that model such conflict by rep-
resenting arguments with nodes and attacks between arguments with
edges. This formalism considers arguments and attacks as purely ab-
stract entities, doing away entirely with features such as the structure
and origin of arguments and the nature of attacks.

Definition 2.1 (Argumentation Graph) An argumentation graph
(AG) is an ordered pair G = 〈A,R〉, where A is a non-empty fi-
nite set of arguments and R ⊆ A×A is an attack relation between
arguments. Let AG denote the set of all argumentation graphs.

As we explained in the introduction, gradual semantics (unlike
extension-based ones) assign to each argument a unique overall
strength value or acceptability degree considering the strengths of
their attackers. This richer evaluative scale, where arguments with
a higher acceptability degree are considered more acceptable, en-
ables us to make comparisons between alternative arguments, even
when both would be assigned the same acceptability status by a Dung
semantics.

Following an approach already accepted by some authors from
the field [8], for simplicity we use the unit interval of reals as the
evaluative scale.

Definition 2.2 (Weighting) [8] A weighting on a set X is a function
from X to the interval [0, 1].

Now we can define gradual semantics in a formal way.

Definition 2.3 (Gradual Semantics) [8] A semantics is a function
S transforming any argumentation graph G = 〈A,R〉 ∈ AG into
a weighting DegSG on A (i.e., DegSG : A → [0, 1]). For any a ∈ A,
DegSG(a) represents the strength of a.

A well-studied gradual semantics that will be used as an example in
this work is the h-categoriser, proposed by Besnard and Hunter [13]:

2 Interestingly, there is another recent principle-based study of argument
strength in probabilistic argumentation [36]. However, that paper considers
probabilities that are assigned to arguments’ structure in logic-based argu-
mentation, and therefore it does not belong to the constellations approach.

Definition 2.4 The h-categoriser is a gradual semantics Hbs s.t.
∀G = 〈A,R〉 ∈ AG, ∀a ∈ A,

Deg
Hbs
G (a) =

1

1 +
∑

bi s.t. (bi,a)∈R DegHbsG (bi)
.

In the literature on gradual semantics, several works have been
devoted to development of principles that represent desirable formal
properties of semantics, with the purpose to serve as a tool for analysis
and comparison of gradual semantics [3, 5, 8, 10, 11].

Here we informally introduce some of them (the corresponding
formal definitions are listed in Section 2.2:
Maximality states that a non-attacked argument will have maximal
strength (i.e., the strength 1).
Resilience states that every argument will have strictly positive
strength in any graph.
Weakening states that if an argument has an attacker with positive
strength, then its own strength cannot be maximal.

2.2 Principles for gradual semantics

In what follows, we recall some principles from [5], adjusted to non-
weighted graphs. Let S be a gradual semantics.

Anonymity: S satisfies anonymity iff for any AGs G = 〈A,R〉 and
G′ = 〈A′,R′〉, for any isomorphism f from G to G′, the following
holds: ∀ a ∈ A, DegSG(a) = DegSG′(f(a)).

Independence: S satisfies independence iff for any AGs G = 〈A,R〉
and G′ = 〈A′,R′〉 s.t A ∩ A′ = ∅, the following holds: ∀ a ∈
A, DegSG(a) = DegSG⊕G′(a) where G⊕G′ = 〈A ∪ A′,R∪R′〉.
Directionality: S satisfies directionality iff for any AGs G = 〈A,R〉
and G′ = 〈A,R′〉 s.t. R′ = R ∪ {(a, b)} and ∀r ∈ R, P ′

R(r) =
PR(r), it holds that: ∀x ∈ A, if there is no path from b to x,
DegSG(a) = DegSG′(f(a)).

Equivalence: S satisfies equivalence iff for any AG G = 〈A,R〉,
∀a, b ∈ A, the following holds: if there exists a bijective func-
tion f from AttG(a) to AttG(b) s.t. ∀x ∈ AttG(a), DegSG(x) =
DegSG(f(x)), then DegSG(a) = DegSG(b).

Maximality: S satisfies maximality iff for any AG G = 〈A,R〉,
∀a ∈ A, it holds that: if AttG(a) = ∅, then DegSG(a) = 1.

Neutrality: S satisfies neutrality iff for any AG G = 〈A,R〉, ∀a, b ∈
A, it holds that: if AttG(b) = AttG(a)∪ {x} s.t. x ∈ A\ AttG(a)
and DegSG(x) = 0, then DegSG(a) = DegSG(b).

Weakening: S satisfies weakening iff for any AG G = 〈A,R〉, ∀a ∈
A, it holds that if AttG(a) �= ∅, then DegSG(a) < 1.

Proportionality: S satisfies proportionality iff for any AG G =
〈A,R〉, ∀a, b ∈ A, the following holds: if AttG(a) = AttG(b),
w(a) > w(b), and DegSG(a) > 0, then DegSG(a) > DegSG(b).

Resilience: S satisfies resilience iff for any AG G = 〈A,R〉, ∀a ∈ A,
DegSG(a) > 0.

Reinforcement: S satisfies reinforcement iff for any AG G = 〈A,R〉,
∀a, b ∈ A, the following holds: if DegSG(a) > 0, AttG(a) \
AttG(b) = {x}, AttG(b) \ AttG(a) = {y}, and DegSG(y) >
DegSG(x), then DegSG(a) > DegSG(b).

Counting: S satisfies counting iff for any AG G = 〈A,R〉, ∀a, b ∈ A,
it holds that: if AttG(b) = AttG(a) ∪ {x} with x /∈ AttG(a),
DegSG(x) > 0, and DegSG(a) > 0, then DegSG(a) > DegSG(b).

Weakening Soundness: S satisfies weakening soundness iff for any
AG G = 〈A,R〉, ∀a ∈ A, it holds that: if DegSG(a) < 1, then
∃b ∈ AttG(a) s.t. DegSG(b) > 0.
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2.3 Probabilistic argumentation frameworks

When using argumentation graphs and semantics to evaluate argu-
ments, we assume that all relevant arguments and attacks are con-
sidered and no arguments or attacks in the graph are irrelevant. In
reality, however, it is rarely clear which arguments and attacks apply
and should thus be placed in the graph. We might, for example, run
into natural language being imprecise such that it is unclear whether
claims are contradictory or there might be multiple ways to model
the premises and claims often left implicit in conversation. We might
also be in a situation where we are unsure what arguments a dialogue
partner or an audience has in their mind. At other times we may be
dealing with explicit uncertainty, such as with utterances like ’I am
99% sure’ or ’I may have seen Robin yesterday’.

Such uncertainty is captured by probabilistic argumentation frame-
works: an extension of argumentation frameworks, originally pro-
posed by Li, Oren, and Norman [28], where each argument and attack
is given a certain likelihood of appearing in a graph.

Definition 2.5 (PrAF) A probabilistic argumentation framework
(PrAF) is a quadruple F = 〈A, PA,R, PR〉, where 〈A,R〉 is an
argumentation graph and PA : A → (0, 1] and PR : R → (0, 1]
associate likelihood values with arguments and attacks respectively.
PrAF denotes the set of all probabilistic argumentation frameworks.

In a PrAF F = 〈A, PA,R, PR〉, the argumentation graph G =
〈A,R〉 represents the set of all arguments and attacks that may po-
tentially appear. An instantiated graph that may arise under the uncer-
tainty we face thus contains a subset of the arguments and attacks in
G. We call the process of deriving such a graph from a PrAF induc-
tion, and name the graphs that result induced graphs (of the PrAF).
The functions PA and PR represent the uncertainty in the arguments
and attacks in G. PA gives the probability that an argument appears
in a graph induced from G and PR the conditional probability that
an attack appears in an induced graph given that both arguments it
relates appear in the graph. The ranges of both functions deliberately
exclude 0, as any argument or attack with a zero probability is known
never to appear and is thus redundant. The maximum value 1 either
function may assign represents certainty that an argument appears in
an induced graph or that an attack appears given that its origin and
target do as well.

We say that an argument is perfect in a PrAF, if it is both non-
attacked and its probability is 1.

Definition 2.6 (Induced Graph) An argumentation graph G′ =
〈A′,R′〉 is induced from a probabilistic argumentation framework
F = 〈A, PA,R, PR〉 iff all of the following hold:

• A′ ⊆ A
• R′ ⊆ R ∩ (A′ ×A′)
• ∀a ∈ A such that PA(a) = 1, a ∈ A′

• ∀(a, b) ∈ R such that PR((a, b)) = 1 and a, b ∈ A′, (a, b) ∈ R′

I(F) denotes the set of all argumentation graphs that may be induced
from a probabilistic argumentation framework F.

This definition differs from the original, proposed in [28], in the
fourth bullet; in addition to the attack (a, b) being certain, the original
definition requires that arguments a and b both have probability 1
instead of only requiring them to be present in the graph for (a, b) to
be certainly present in the graph. This change eliminates any induced
graphs that will receive probability 0 under the following Definition

2.7, where an attack with probability 1 is not present even though the
arguments it connects are.

Since independence between arguments and attacks is assumed, the
probability of some induced graph G being induced from a PrAF F
can be computed using the joint probabilities of independent variables:

Definition 2.7 (Probability of an Induced Graph) Given a prob-
abilistic argumentation framework F = 〈A, PA,R, PR〉, the prob-
ability of some graph G′ = 〈A′,R′〉 being induced from F is:

P I
F(G

′) =
∏

a∈A′
PA(a)

∏

a∈A\A′
(1− PA(a))

∏

r∈R′
PR(r)

∏

r∈R↓A′\R′
(1− PR(r))

where R ↓A′= {(a, b)|a, b ∈ A′ and (a, b) ∈ R}.

Through definitions 2.5, 2.6 and 2.7 it is easily shown that

∀F ∈ PrAF, ∀G ∈ I(F), P I
F(G) > 0 (1)

The following proposition claims that P I
F is a probability distribu-

tion over the induced graphs of a PrAF.

Proposition 2.8 The sum of probabilities of all argumentation
graphs that may be induced from an arbitrary PrAF F is 1. i.e.∑

G∈I(F) P
I
F(G) = 1.

This distribution is used in [28] to define the probability of a set
of arguments X being (sceptically/credulously) accepted in a PrAF
as the sum of probabilities of all induced graphs that contain X in
(some/all of) their extensions.

What follows is a list of special notations used in the paper.

Notation 1 Let F = 〈A, PA,R, PR〉 be a PrAF, G = 〈A,R〉 be
an AG, and a ∈ A. We write aRb iff (a, b) ∈ R. AttF(a) and
AttG(a) denote the set of all attackers of a in F and G respectively
(i.e., AttF(a) = AttG(a) = {b ∈ A|bRa}). For a, b ∈ A, we
say there is a path from b to a if there exists a finite non-empty se-
quence 〈x1, . . . , xn〉 of arguments xi ∈ A s.t. x1 = b, xn = a
and ∀i < n, xiRxi+1. For any F = 〈A, PA,R, PR〉,F′ =
〈A′, P ′

A,R′, P ′
R〉 ∈ PrAF s.t. A ∩ A′ = ∅, F ⊕ F′ is the PrAF

〈A∪A′, P ′′
A,R∪R′, P ′′

R〉 where for any a ∈ A (respectively a ∈ A′)
P ′′
A(a) = PA(a) (respectively P ′′

A(a) = P ′
A(a)) and for any r ∈ R

(respectively r ∈ R′) P ′′
R(r) = PR(r) (respectively P ′′

R(r) =
P ′
R(r)). For any G = 〈A,R〉,G′ = 〈A′,R′〉 ∈ AG s.t. A∩A′ = ∅,

G⊕G′ is the AG 〈A∪A′,R∪R′〉. For any F = 〈A, PA,R, PR〉
and S ⊆ A, F|S = 〈S, (PA)|S ,R|S×S , (PR)|(R|S×S)〉.

3 Acceptability of arguments

In the work of Li, Oren, and Norman [28], Definition 2.7 is used to
determine the probability that some set of arguments is acceptable
under a given Dung semantics by adding together the probabilities
of those induced graphs where the set is acceptable. This section
explores the possibility of determining that probability under a gradual
semantics instead.

Where Dung semantics determine the acceptability of an argument
directly, without explicitly considering the overall strength of the
argument, gradual semantics may be used to determine acceptability
indirectly through the strengths they assign arguments. An approach
to deriving argument acceptability from the strengths assigned to
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arguments by a gradual semantics is proposed in [1]; we may simply
accept those arguments whose strength meets or exceeds a threshold
we choose.

Definition 3.1 (Acceptability Under Gradual Semantics) [1]
Given an argumentation graph G = 〈A,R〉 and a gradual semantics
S, an argument a ∈ A is threshold accepted in G with respect to S
and some threshold t ∈ [0, 1], denoted G �∼t

S a, iff DegSG(a) ≥ t.

Now that we can derive the acceptability of an argument from its
strength, we may follow the same approach as Li, Oren, and Norman
to determine the probability that a set of arguments is acceptable.

Definition 3.2 (Probability of Acceptability) Given a probabilistic
argumentation framework F = 〈A, PA,R, PR〉, a gradual se-
mantics S, and a threshold t ∈ [0, 1], the probability that some
set of arguments X ⊆ A is acceptable in F w.r.t. S and t is:

PS,t
F (X ) =

∑

G∈I(F),∀a∈XG�∼t

Sa

P I
F(G)

That is, PS,t
F (X ) is the sum of the probabilities of the induced graphs

of F where all arguments in X are accepted. For brevity, we write
PS,t
F (x) instead of PS,t

F (X ) for singleton sets X = {x}.

The following result states that the probability of acceptance of any
argument in a framework is bounded from above by its probability of
being present in the graph.

Proposition 3.3 Let F = 〈A, PA,R, PR〉 be a probabilistic argu-
mentation framework and let S be a gradual semantics. For every
t ∈ [0, 1] we have PS,t

F (a) ≤ PA(a).

Now we state a form of monotonicity property that compares prob-
abilities of acceptance when different thresholds are considered.

Proposition 3.4 Let F = 〈A, PA,R, PR〉 be a probabilistic argu-
mentation framework and let S be a gradual semantics. If t ≤ t′, then
PS,t
F (a) ≥ PS,t′

F (a).

Next we consider properties that depend on behaviour of the chosen
gradual semantics. According to the first property, if the semantics
satisfies Maximality, then the probability that a non-attacked argument
has maximal strength is 1.

Proposition 3.5 Let F = 〈A, PA,R, PR〉 be a probabilistic argu-
mentation framework and let S be a gradual semantics that satisfies
Maximality. If a ∈ A is not attacked in F, then PS,1

F (a) = PA(a).

On the other hand, Resilience implies non-zero probability that an
argument has at least some positive strength.

Proposition 3.6 Let F = 〈A, PA,R, PR〉 be a probabilistic argu-
mentation framework and let S be a gradual semantics that satisfies
Resilience. Then for some t > 0, PS,t

F (a) > 0.

If, in addition, the semantics satisfies Weakening, the probability
of acceptance of an attacked argument cannot reach its probability of
belonging to the graph.

Proposition 3.7 Let F = 〈A, PA,R, PR〉 be a probabilistic argu-
mentation framework and let S be a gradual semantics that sat-
isfies Resilience and Weakening. If a is attacked, then for t = 1,
PS,t
F (a) < PA(a).

The last result of this section characterises perfect arguments.

Proposition 3.8 Let F be a probabilistic argumentation framework
and let S be a gradual semantics that satisfies Maximality, Weakening
and Resilience. Then a is perfect in F iff PS,1

F (a) = 1.

4 Ranking arguments in a probabilistic setting

Through the introduction, removal, or alteration of terms in a gradual
semantics one may vastly alter the exact values it assigns to argu-
ments. Hence, comparing an argument’s strength to an exact threshold
can only be informative when we are intimately familiar with the
semantics used. We see this reflected in the principles used in the
literature to study or define semantics [5, 11]; these principles only
speak about strength values relative to those of other arguments, or to
minimum or maximum values enforced by the framework and never
do so in absolute values. Such properties are ultimately what distin-
guish two semantics and it is thus appropriate to compare arguments
based on their strength.

Let us consider a practical example to better inform our intuitions.
Suppose we are a university hiring committee tasked with filling a
PhD position and there are two candidates to consider: Alex and Billy.
We may model the suitability for hiring of Alex with an argument a
and that of Billy with an argument b. Any reason for questioning the
suitability of either candidate can now be modelled as an attacker of
either argument. For instance, Alex’s suitability may be brought into
question based on doubts of their mastery of the English language
(argument x with xRa) and Billy may be considered a poor fit in
the team as they are known to have had some conflict with other
members of the research group (argument y with yRb). Uncertainty
is introduced into the graph by argument x (Alex has insufficient
mastery of the English language) relying on an assumption made
because Alex did not provide formal test results proving the contrary
and by doubts whether argument y (there is known conflict between
Billy and other team members) should constitute a valid attack on
Billy’s suitability as a candidate.

Say Alex is part of a demographic that is currently underrepresented
in the university’s staff, while Billy is not. Based on this fact, we
prefer to hire Alex whenever they are at least as suitable a candidate
as Billy. In order to select a candidate, we may wish to determine
which candidate has the highest probability of being preferred. In
other words, we want to find the probability that a is at least as strong
as b and the probability that it is not and hire Alex if the former is
greater.

Note that Definition 3.2 cannot be used to formalise this prob-
lem; while expressions of the form PS,t

F (X ) can be used to assign
probability boundaries of arguments’ acceptability, they do not allow
for probability assignment of the explicit comparison of argument
strengths. To find these probabilities, we first need to rank arguments
in each individual induced framework. We now define what it means
that a is ranked at least as highly as b in G, denoted by G �S a � b.
Note that here we follow the convention from [2], where a � b means
“a is at least as strong as b”.

Definition 4.1 (Ranking Arguments in Induced Graphs) Let
G′ = 〈A′,R′〉 be an induced graph of probabilistic argumentation
framework F = 〈A, PA,R, PR〉, and let S be a gradual semantics.
For a, b ∈ A, G′ �S a � b iff one of the following holds:

• a, b ∈ A′ and DegSG′(a) ≥ DegSG′(b), or
• either DegSG′(b) = 0 or b /∈ A′.

The second condition equates the arguments without any strength with
those not present in a graph. Note that now we can define probability
of a � b as

PF,S(a � b) =
∑

G∈I(F),G�Sa�b

P I
F(G) (2)
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and that we get the probability of a � b as the complement of a � b.
Now we emphasise that in some situations calculating probability

that a � b is still insufficient. Suppose we introduce a third can-
didate into our example: Charlie, whose suitability is represented
by argument c which also receives some uncertain attack. In this
case the definition given by equation 2 no longer serves to determ-
ine the probability that, say, Alex is at least as strong candidate as
the other two—even if we were to somehow combine PF,S(a � b)
and PF,S(a � c)—as induced graphs in which c is stronger than a
may count toward PF,S(a � b) and graphs in which b is stronger
than a may count toward PF,S(a � c). To properly determine this
probability we require a formalism that considers multiple argument
inequalities at the same time.

Definition 4.2 (Ranking Query) Given a probabilistic argumenta-
tion framework F = 〈A, PA,R, PR〉, a ranking query is a Boolean
combination of expressions of the form a � b with a, b ∈ A.

We will denote ranking queries with Greek letters α, β, γ, . . . Note
that using ranking queries one can also express that one argument is
of strictly higher rank than another (a � b ∧ ¬b � a) and that two
arguments have equal ranks (a � b ∧ b � a). By � we denote a
ranking query of the form α ∨ ¬α.

For a ranking query α and an induced graph G, we define G �S

α simply by extending Definition 4.1 with the cases of Boolean
connectives in the standard way. For example, we define G �S α∨ β
iff G �S α or G �S β. We say that two queries α and β are
incompatible if there is no graph such that G �S α and G �S β.
Note that the query � holds in every induced graph.

Definition 4.3 (Probability of Ranking Queries) Given a probabil-
istic argumentation framework F = 〈A, PA,R, PR〉 and a gradual
semantics S, let α be a ranking query. The probability that the ranking
on arguments indicated by α holds is:

PF,S(α) =
∑

G∈I(F),G�Sα

P I
F(G)

That is, PF,S(x) is the sum of the probabilities of the induced graphs
of F that entail the query α under semantics S.

The additional expressivity offered by definition 4.3 allows us to
successfully find the probability that Alex is at least as strong as the
other candidates, namely by calculating PF,S(a � b ∧ a � c).

The first part of the proposition below expresses finite additivity.

Proposition 4.4 Given a PrAF F and a gradual semantics S, let α
be a ranking query.

1. If α and β are incompatible, then PF,S(α ∨ β) = PF,S(α) +
PF,S(β).

2. PF,S(�) = 1.

The following result links Definition (4.3) and Definition (3.2).

Theorem 1 (Necessitation) Let F = 〈A, PA,R, PR〉 be a PrAF
and S a gradual semantics. For all arguments a, b ∈ A, if PF,S(a �
b) = 1, then for every t ∈ [0, 1] we have PS,t

F (a) ≥ PS,t
F (b).

5 A Constellations Approach to Argument Strength

In the previous sections we saw how we may use the probabilities of
a PrAF’s induced graphs together with the strength values assigned to

each argument in those induced by a gradual semantics to determine
the probability that an argument’s strength meets some threshold or
to determine the probability that some ranking query on arguments
is satisfied. Considering each of the PrAF’s induced graphs, as we
did in answering both of these questions, is characteristic of the
constellations approach to probabilistic argumentation. In this section,
we explore the possibility of taking a similar approach in assigning
each argument a unique strength; we look for a method that, given
a choice of gradual semantics S, assigns each argument an overall
strength that considers both the probabilities of induced graphs and the
strengths assigned by S in their context. First, we present a generalised
notion of this new method for assigning strengths. Then, we discuss
some of the properties and assumptions of this new approach and
present a set of principles for them inspired by the principles for
gradual semantics present in the literature. Finally, we propose a
specification of the generalised method for assigning strengths based
on a gradual semantics and discuss the properties of this specification.

Just as a gradual semantics is a function transforming an argument-
ation graph into a weighting on its elements, our generalised method
for assigning unique strengths to arguments in a probabilistic argu-
mentation framework—henceforth called a generalised semantics—is
a function transforming a PrAF into a weighting on its arguments.

Definition 5.1 (Generalised Semantics) A generalised semantics is
a function S transforming any probabilistic argumentation framework
F = 〈A, PA,R, PR〉 ∈ PrAF into a weighting DegSF on A (i.e.,
DegSF : A → [0, 1]). For any a ∈ A, DegSF(a) represents the strength
of a.

5.1 Principles

As the PrAFs to which generalised semantics are applied are an
extension of the AGs to which gradual semantics are applied, it is
worth investigating which principles used in the study of gradual
semantics (or at least the intuitions underlying them) transfer to the
constellations approach. We study the generally desirable principles
proposed in [5] which are recalled and adjusted to non-weighted
graphs in Section 2.2 and find that while many translate naturally to
the new setting, three require more extensive alteration to be sensible,
and two are not generally desirable. Before proposing the principles
resulting from this examination, let us consider these two principles,
equivalence and reinforcement, that are not generally desirable in the
new setting where we want both the probabilities of induced graphs
and the strengths of arguments in them to contribute to the overall
strength of an argument.

The intuition underlying the equivalence principle is that the
strength of an argument in an argumentation graph should depend
only on the strength of its direct attackers. The intuition underlying
the reinforcement principle adds to this that increasing the strength of
an attacker should increase the impact of its attack. To show how these
intuitions may not generally hold when assuming the overall strength
of attackers in a PrAF, we present the following: consider the PrAF F
shown in Figure 1 with two induced graphs G and G′ shown in Sub-
figures a and b respectively. Recall that we want the overall strength
of an argument to be based on the strengths assigned to it in each
induced graph by a gradual semantics S. We are interested in the over-
all strengths of arguments a and b and how they are affected by their
respective attackers x and y. If we we were to select h-Categoriser
(def. 2.4) as S, we would have DegSG(a) = 1/2, DegSG′(a) = 1, and
DegSG(b) = DegSG′(b) = 2/3. The strength of y would be 1/2 in all
induced graphs and we would have DegSG(x) = 1. Based on the
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Figure 1: A probabilistic argumentation framework illustrating com-
pensation between strength and probability where argument x is un-
certain and all other elements are certain: (a) shows the entire PrAF
and its induced graph where x is present; (b) shows the induced graph
where x is not present.

neutrality principle’s prescription that an argument with strength 0
contributes the same as no argument, we say DegSG′(x) = 0.

Now that we know the strength of the arguments in each induced
graph, the question becomes how to aggregate these. Given that, in
the constellations approach, we consider each induced graph as a
possible world with some probability, we might approach the matter
similarly to an expected value and say that the amount an argument’s
strength in one induced graph contributes to its overall strength should
be directly proportional to the probability of that induced graph. That
is to say we multiply each strength in an induced graph with that
graph’s probability and sum over graphs to find the overall strength.
If we take this approach, we may alter the value of PA(x), and by
extension P I

F(G) and P I
F(G

′), to create scenarios where we may not
desire equivalence or reinforcement.

First consider equivalence: say PA(x) = 1/2. This gives P I
F(G) =

P I
F(G

′) = 1/2. The overall strength of x and y is equal, with
DegSF(x) = 1 ·1/2+0 ·1/2 = 1/2 and DegSF(y) = 1/2 ·1/2+1/2 ·1/2 =
1/2. The attackers of a and b are thus equally strong overall, and the
certainty with which they are attacked is also equal, but we have
DegSF(a) =

1/2·1/2+1·1/2 = 3/4 while DegSF(b) = 2/3·1/2+2/3·1/2 =
2/3; a and b do not have the same overall strength, nor do we neces-
sarily want them to.

To demonstrate how reinforcement is not always desirable we say
PA(x) = 2/3. We now end up with DegSF(x) = 2/3 > DegSF(y) =

1/2
and DegSF(a) = DegSF(b) =

2/3. The attacker of a is stronger overall
than that of b, but it is reasonable to desire that a and b are equally
strong overall.

Having seen which principles’ intuitions do not transfer nicely to
the constellations setting, we present seven principles based on those
presented in [5]. For this, we require the notion of isomorphisms on
PrAFs:

Definition 5.2 (PrAF Isomorphism) Let F = 〈A, PA,R, PR〉
and F′ = 〈A′, P ′

A,R′, P ′
R〉 be two PrAFs. An isomorphism from F

to F′ is a bijective function f from A to A′ such that:

• ∀a ∈ A, PA(a) = P ′
A(f(a));

• ∀a, b ∈ A, aRb iff f(a)R′f(b);
• ∀(a, b) ∈ R, PR((a, b)) = P ′

R((f(a), f(b)))

If F = F′, we call any isomorphism from F to F′ an automorphism.

Principle 5.3 (PrAF Anonymity) A generalised semantics S satis-
fies anonymity iff for any two PrAFs F = 〈A, PA,R, PR〉 and
F′ = 〈A′, P ′

A,R′, P ′
R〉, and any isomorphism f from F to F′, the

following holds: ∀a ∈ A, DegSF(a) = DegSF′(f(a)).

Principle 5.4 (PrAF Independence) A generalised semantics S sat-
isfies independence iff for any two PrAFs F = 〈A, PA,R, PR〉
and F′ = 〈A′, P ′

A,R′, P ′
R〉 where A ∩ A′ = ∅, it holds that:

∀a ∈ A, DegSF(a) = DegSF⊕F′(a).

Principle 5.5 (PrAF Directionality) A generalised semantics S sat-
isfies directionality iff for any two PrAFs F = 〈A, PA,R, PR〉
and F′ = 〈A, PA,R′, P ′

R〉 where R′ = R ∪ {(a, b)} and ∀r ∈
R, P ′

R(r) = PR(r), the following holds: for any x ∈ A, if there is
no path from b to x, DegSF(x) = DegSF′(x).

Principle 5.6 (PrAF Maximality) A generalised semantics S satis-
fies probability maximality iff for any PrAF F = 〈A, PA,R, PR〉,
∀a ∈ A, it holds that: if AttF(a) = ∅, then DegSF(a) = PA(a).

Principle 5.7 (PrAF Weakening) A generalised semantics S satis-
fies weakening iff for any PrAF F = 〈A, PA,R, PR〉, ∀a ∈ A, it
holds that: if ∃b ∈ AttF(a) s.t. DegSF(b) > 0 then DegSF(a) <
PA(a).

Principle 5.8 (PrAF Weakening Soundness) A generalised
semantics S satisfies weakening soundness iff for any PrAF
F = 〈A, PA,R, PR〉, ∀a ∈ A, the following holds: if
DegSF(a) < PA(a) then ∃b ∈ AttF(a) s.t. DegSF(b) > 0.

Principle 5.9 (PrAF Resilience) A generalised semantics S satis-
fies resilience iff for any PrAF F = 〈A, PA,R, PR〉, ∀a ∈ A,
DegSF(a) > 0.

We have already discussed that if we follow the constellation ap-
proach, we should not expect that the Equivalence principle holds.
Now we turn to a special case of Equivalence proposed in [8], called
Symmetry. Originally it states that two arguments a and b that have
the same sets of attackers also have equal strengths. Similarly as for
Equivalence, in the case of PrAFs that “symmetry” between a and b
breaks easily when we zoom in to induced graphs. For example, if
a and b are not certain and there are different (asymmetric) attacks
from a and b towards their own attackers, the induced graph in which
only a appears will be very different from those in which b occurs. In
order to enforce symmetry we require that a and b interact with their
attackers, attackers of their attackers, and so on in a symmetric way.

Definition 5.10 (Attack Structure) For given PrAF F =
〈A, PA,R, PR〉 and a ∈ A, the attack structure of a in F is
StrF(a) = {a} ∪ {c ∈ A | there is a path from c to a}. We denote
by StrF(a, b) the set StrF(a) ∪ StrF(b).

Principle 5.11 (PrAF Symmetry) A generalised semantics S sat-
isfies PrAF Symmetry iff for every PrAF F = 〈A, PA,R, PR〉,
∀a, b ∈ A, the following holds: if f : F|StrF(a,b) → F|StrF(a,b)

s.t. f(a) = b, f(b) = a and f(x) = x otherwise, is an automorph-
ism, then DegSF(a) = DegSF(b).

The principles Neutrality and Counting build on the idea of sym-
metry, and say that if an attack is added to one of two arguments in a
symmetric situation, the attack will additionally harm the target if the
strength of that attacker is positive, otherwise it will not. We apply
that intuition directly to our notion of PrAF symmetry.
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Principle 5.12 (PrAF Neutrality) A generalised semantics S sat-
isfies Praf Neutrality iff for every PrAF F = 〈A, PA,R, PR〉,
∀a, b ∈ A, the following holds: if there exists c such that (c, b) ∈ R,
(c, b) /∈ R, and f : F|StrF(a,b)\{c} → F|StrF(a,b)\{c} s.t. f(a) = b,
f(b) = a and f(x) = x otherwise, is an automorphism, then
DegSF(c) = 0 implies DegSF(a) = DegSF(b).

Principle 5.13 (PrAF Counting) A generalised semantics S satis-
fies PrAF Counting iff for every PrAF F = 〈A, PA,R, PR〉,
∀a, b ∈ A, the following holds: if there exists c such that (c, b) ∈ R,
(c, b) /∈ R, and f : F|StrF(a,b)\{c} → F|StrF(a,b)\{c} s.t. f(a) = b,
f(b) = a and f(x) = x otherwise, is an automorphism, then
DegSF(c) > 0 implies DegSF(a) > DegSF(b).

The following result shows that PrAF Symmetry is already a con-
sequence of a subset of other principles.

Theorem 2 If a generalised semantics S satisfies PrAF Anonymity,
PrAF Independence and PrAF Directionality, then S also satisfies
PrAF Symmetry.

We now present the result which claims that from a subset of the
principles it follows that an argument’s strength is bounded by its
probability.

Theorem 3 If a generalised semantics S satisfies PrAF Independ-
ence, PrAF Maximality, PrAF Weakening, V Neutrality, and PrAF
Directionality, then for any F = 〈A, PA,R, PR〉 ∈ PrAF, for any
a ∈ A, DegSF(a) ≤ PA(a).

Our next formal result states that there is always a subset of argu-
ments in a probabilistic argumentation framework which impacts the
strength of a given argument, namely its attack structure.

Theorem 4 If a semantics S satisfies PrAF-Independence and PrAF-
Directionality, then for any F = 〈A, PA,R, PR〉, for any a ∈ A, the
following holds: DegSF(a) = DegSF|StrF(a)

(a).

5.2 Expected strength semantics

With a set of principles—or desirable properties of a generalised
semantics—laid out, let us consider one way of specifying a general-
ised semantics S using a gradual semantics S and consider how this
specification relates to the different principles. When we were discuss-
ing equivalence and reinforcement, we weighted the contribution of
an argument’s strength in an induced graph with that induced graph’s
probability. Formalising this gives:

Definition 5.14 (Expected Strength Semantics) Given a gradual
semantics S, the expected strength semantics based on S, de-
noted E(S), is the generalised semantics such that ∀F =
〈A, PA,R, PR〉 ∈ PrAF, ∀a ∈ A,

Deg
E(S)
F (a) =

∑

G=〈A′,R′〉∈I(F),a∈A′
P I
F(G) · DegSG(a)

The next results show that if a semantics S satisfies some principles
from the literature (presented in Section 2.2), then E(S) satisfies the
principles for generalised semantics proposed in this section.

Theorem 5 Let S be a gradual semantics.

• If S satisfies Anonymity, then E(S) satisfies PrAF Anonymity.

• If S satisfies Independence, then E(S) satisfies PrAF Independ-
ence.

• If S satisfies Directionality, then E(S) satisfies PrAF Directional-
ity.

• If S satisfies Maximality, then E(S) satisfies PrAF Maximality.
• If S satisfies Weakening and Resilience, then E(S) satisfies PrAF

Weakening.
• If S satisfies Weakening Soundness, then E(S) satisfies PrAF Weak-

ening Soundness.
• If S satisfies Resilience, then E(S) satisfies PrAF Resilience.
• If S satisfies Anonymity, Independence and Directionality, then

E(S) satisfies PrAF Symmetry.
• If S satisfies Anonymity, Independence, Directionality and Neutral-

ity, then E(S) satisfies PrAF Neutrality.
• If S satisfies Anonymity, Independence, Directionality, Counting

and Resilience, then E(S) satisfies PrAF Counting.

Let us recall that the h-categoriser semantics satisfies all the prin-
ciples from Section 2.2 [5]. Together with Theorem 5, that gives us
the following result, which verifies compatibility of our principles.

Theorem 6 E(Hbs) satisfies all the principles proposed in Sec. 5.1.

6 Conclusion

In this article, we conducted the first study of gradual semantics in
probabilistic argumentation frameworks. Following the constellations
approach, we defined the probability of an argument’s acceptability
with respect to an arbitrary threshold that correspond to possible
strength of the argument, and probabilities of rankings of arguments.
We also proposed a method to calculate the overall strength of each
argument in the framework, and we evaluated this method against a set
of principles. Following the original approach from [28], we assumed
probabilistic independence of elements of the framework belonging
to a graph. It is easy to modify our approach to the more general case,
where the independency assumptions are not used (like, for example,
in [23]). Instead of calculating the probability of an induced graph
from the probabilities of the arguments and attacks (Definition 2.6),
that probability has to be taken as a constituent of the framework.
Essentially, nothing would change in our approach: instead of using
Definition 2.6 to calculate probabilities of acceptability (PS,t

F (X )) or
a ranking query holding (PF,S(α)), we would simply use probabilities
of induced graphs given as a parts of the framework.

It is worth mentioning the work of Thimm, Cerutti and Rienstra [38]
on gradual semantics based on constellations approach to probabilistic
argumentation. That work is significantly different than ours: they did
not study the application of gradual semantics to PrAFs. Instead, they
proposed a gradual semantics for standard argumentation frameworks,
using PrAFs and existing Dung semantics as a tool.

When proposing the set of principles, we generalised existing ex-
isting principles from [5], which refine the first set of principles for
gradual semantics [3], and extend them to the weighted argumentation
frameworks. Here we considered flat (non-weighed) frameworks, so
we could have based our generalised principles on [3] as well. We
didn’t find an advantage of using [5] instead of [3], since two sets of
principles describe same intuitions. On the other hand, our intention
is to investigate generalisation of our work to weighted graphs as
future work, in which case we can directly retrieve original variants of
principles from [5]. We believe that probabilities and weights can co-
exist in a meaningful way, as the intuitions behind them are coherent:
where probabilities encode the likelihood of an element appearing in
a graph, weights can encode the basic strength of an argument.
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