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H I G H L I G H T S

Novel approach to forecast all required aspects to optimize charging of an EV fleet.
The effectiveness of the approach is tested using real-world EV charging session data.
Results report high forecasting performance, especially for large EV fleets.
Forecasting performance is similar for different forecasting models.
Only a few predictor variables are required for a good forecasting performance.
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A B S T R A C T

To be able to schedule the charging demand of an electric vehicle fleet using smart charging, insight is required
into different charging session characteristics of the considered fleet, including the number of charging sessions,
their charging demand and arrival and departure times. The use of forecasting techniques can reduce the
uncertainty about these charging session characteristics, but since these characteristics are interrelated, this is
not straightforward. Remarkably, forecasting frameworks that cover all required characteristics to schedule the
charging of an electric vehicle fleet are absent in scientific literature. To cover this gap, this study proposes
a novel approach for forecasting the charging requirements of an electric vehicle fleet, which can be used as
input to schedule their aggregated charging demand. In the first step of this approach, the charging session
characteristics of an electric vehicle fleet are translated to three parameter values that describe a virtual battery.
Subsequently, optimal predictor variable and hyperparameter sets are determined. These serve as input for the
last step, in which the virtual battery parameter values are forecasted. The approach has been tested on a real-
world case study of public charging stations, considering a high number of predictor variables and different
forecasting models (Multivariate Linear Regression, Random Forest, Artificial Neural Network and k-Nearest
Neighbors). The results show that the different virtual battery parameters can be forecasted with high accuracy,
reaching R2 scores up to 0.98 when considering 400 charging stations. In addition, the results indicate that the
forecasting performance of all considered models is somehow similar and that only a low number of predictor
variables are required to adequately forecast aggregated electric vehicle charging characteristics.
1. Introduction

1.1. Problem definition

The rapid introduction of Electric Vehicles (EVs) in different coun-
tries increases the number of distributed energy assets in the energy
system. Due to the high charging power and long connection time of
EVs, the potential to shift their charging demand over time is high [1].
This high charging flexibility can serve a wide range of applications
if EV smart charging is deployed. From a customer perspective, smart
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charging can considerably reduce costs and emissions [2,3]. From the
perspective of electricity grid operators, implementation of EV smart
charging is the most cost-effective option for mitigating the increas-
ing number of grid congestion problems [4,5]. In addition, EV smart
charging can be used to solve power quality issues [6,7] and to provide
balancing reserves to Transmission System Operators (TSOs) [8,9].

One of the main problems hindering the large-scale deployment
of EV smart charging is the wide range of uncertainties faced when
optimizing the charging patterns of an EV fleet. These uncertainties
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Nomenclature

List of Abbreviations

EV Electric Vehicle
SoC State of Charge
GCT Gate Closure Time
TSO Transmission System Operator

Sets and indices

𝑖 ∈  Set of charging sessions
𝑡 ∈  Set of timesteps in the assessment time-

frame

Parameters

𝛥t Timestep duration [h]
Emax,𝑡 Max. aggregated charged energy since the

beginning of the assessment timeframe at
time 𝑡 [kWh]

Emin,𝑡 Min. aggregated charged energy since the
beginning of the assessment timeframe at
time 𝑡 [kWh]

Pch,coa,𝑡,𝑖 Charging power of charging session 𝑖 at
time 𝑡 in a ’charging on arrival’ scenario
[kW]

Pch,latest,𝑡,𝑖 Charging power of charging session 𝑖 at
time 𝑡 in a ’latest charging’ scenario [kW]

Pmax,𝑖 Max. charging power of charging session 𝑖
[kW]

Pmax,𝑡 Max. aggregated charging power at time 𝑡
[kW]

include the number of charging sessions occurring in the scheduling
timeframe, their charging demand, charging power, arrival time and
departure time.

These uncertainties can be reduced by forecasting those EV charg-
ing session characteristics. Typically, EV smart charging sessions are
controlled by an energy aggregator. In all cases, the aggregator needs
to forecast the departure time and energy demand of an EV when
optimizing the charging session, to assure that the charging demand of
an EV is met at departure. However, when participating in electricity
markets using an EV fleet, an aggregator needs to extend their forecasts.
In addition to forecasting the departure time and charging demand of
each charging session, it also needs to forecast the number of charging
sessions during the bidding period, their arrival time and maximum
charging power. This is because the Gate Closure Time (GCT) of most
electricity markets (i.e., the last moment until market parties can make
bids) is well-before actual operation (e.g., 12-36 h before operation for
the day-ahead market in Europe [10]). An incorrect forecast could force
aggregators to deviate from their accepted bid to the electricity market,
resulting in high imbalance costs.

Two challenges complicate the forecasting of those different EV
charging session characteristics. First, the number of charging sessions
in the assessment timeframe is unknown at the moment of schedul-
ing for different smart charging applications. Hence, it is complex
to forecast the charging session characteristics (i.e., arrival/departure
time, charging power and charging demand) with an unknown set of
charging sessions. Second, the different charging session characteristics
are highly interrelated (i.e., a higher charging demand is likely to result
in a higher connection time). For this reason, alternative forecasting
2

frameworks are required for scheduling an EV fleet under uncertainty.
1.2. Literature review

Surprisingly, a low number of scientific studies have looked into
developing methods to perform comprehensive forecasts of all EV
charging characteristics that are required to schedule an EV fleet. A
large number of studies have proposed a wide variety of methods to
forecast the load of one or multiple charging stations when EVs charge
in an uncontrolled manner (e.g., [21–24]). These forecasts are valuable
for grid impact studies of EV charging, but do not provide insight in the
required aspects to optimize the charging schedules of an EV fleet using
smart charging (i.e., number of charging sessions, arrival/departure
time, charging demand and maximum charging power).

Another group of papers proposes forecasting approaches that only
consider some of the aspects that are required to schedule an EV fleet
under uncertainty, as summarized in Table 1. Aabrandt et al. [11]
propose a method to forecast the connection time of an EV to a charging
station. Markov Chains were used to account for the uncertainty in
EV availability by Iversen et al. [12], Sundström et al. [13] and Wan
et al. [14]. Bikcora et al. [15] forecast the availability and maximum
charging power of single EVs, and Islam et al. [16] forecast the arrival
State-of-Charge (SoC) distribution for an EV fleet. Habibifar et al. [17]
forecast the charging demand and departure time of individual EV
charging sessions, but this study did not consider the uncertainty in
the total number of charging sessions. Since the forecast approaches
proposed in these studies do not cover all relevant aspects required to
schedule an EV fleet, these methods can only be used to a limited extent
when implementing EV smart charging for an EV fleet. Huber et al. [18]
use quantile forecasts of the charging demand and connection time of
individual charging sessions to identify the charging sessions with the
highest flexibility. Giardano et al. [19] estimate the number of charg-
ing sessions, arrival time, departure time and energy demand for an
individual EV, using clustering methods. Similarly, Aguilar-Dominguez
et al. [20] use clustering techniques to forecast the connection hours of
individual EVs. To guide users in finding an available charging station,
Majidpour et al. [29] forecast the available charging capacity for a
charging station.

Instead of using forecasting techniques, some studies (e.g., [30] &
[31]) propose to ask for user input, such as the expected arrival and
departure time and the expected arrival SoC, to reduce uncertainty
when optimizing EV charging schedules. However, this is generally
undesirable for different reasons. First, different studies have shown
that adding complexity to users reduces their willingness to participate
in smart charging [32,33]. Second, it is questionable whether users are
able to provide detailed and accurate charging information hours in
advance of actual operation, i.e., 12-36 h ahead in case of bidding into
the day-ahead market.

To facilitate the scheduling of an EV fleet, different aggregation
methods are proposed in scientific literature. An aggregation method
combines the charging characteristics of a set of EV sessions into a few
parameters for scheduling their aggregated charging schedule. Aggre-
gation methods for EV fleets are presented in different forms, but all
aggregation methods consider the temporal (i.e., arrival and departure
time of individual EVs) and energy dimensions (i.e., charging demand
and maximum charging power of individual EVs) of the charging flexi-
bility of the respective EV fleet. Lilliu et al. [34] and Pedersen et al. [35]
present the FlexOffer approach, in which the charging flexibility of
an EV fleet is illustrated by two sets of constraints: i) constraints on
the usable amount of energy at each timestep and ii) total energy
constraints. Schlund et al. [36] describe the total flexibility by iden-
tifying the time and energy flexibility. The most common aggregation
methods are to aggregate the charging session characteristics of an EV
fleet by identifying the dispatchable region of the charging energy over
time [27,37] or by transforming these charging session characteristics
to a virtual battery (e.g., [38,39]). In this latter approach, all charging

session characteristics are reduced to a set of three parameters for each
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Table 1
Overview of relevant literature on the forecasting of charging transaction parameters for every individual charging transaction.

Paper Considered charging transaction characteristics for scheduling an EV fleet Used forecasting
method

Considered
predictor variables

Number of transactions
in assessment
timeframe

Arrival time of
charging transactions

Departure time of
charging transaction

Charging demand of
charging transactions

Charging power of
charging transactions

[11] No Yes Yes No No Statistical modeling
using historical data

Historical parameter
values

[12] No Yes Yes No No Markov decision
process

Historical parameter
values

[13] No Yes Yes Yes No Markov decision
process

Historical parameter
values

[14] No Yes Yes Yes No Markov decision
process

No predictor
variables used.

[15] No Yes Yes No Yes Generalized linear
models

Historical parameter
values

[16] No No No Yes No Maximum likelihood
estimation

Historical parameter
values

[17] No Yes Yes Yes No Autoregressive
models

Historical parameter
values

[18] No No Yes Yes No Quantile regression,
Multivariate
conditional kernel
density estimator

Historical parameter
values

[19] Yes Yes Yes Yes No Clustering using
k-medoids technique

Historical parameter
values

[20] No Yes Yes No No Gradient Boosting Historical parameter
values
Table 2
Overview of relevant literature on the forecasting of parameters associated with aggregated EV modeling and an overview of the aspects covered in this work.

Paper EV aggregation parameters considered in forecast Used forecasting
methods

Considered predictor
variables

Conducted forecasting
analyses

Total daily
charging demand

Hourly max.
charging power

Hourly max.
aggregated charging
energy

Hourly min.
aggregated charging
energy

[25] Yes Yes No No Seasonal
autoregressive
model

Historical parameter
values

Model performance of
aggregation
parameters

[26] Yes Yes Yes No Autoregressive
model

Historical parameter
values

Model performance of
one aggregation
parameter

[27] Yes Yes Yes Yes Autoregressive
model

Historical parameter
values

None

[28] Yes Yes Partly Yes Autoregressive
model

Historical parameter
values

Model performance of
aggregation
parameters for
different EV fleet
sizes

This work Yes Yes Yes Yes Multivariate Linear
Regression, Random
Forest, Artificial
Neural Network &
k-Nearest Neighbors

Temporal data,
Historical parameter
values & Weather
forecasts

Model performance of
aggregation
parameters for
different EV fleet
sizes & forecasting
models, predictor
variable importance,
optimal
hyperparameter sets
3
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timestep; i) a minimum aggregated charging energy, ii) a maximum
aggregated charging energy and iii) a maximum total charging power.

The reduction in the number of parameters through aggregation
simplifies the incorporation of uncertainty into the scheduling of an
electric vehicle fleet. This can be done by considering the uncertainty
in the parameter values in the scheduling process. Many studies used
simplified approaches to account for the uncertainty of aggregation
parameters. Lilliu et al. [34] and Bessa et al. [40] assumed unverified
probability density functions for different aggregation parameter values
when scheduling an EV fleet. Similarly, González Vayá and Ander-
sson [41] added noise around the actual parameter values in their
model. Yan et al. [42] considered simplified scenarios to account for
uncertainty. Ruelens et al. [43] generate scenarios using Markov chains
and simulated EV data, without considering forecasting techniques.

Despite the use of an EV aggregation method as an efficient way
to schedule an EV fleet, the integration of forecasting techniques into
aggregation methods has received little attention, as visible in Table 2.
Visser et al. [25] use forecasts of the daily aggregated charging demand
and 15-minute forecasts of the total available charging power of all
EVs to schedule the charging patterns of an EV fleet. Similarly, Bessa
and Matos [26] forecast the total charging requirement for each day
and the maximum charged energy and power at each hour. Although
the methods proposed in both studies cover most aspects that should
be considered for aggregated scheduling of an EV fleet, they do not
account for the minimum aggregated volume that should be charged at
each timestep in the assessment timeframe. This minimum aggregated
charging volume assures that the charging demand of EVs that depart
during the assessment timeframe is met at their departure. Visser et al.
also did not consider the maximum aggregated charging demand at
each hour of the day, which should be considered to account for the fact
that the charging demand of EVs cannot be until their arrival moment
at the charging station.

1.3. Contributions

These aspects are considered in the previously-introduced virtual
battery approach. To the best of our knowledge, only Zhou et al. [27]
& Pertl et al. [28] applied forecasting techniques to an aggregation
method that considers all required aspects to schedule an EV fleet.
However, the main focus of these studies is not on forecasting and they
did not attempt to maximize the forecasting performance. Hence, the
insight into the forecasting potential of an EV aggregation approach
that considers all required aspects to schedule an EV fleet is currently
very limited.

As highlighted in Table 2, this study addresses this literature gap by
presenting the first work that comprehensively analyses the forecast-
ing potential of all required parameters to schedule an EV fleet. The
presented forecasting approach adopts the virtual battery approach, is
generic and can be applied to any scheduling timeframe, EV charging
session data set and EV smart charging application. In this analysis,
different forecasting models are compared, including machine learning
methods, and insight is provided into the optimal predictor variable sets
to maximize the forecasting performance. In addition, the impact of the
considered EV fleet size on the forecasting performance is analyzed. A
case study of real-world charging data from a large number of charging
stations in Utrecht, the Netherlands is used for the analysis.

The contributions of this work can be summarized as follows:

• A forecasting approach to forecast all required parameters for
scheduling the charging of EV fleets under uncertainty;

• An in-depth assessment of the forecasting potential of parameters
associated with an EV aggregation method;

• A comparison between the performance of different forecasting
models with varying EV fleet sizes;

• An analysis of the most relevant predictor variables when fore-
casting all parameters associated with the EV virtual battery
method.
4

This work is structured as follows. The concept of an EV virtual
battery is explained in Section 2. This is followed by the methodology
in Section 3, which introduces a generic approach to forecast EV virtual
battery parameters. Section 4 introduces the considered case study and
describes the considered forecasting models and considered predictor
variables. The results are presented in Section 5. The discussion and
conclusion in Sections Section 6 & 7 are the last two sections of this
work.

2. EV virtual battery method

As proposed by [41,44], the aggregated charging demand of an EV
fleet can be optimized by modeling it as a virtual battery. Using this
method, the characteristics of a set of charging sessions are reduced to a
set of three virtual battery parameters for each timestep: the minimum
and maximum aggregated charging energy since the beginning of the
assessment timeframe (Emin&Emax, respectively) and the maximum
aggregated charging power (Pmax). These parameters are determined
as follows:

• Emin: This parameter represents the minimum required charged
energy since the beginning of the assessment timeframe to assure
that the charging demand of EVs departing during the assess-
ment timeframe is met. The parameter values of Emin at each
timestep are determined by summing the total charged energy
since the beginning of the assessment timeframe in a ’latest charg-
ing ’ scenario for all considered charging sessions. This scenario
represents the case in which the charging of an EV is delayed until
the latest possible moment that the charging demand of an EV
can be met before departure. Hence, to assure that the charging
demand of all considered EVs is satisfied before departure, the
aggregated charging energy since the beginning of the assessment
timeframe should be higher or equal to Emin at all timesteps. The
mathematical formulation of Emin is as follows:

Emin,𝑡 =
𝐼
∑

𝑖

𝑡
∑

𝜏=0
Pch,latest,𝜏,𝑖𝛥t ∀𝑡. (1)

In this equation,  represents the set of EV charging sessions,
indexed by 𝑖 = 0, 1,… , 𝐼 , 𝜏 represents a timestep between the start
of the assessment timeframe and timestep 𝑡, Pch,latest,𝜏,𝑖 represents
the charging power of charging session 𝑖 at timestep 𝜏 in a ’latest
charging ’ scenario and 𝛥t represents the duration of one timestep.

• Emax: This parameter poses an upper limit to the total charged
energy since the beginning of the assessment timeframe. It is
introduced to account for arriving EVs during the assessment
timeframe, whose charging demand can only be met after their
arrival. The parameter values are determined by summing the
total charged energy since the beginning of the assessment time-
frame in a ’charging on arrival’ scenario for all considered charging
sessions. A ’charging on arrival’ scenario represents the case in
which an EV charges at the maximum available charging power
directly after arrival until the charging demand is met. Hence,
Emax represents the maximum possible aggregated charged energy
since the beginning of the assessment timeframe at each timestep,
and the aggregated charging energy since the beginning of the
assessment timeframe should be lower or equal to Emax at all
timesteps. The mathematical formulation of Emax is as follows:

Emax,𝑡 =
𝐼
∑

𝑖

𝑡
∑

𝜏=0
Pch,coa,𝜏,𝑖𝛥t ∀𝑡, (2)

where Pch,coa,𝜏,𝑖 represents the charging power of charging session
𝑖 at timestep 𝜏 in a ’charging-on-arrival’ scenario.

• Pmax: This parameter defines the maximum total charging power

at a specific timestep. The parameter value at a specific timestep
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Fig. 1. Example of EV virtual battery parameters for a set of four charging stations for an assessment timeframe of one day, with a start/end time of 06:00.
is determined by summing the maximum charging power for all
EVs connected to a charging station at the considered timestep:

Pmax,𝑡 =
𝐼𝑡
∑

𝑖
Pmax,𝑖 ∀𝑡, (3)

where 𝐼𝑡 represents the set of ongoing charging sessions at time
𝑡 and Pmax,𝑖 represents the maximum charging power of charging
session 𝑖.

When scheduling an EV fleet, the aggregator must assure that the
aggregated charging demand since the beginning of the assessment
timeframe stays between Emin and Emax, and that the combined charg-
ing power does not exceed Pmax. The EV virtual battery method can be
applied for different scheduling timescales and is generic for any EV
charging session data set. Fig. 1 presents an example of the EV virtual
battery method for an assessment timeframe of one day. Since Emin
and Emax represent the minimum and maximum aggregated charging
energy since the beginning of the assessment timeframe, their param-
eter values increase over the course of the assessment timeframe. The
difference between Emin and Emax (highlighted in gray in Fig. 1) is an
indicator of the EV charging flexibility: a large difference means that
there is considerable room to shift the EV charging demand over time.
At the end of the assessment timeframe, Emin and Emax should converge
to assure that the charging demand of all considered charging sessions
is met at their departure.

3. Methodology

This section presents an approach to determine the optimal forecast-
ing performance, optimal sets of predictor variables and the predictor
variable importance for EV virtual battery parameter forecasts. The
approach is described in a generic manner, to assure it can be applied
to any EV charging session data set, scheduling timeframe, predictor
variable set, forecasting model and EV fleet size. Section 4 discusses
5

Fig. 2. Overview of methodological steps in the analysis.

how this generic approach was applied to the specific case study studied
in this paper.

Fig. 2 provides an overview of the required methodological steps to
make optimal EV virtual battery parameter forecasts. In this approach,
E , E and P are forecasted separately. Hence, the steps in Fig. 2
min max max
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are repeated for all considered forecasting models and for all considered
EV virtual battery parameters. Each step is outlined below.

3.1. Step 1: Generating virtual battery data

This step converts EV charging session data from an EV fleet to a
time-series of EV virtual battery parameter values. This is done using
the methods outlined in Section 2. This EV virtual battery data serves
as input data for the forecasting models. The number of EV charging
sessions that are combined into one virtual battery depends on the
desired scheduling timeframe. For instance, if the scheduling timeframe
is 24 h, EV virtual batteries are generated for 24-hour periods and
all charging sessions that start within the same 24-hour period are
considered for one EV virtual battery.

The selected start and end time of each scheduling timeframe for
an EV virtual battery should depend on the specific charging char-
acteristics of an EV fleet. As discussed in Section 2, Emin and Emax
hould converge at the end of the scheduling timeframe. This is only
ossible if the charging demand of each EV charging session can be
et before the end of the scheduling timeframe. Therefore, the time

f the day that provides the maximum number of charging sessions
ith the opportunity to meet their full charging demand should be

elected as the end time of each scheduling period. In case the charging
emand of an EV charging session cannot be met before the end of the
cheduling timeframe, the charging demand of the specific charging
ession should be reduced to the maximum possible charging energy
uring the assessment timeframe. The remaining charging demand
ould be considered for the next scheduling timeframe.

.2. Step 2: Tuning model hyperparameters using all considered predictor
ariables

The learning process of different machine learning forecasting mod-
ls is controlled by their hyperparameter values. Since these values
ffect the forecasting performance of a specific model, hyperparameter
alues of all considered forecasting models need to be tuned.

In this step, the optimal hyperparameter values are set for each
onsidered model and for each EV virtual battery parameter when
onsidering all predictor variables. This can be done by evaluating the
odel performance on a large number of hyperparameter sets, and

y selecting the hyperparameter set with the best model performance.
his process is repeated for each model and each EV virtual battery
arameter. To avoid overfitting of the forecasting model, the virtual
attery data should first be split into a training and testing set. Next,
he training set is used to compute the optimal hyperparameter values
sing k-fold cross-validation [45].

The performance of the forecasting model can be assessed using R2

i.e., the coefficient of determination) as an evaluation metric. Since R2

s a normalized score between 0 and 1, it allows for a comparison of the
orecasting model performance of different virtual battery parameters
nd a varying number of charging stations.

.3. Step 3: Selection of predictor variables

In some cases, predictor variables can have a negative impact on
he performance of a forecasting model, for instance due to mul-
icollinearity [45]. Therefore, the optimal predictor variable set for
ach considered forecasting model and each considered virtual battery
arameter should be determined.

The most common methods to select the optimal predictor variable
et are backward or forward sequential (floating) feature selection, as
xplained in [46]. To avoid model overfitting, it is recommended to
pply one of these methods to the training data set while using k-
old cross-validation. Subsequently, the forecasting performance with a
ifferent number of predictor variables can be determined by applying
he trained model to the separate testing data set. These steps can
6

be repeated multiple times in order to increase the robustness of the
results. The predictor variable set with the highest average performance
on the testing data set should be selected as the optimal predictor
variable set.

3.4. Step 4: Updating hyperparameters based on optimal predictor variable
set

Since the optimal hyperparameter set could change with a different
number of predictor variables, Step 2 should be repeated for each
forecasting model and for each virtual battery parameter using the
optimal predictor variable set determined in Step 3.

3.5. Step 5a: Overall model performance

To evaluate the overall performance per forecasting model, each
virtual battery parameter and every model should be trained with a
training data set, using the optimal predictor variable set from Step 3
and the optimal hyperparameter set from Step 4. The trained models
should be applied to the testing data set to determine the model
performance using the R2.

3.6. Step 5b: Predictor variable importance analysis

A predictor variable importance analysis evaluates the impact of
each predictor variable on the forecasting performance. A permutation
importance analysis can be used in this step. In this analysis, each
model is trained using the training data set, and a reference model
performance is determined using the testing data set. Subsequently,
the values of one predictor variable in the testing set are permuted
(i.e., randomly shuffled), and the model performance with this one
set of permuted predictor variable values is determined. This should
be repeated multiple times for each predictor variable to increase the
robustness of the results. The predictor variable of which the permuta-
tion of its values results in the largest decrease in model performance
compared to the reference model performance can be considered as the
predictor variable with the highest impact on the results.

4. Analysis outline

To provide insights into the performance of different forecasting
models and their most important predictor variables when forecasting
EV virtual battery parameter values, the approach from Section 3 has
been applied to a case study. In this analysis, a 24-hour virtual battery
timeframe is considered, which allows for bidding to the day-ahead
electricity market. This section will introduce the case study, discuss
the considered forecasting models and predictor variables and provide
details on the model simulations.

4.1. Case study introduction

This study used historical EV charging session data from public
stations operated by charge point operator We Drive Solar. These charg-
ing stations are located in residential areas in the city of Utrecht,
the Netherlands and are located on-street. The charging stations can
be used by any EV owner, and no specific subscription was required
to be able to use the charging station. Users paid a fixed tariff per
kWh and uncontrolled charging was applied to the considered charging
stations. The considered charging stations allowed for charging up to a
charging power of 22 kW. Hence, fast charging was not possible at these
locations. In the used data, the arrival time, departure time, charging
demand and maximum charging power of each charging session is
logged. This charging session data is logged between 9 January 2019
and 1 December 2021. During the course of this period, the number of
charging stations operated by this company grew considerably. Also,
during a large share of this period, the Netherlands faced numerous
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Table 3
Overview of the considered predictor variables for the forecasting of EV virtual battery parameters.

Category No. Explanation Short notation Source

Temporal

1. No. of hours since start of
optimization timeframe

Hour –

2. Whether the considered
day is a weekend day

Weekend –

3. Whether the considered
day is a school holiday

SH –

4. Whether the considered
day is a public holiday

PH –

Historical

5. Parameter value week ago
at the same time

H:W-1 –

6. Parameter value day ago
at the same time

H:D-1 –

7. Parameter value 2 days
ago at the same time

H:D-2 –

8. Parameter value 3 days
ago at the same time

H:D-3 –

9. Average parameter value
at the same time
during the last week

H:W-AV –

10. Average parameter value
at the same time
at the same weekday
during the last month

H:M-AV –

Weather
forecasts

11. Forecast of average daily
temperature

W:AT [48]

12. Forecast of daily
precipitation volume

W:PV [48]

13. Forecast of daily average
windspeed

W:WS [48]

14. Forecast of daily number
of sunshine hours

W:SH [48]
lockdowns due to the COVID-19 pandemic, which had a considerable
impact on EV charging patterns [47]. In order to provide a realistic
insight into the ability to forecast EV charging patterns under normal
circumstances, the main analyses in this study were conducted using
charging session data from between 9 January 2019 and 12 March
2020, during which no COVID-19 restrictions were imposed. During
this period, charging data was available from 20 charging stations.
Charging data from these charging stations was considered in the
analysis. The average daily number of charging sessions for the con-
sidered set of charging stations equaled 30.3 during the considered
time period, while the average daily charging demand during this time
period equaled 519.4 kWh for the considered charging stations.

To get insight into the impact of the EV fleet size on the forecasting
performance (see Section 5.1), data from additional EV charging sta-
tions is required. For this analysis, charging data from between 28 April
2021 and 12 November 2021 was used, during which relatively few
COVID-19 restrictions were in place in the Netherlands. 405 charging
stations were operating throughout this whole period and data from
these charging stations was used to conduct an analysis of the impact
of the considered EV fleet size on the forecasting performance.

4.2. Forecasting models

This study compares the performance of five different forecasting
models. The selected models are commonly applied in other forecast-
ing studies and cover different categories of forecasting models. The
following models are considered in this study:

1. Multivariate Linear Regression: This linear regression model pre-
dicts the target variable values (i.e., Emin, Emax and Pmax) by de-
termining the optimal coefficients of each considered predictor
variable.

2. Random Forest : This is an example of an ensemble-based re-
gression method. It creates a set of independent decision trees,
considering a random subset of the training data points and
predictor variables in each tree [49]. The forecast is generated
7

by averaging the outcomes of all decision trees.
3. Artificial Neural Network: This forecasting method is based on
deep learning and builds a nonlinear relationship between the
target variable and the different predictor variables [50]. It
connects the input data to one or multiple hidden layers, each
consisting of multiple nodes. Each node uses an activation func-
tion and weight to process the data and generate an output
value. The output value is fed to each node in the following
layer, where the forecasted value presents the output value of
a single node in the last layer.

4. k-Nearest Neighbors: This is a non-parametric forecasting method,
meaning that equal weight is given to all predictor variables.
This model considers the Euclidean distance function to locate
the k most-similar data points in the training data set, and takes
the average value of these data points as the forecast [51].

5. Persistence forecast : This serves as the reference forecasting
model. This study considered the value of one week before the
considered timestep as the persistence forecast, due to the ob-
served high simultaneity in EV charging characteristics between
weekdays.

4.3. Predictor variables

Three main categories of predictor variables are considered to fore-
cast EV virtual battery parameters. The first category considers tem-
poral predictor variables, such as time of the day and the type of day
(weekend day, school holiday and public holiday). Second, historical
data are used as predictor variables. These predictor variables consider
historical values of the forecasted parameter, such as the parameter
value one/two/three days before at the same time of the day or the
average parameter value at the same time of the day during the past
week. The third category consists of predictor variables based on day-
ahead weather forecasts (average daily temperature, daily precipitation
volume, daily average wind speed and daily number of sunshine hours),
since people’s choice of transport mode depends on the weather condi-
tions [52]. Day-ahead weather forecast data for the city of Utrecht from
ECMWF [48] was used in this analysis. An overview of all 14 considered
predictor variables is presented in Table 3.
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Fig. 3. Average forecasting performance (expressed as the R2 value) and standard deviation (±-values) of all model runs of the different considered forecasting models for the
different EV virtual battery parameters when considering EV virtual batteries based on charging data of 20 charging stations. Persistence forecasts are based on the parameter

value one week ago at the same time of the day.
Table 4
Average forecasting performance of all model runs of the different considered forecasting models for the different EV virtual battery parameters when
considering EV virtual batteries based on charging data of 20 charging stations. Persistence forecasts are based on the parameter value one week ago
at the same time of the day.

Multivariate Linear
Regression

Random Forest Artificial Neural
Network

k-Nearest
Neighbors

Persistence
Forecast

Emin

Mean parameter
value

128.6 kWh 128.6 kWh 128.6 kWh 128.6 kWh 128.6 kWh

MAE 38.1 kWh 36.6 kWh 38.4 kWh 35.9 kWh 47.6 kWh
RMSE 54.6 kWh 54.1 kWh 56.5 kWh 53.6 kWh 70.8 kWh
WAPE 29.6% 28.4% 29.8% 27.9% 37.0%

Emax

Mean parameter
value

252.8 kWh 252.8 kWh 252.8 kWh 252.8 kWh 252.8 kWh

MAE 56.6 kWh 53.9 kWh 55.1 kWh 53.1 kWh 70.1 kWh
RMSE 78.8 kWh 76.7 kWh 77.8 kWh 76.7 kWh 103.5 kWh
WAPE 22.4% 21.3% 21.8% 21.0% 27.7%

Pmax

Mean parameter
value

85.3 kW 85.3 kW 85.3 kW 85.3 kW 85.3 kW

MAE 20.9 kW 20.3 kW 20.6 kW 20.3 kW 27.4 kW
RMSE 27.7 kW 27.1 kW 27.6 kW 27.2 kW 37.9 kW

WAPE 24.5% 23.8% 24.2% 23.8% 32.2%
4.4. Data pre-processing and model simulation setup

In the data pre-processing step, the predictor variable values were
determined for each data point in the input data. Subsequently, all
parameter and predictor variable values were normalized to the max-
imum observed value in the assessment timeframe for the considered
parameter or predictor variable.

This study used the scikit-learn [53] library in Python version 3.8.5
to perform EV virtual battery parameter forecasts for the different
considered forecasting models. An AMD EPYC 7451 core with 5.333 GB
of memory was used to generate the forecasts. Forecasts were generated
for a 15-minute time resolution. The training data set and testing data
set covered 80% and 20% of the input data, respectively, and consisted
of randomly-sampled days from the input data. Due to the relatively
short time period covered in the input data (see Section 4.1), the tested
data set was generated using random sampling of days, instead of
using a consecutive time period as the testing data set, to assure that
all periods of the year are covered in the training and testing data
set. 5-fold cross-validation using randomly-sampled days was used in
hyperparameter tuning and predictor variable selection. The predictor
variable selection was performed using sequential floating backward
feature selection, using the MLxtend Python package [54]. To increase
the robustness of results, the predictor variable selection analysis was
repeated 10 times for each parameter value and each forecasting model,
while the overall model performance analysis and predictor variable
importance analysis were repeated 100 times. The required time to
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perform the forecast differed between the considered forecasting mod-
els. The average running time equaled 0.01 s for the Multivariate Linear
Regression, 4.79 s for the Random Forest model, 2.46 s for the Artificial
Neural Network model and 1.28 s for the k-Nearest Neighbors model.

A separate analysis is performed to determine the impact of the
considered number of EV charging stations on the forecasting per-
formance. This analysis is repeated 100 times for each considered
number of EV charging stations, each time considering a different set
of charging stations when generating the virtual battery data. Given
the large computational burden that comes with hyperparameter tuning
and predictor variable selection, the optimal parameter and predictor
variable set of the main analysis were used in this analysis.

The selected start and end time of the forecasting timeframe is
06:00, as the largest share of the EV charging demand in the considered
case study (98%) can be met when using this time as the start/end time
of one EV virtual battery. In the rare case that the charging demand of
an EV charging session cannot be met before the end of the scheduling
time horizon, the charging demand is reduced to the value that can be
met at the end of the scheduling time horizon to assure that Emin and
Emax converge at the end of the assessment period (see Section 2).

5. Results

5.1. Overall model performance

Fig. 3 presents the model performance of the considered forecasting
models for each EV virtual battery parameter, which were determined
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Fig. 4. Realized EV virtual battery parameter values (i.e., actual parameter values in historical data at considered time step) for three consecutive days and the forecasted values
for these considered days for 20 charging stations for different forecasting models for one model run.
Fig. 5. Average forecasting performance (expressed as the R2 value) of all model runs for different forecasting models when considering EV virtual batteries based on charging
data of a varying number of charging stations. Persistence forecasts are based on the parameter value one week ago at the same time of the day.
using the optimal hyperparameter sets in Appendix and the optimal
predictor variable sets in Table 5. The models show a relatively good
forecasting performance for all EV virtual battery parameters, with an
average R2 score ranging between 0.78 and 0.88 for all models and
virtual battery parameters. The model performance of all considered
forecasting models is considerably better than the reference case of
using persistence forecasts, which indicates that the use of forecasting
models is highly recommended when forecasting EV virtual battery
parameters. This can also be observed from Table 4, which reports
the model performance using the Mean Absolute Error (MAE), Root
Mean Square Error (RMSE) and the Weighted Absolute Percentage
Error (WAPE)1 as performance metrics.

A comparison between the different EV virtual battery parameters
shows that the R2 values are generally lower for Pmax compared to Emin
and Emax. As explained in Section 2, Emin and Emax are continuously
increasing over the assessment timeframe, while Pmax is more volatile.
Hence, Emin and Emax are better predictable than Pmax, explaining the

1 The WAPE has been used over the commonly-used Mean Absolute Per-
centage Error (MAPE), since the MAPE can take infinite or extreme values if
the realized parameter values are equal or close to zero [55], which is regularly
the case in this analysis.
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differences in the forecasting performance between the different virtual
battery parameters. On the contrary, it is evident from Table 4 that the
WAPE scores are highest for the forecasts of Emin. This phenomenon
can be largely attributed to the nature of Emin, which has a relatively
low parameter value for most of the day and increases towards the end
of the assessment timeframe (see Section 2 and Fig. 4). As a result,
the average parameter value for Emin is comparatively low. This lower
average parameter value directly contributes to higher WAPE values, as
the mean absolute forecasting error is divided by the average parameter
value when calculating this metric score.

The difference in forecasting performance between all considered
models is negligible. Although Multivariate Linear Regression is the
worst-performing forecasting model in all considered cases, the minor
difference with the other considered models indicates that EV virtual
battery parameters do not necessarily need to be forecasted using
more-advanced machine learning models.

Fig. 4 compares the forecasted EV virtual battery parameter values
of the considered forecasting models with the realized values for three
arbitrarily chosen consecutive days for one of the model runs. It shows
that the models generally seem to be able to forecast the main trends
of Emin and Emax during the course of the day. The forecasting models
do not seem to be able to capture the fluctuations in the values of Pmax
during the day. It is visible from Fig. 4 that some of the forecasted
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Fig. 6. Predictor variable importance for the five most important predictor variables for each considered forecasting model and for each EV virtual battery parameter. The predictor
variable importance is defined as the average reduction in the R2 score when permuting the predictor variable values. Note that in some cases the optimal predictor variable set
only consists of four predictor variables. The used abbreviations for the predictor variables are introduced in Table 5.
EV virtual battery parameter values are infeasible. For instance, some
models forecasted negative values for Emin and Emax for some timesteps.
Similarly, the forecasts of Emin and Emax do not always converge at the
end of the assessment timeframe and in rare cases the forecasted value
of Emin is higher than the forecasted value of Emax, which is technically
not possible. The latter two effects are caused by the fact that Emin and
Emax are forecasted separately.

As the size of the EV fleet in the EV virtual battery increases, the
forecasting performance of all models improves considerably. This is
outlined in Fig. 5, which presents the average forecasting performance
of all considered models when considering different numbers of EV
charging stations. R2-scores up to 0.98 are reached when considering
more than 400 EV charging stations. The arrival and departure of EVs
are less stochastic when considering a larger EV fleet, which decreases
the volatility in the EV virtual battery parameter values and thus results
in better EV virtual battery parameter value forecasts. Considering a
larger EV fleet size when forecasting EV virtual battery parameters also
increases the performance of the persistence forecast and decreases the
relative added value of using forecasting models.

5.2. Predictor variable selection and importance

The optimal predictor variable set per forecasting model for each EV
virtual battery parameter is presented in Table 5, while Fig. 6 provides
insight into the most important predictor variables for each considered
forecasting model and for each EV virtual battery parameter. The
hour of the day (’Hour’), the weekly average parameter value at the
considered time (’H:W-AV’) and the monthly average parameter value
at the considered time and day of the week (’H:M-AV’) seem to be
the most influential predictor variables; these predictor variables are
present in almost all optimal predictor variable sets and show the
highest predictor variable importance in Fig. 6. The predictor variables
linked to the type of day, in particular to weekend days and school
holidays (’Weekend’ and ‘SH’), are included in almost all optimal
predictor variable sets, but seem to have limited impact on the model
outcomes in Fig. 6. Furthermore, predictor variables related to weather
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forecasts and using historical parameter values of 1–3 days or one week
before the forecasted timestep seem to have little impact on the fore-
casting outcome. Therefore, only a few predictor variables are needed
to produce reliable forecasts of the EV virtual battery parameters.

6. Discussion

This study proposed a novel forecasting approach to forecast all
required parameters to schedule an EV fleet. A comprehensive analysis
of the effectiveness of this proposed approach has been conducted using
a real-world case study. The results indicated that when using the
EV virtual battery method, very good forecasting performance can be
reached, especially when considering large EV fleets. This is particu-
larly interesting for aggregators, who generally consider a large number
of EVs for smart charging applications, including electricity market
bidding. These aggregators can use the proposed forecasting approach
to reduce uncertainty when scheduling these EV fleets, mitigating the
risk of potential imbalance costs.

The results of the analyses applied to the considered case study
showed that only a limited number of predictor variables are required
to forecast EV virtual battery parameter values and that the difference
in forecasting performance between different forecasting models is
minor. We encourage others to adopt our methodology and test the EV
virtual battery forecasting approach on other data sets, for locations
with different climates and mobility patterns.

From the results of this study can be seen that the performance
of the Multivariate Linear Regression and k-Nearest Neighbors (when
considering a high number of charging stations) models was minimally
lower than the performance of the other considered models, although
these models scored best in terms of running times. Their inferior model
performance can be attributed to the fact that these models are not
able to capture non-linear relationships between the predictor variables
and the forecasted parameter values [56]. A superior performance of
tree-based or deep-learning forecasting models has been observed in
other energy domains as well, including photovoltaic generation [57],
wind generation [58] and load forecasting [59]. In addition, the results
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Table 5
Optimal predictor variable sets for the considered forecasting models for different EV virtual battery
parameters. Green values are included in the optimal predictor variable set. The used abbreviations for
the predictor variables are introduced in Table 5.
section showed that the forecasting performance for Pmax is lower
compared to the forecasting performance of Emin and Emax, since the
values of Pmax are more-erratic and thus harder to forecast. Future work
should address how the forecasting performance for this parameter
could be improved, for instance by using more-advanced forecasting
models (e.g., Gradient Boosting [60] or Extreme Gradient Boosting
(XGboost) [61]) or by including details about the EV fleet composition
(e.g., EV model, maximum charging power of EV models) in the input
data.

As the three EV virtual battery parameters were forecasted sepa-
rately in this study, it could occur that the forecasts of Emin, Emax and
Pmax are not perfectly aligned (see Section 5.1). For this reason, the
forecasted values should be post-processed before using them for EV
scheduling. This problem could potentially be reduced by forecasting
the flexibility (i.e., the difference between Emin and Emax) and by
adding/subtracting the forecast of the flexibility to/from the forecast
of respectively Emin or Emax. Another way to potentially improve the
forecasts is by forecasting each timestep separately, using only the
historical data of the considered timestep when training the model.
Hence, further research should look into such ways to finetune the
forecasting approach proposed in this research to increase forecasting
performance.

This study considered a scheduling timeframe running from 06:00
to 06:00 the next day, which does not align with the bidding period
for most day-ahead electricity markets (i.e., 00:00 to 00:00 the next
day). Using 00:00 as the start and end time of the forecasting timeframe
would result in a large number of charging sessions in the considered
case study of which the charging demand cannot be met during this
timeframe, due to EVs arriving home in the late evening. To account for
this discrepancy, one can use the optimized charging schedules between
06:00 and 00:00 to bid in the day-ahead market for one day, and use the
charging schedules between 00:00 and 06:00 for the day-ahead market
bids for the next day. Also, it should be noted that market bids can be
updated in intraday markets.

It should be highlighted that the results when using an EV virtual
battery to optimize the charging schedule of an EV fleet show a minor
difference compared to the aggregated EV charging schedule when
optimizing individual charging sessions [4]. This can be attributed to
the fact that Pmax is based on the aggregated maximum charging power
of all connected EVs to the grid, without considering the fact that
EVs that already met their charging demand cannot charge anymore.
Therefore, the total aggregated charging power at specific timesteps
in the virtual battery model could be higher than physically possible.
Future research could look into ways to reduce this discrepancy, for
instance by considering a reduction factor for the forecasts Pmax when
optimizing an EV fleet using the virtual battery approach.

Lastly, after determining the aggregated charging schedule using the
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virtual battery approach, this aggregated charging schedule should be
disaggregated to individual charging sessions at the moment of real-
time operation. Different disaggregation approaches have been pro-
posed. For instance, Vandael et al. [38] propose to prioritize charging
sessions with the highest urgency to charge when allocating the aggre-
gated charging power among charging sessions. Danner et al. [62] com-
pare cost-optimal, probability-optimal and proportional disaggregation
strategies.

7. Conclusions

The forecasting of EV charging session characteristics for EV smart
charging is complex due to the wide range of charging characteristics
that need to be forecasted. A forecasting approach that tackles the com-
plexities associated with forecasting for EV smart charging is practically
absent in scientific literature. This study is the first work that presented
a forecasting approach that considers all required EV parameters for
EV smart charging. It uses the EV virtual battery method and requires
separate forecasts of only three parameters: Emin, Emax and Pmax. The
proposed approach is generic and can be applied to any scheduling
timeframe or any EV fleet.

The approach was tested on a real-world case study to create 24-
hour forecasts, considering a total of four forecasting models and a ref-
erence persistence model. When considering charging session data from
20 charging stations, the average R2 score ranged between 0.78 and
0.88 for different forecasting models and virtual battery parameters.
The forecasting performance considerably increases when considering
a larger EV fleet, reaching very high R2 scores of at least 0.96 for
all virtual battery parameters. From the results, it can be concluded
that adopting the proposed approach to forecast EV virtual battery
parameter values significantly improves the forecasting performance
compared to using persistence forecasts. The difference in performance
between the considered machine learning forecasting models is negligi-
ble. Results also showed that only a low number of predictor variables
impacts the forecasting results.

Overall, from this study can be concluded that EV virtual battery
parameters can be forecasted with very high accuracy, in particular
with large EV fleets. This means that the uncertainty associated with
the available charging flexibility of EV fleets when applying EV smart
charging can be reduced drastically. Hence, the risk of additional costs
(e.g., imbalance costs in electricity markets) is reduced, facilitating the
rollout of EV smart charging.
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Table 6
Optimal hyperparameter sets for the considered forecasting models for different EV virtual battery parameters.

Forecasting model Optimal hyperparameter set

Emin

Random Forest Max. tree depth: 5 (tested values: 0, 1, 2, 3, 4, 5)
Min. no. of samples at leaf node: 2 (tested values: 1, 2, 3, 4, 5)
Min. no. of samples to split an internal node: 2 (tested values: 2, 3, 4, 5)
Considered. no. of features: total no. of features (other option: square root of
total no. of features)
No. of trees in forest: 75 (tested values: 25, 50, 75, 100, 150, 200, 250, 300,
500, 700, 900)

Artificial Neural Network Activation function: rectified linear unit function (other options:
hyperbolic tan function, logistic sigmoid function and no-op activation)
L2 regularization term: 0.01 (tested values: 0.01, 0.001, 0.0001, 0.00001)
No. of hidden layers: 3 (tested values: 1, 2, 3, 4)
Number of neurons per layer: 14, 10, 7 (tested values: values between 5 and 54)
Solver: quasi-Newton (other options: stochastic gradient descent and ‘adam’)

k-Nearest Neighbors Number of neighbors: 169 (tested values: values between 1 and 500)
Power parameter for Minkowski metric: 2 (tested values: 1 and 2)
Used weight function in prediction: uniform (tested values: ‘uniform’ and
‘distance’)

Emax

Random Forest Max. tree depth: 5 (tested values: 0, 1, 2, 3, 4, 5)
Min. no. of samples at leaf node: 4 (tested values: 1, 2, 3, 4, 5)
Min. no. of samples to split an internal node: 2 (tested values: 2, 3, 4, 5)
Considered. no. of features: square root of total no. of features (other option:
total number of features)
No. of trees in forest: 150 (tested values: 25, 50, 75, 100, 150, 200, 250, 300,
500, 700, 900)

Artificial Neural Network Activation function: hyperbolic tan function (other options: rectified
linear unit function, logistic sigmoid function, no-op activation)
L2 regularization term: 0.001 (tested values: 0.01,0.001,0.0001,0.00001)
No. of hidden layers: 2 (tested values: 1, 2, 3, 4)
Number of neurons per layer: 7,7 (tested values: values between 5 and 54)
Solver: quasi-Newton (tested values: stochastic gradient descent and ‘adam’)

k-Nearest Neighbors Number of neighbors: 139 (tested values: values between 1 and 500)
Power parameter for Minkowski metric: 1 (tested values: 1 and 2)
Used weight function in prediction: distance (tested values: ‘uniform’ and
‘distance’)

Pmax

Random Forest Max. tree depth: 5 (tested values: 0, 1, 2, 3, 4, 5)
Min. no. of samples at leaf node: 4 (tested values: 1, 2, 3, 4, 5)
Min. no. of samples to split an internal node: 2 (tested values: 2, 3, 4, 5)
Considered. no. of features: square root of total no. of features (other option:
square root of total no. of features)
No. of trees in forest: 500 (tested values: 25, 50, 75, 100, 150, 200, 250, 300,
500, 700, 900)

Artificial Neural Network Activation function: rectified linear unit function (other options:
logistic sigmoid function, hyperbolic tan function, no-op activation)
L2 regularization term: 0.0001 (tested values: 0.01, 0.001, 0.0001, 0.00001)
No. of hidden layers: 3 (tested values: 1, 2, 3, 4)
Number of neurons per layer: 28, 10, 7 (tested values: values between 5 and 54)
Solver: quasi-Newton (other options: stochastic gradient descent and ‘adam’)

k-Nearest Neighbors Number of neighbors: 362 (tested values: values between 1 and 500)
Power parameter for Minkowski metric: 2 (tested values: 1 and 2)
Used weight function in prediction: uniform (tested values: ‘uniform’ and
‘distance’)
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Appendix. Optimal hyperparameter sets

The optimal hyperparameter sets for each considered forecasting
model for each EV virtual battery parameter are presented in Table 6.
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