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RESEARCH ARTICLE

Distinguishing extensive and intensive properties for
meaningful geocomputation and mapping
Simon Scheider and Mark D. Huisjes

Department of Human Geography and Planning, Utrecht University, The Netherlands

ABSTRACT
A most fundamental and far-reaching trait of geographic informa-
tion is the distinction between extensive and intensive properties.
In common understanding, originating in Physics and Chemistry,
extensive properties increase with the size of their supporting
objects, while intensive properties are independent of this size. It
has long been recognized that the decision whether analytical and
cartographic measures can be meaningfully applied depends on
whether an attribute is considered intensive or extensive. For
example, the choice of a map type as well as the application of
basic geocomputational operations, such as spatial intersections,
aggregations or algebraic operations such as sums and weighted
averages, strongly depend on this semantic distinction. So far,
however, the distinction can only be drawn in the head of an
analyst. We still lack practical ways of automation for composing
GIS workflows and to scale up mapping and geocomputation over
many data sources, e.g. in statistical portals. In this article, we test
a machine-learning model that is capable of labeling extensive/
intensive region attributes with high accuracy based on simple
characteristics extractable from geodata files. Furthermore, we
propose an ontology pattern that captures central applicability
constraints for automating data conversion and mapping using
Semantic Web technology.
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1. Introduction

Map making and geocomputation are two essential crafts analysts need to master in
order to extract knowledge from geographic data and to gain insights from data analysis
using Geographic Information Systems (GIS). Yet, we know that the practice of map
making as well as the analytical process are full of semantic intricacies that require a lot
of training. Cartographic practice, for instance, entails a large amount of written and
unwritten ‘rules’ about scales of measurement, data semantics and analytic intentions
when selecting graphical symbols on a map (Müller et al. 1995). In a similar fashion, the
application of GIS tools to construct geocomputational workflows is an art that goes
largely beyond fitting data types to inputs and outputs (Hofer et al. 2017). In fact,
meaningful analysis, i.e. the application of appropriate analytic methods to data sources
of a specific origin for a given purpose (Stasch et al. 2014, Scheider and Tomko 2016),
requires considerable background knowledge about semantic concepts.
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Consider the following example. Suppose we have one region attribute representing
lake temperatures measured by environmental sensors, and another one denoting water
volumes of these same lakes. Both have the same data type (polygon vector data).
Suppose that for purposes of estimating hydroelectric energy potentials, we are inter-
ested in the water volume of all lakes as well as in the temperature of the water, in order
to assess to what extent heating up by the power plant may lead to ecological damage
downstream (Bobat 2015). For a skilled analyst, it is intuitively clear that total volume can
be obtained by summing up lake volumes, whereas each measured temperature value
needs to be weighted by the volume of the respective lake to arrive at a reliable
estimate of the water’s average temperature. Furthermore, this analyst is likely to choose
a choropleth map when visualizing lake temperature over space, but a bar chart or pie
chart map for lake volume. The reason lies in the fact that intensive measures like
temperature are independent on the size of their supporting object (in this case the
area of the lake’s region, see Figure 1(b)), while extensive measures, such as lake volume,
are additive (Figure 1(a)).

As this simple example illustrates, deciding about the meaningfulness of many
cartographic and geo-analytic methods requires distinguishing between extensive and
intensive measures. While this might look like a trivial problem for a human analyst, it is
very difficult for a computer to decide without any human intervention, since nothing in
a data type or a computational property reveals the matter. Yet, automation is required
in order to scale up geocomputation and mapping over the extensive amount of data
sets at our disposal. We need technology that makes tool and geodata diversity
manageable by automatizing analytic tasks. The reasons that prevent us from exploiting
these semantic distinctions are at least twofold (cf. Scheider et al. (2017)):

(1) We lack methods for automatic labeling of data sets and attributes with exten-
siveness/intensiveness. Manual labeling is seldom done in practice and does not
scale with the speed of data production (Alper et al. 2015).

(2) We lack methods for systematically assessing the space of meaningful geocompu-
tational/cartographic method applications to extensive/intensive properties. In

Figure 1. Examples of extensive and intensive properties. Image (a) by kind permission of North
Dakota Game and Fish department. Image (b) by open attribution license (CC BY).
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essence, we lack a theory that would allow us to explore this space in a systematic
manner once data are labeled.

In this article, we address both challenges through investigating possible solutions from
machine learning (ML) and geospatial semantics (Egenhofer 2002, Janowicz et al. 2013). For
tackling the first challenge, we test several supervised ML classification algorithms on
different kinds of (geo-)statistical features extracted from region statistics data which
capture the relation between areas and their attributes (Section 3). Regarding the second
challenge, we review textbook knowledge about the applicability of cartographic and
geocomputational methods and encode it using an algebraic model expressed in terms
of an ontology design pattern (Section 4). Together with the result of geodata labeling,
this pattern can be used to select kinds of GIS tools adequate for intensive (IRA) and
extensive region attributes (ERA), for workflow automation and data/tool recommenda-
tion on statistical portals (compare Figure 2). We explain each method, discuss its results
and give an outlook in the corresponding sections. We start with reviewing the state of
the art about extensive and intensive properties.

2. State of the art regarding intensive/extensive properties

In order to understand how the distinction between intensive and extensive properties
affects mapping and analysis, we review previous work in this section. We discuss the
role in Cartography and geocomputation, as well as previous efforts of theoretical
systematization and computation.

2.1. The origins

The official definition of the two concepts is laid down in the Compendium of Chemical
Terminology published by the International Union of Pure and Applied Chemistry
(IUPAC) (Cohen 2007), as Chemistry is their field of origin. This compendium, also
informally known as the ‘Goldbook’ after its original first author, gives the following
definitions (McNaught and McNaught 1997):

● Intensive quantity: ‘Physical quantity whose magnitude is independent of the extent
of the system’.

● Extensive quantity: ‘Physical quantity whose magnitude is additive for subsystems’

Figure 2. Approach taken in this article. We suggest an operational design pattern and test
approaches for labeling statistical attributes and corresponding GIS tools. Workflow automation
and data/tool recommendation are considered future work.
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Redlich (1970) gives a similar definition:

Most of the properties which we measure quantitatively may be divided into two classes. If
we consider two identical systems, let us say two kilogram weights of brass or two exactly
similar balloons of hydrogen, the volume, or the internal energy, or the mass of the two is
double that of each one. Properties of this type are called extensive. On the other hand, the
temperature of the two identical objects is the same as that of either one, and this is also
true of the pressure and the density. Properties of this type are called intensive.

The concept pair of spatial intensiveness and spatial extensiveness was introduced first
by Tolman (1917). At that time, it was meant as a tool in Chemistry and
Thermodynamics, two areas where these concepts are still frequently used today
(Canagaratna 1992). However, the concepts have been established in the Geosciences
as well. The earliest mention we could find was in Goodchild and Lam (1980), some six
decades after Tolman. Goodchild and Lam however mention them only en passant. A
proper introduction into the Geosciences was done by ‘spatial philosopher’ Gilles
Deleuze, known for popularizing terms like smooth and striated, nomadic and sedentary,
deterritorialization and reterritorialization (Deleuze 1994, Buchanan and Lambert 2005).

Still, extensiveness and intensiveness seem relatively underused concepts of science
(Canagaratna 1992). Lobato and Thanheiser (1999) argue that the distinction between
intensive and extensive qualities is crucial when teaching about rates, such as speed. In
recent years, the concept pair has also found traction within the industry. Mijnarends et al.
(2015) e.g. illustrated its use in estimating various flow rates and designing useful maps for
the oil industry, as well as for designing comprehensive GIS to manage such work.

Not all quantities are either intensive or extensive. Some quantities behave so
erratically that it is difficult if not impossible to classify them in this way. In addition,
some quantities have a dimensionality that is too low for this purpose (Jaeger 2000).
Point vector data for example are 0-dimensional and thus cannot be classified with
regards to the behavior toward their extent. They may therefore not fall under this
dichotomy (Jaeger 2000).

Finally it is worth mentioning the work of Gorenstein and Gadzicki who further
specify the intensive–extensive concept pair into strongly and weakly intensive proper-
ties. Strongly intensive properties are those properties which do not depend on the
extent whatsoever. Weakly intensive properties are semi-dependent on extent
(Gorenstein and Gadzicki 2011). Following the IUPAC definition, weakly intensive proper-
ties are extensive properties. In this paper, we will stick to the IUPAC definition.

2.2. The role in cartographic best practice

In his seminal work, Bertin et al. (1967) proposed a systematic account of map types
together with graphic variables, which unfortunately lacks any reference to extensive-
ness or intensiveness. Cartographers are nevertheless aware of the cartographic implica-
tions of these concepts, even though today’s standard books about methods of map
visualization do not mention them explicitly.1

In fact, a considerable part of the intuitive cartographic perception and interpretation
rules depend on the intensive–extensive distinction. A prominent example is the appro-
priateness of applying choropleth maps, proportional symbol maps and isopleth maps. As
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elaborated by Lin et al. (2017), choropleth maps are only appropriate for displaying
intensive data, because color is perceived as independent from (orthogonal to) size.
Since choropleth maps consist of graduated color areas of polygons of varying sizes,
large polygons would automatically stand out when extensive properties were to be
mapped in this way. This would produce an incorrect impression of the phenomenon
under study, with large areas seeming more important than they really are, not by virtue
of the phenomenon, but due to their size. A practical example of this effect is given in
Figure 3, where (a) causes a wrong impression about the distribution of population
across the United States. In the case of the proportional symbol map (e.g. a map where
the size of circles denotes the attribute value of a region), in contrast, we expect the size
of the symbol to vary with the size of the enclosing area. Furthermore, attribute values
are visually expressed by another kind of size (the size of the symbol). This makes this
type of map appropriate for extensive properties.

In comparison to choropleth and proportional symbol maps, isopleth maps exclusively
represent intensive measures. These maps denote a continuous value field consisting of
point-like measures which lack a spatial size and thus are bound to be considered intensive.
Furthermore, cartographic regionalizations and cartographic aggregations are likewise
affected by the intensive–extensive distinction (Kyriakidis 2017, Lin et al. 2017, She et al. 2017).

We conclude that extensive and intensive properties could be utilized as part of an
automated map making program. For instance, a script could be written which displays
intensive data using class interval selection rules as laid down by Evans (1977).

2.3. The role in geocomputation and spatial analysis

The distinction between intensive and extensive properties is also crucial in many
commonly occurring analytic and geocomputational tasks in GIS. In the following, we
quickly review a number of well-known practices involving different types of GIS opera-
tions and geodata formats, without claiming that these cases cover all methods that
might be affected by the distinction.

First, consider aggregating attributes of two areas A and B. In order to aggregate A and B
into a new area (see Figure 4(b)), we need to decide whether or not we should add the two
values or take their average. This depends on whether the data are extensive or intensive.
If A and B are values of an extensive variable, like total population measures, then a simple
sum is required to aggregate the attributes into the merger of their regions. If A and B are
values of an intensive variable, like the gross domestic product (GDP) per capita, then a
weighted average needs to be used (Kyriakidis 2017, She et al. 2017).

Second, consider the case of subdividing or modifying region layers, which involves a
disaggregation. For example, suppose there is a layer with total population in adminis-
trative regions, and we are interested in estimating the population in a layer with
overlapping regions, e.g. electoral districts. One of the simplest methods is based on
assuming a homogeneous distribution of the underlying population and building an
area-weighted sum of population attributes (Figure 4(a)). The population values in this
case need to be extensive (given as total sum), not intensive. More sophisticated
interpolation procedures rely on Kriging of the underlying population density surface
(Krivoruchko et al. 2011). Note that the latter method requires intensive properties as
input and internally deals with intensive–extensive data conversions. A similar problem
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concerns resampling of a raster layer into a new layer that overlaps with the raster cells.2

Raster values of remote-sensing images, such as radiation intensity values, are intensive,
not extensive. In practice, simple ad-hoc interpolation techniques are often used, e.g.
assigning the intensive value of the nearest raster cell (Burrough 1986).

Figure 3. Extensive data such as depicted in (a) distort the perception of the phenomenon due to
the differing sizes of the area units. The intensive data depicted in (d), in this case population
density, show the actual pattern shown in (c) much more accurately. Proportional symbols (b) do not
have such a distorting effect and thus can be safely used with extensive data. Isopleth maps (e)
should only be used with intensive values. Population data gathered from US Census Bureau (2017),
night illumination data acquired from NASA’s Earth Observatory (Stevens 2016), Lambert equal area
conic projection.
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Another disaggregation occurs when intersecting buffer regions with a statistical
region layer (e.g. about populations numbers) to estimate environmental interaction
effects (e.g. the impact of a road on surrounding residents). If the attribute is extensive
(e.g. population counts) and if we want to calculate the aggregated value of the
intersection of A and B with buffer C (Figure 4(b)), the fraction of intersected area for
both A and B would have to be calculated. If A and B represent two values of an
intensive variable (e.g. population density), one may compute an area-weighted average
of the attribute values of A and B.

In geoprocessing, such rules are sometimes referred to as split and merge rules or
policies (Goodchild et al. 2007).3

2.4. Previous efforts of systematization and automation

A number of attempts have been made to systematize and exploit such practical
insights in terms of theoretical and computational approaches.

In spatial statistical analysis, an issue closely related to the size and shape of regions is the
Modifiable Area Unit Problem (MAUP) (Openshaw 1984b). It has been known for a long time
that statisticalmoments and indicators (such as correlations) are significantly affected by the
way how underlying phenomena (base units) are summarized into regions, both by aggre-
gating to larger regions, as well as by reshaping regions in different ways. Textbooks often
present MAUP with examples that assume extensiveness (Kemp 2007, p. 112). Studying the
relevant literature (Openshaw 1984a, 1984b, Fotheringham andWong 1991, Jelinski andWu
1996), we could however not identify a discernible role that these concepts should play in
defining or curing MAUP. In fact, it is implicitly assumed in these articles that statistics were
computed based on intensive (‘normalized’) attributes (such as the correlation between
population density and poverty rates), to make results independent from a region’s size. In

Figure 4. Areal interpolation and spatial disaggregation.
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these texts, MAUP is comprehended as a problem of reconstructing base unit statistics
(e.g. estimating correlations on higher resolution levels, such as households). Yet, MAUP is
also understood by scholars in a slightly different way, namely as the problem of recon-
structing attributes for these base units themselves (Jones 2014, p. 211), compare the exam-
ples of disaggregation in Section 2.3. This latter problem has in fact a clear link to
intensiveness and extensiveness (Flowerdew and Green 1993), which we will specify in
Section 4. However, we think it is better captured by the term areal interpolation.

In contemporary Geographic Information Science (GIScience), the concept pair
often contributes to a more general methodological approach to data analysis and
geodata. Textbooks use it to explain the difference between choropleth and isopleth
maps (Longley et al. 2005, p. 96). Goodchild et al. (2007) used intensiveness for
introducing a fundamental building block of geographic information, the geo-atom.
Lin et al. (2017) proposed to use the distinction in order to handle isopleth mapping.
She et al. (2017) suggested a method for minimizing region heterogeneity based on
distinguishing intensive and extensive properties, and in Kyriakidis (2017), the dis-
tinction forms part of a method for aggregation of geodata. In Scheider and Tomko
(2016), we have proposed an ontology that captures applicability constraints of
analytical methods based on distinguishing measures from regions which support
attributes (cf. Section 4.1). However, none of these previous attempts have addressed
how the distinction could be formally captured together with GIS methods and how
it could be used in labeling data sets for automated geocomputation. We would like
to stress that the distinction is not captured either by any scale type or level of
measurement. Measurement levels (such as ratio, interval, ordinal) are defined as
morphisms on a single domain (Suppes and Zinnes 1963), while extensiveness is a
relation between two different domains, namely measures and sizes of supporting
regions.4

In Cartography, it is commonly acknowledged that map making is an inherently
human process difficult to automatize, because computers have trouble dealing with
the perceptual properties of the symbology involved (Müller et al. 1995). Still, computers
could enhance the process of map making more than they currently do, by accounting
for some of the best practices in Cartography. This requires ordering these practices
around semantic concepts, e.g. in terms of ontologies on the Semantic Web using linked
data (Bizer et al. 2009). This was recently done for map scaling and generalization (Carral
et al. 2013, Stern and Sester 2013) and for map mash ups (Tooamnian et al. 2013, Huang
et al. 2018). However, to the best of our knowledge, the semantic distinction under
study has never been subject of corresponding ontological or computational studies.

3. Classification of region attributes into intensive and extensive

How well can we automatize the labeling of region attributes in geodata sets? In this
section, we compute a range of statistics over region attribute data and use them as
features to classify data sets into either extensive or intensive, using various ML meth-
ods. Since these classes are considered mutually exclusive, this is a single-label supervised
classification problem.5 The Python scripts for geodata set classification can be found on
github.6
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3.1. Challenges in statistically classifying region data sets

Given the simplicity of the definition of our target concepts, one may wonder whether
it is difficult at all to determine whether a given attribute falls in either of these classes
based on the statistical association between region size and attribute value. However,
as we will show in Section 3.6, it turns out that the statistical association is rather weak
and unfortunately not enough to learn these concepts. We suspect the reason for this
lies in the fact that a layer consisting of predefined statistical or administrative regions
is a very biased sample of all possible areal aggregations of an underlying phenom-
enon. It is very improbable that the size of these regions is uniformly distributed over
different resolution levels and different locations, and thus the effect of increased
attribute value with size, which would appear in an independent regional sample, may
be canceled out by sampling small regions at locations with high phenomena con-
centrations and large regions at locations with low concentrations. This problem is in
fact a variant of the ecological fallacy and MAUPs (Openshaw 1984b), and it has very
similar consequences. In very extreme cases, it could even lead to the effect that the
association between size and attribute value is negative. For this reason, it is not at all
obvious whether this inference can be made, and if yes, based on which features of a
region data set.

3.2. Training and test data sets

The used data sets originate from the ‘Kerncijfers Wijken en Buurten’ (KWB) provided
by the Dutch statistics agency, the ‘Centraal Bureau voor de Statistiek’ (CBS).7 This
data set was chosen because it provides a large number of statistical variables on
different scale levels in a readily usable shapefile format. In total, these are 193
variables for 3 different regional aggregate levels inside the Netherlands, namely
neighborhoods, boroughs and municipalities (CBS 2014). The variables include
demographical, economic, social and topographic phenomena, such as a_pau:
Personenauto’s totaal [aantal], denoting the total number of carryall vehicles in a
region, and g_afs_hp: Afstand tot huisartsenpraktijk [km], denoting the distance to
the nearest practitioner averaged for all households in a region (see Figure 5). Only
two variables from this set were excluded from the analysis because they contained
only missing values.

3.3. Explanatory features of region attributes

The core of our classification method lies in the appropriate selection of features of
region attributes. For this study, statistical and spatial statistical measures (De Smith
et al. 2007) were tested as predictors, based on the idea that various indicators of spatial
and nonspatial association together might best be able to uncover a covert relation
between attribute measures and regions. Note that our indicators all exploit some
quality of a region, either its size or spatial configuration, together with its attribute
value. In this subsection, indicators are discussed and a rationale is given for their
inclusion in the study.
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● Linear regression intercept: The intercept of the regression equation of a given KWB
quantity plotted against the area of its support polygons. This feature is expected
to be important in distinguishing intensive and extensive attributes since extensive

Figure 5. Test data from the portal ‘CBS in uwbuurt’, accessible online under http://www.cbsinuwbuurt.nl/.
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measures are supposed to approximate an intercept of zero. A region extent of
zero causes extensive measures to become zero.

● Linear regression slope: This feature of the regression equation of a given KWB
quantity plotted against the area of its support polygons might also be of use. An
ERA is expected to have a significant positive slope since its measure is expected to
rise with the region extent.

● Pearson’s R: This feature captures the strength of the correlation between the
region’s area and the KWB quantity based on their covariance.

● R2: This feature captures the ratio of the explained versus the total covariance of a
KWB quantity plotted against the region’s area. It cannot become negative in
contrast to Pearson’s R, of which it is the square.

● Levene’s W: This feature captures homoscedasticity in the linear regression of the
KWB quantity plotted against the area of its support polygons. If the input data
have highly differing variances for small and large areas, this might indicate that it
is not strictly a function of area and a linear model does not well capture the
relation between them.

● Median of residuals: This is a feature which complements Levene’s W in assessing
whether linear regression residuals might not be homoscedastic.

● Median of secondary residuals: This feature complements Levene’s W, where high
values would indicate that the residuals of the linear regression might not be
homoscedastic.

● Moran’s I: A feature capturing spatial autocorrelation in the region attribute data
set. High values spatially surrounded by low values and vice versa result in a low
score. Autocorrelation measures are used here because they indicate whether areas
with similar sizes are spatially clustered with regions of similar values, and thus
whether the areal sample is biased (compare Section 3.1). This is the case when e.g.
small regions are grouped together and have similarly low attribute values.

● Z-value of I: Likelihood of the occurrence of Moran’s I autocorrelation in the input
data.

● Getis–Ord G: A feature capturing the grouping of region attribute values into hot
spots, where high values are surrounded by a smooth decrease into the neighbor-
hood. High values surrounded by low values result in a high score.

● Z-value of G: Likelihood of the occurrence of the Getis–Ord G measure given the
input data.

3.4. Data preprocessing

The training data set consisted of a list of features for each region attribute in the KWB
source together with a class label indicating whether it was extensive or intensive. These
data were prepared using a Python script.8

The KWB data set bundles various survey and census results in three shapefiles for
each of the three regional aggregation levels. These were first split into 519 separate
shapefiles each containing only 1 variable for 1 scale level. Subsequently, these
shapefiles were checked for projection information, and unprojected data were pro-
jected using the ArcPy module in order to assure faithful area assessments. Once the
layer in question was projected, the areal extent of the polygons within the layer was
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calculated. Region sizes were extracted with two ArcPy tools, Calculate Geometry9 and
Project.10 Doing so allowed the creation of a small layer with just one attribute
containing the KWB quantity and one variable containing the area of each polygon.
The explanatory features used for the classification were then computed with ArcPy
(Moran’s I and Getis–Ord G spatial autocorrelation measures) as well as the linear
regression function of Scikit Learn. The ML classifier tools were all part of the Scikit
Learn library (Pedregosa et al. 2011). With this groundwork done, attributes were
z-normalized for all 519 different layers. The preparation script was profiled to deter-
mine the approximate runtime of each of the classifiers for these data. We used the
line profiler developed by Robert Kern.11

Finally, we manually labeled these layers by consulting CBS’s metadata. Filenames
were collected and manually tagged as either intensive or extensive, depending on the
textual description in the metadata and the data type of the KWB quantity.

3.5. ML classifier selection, training and testing

Ten different supervised ML classifiers (Friedman et al. 2001) were tested on the data.
The logistic regression classifier was excluded from the study because initial tests
suggested that it performed significantly worse. While the internal functions and the
expected behavior of some classifiers like decision trees are easily understood, others
like the Multilayer Perceptron neural net are more opaque. In order to better interpret
the results, we give a short summary of each in the following paragraph.

● The Decision Tree classifier models the input data based on a tree, where each node
is a binary decision rule about some feature. A maximum tree depth of five decision
rules was used to prevent overfitting. Decision rules can capture nonlinear relation-
ships; however, they are unable to model smooth class borders.

● The Adaptive Boosting (AdaBoost) classifier combines the output of multiple deci-
sion trees based on weak predictors to arrive at a weighted sum that forms the final
boosted classifier. This classifier can be expected to work better than a decision
tree classifier. However, as the decision tree, it has difficulties capturing smooth or
fuzzy class borders.

● The K-Nearest Neighbors (K-Neighbors) classifier uses the most common label of the
k-nearest data points in a multidimensional space spanned by the features to
predict each new point under consideration. We used k = 3. The model adapts
very well to nonlinear relations but has a high risk of over-fitting.

● The Linear Support Vector Machine (SVM) computes linear hyperplanes which
optimally separate the cases in the input data set by their labels. A C-value of
0.025 was used to achieve a soft margin of the hyperplanes. Nonlinear relations are
difficult to model with this algorithm.

● The Multilayer Perceptron is a feedforward multilayer artificial neural network that
uses the rectified linear unit function as its activation function. An alpha of 1 was
chosen to avoid overfitting the data. The classifier can easily adapt to nonlinear
relationships but is in danger of over-fitting.

● The Naive Bayes Gaussian classifier assumes that the input predictors are
independent and calculate the posterior probability of Bayes’ theorem from
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the prior probability of the predictor, the label prior probability and the
likelihood of the predictor given the class. It is capable of capturing nonlinear
smooth relationships.

● The Random Forest classifier operates by constructing a large number of decision
trees while training and outputting the class that is most prevalent in the predicted
results of the decision trees. It is similar to the AdaBoost, but its final output is
derived in a fashion similar to the naive Bayes estimate. As the decision tree, it has
difficulties capturing smooth or fuzzy class borders.

● The SVM with a radial basis function (RBF) as kernel transforms the input data into
linear spaces by using the kernel trick after which the data can be separated by
linear functions forming a hyperplane through the maximization of their margins. A
C-value of 1 was used to establish a soft margin violation penalty of greater
strength than in the linear SVM classifier to compensate for the increased flexibility
of the SVM RBF classifier. It is a highly adaptive classifier capturing nonlinear,
smooth class borders but is in danger of over-fitting.

● The RBF Gaussian classifier uses a Gaussian function as approximated by Laplace’s
method for estimating the posterior probability from the input prior probabilities.
The settings chosen included a warm start in order to make the algorithm converge
more quickly to a solution. The model is capable of capturing highly nonlinear
smooth relationships.

Since in our KWB sample, the two predicted classes were very unequal in size (85.54%
IRAs, 14.46% ERAs), we also generated a balanced subsample in which classes have
comparable sizes for training and testing purposes. We tested the models on both the
balanced and unbalanced sample. To prevent overfitting, we used cross validation: we
trained on 80% of the KWB data set and subsequently tested on the remaining 20% of
the balanced subset, as well as on the entire data set. In order to assess the quality of
the chosen algorithms, we measured their classification accuracy (fraction of attributes
correctly classified as intensive or extensive) (Friedman et al. 2001) on the test data
compared against a majority estimate of the data set. This naive model predicts the
same label for all attributes in the data set based on the most frequent label in the
training data. This means we judged to what extent the algorithms outperform a
majority vote.

3.6. Classification accuracy

The results on the classification quality can be found in Tables 1–3. In the full training/
test sample, intensive and extensive cases occurred in a 4 to 1 ratio. Classification was
also tested on the balanced subsample which had a size of 30 region attributes. All
accuracy results are compared to the naive estimator, as a percentage of improvement
compared to a naive guess. The accuracy of the naive estimator was 50.3% in the
balanced set, and 85.54% in the unbalanced set.

From the results presented in Table 1, it becomes clear that all classifiers tested on
the balanced test set were able to predict intensiveness/extensiveness with at least 90%
accuracy. All classifiers in these cases also performed significantly better than the naive
estimate. When the accuracy results of the classifiers for the unbalanced data set are
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compared, we find an interesting drop in performance for most classifiers. Not only do
most classifiers perform significantly worse on the unbalanced data set compared to the
balanced one, most classifiers perform also worse than chance. The only exception is the
SVM RBF classifier, which achieves outstanding classification results and performs sig-
nificantly better than chance on both test sets. It seems therefore that SVM RBF is the
most reliable classifier in both cases.

The accuracy results were further refined by making selections among the statis-
tical features to determine their effects on the model (using the SVM RBF classifier),
see Tables 2 and 3. Table 2 shows prediction accuracy with statistical features
removed from the prediction one by one. There is almost no variability, thus indicat-
ing that there is a large degree of mutual dependence among the statistical mea-
sures, which can be substituted for each other. As can be seen in Table 3, one of the
strongest predictors is the intercept of the regression through the KWB quantity versus
area plot. This makes a lot of sense because extensive variables grow with the extent
of their polygons and are expected to have an intercept of zero (since their value
would be zero at an extent that is zero). Any nonzero intercept is therefore a strong
indicator that the variable is intensive. A very small or even negative slope similarly
points to an intensive variable, as extensive variables ought to grow with their area
size and thus have positive slopes.

Also, the Z-value of the Getis–Ord G and the Getis–Ord G itself are good predictors,
see Table 3. This is also not surprising, since they measure spatial clustering of attribute
values. Remoteness is determined by the centroids of polygons, so larger regions are by
definition more remote from each other, and smaller regions are nearby. If in case of
extensive measures, smaller regions additionally tend to have lower values, then this
should result in a highly significant z-value for G. In essence, it is a measure that is large
for Figure 3(a) but not for Figure 3(d).

Yet, there are also several surprising results to be found in Table 3. Especially, the
comparably low predictive power of Pearson’s R statistic and R2 is noteworthy. These
statistics determine the strength of the correlation of the attribute measure with the
area extent. However, they are apparently less central for our classification problem,
which demonstrates that the association of size with attribute value is not enough to

Table 1. Predictive power of selected algorithms.
Accuracy (%) Improvement w.r.t. naive estimator (%)

Classifier Balanceda Unbalancedb Balanceda Unbalancedb

AdaBoost 99.3 68.6 +97.4 −19.8
Decision Tree 98.0 76.1 +94.7 −11.0
K-Neighbors 90.0 36.0 +78.9 −57.9
Linear SVM 88.7 36.8 +76.3 −57.0
Multilayer Perceptron 94.7 46.4 +88.2 −45.7
Naive Bayes Gaussian 98.7 75.9 +96.1 −11.3
Random Forest 97.4 57.4 +93.4 −32.9
RBF Gaussian 98.7 42.6 +96.1 −50.2
RBF SVM 96.7 95.0 +92.1 +11.0

an = 30.
bn = 519.
Bold values refer to the best scoring classifier.
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capture the data set semantics, and a more sophisticated model really is needed
(compare Section 3.1).

3.7. Discussion of validity and outlook

As shown in the previous section, it seems possible to classify region attributes auto-
matically according to intensive- and extensiveness based on spatial and nonspatial
statistics over corresponding geodata sets. The SVM classifier with an RBF kernel resulted
in the most accurate classification of the data, reaching an accuracy of 95% on both
balanced and unbalanced data, based on its outstanding ability to adapt to nonlinear
and smooth class boundaries. This is a considerable accuracy improvement compared to
the majority vote (from 50% in the balanced and from 85% in the unbalanced case). Our
profiling also showed a performance drawback, since at training time, the SVM RBF
classifier scales more than quadratically with the number of cases involved (Scikit Learn
2017). Runtimes for the Random Forest, RBF Gaussian and SVM RBF classifiers increase
more than 1000% for only a fourfold increase in training set size. However, this is only a
problem at training time, not at application time, and can be accounted for by paralle-
lization and strategies for high performance computing on larger training samples.

To what extent is our result valid? The ordering of individual statistical measures by
their predictive power is a case in favor of this. The intercept and the z-value of the Getis–

Table 2. Predictive power lost by removing one statistical measure.
Statistical measure removed Accuracy (%) Improvement w.r.t. naive estimate (%)

Intercept 97.4 +93.4
Levene’s W 97.4 +93.4
Median of residuals 97.4 +93.4
Median of secondary residuals 97.4 +93.4
Moran’s I 97.4 +93.4
R2 97.4 +93.4
Slope 97.4 +93.4
Z-value of I 97.4 +93.4
Pearson’s R 96.7 +92.1
Getis–Ord G 96.0 +90.8
Z-value of G 96.0 +90.8

aUsing the SVM with RBF kernel classifier on balanced data set.
For each feature in a table row, we tested a SVM RBF with all remaining features on the balanced data set.

Table 3. Predictive power of single statistical measures.
Single predictora Accuracy (%) Improvement w.r.t. naive estimate (%)

Z-value of G 93.4 +85.5
Intercept 84.8 +68.4
Getis–Ord G 84.7 +68.4
Slope 84.1 +67.1
Moran’s I 78.1 +55.3
Pearson’s R 76.8 +52.6
Median of secondary residuals 75.5 +50.0
Median of residuals 75.5 +50.0
R2 70.2 +39.5
Z-value of I 66.2 +31.6
Levene’s W 65.6 +30.3

aUsing the SVM with RBF kernel classifier on balanced data set.
For each feature in a table row, we tested a SVM RBF using only this feature on the balanced data set.
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Ord G are both measures which can be well explained by the theory of extensive and
intensive properties. If the classifiers had indeed picked up a spurious relationship, then
other features should be expected among the top predictors. Still, it might be the case
that for different regions and larger data samples or very dissimilar data sets, the classifiers
would have to be retrained. Furthermore, there is a certain amount of cases (5%) that
remain hard to classify. This probably has to do with the fact that the relation of a region’s
size to a measure varies with the spatial sample of regions. For instance, the ratio of urban
population decreases in rural areas with larger sizes, while the ratio of rural population
increases, even though both are intensive. It may be the case that the classification quality
cannot be further improved without human intervention to account for such extreme
cases. To find out about the generality of the classifier, a test should be done with data
from an entirely different geographic region, not just data on different variables and
geographical scales. Another option would be to train models with synthesized region
attributes over some density surface. This also has the advantage that the MAUP problem
could be studied directly. This however is considered future work.

Our labeling in the test data can be considered highest quality because we based it
on statistical documentation, which provides indirect confirmation of the intensiveness
and extensiveness of the attributes. The KWB data set used in this study has comparably
good documentation for all variables present in the database, as it is distributed by the
Dutch statistics bureau (CBS), a professional statistics agency. When reading the doc-
umentation, we noticed whether the variable denotes quantities, percentages, averages,
densities etc. Based on this, the intensive- or extensiveness of the variables can be
determined by a human reader without much difficulty. However, most data are not
documented nearly so well, if at all, and interpreting a documentation still requires a lot
of time. For this reason, our model shows a way toward scalable and reliable estimation
of intensive-/extensiveness without having to search through data documentation.

Finally, while the chosen statistical features have proven sufficient for correctly classify-
ing the data, other features are conceivable. These are mostly alternatives to the Moran’s I
and Getis–Ord G spatial fragmentation measures used. For example, in Jaeger (2000), we
find four other measures that might be of use. The ‘net product’ as well as the ‘mesh-based
splitting index’ ought to be useful for detecting extensive data and the ‘effective mesh
size’ and the ‘splitting density’ ought to be useful for detecting intensive data.

4. Meaningful geocomputation and mapping with intensive and extensive
properties

Choosing the right type operation for a type of data is a well-known problem in
service and data interoperability (Bernard et al. 2014) (Hofer et al. 2017) and program-
ming automation (Lamprecht 2013). Without semantically adequate constraints, the
choice of appropriate tools in workflow construction computationally explodes and
makes it hard to distinguish relevant from irrelevant or even grossly inadequate
workflows. Furthermore, potential data sources are difficult to find and convert into
a meaningful form for region-based statistics without knowing about their semantics
(Scheider and Tomko 2016).

We argued above that the distinction between ERAs and IRAs adds crucial semantic
information to the data and can even be automatized. In this section, we discuss how
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this can be exploited for automatic tool selection, data conversion, as well as workflow
composition, using methods from the Semantic Web and ontology engineering.

4.1. Ontology design pattern of region attributes

An ontology design pattern is a formal vocabulary that captures a small set of
essential concepts reusable in different contexts and throughout other applications
(Gangemi and Presutti 2010). Linked data (Bizer et al. 2009) allow such a vocabulary
to be shared on the Web. In this section, we introduce a pattern for region
attributes.

Let us first introduce some terminology. In the following, we will speak of a support in
a geodata set when we mean attribute information that describes the context of a single
measurement of interest. This context can be e.g. the spatial region, time or object for
which a measure was taken, following the terminology in Scheider and Tomko (2016)
(compare Figure 6). The size of a support can be obtained in various ways, e.g. in terms of
a region’s area or in terms of its total content (e.g. total population). We describe region
attributes with linked data in terms of the Analysis Data ontology.12 This ontology is
illustrated in Figure 7, where OWL13 classes are in rounded boxes, and OWL properties
are depicted as arrows.

A region data set is a geodata set whose elements (data records) are supported by
regions (polygon geometries). The latter is described in the GeoSPARQL ontology
(prefix geo).14 In Figure 7, one can see how individual data items are linked to data
sets as well as to attributes that describe their measured values. A region attribute is a
list of such measures (ValueList) of a region data set (see Figure 7). The notion
RegionAttribute, which is essential for this article, was defined in this vocabulary in
terms of OWL axioms. IRAs and ERAs are subclasses of region attributes captured in
the Extensive Measures ontology,15 which is illustrated in Figure 9 (compare Figure 8).

4.2. Operational constraints on IRA and ERA

How can we capture the constraints inherent in IRA and ERA with respect to GIS
operations? We suggest the following kinds of arithmetic constraints:

(1) Arithmetically speaking, weighted averages of the form:

measureðwhlÞ :¼
P

p sizeðsupportðpÞÞ �measureðpÞ
P

p sizeðsupportðpÞÞ
(1)

where p ranges over parts of a whole (whl) and weights are based on the support size of
these parts (size(support(p))), are only applicable to intensive measures, while simple
averages (where weight ¼ 1) are only meaningfully applicable to extensive measures.
Examples for the latter are mean population counts over groups of countries or mean
income over groups of persons. Examples for the former are the estimation of the sumGDP
over several countries from the GDP per capita per country, or the computation of a
temperature mean. At first, this rule may seem to contradict a common practice in climate
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science to simply average temperature measurements, even though they are intensive
quantities.16 However, as argued in physics textbooks, a thermodynamically adequate
temperature mean needs to take into account the size of the support for which the
temperature holds (Hatsopoulos and Keenan 1965, Redlich 1970). For example, themasses
of air around a temperature sensor influencemeasurement, and thus largermasses need to
contribute more to an averaged temperature. Weighting temperature by mass implicitly
turns it into its extensive thermodynamic equivalent, heat content (energy).17 This thermo-
dynamic necessity may sometimes be numerically neglectable in practice when support
sizes are homogeneous but becomes very apparent when the supports have very different
sizes. Consider computing the average temperature of two large lakes, which clearly
requires using an average weighted by volume.

(2) The inverse operation to a weighted average, which disaggregates region attri-
butes, is called interpolation. It is likewise only applicable to IRAs and corresponds

Figure 6. Distinction between supports and measures of a data item, explained with population
counts over statistical regions (Scheider and Tomko 2016).

Figure 7. Ontology design pattern (OWL classes as boxes and properties as arrows) for capturing
region attributes.
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to the problem of areal interpolation as understood in GIS (Figure 4(a)). Here, we
assume a surface of intensive areal measures in space which can be sampled
around a point in a continuous fashion, such as a mean income inside a spatial
neighborhood.

(3) Furthermore, mereological sums,18 i.e. arithmetic sums of region measures that are
attributed to the merger of their regions

measureðwhlÞ :¼
X

p

measureðpÞ k [
p
supportðpÞ ¼ supportðwhlÞ (2)

require extensive measures. For example, when summing up population counts
over administrative regions. This corresponds to the fact that it is meaningless to

Figure 8. A computational diagram showing applicability of geospatial, arithmetic and mapping
operations to extensive (ERA) and intensive region attributes (IRA) of different resolution. Blue boxes
denote low resolution, orange boxes high resolution data.

Figure 9. Ontology design pattern (OWL classes as boxes and properties as arrows) for capturing
extensive and intensive region attributes with their admissible types of operations.
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sum up ratios, or other extensive measures that do not add up to a mereological
whole. More generally, one can ask whether arithmetic sums always require
extensive measures. We suppose yes, but leave a definite answer of this question
to a more in-depth ontological analysis of these operations.

(4) The inverse operation, a mereological difference (mereoDiv), is likewise only applic-
able to extensive measures:

measureðwhl1nwhl2Þ :¼ measureðwhl1Þ �measureðwhl2Þ k
supportðwhl1nwhl2Þ ¼ supportðwhl1Þnsupportðwhl2Þ (3)

This captures means of disaggregation such as area division with a known
attribute value of a subarea. For example, knowing the population of a subarea
allows us to compute the population of the remainder of a known area.

(5) We call the construction of ratios with respect to a support sizemeasure intensification
of an extensivemeasure (e.g. density with respect to area size, and concentration with
respect to mass or countable size), and the converse operation (multiplication of an
intensive measure with some support size) extensification. Intensive measures can be
derived using ratios of extensive measures (Canagaratna 1992),
for example

measureðintensifyðpÞÞ :¼ measureðpÞ
sizeðsupportðpÞ (4)

These semantic constraints are summarized in a computational diagram Figure 8,
forming a starting point for an algebra of operations on ERAs and IRAs. In this figure,
orange boxes stand for data of higher resolution, while blue boxes stand for data of lower
resolution. It can e.g. be seen that circumventing a mereological difference to turn an
extensive measure into lower resolution data (in case corresponding data is not available)
can be achieved through first intensifying ERA, then interpolating and extensifying the
result (lower half of diagram). It is also noteworthy that averaging ERA is equivalent to
building amereological sum and intensifying the result, as can be seen by routing through
the upper right corner in the diagram. Similarly, computing a weighted average of an IRA
is nothing else than extensifying it and averaging the result (lower left corner). So this
diagram allows us not only to identify possible computational paths but also equivalences
among them. These constraints are captured by our pattern19 in terms of types of
admissible GIS operations (see Figure 9).

4.3. Examples of labeled GIS tools

As a final step, we need to label concrete GIS operations with these types, in order to
restrict their inputs and outputs and to match them with data. We illustrate this using
software examples from ArcGIS.20 To this end, subclasses of Operation21are used as
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labels to capture the semantics of GIS software tools in terms of the algebra
(Section 4.2).

● The operation type interpolate can be used to describe ArcGIS’s Areal interpolation
to polygons tool22 with the parameterizations Average (Gaussian) data (for field
averages of a continuous variable) or Rate (binomial) counts (for population ratios)
for IRAs, such as average temperature or unemployment rate.
Interestingly, the alternative parametrization Event (overdispersed Poisson) counts of
the same tool deal instead with ERAs (such as the number of whales observed by
whale watchers in a standard interval). This parameterized tool can be annotated
with an operation type that corresponds to the workflow chain: intensify � inter-
polate � extensify. As a matter of fact, a similar conversion workflow is implemen-
ted in this method internally (Krivoruchko et al. 2011).

● The operation type mereoSum can be used to describe ArcGIS’s Dissolve tool.23 This
tool dissolves a region layer into regions of lower resolution using a SUM statistic
over a region attribute.

● The operation type mereoDiv can be used to describe ArcGIS’s Intersect tool with
the Use Ratio Policy option.24 With this option, a polygon which is the result of
intersecting some region attribute with some intersect polygon obtains an attri-
bute value which corresponds to the areal proportion of the input region attribute
value.

● The weightedAverage operation type does not directly correspond to a tool in
ArcGIS. However, it can be implemented by a ArcGIS workflow of the form:
Create Field � Field Calculator � Summary Statistics to calculate an average over
an area weighted attribute using the internal ‘area’ attribute of the region data set.
According to Figure 8, weightedAverage also corresponds to a workflow of extensify
� mereoSum � intensify.

● The operation types extensify and intensify can be used to describe standard
operations using ArcGIS’s Field Calculator,25 namely division by or multiplication
with the predefined ‘area’ attribute of a region data set.

Apparently, there are many more example tools that would fit this scheme, and many
more software packages for which such a labeling could be done (e.g. QGIS, Grass GIS
etc., compare Ballatore et al. (2018)).

4.4. Discussion and outlook

As illustrated in Figure 2, once both tools and data sets are labeled with this vocabulary,
it becomes possible to recommend data conversions and kinds of maps for region
attributes in a given data set, as well as region attributes for a given GIS tool. The
ontology proposed in this article adds an important semantic distinction to the rather
superficial kind of information on data type and data formats that is usually available for
such purposes (Hofer et al. 2017). For example, whether polygon vector data really
represent extensive or intensive measures of an area or rather object outlines (of
buildings, municipalities, a.s.o.) makes a large difference for statistical analysis. It now
becomes possible to compare socio-demographic ratios (such as per capita income or
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health statistics) across various statistical data sources and regional levels, without a
human interpreter needed who first checks which kinds of conversions are necessary to
turn extensive into intensive measures. This leads us one step closer to a fully auto-
matized statistics portals, where statistical data can be automatically converted into a
form that is useful for answering analytic questions and for automatic mapping (Tomko
et al. 2012, Scheider and Tomko 2016). Furthermore, a semantic workflow construction/
reasoning tool which can deal with semantic types (Lamprecht 2013) could make use of
these annotations to automatically construct meaningful workflows which lead from a
given input to a given output type. In this way, we might be able in the future to ask a
GIS to figure out on its own how we get from data about household counts and
amounts of energy to a summary statistics about energy efficiency across regions.
Finally, the ontology can also be used to do inference, e.g. to enrich data descriptions
by propagating semantic information through a workflow in which labeled GIS methods
are used, similar to Scheider and Ballatore (2017). This might be also a way to add
semantic labels when data sets are not available for analysis but only workflows.

To realize such a linked workflow and analytical infrastructure, future work should
address the following problems:

(1) The classifier in Section 3.6 should be further evaluated and applied to various
standard geodata sources on the Web, adding region attribute labels from our
pattern.

(2) Standard GIS tools and algebra operations should be annotated either on atomic
levels or on the level of operational chains, as shown above. It should be
investigated how to deal with parameters of tools which modify their semantic
constraints, and how reasoning can deal with chains instead of atomic operations.

(3) Cartographic tools and cartographic standard procedures should be labeled with
operations and attribute types as in our proposed algebra.

(4) It should then be tested how workflow composition, Web mapping and statistical
portals can benefit from the proposed concepts, both in terms of complexity
reduction and quality improvement.

(5) The algebra introduced in Section 4.2 should be rigorously formalized and tested
with Semantic Web reasoners, to generalize search over tools and region data sets.

5. Conclusion

The distinction between extensive and intensive properties, originating in Physics and
Chemistry, was adopted in GIScience some time ago. While the importance of intensive
and extensive properties has been acknowledged, a computable account of this distinc-
tion is still lacking. Yet, the notion is central for many theoretical and practical cartographic
and geocomputational tasks, including the choice of map types suitable for visualizing
region data, and how regions can be summarized and divided. We believe it has an
important role to play in future semantic retrieval and workflow construction systems.

In this article, we analyzed this role in some depth for both Cartography and
geocomputational tasks. We then tested the possibility of automatic labeling of such
attributes in region geodata sets using a range of ML classifiers based on features readily
extractable from geodata files. Since region data sets are not merely random area
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samples of a continuous spatial field, classifiers need to go beyond simple correlation
measures. We found that on our tested data set of 519 statistical attributes from CBS, the
SVM RBF classifier performed with very high accuracy both on balanced and unbalanced
samples, and that the most important predictors were the intercept of the regression
line for the measure/area plot, as well as the Getis–Ord G statistic. We further argued
that this result fits well into our understanding of intensive and extensive properties
although further tests are necessary for different samples of statistical regions and
different locations. Finally, we illustrated how this classifier could be used for meaningful
computation and mapping. We suggested an algebraic sketch and a corresponding
ontology design pattern for annotating geodata and GIS tools and for reasoning with
intensive and ERAs when using GIS operations. We demonstrated that such a labeling
can be done using many example operations from ArcGIS. In future work, it should be
tested to what extent statistical portals and workflow composition can benefit from a
linked data infrastructure which exploits automated semantic labeling, automated data
conversions and maps. Finally, we believe that the proposed algebra could form a part
of a larger theory of meaningful geocomputation, where extensive and intensive proper-
ties may add to the current set of spatial core concepts (Kuhn 2012).

Notes

1. The distinction is implicitly reflected e.g. in Monmonier’s discussion on data maps (ch. 10)
(Monmonier 2014) and in Kraak and Ormeling (2011)’s account of choropleth mapping.

2. http://pro.arcgis.com/en/pro-app/tool-reference/data-management/resample.htm
3. http://www.geography.hunter.cuny.edu/˜jochen/GTECH361/lectures/lecture10/concepts/

05%20-%20Split%20and%20merge%20policies.htm
4. Compare chapter 2 in Chrisman (1997).
5. The problem of estimating a single label for each region attribute.
6. https://github.com/MarkHuisjes/Checker/blob/master/TensityChecker.py
7. https://www.cbs.nl/nl-nl/maatwerk/2016/30/kerncijfers-wijken-en-buurten-2016
8. See https://github.com/MarkHuisjes/Checker/blob/master/TensityChecker.py
9. http://desktop.arcgis.com/en/arcmap/latest/manage-data/tables/calculating-area-length-

and-other-geometric-properties.htm
10. desktop.arcgis.com/en/arcmap/10.3/tools/data-management-toolbox/project.htm
11. https://github.com/rkern/line_profiler
12. http://geographicknowledge.de/vocab/AnalysisData.rdf
13. Web Ontology Language (https://www.w3.org/TR/owl-overview/)
14. http://www.opengis.net/ont/geosparql
15. http://geographicknowledge.de/vocab/ExtensiveMeasures.rdf
16. https://www.carbonbrief.org/explainer-how-do-scientists-measure-global-temperature
17. See e.g. https://chiefio.wordpress.com/2011/07/01/intrinsic-extrinsic-intensive-extensive/.
18. A mereological sum, in its purely logical definition, is a way to talk about wholes and parts

in a formal way (Casati and Varzi 1999). We use this term here to denote specific arithmetic
sums and differences, namely ones that involve also a merger or division of the supporting
spatial regions.

19. http://geographicknowledge.de/vocab/ExtensiveMeasures.rdf
20. https://www.arcgis.com
21. From the workflow ontology http://geographicknowledge.de/vocab/Workflow.rdf, see

Scheider and Ballatore(2017).
22. https://desktop.arcgis.com/en/arcmap/latest/tools/geostatistical-analyst-toolbox/areal-inter

polation-layer-to-polygons.htm
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23. http://desktop.arcgis.com/de/arcmap/10.3/tools/data-management-toolbox/dissolve.htm
24. http://desktop.arcgis.com/en/arcmap/10.3/tools/analysis-toolbox/intersect.htm
25. desktop.arcgis.com/en/arcmap/10.3/tools/data-management-toolbox/calculate-field.htm
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