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Abstract

C-systems were defined by Cartmell as models of generalized algebraic theories. B-systems

were defined by Voevodsky in his quest to formulate and prove an initiality conjecture for type

theories. They play a crucial role in Voevodsky’s construction of a syntactic C-system from a term

monad.

In this work, we construct an equivalence between the category of C-systems and the category

of B-systems, thus proving a conjecture by Voevodsky. We construct this equivalence as the

restriction of an equivalence between more general structures, called CE-systems and E-systems,

respectively. To this end, we identify C-systems and B-systems as “stratified” CE-systems and

E-systems, respectively; that is, systems whose contexts are built iteratively via context extension,

starting from the empty context.
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1 Introduction

In his unfinished and only partially published [Voe15a, Voe16d, Voe16a, Voe16b, Voe17a] research
programme on type theories, Voevodsky aimed to develop a mathematical theory of type theories,
similar to the theory of groups or rings. In particular, he aimed to state and prove rigorously an
“Initiality Conjecture” for type theories, in line with the initial semantics approach to the syntax of
(programming) languages (cf. Section 1.1).

One aspect of this Initiality Conjecture is to construct, from the types and terms of a programming
language, a “model”, that is, a mathematical object—typically, a category equipped with some extra
structure. To help with this endeavour in the context of initial semantics for type theories, Voevodsky
introduced the essentially-algebraic theory of B-systems. The models of this theory, he conjectured
in [Voe14], are constructively equivalent to the well-known C-systems or contextual categories first
introduced by Cartmell [Car86]. Furthermore, in his Templeton grant application [Voe16c], Voevodsky
writes:

The theory of B-systems is conjecturally equivalent to the theory of C-systems that were
introduced by John Cartmell under the name “contextual categories” in [2],[3]. Proving
this equivalence is among the first goals of the proposed research.

The precise role of B-systems in Voevodsky’s programme is described in [Voe16b]; we give an
overview in Section 1.2 below.

In this present work, we construct an equivalence of categories between C-systems and B-systems,
each equipped with a suitable notion of homomorphism. Our construction is entirely constructive, in
the sense that it does not rely on the law of excluded middle or the axiom of choice.

C- and B-systems are “stratified”, in a sense that will be defined later (in Sections 3.3 and 4.3,
respectively). In this work, we also introduce unstratified structures, under the name of E-system
and CE-system, respectively. We construct an adjunction between these structures, and obtain the
equivalence between B- and E-systems via an equivalence of suitable subcategories. The construction
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is summarized in the following diagram, in which maps are annotated with the respective section
numbers where they are constructed:

Esys CEsys

Bsys
stratified

Esys
stratified

CEsys Csys

E2CE,§5.2

⊤

CE2E,§5.1

≃

§4.3

≃

§5.4

≃

§3.3

The unstratified structures are of interest in their own right: they will serve, in a follow-up work, to
relate C-systems and B-systems to other, well-established, unstratified categorical structures for the
interpretation of type theories, such as categories with families [Dyb96] and natural models [Awo18],
categories with attributes [Car78, Hof97],1 and display map categories [Tay99, Nor19].

1.1 Initial Semantics

Initial semantics provides a way to rigorously specify, in a mathematical way, the syntax of a language.
The “template” for initial semantics is as follows: One starts by defining a suitable notion of signature—
an abstract specification device describing the (types and) terms of a language. To any signature, one
then associates a category of models of that signature, in such a way that the2 initial object in that
category—if it exists—deserves to be called the syntax generated by the signature. Finally, one aims
to construct such initial objects, or identify sufficient criteria for a signature to admit initial objects.

A particularly simple example of initial semantics is the following: consider the category an object
of which is given by a triple (X,x, s) where X is a set, x ∈ X , and s : X → X . Then the initial object
in that category is given by (N, 0, (+1)), and the structure of being initial provides the well-known
iteration principle: to define a map N → X , it suffices to specify x ∈ X (the image of 0) and an
endomap s : X → X (the recursive image of (+1)).

For “simple” programming languages (e.g., for untyped or simply-typed lambda calculi), notions
of signature, and initial semantics for such signatures, have been constructed. For dependently-typed
languages, such as Martin-Löf type theory, a general notion of signature with an initial semantics result
for such signatures, remains elusive. (For individual languages, Streicher [Str91], and, more recently,
De Boer, Brunerie, Lumsdaine, and Mörtberg [dBBLM], have constructed initial models.) Closing this
gap was one of the goals of Voevodsky’s research programme.

In Section 1.2 we sketch Voevodsky’s approach towards a theory of type theories, and the role of
C- and B-systems therein.

1.2 Voevodsky’s approach towards a theory of type theories

In this section, we sketch Voevodsky’s plan for giving semantics to type theories. Voevodsky’s Bonn
lectures [Voe] served as the main source for this overview.

1.2.1 Setting the scene

In [Voe16d], Voevodsky opens with the following statement:

The first few steps in all approaches to the set-theoretic semantics of dependent type theories
remain insufficiently understood.

1Hofmann [Hof97, §§3.1, 3.2] also compares categories with families and categories with attributes in a set-theoretic
setting, and a comparison between these notions in a univalent setting is given in [ALV18].

2We are working modulo isomorphism in a category.
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According to him, constructions and theorems about type theories are currently assumed by analogy.
Instead, they should be proved by specialization of a general theorem.

His goal was thus to build a rigorous connection between, on the one hand, type theories, and,
on the other hand, abstract mathematical concepts, via the notion of C-system, introduced by Cart-
mell [Car86] under the name of contextual category. Voevodsky calls a C-system equipped with extra
operations corresponding to the inference rules of a type theory a C-system model—or just model—
of type theory. To give semantics of type theory, Voevodsky aims to build two C-system models: (i) one
from the formulas and derivations of some type theory, and (ii) one from a category of abstract math-
ematical objects. Furthermore, one should construct an interpretation (a functor) from the first to
the second.

Such an interpretation typically needs to be constructed by recursion over the derivations of the
type theory. To encapsulate the recursive pattern into a result that can then be used as a black box,
the methodology of initial semantics suggests the following approach:

1. Show that the term model is initial in a suitable category.

2. Then, any model yields automatically a (unique) interpretation from the term model.

Now, for the construction of the two desired models, syntactic and semantic, respectively, Voevod-
sky developed different methodologies. For the construction of semantic models, Voevodsky exhibited
several constructions of C-systems from universe categories [Voe15a]. He also sketched a strictification
from categories with families to C-systems. For the construction of syntactic (or term) models, Vo-
evodsky developed a framework outlined across several papers. We summarize the ingredients involved
here:

1. Restricted 2-sorted binding signatures (cf. [Voe16d, Section 1]) with sorts for terms and types
are used as abstract specificiation devices for pretypes and preterms.

2. From a restricted 2-sorted binding signature, a “term” monad R : Set → Set and a “type”
module LM : Set→ Set over R are constructed (cf. [Voe16d, Section 1]).

3. Any monad R on Set gives rise to a C-system C(R), corresponding to the mono-typed (or
untyped) syntax of R, cf. [Voe16d, Section 4.2].

4. The presheaf extension of C(R) by the module LM over R, called C(R)[LM ], constitutes the C-
system of pretypes and preterms—but without any typing relation yet, cf. [Voe16d, Section 4.2].

5. Finally, Voevodsky’s theory of sub-C-systems and regular quotients of C-systems [Voe16b] allows
one to carve out C-systems of types and well-typed terms modulo a convertibility relation.

In the following, we discuss some of these ingredients in slightly more detail, but without any
rigorous definitions.

We start with giving an example of a restricted 2-sorted binding signature.

Example 1.1. An example of a 2-sorted binding signature is the following signature for the raw syntax
of the Calculus of Constructions, adapted from Streicher’s Semantics of Type Theory [Str91]:

A,B ::= Π(A, x.B) Product of types
| Prop Type of propositions
| Proof(t) Type of proofs of proposition t

t, u ::= x Variable
| λ(A, x.t) Function abstraction
| App(A, x.B, t, u) Function application
| ∀(A, x.t) Universal quant. over propositions t

4



This signature specifies a language with two sorts, the sort type of “types” and the sort term of “terms”.
It is restricted because there is no binding of variables of sort type, only of variables of sort term. Such
a signature yields a monad T : Set× Set→ Set× Set,

(X,Y ) 7→ (type(X,Y ), term(X,Y )).

From such a monad on Set × Set, Voevodsky [Voe16d] constructs a monad R = term on Set, and a
module LM = type over R. Here, the action of the module LM is substitution of term expressions
in type expressions. From R and LM , in turn, Voevodsky [Voe16d] constructs two C-systems, called
C(R) and C(R)[LM ], respectively. The C-system C(R) corresponds to a mono-typed syntax of just
terms—in detail:

1. Objects are natural numbers (untyped contexts).

2. Morphisms m → n are maps [n] → R([m]), where [k] is the standard finite set associated to
k ∈ N.

3. The category thus obtained is the opposite of the Kleisli category on R restricted to natural
numbers.3

4. The pullback operation extends a substitution map f : [n]→ R([m]) by a variable.

The C-system C(R)[LM ], in turn, looks as follows:

1. C(R)[LM ] has, as contexts, finite sequences of types (with a suitable number of free variables).

2. Pullback is given by substitution of terms in type expressions.

3. There is no typing relationship yet: C(R)[LM ] is a C-system of pretypes and preterms.

In order to build, from C(R)[LM ], a C-system of types and well-formed terms, with the intended typing
relation, Voevodsky devised (i) sub-C-systems (for eliminating ill-formed pretypes and preterms), (ii) quo-
tients of C-systems (for considering terms and types modulo judgemental equality). To construct such
subsystems and quotients, Voevodsky devised the theory of B-systems.

1.2.2 B-systems for the construction of C-systems

Intuitively, the idea is to use the C-system C(R)[LM ] to obtain the pretypes and preterms to formulate
judgements:

• A statement Γ ⊢ is an element of

B(R,LM) :=
∐

n≥0

n−1∏

i=0

LM([i]) (1)

• A statement Γ ⊢ t : T is an element of

B̃(R,LM) :=
∐

n≥0

(
n−1∏

i=0

LM([i])×RR([n])× LM([n])

)
(2)

Voevodsky [Voe14] defines eight operations on B and B̃, corresponding to structural rules of type
theory. The resulting mathematical structure is captured by the notion of B-system, illustrated in
more detail in Section 1.3 and studied in detail in Section 4.

Given a C-system C, we call B(C) and B̃(C) the B-sets associated to C. Voevodsky [Voe16b]
constructed a bijection between

3Put differently, it is the Kleisli category of the Jf -relative monad induced by the monad R, as indicated by the title
of Voevodsky’s article [Voe16d].
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1. Sub-C-systems of a given C-system

2. Subsets of (B, B̃(C)) that are closed under the eight operations

and similar, but more complicated, for quotients. This bijection is used by Voevodsky to construct
suitable C-systems; Voevodsky himself [Voe14] positions B-systems as follows:

B-systems are algebras (models) of an essentially algebraic theory that is expected to be
constructively equivalent to the essentially algebraic theory of C-systems which is, in turn,
constructively equivalent to the theory of contextual categories. The theory of B-systems
is closer in its form to the structures directly modeled by contexts and typing judgements
of (dependent) type theories and further away from categories than contextual categories
and C-systems.

This concludes our overview of the use of B-systems in Voevodsky’s research program. In the remainder
of the introduction, we provide more intuition for the notions of B-system and C-system, before giving
rigorous definitions and constructions.

1.3 Models of Type Theory

When studying type theories mathematically, one question to answer is: what is the mathematical
notion capturing the essential behaviour of type theories? Technically speaking: what are the objects
in the category of models of a type theory?

Many different answers have been given to this question. The purpose of this section is to present
the two contenders studied and compared in this work, and to relate them to other notions of “model”.

1.3.1 Contextual categories and C-systems

Contextual categories were defined, by Cartmell [Car86, §14], as a mathematical structure for the
interpretation of generalized algebraic theories and of the judgements of Martin-Löf type theory. A
contextual category comes with a tree structure, in particular, a partial ordering, on its objects; think
of the objects of C as “contexts”, and Γ ≤ ∆ stating that Γ can be obtained from ∆ by truncation.
Furthermore, there is a special class of morphisms, closed under pullback along arbitrary morphisms—
thought of as substitution by that morphism. In his PhD dissertation [Car78, Section 2.4], Cartmell
shows that the category of contextual categories and homomorphisms between them is equivalent to the
category of generalized algebraic theories and (equivalence classes of) interpretations between them.

Voevodsky defined C-systems as a mild variant of contextual categories: a C-system is a category
coming, in particular, with a length function and a compatible “father” function on objects of the
category, signifying truncation of contexts. Again, we have a class of morphisms stable under pullback.
Voevodsky rejected the name “contextual category” for these mathematical object, for the reason that
the extra structure on top of the underlying category cannot be transported along equivalence of
categories and is thus not “categorical” in nature. As an example, consider the terminal category: it
can be equipped with exactly one C-system structure. However, there is no C-system structure on any
category with more than one, but finitely many, objects.

More recently, Cartmell [Car18] gave two Generalized Algebraic axiomatizations of contextual
categories, one of which is using Voevodsky’s s-operator [Voe16b, Definition 2.3] for pullbacks.

1.3.2 B-systems

Voevodsky’s definition of B-systems [Voe14] is inspired by the presentation of type theories in terms
of inference rules. Specifically, type theories “of Martin-Löf genus” are given by sets of five kinds of
judgements:

Well-formed context

Γ ⊢

6



Well-formed type in some context

Γ ⊢ A type

Well-formed term of some type in some context

Γ ⊢ a : A

Equality of types

Γ ⊢ A ≡ B

Equality of terms

Γ ⊢ a ≡ b : A

Interpreting equality of types and terms as actual equality, and expressing Γ ⊢ A instead as
Γ, A ⊢, this lead Voevodsky to defining a B-system to consist of families of sets (Bn)n∈N and (B̃n)n∈N,
intuitively denoting, for any n ∈ N, contexts of length n and terms in a context of length n−1, together
with their types, respectively. Furthermore, any B-system has various operations on B and B̃, such as
maps ∂n : B̃n+1 → Bn+1 specifying, intuitively, for each “term” t ∈ B̃n+1, the context ∂n(t) ∈ Bn+1

in which t lives.
Voevodsky’s B-systems are very similar to the algebras of the theory MetaGAT defined by John

Cartmell [Car14], and to the algebras of a monad studied by Richard Garner [Gar15]. Below, we will
indicate more precise connections to Garner’s work.

1.3.3 Other Notions of Model

There are many other mathematical structures for the interpretation of type theory. Here, we give
some pointers to related literature.

Voevodsky sketched a relation between C-systems and categories with families in his Lectures in
the Max Planck Institute in Bonn [Voe, Lecture 5], identifying C-systems as categories with families
with a particular property. In the present work, we introduce and study unstratified categorical
structures, in the form of E-systems and CE-systems, which we anticipate will be useful in giving a
precise construction for Voevodsky’s conjecture.

Categories with families, in turn, are related to categories with attributes (a.k.a. split type cate-
gories) in [Bla91] (in a categorical setting) and in [ALV18] (in the univalent setting). Composing these
characterizations with the equivalence presented here provides a comparison between B-systems and
other mathematical structures for type theory.

Garner [Gar15] studies and compares two structures related to Voevodsky’s B-systems: Generalized
Algebraic Theories (GATs) and algebras for a monad on the category of type-and-term structures (see
also Examples 4.4 and 4.10).

Remark 1.2. Garner’s and Cartmell’s works, taken together, also point to another possible way
to constructing an equivalence between C-systems and B-systems: Cartmell [Car78, Section 2.4] con-
structs an equivalence of categories between the category of contextual categories and homomorphisms
between them, and the category of GATs and (equivalence classes of) interpretations between them.
Garner [Gar15] constructs an equivalence of categories between the category of B-frames and the cat-
egory of ∅-GATs (GATs without structural rules) (see also Example 4.4). Garner’s equivalence looks
like it could be “upgraded” to an equivalence between the category of B-systems and the category of
GATs (see also Example 4.10). Constructing an equivalence between B- and C-systems in this way is,
however, both cumbersome (as witnessed by Cartmell’s efforts) and, more importantly, conceptually
circular — if not in actuality, then at least in spirit. After all, B- and C-systems were studied by
Voevodsky in the context of the Initiality Conjecture; one purpose of the Initiality Conjecture is to
give a specification of dependently-typed syntax. We believe that such a specification is best
given without recourse to such syntax itself.

7



1.4 About the present work

The main result of this paper is the construction of an equivalence of categories, between the category
of C-systems and the category of B-systems. The existence of such an equivalence was conjectured by
Voevodsky.

We construct this equivalence as a restriction of an equivalence between more general, unstratified
structures introduced in this paper, called CE-systems and E-systems, respectively. While it is not
necessary to pass via E-systems and CE-systems to construct an equivalence between B-systems and
C-systems, it seems desirable to us for two reasons:

1. The definitions and constructions are automatically more modular, isolating structure on either
side that corresponds to each other.

2. The study of unstratified structures is useful in connecting B-systems and C-systems to other
unstratified structures, such as categories with families [Dyb96]. Work on constructing a suitable
comparison is already underway.

This paper is organized as follows. In Section 2 we discuss some prerequisites that we build upon
in later sections. In Section 3 we review the definition of C-systems given by Voevodsky in [Voe16b,
Def. 2.1], itself a mild variant of Cartmell’s definition of contextual categories [Car86, §14]. Here we also
introduce CE-systems. In Section 4, we give a variant of Voevodsky’s definition of B-system [Voe14]
and introduce E-systems. In Section 5 we construct our equivalence of categories between B-systems
and C-systems.

1.4.1 Foundations

The work described in this result can be read to take place in intuitionistic set theory (IZF) or exten-
sional type theory, i.e., a type theory with equality reflection. In particular, we do not make use of
classical reasoning principles such as an axiom of choice or excluded middle. We consider in this work
categories built from algebraic structures (which sometimes are themselves categories with structure,
but see Section 1.4.2). Implicitly, we take these algebraic structures to be built from sets (or types)
from a universe U1. The categories of such structures are hence categories built from sets (or types)
of objects and morphisms of a universe U2. In the following, we leave the universe levels implicit.

1.4.2 About our use of categories

In this work, categories are used on two different levels.
Firstly, we use categories as algebraic structures, as the basis for C-systems and CE-systems. This

use of categories is somewhat “accidental”, and our constructions on these categories are not invariant
under equivalence of categories. In particular, we liberally reason about equality of objects in such
categories. Consequently, we avoid the unadorned word “category” for these gadgets, and call them
strict categories instead. We denote by Cat the category of strict categories and functors between
them.

Secondly, we use categories to compare different mathematical structures to each other, by con-
sidering a suitable category of such structures and their homomorphisms. Here, we never consider
equality, but only isomorphism, of such mathematical structures; our reasoning on that level is en-
tirely categorical. We reserve the word “category” for such uses of the concept.

We use different fonts for strict categories and categories, respectively: calligraphic font, such as C,
is used for strict categories; boldface, such as Grph, is used for categories. We use the same notation
for arrows in strict categories and in categories. We write either g ◦ f or gf for the composition of
f : a→ b and g : b→ c.
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2 Preliminaries: stratification of categories

In this section we collect definitions and results related to stratification of strict categories and
morphisms between them. A stratification (see Definition 2.1) associates, to any object of a strict
category a natural number, its “length”, and to any length-decreasing morphism a factorization of this
morphism into morphisms “of length 1”. Such a stratification can equivalently be described as a rooted
tree, see Section 2.2.

2.1 Stratification of strict categories

Definition 2.1 (Stratified strict categories, stratified functors). Let C be a strict category with ter-
minal object 1. A stratification for C consists of a stratification functor

L : C → (N,≥)

such that

1. L(X) = 0 if and only if X is the chosen terminal object 1,

2. for any f : X → Y we have L(X) = L(Y ) if and only if X = Y and f = idX , and

3. every morphism f : X → Y in C, where L(X) = n + m + 1 and L(Y ) = n, has a unique
factorization

X = Xm+1 Xm · · · X1 X0 = Y
fm fm−1 f1 f0

where L(Xi) = n+ i.

A functor F : C → D between strict categories with stratifications LC and LD, respectively, is said
to be stratified if LC = LD ◦ F .

Remark 2.2. We emphasize that stratifications do not transport along equivalence of categories.
For instance, there is a (necessarily unique, see Proposition 2.8) stratification on the terminal strict
category, but no stratification on the strict chaotic category with two objects and a choice of terminal
object.

Remark 2.3. Those readers familiar with Conduché functors might note that a stratified category
(C, L) is equivalently a Conduché functor L : C → N with discrete fibers which takes the chosen terminal
object of C to 0.

Definition 2.4. Let C be a category with a terminal object and ℓ : Ob(C)→ N a function. An arrow
f : X → Y in C is individual if ℓ(X) = ℓ(Y ) + 1.

Remark 2.5.

1. In a stratified category, there is a unique terminal object 1. More generally, if there is an arrow
1→ X , then X = 1.

2. The factorisation of an arrow f : X → Y such that L(X)− L(Y ) = m+ 1 > 0 in 2.1.3 consists
of m+ 1 individual arrows.

3. A stratified functor is determined by its action on individual arrows.
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Lemma 2.6. Let C be a category with a terminal object 1. A function ℓ : Ob(C) → N lifts to a
stratification L : C → (N,≥) of C if and only if the following three conditions hold:

(i) ℓ(1) = 0,

(ii) for every object X and k ≤ ℓ(X), the set

∐

Y | ℓ(Y )=k

C(X,Y )

is a singleton, i.e. there is a unique arrow xk : X → Xk such that ℓ(Xk) = k, and

(iii) for every X and k > ℓ(X), the set ∐

Y | ℓ(Y )=k

C(X,Y )

is empty, i.e. there are no arrows X → Y such that ℓ(X) < ℓ(Y ).

Proof. If C is stratified by L such that L(X) = ℓ(X), condition (i) follows from 2.1.1. To show
condition (ii), note that every arrow X → 1 factors uniquely into l = ℓ(X) individual arrows

X Xl−1 · · · X1 1.
xl xl−1 x2 x1

In particular, for every n ≤ ℓ(X), the composite xn+1 · · ·xl : X → Xn is such that ℓ(Xn) = n. If
f : X → Y is also such that ℓ(Y ) = n, then f factors into l − n individual arrows (fi)

l−n
i=1 . Let

y1 · · · yn be the factorisation of Y → 1 into individual arrows. The composite y1 · · · ynf0 · · · fl−n−1 is
a factorisation of X → 1 into individual arrows. It follows by uniqueness of such factorisations that

x1 = y1, x2 = y2, . . . , xn = yn, xn+1 = f1, . . . , xl = fl−n.

In particular, f = xn+1 · · ·xl as required.
Since (N,≥) is a poset, condition (iii) is equivalent to the fact that the function ℓ extends uniquely

to a functor L : C → (N,≥).
Suppose now that conditions (i–iii) above hold. In particular, the function ℓ extends to a functor

L.
(1) Let X be such that L(X) = 0. Then X → 1 and idX : X → X are both such that ℓ(X) = 0 =

ℓ(1). Hence X = 1 and the object X is terminal. Conversely, let X be terminal. Then there is 1→ X
and thus 0 ≥ L(X).

(2) Let f : X → Y and suppose L(X) = L(Y ), then Y = X and f = idX by (ii) with n = ℓ(X).
(3) For every X such that n + 1 = ℓ(X) > 0, let X : X → X ′ be the unique arrow such that

ℓ(X ′) = n given by (ii). For every k ≤ ℓ(X), we have a composite xk of k individual arrows

X X ′ · · · X(k−1) X(k)X

xk

X′ X(k−2) X(k−1)

(3)

where ℓ(X(k)) = ℓ(X)− k, which is the unique arrow X → Y such that ℓ(Y ) = ℓ(X)− k by (ii). Let
us show that (3) is also the unique factorisation of xk into individual arrows, for every 0 < k ≤ ℓ(X).
We proceed by induction on n. If n = 0, then factorisations consist of only one individual arrow and

uniqueness follow from (ii). For n > 0, let 0 < k ≤ n + 1 and consider a factorisation X
g0
−→ Z1

g1
−→

· · ·
gk−2
−−−→ Zk−1

gk−1
−−−→ X(k) of xk into individual arrows. Then ℓ(Z1) = ℓ(X)−1 = ℓ(X ′), and so g0 = X

by (ii). Again, gk−1 · · · g1 = x′
k−1 : X ′ → (X ′)(k−1) by (ii) and, by inductive hypothesis, gi = X(i) for

0 < i < k. Therefore (3) is the unique factorisation of xk into individual arrows.
Given an arrow f : X → Y such that n = ℓ(Y ) < ℓ(X) = m+ n+ 1, it must be Y = X(m+1) and

f = xm+1 by (ii). It follows that f factors uniquely into individuals as X(m) · · ·X ′X.
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Remark 2.7. Condition (ii) in Lemma 2.6 is equivalent to requiring that, for every object X :

(ii.a) for every n ≤ ℓ(X) there is at most one arrow f : X → Y such that ℓ(Y ) = n, and

(ii.b) there is an individual arrow X : X → X ′.

One direction is clear. For the converse it is enough to show that for every n < ℓ(X) there is f : X → Y
such that ℓ(Y ) = n. Such an arrow is given as the composite of ℓ(X)−n individual arrows as in Eq. (3)
above.

Proposition 2.8. Any category can be stratified in at most one way.

Proof. Consider a category C with two stratifications L,M : C → N. By Lemma 2.6.ii,

L−1(n+ 1) =
{
X | ∃ Y ∈ L−1(n) and an individual f : X → Y

}

and similarly for M−1(n + 1). Thus, if L−1(n) = M−1(n), we find that L−1(n + 1) = M−1(n + 1),
and the claim follows by induction since L−1(0) = M−1(0) by Definition 2.1.1.

Uniqueness of stratification justifies the following definition:

Definition 2.9. We define Cats to be the subcategory of Cat consisting of stratified strict categories
and stratified functors between them.

Lemma 2.10. Let F : C → D be a functor between stratified categories. The following are equivalent.

1. The functor F is stratified.

2. The functor F preserves terminal objects and individual arrows.

Proof. That 1 implies 2 is clear. The converse is by induction on the length of objects using that, for
every f : X → Y , LC(X) = LC(Y ) + 1 implies LD(F (X)) = LD(F (Y )) + 1.

Lemma 2.11. Let C be a stratified category with stratification functor L. Then for every object X
and every f : Y → X,

LX(f) := L(Y )− L(X)

defines a stratification functor LX for the slice C/X.

Proof. The above clearly defines a functor LX : C/X → (N,≥) and conditions (1–3) in Definition 2.1
are easily verified.

Corollary 2.12. Let F : C → D be a stratified functor between stratified categories. For every object
X in C, the functor

C/X D/FX
F/X

is stratified.

2.2 Rooted trees

In this section, we compare stratified categories to rooted trees. Rooted trees were used by Cart-
mell [Car86] to give his original definition of contextual categories.

Definition 2.13.

1. We define a rooted tree T to be a family of sets (Tn)n∈N indexed by the natural numbers
such that T0 is a singleton, together with functions (tn : Tn+1 → Tn)n∈N mapping a node to its
parent. A homomorphism of rooted trees f : T → S is a family of functions (fn : Tn → Sn)n∈N

such that fn ◦ tn = sn ◦ fn+1 for every n ∈ N. Let RtTr be the category of rooted trees and
homomorphisms.
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2. Let Grph be the category of directed (multi)graphs and homomorphisms. We define the functor
G : RtTr → Grph as follows. For a rooted tree T , the directed graph G(T ) has the set of
vertices given by the disjoint union

∐
n∈N

Tn, and there is an edge (n + 1, X) → (n, tn(X)) for
every n ∈ N and X ∈ Tn+1. It is straightforward to verify that each homomorphism T → T ′ of
rooted trees gives rise to a homomorphism of graphs G(T )→ G(T ′).

3. Let F : Grph→ Cat be the well-known functor [Mac98, II.7] that takes a graph to the category
freely generated by it.

We now show that the image of the composite

RtTr Grph Cat
G F

is the subcategory of stratified strict categories defined in Definition 2.9.

Proposition 2.14. The functor FG : RtTr→ Cat lifts to an equivalence RtTr
≃
−→ Cats.

Proof. First, observe that, for a rooted tree T , the free category FG(T ) is stratified. We define L :
FG(T )→ (N,≥) by sending an object (n,X) to n and a generating morphism (n+ 1, X)→ (n, tn(X))
to n+ 1 ≥ n. Given a morphism f : S → T of rooted trees, the functor FG(f) : FG(S)→ FG(T ) is
stratified by construction. Thus, the functor FG : RtTr→ Cat lifts to an functor RtTr→ Cats.

Next we define a functor I : Cats → RtTr. Consider a stratified category (C, L) and define a
rooted tree I(C, L) as follows. Let I(C, L)n := L−1(n). By Lemma 2.6, for every X ∈ I(C, L)n there is
exactly one individual arrow, say X → X ′. Then we define tn : I(C, L)n+1 → I(C, L)n by tn(X) := X ′.
A stratified functor F : C → D induces a homomorphism of rooted trees I(C, L) → I(C,M) since it
commutes with the stratification functors and it preserves individual arrows.

It is now straightforward to verify that FG ◦ I ∼= 1Cats
and I ◦ FG ∼= 1RtTr.

3 The category of C-systems

This section is dedicated to the study of C-systems.
In Section 3.1 we review Voevodsky’s definition of C-system, itself a mild variant of Cartmell’s con-

textual categories. We then give, in Section 3.2 our definition of CE-system, and identify, in Section 3.3,
the category of C-systems as a subcategory of “stratified” objects in the category of CE-systems.

3.1 The category of C-systems

John Cartmell [Car86, Section 14] defined contextual categories as mathematical gadgets for the inter-
pretation of type theories. Vladimir Voevodsky [Voe16b, Definition 2.1] gave a slightly modified, but
obviously equivalent definition, and coined them C-systems.

Definition 3.1 (C-system, [Voe16b, Def. 2.1]). A C-system consists of

1. a strict category C,

2. a “length” function ℓ : Ob(C)→ N,

3. a chosen object 1 ∈ Ob(C),

4. a function ft : Ob(C)→ Ob(C),

5. for any object Γ ∈ Ob(C) such that ℓ(Γ) > 0, a morphism pΓ : Γ→ ft(Γ),

6. for any Γ ∈ Ob(C) with ℓ(Γ) > 0 and any f : ∆ → ft(Γ), an object f∗Γ and a morphism
q(f,Γ) : f∗Γ→ Γ.
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satisfying the following axioms:

i) ℓ−1(0) = {1},

ii) for Γ with ℓ(Γ) > 0, we have ℓ(ft(Γ)) = ℓ(Γ)− 1,

iii) ft(1) = 1,

iv) 1 is a final object,

v) for Γ ∈ Ob(C) with ℓ(Γ) > 0 and f : ∆ → ft(Γ), one has ℓ(f∗Γ) > 0, ft(f∗Γ) = ∆, and the
square

f∗Γ Γ

∆ ft(Γ)

q(f,Γ)

pf∗(Γ) pΓ

f

(4)

commutes and is a pullback square,

vi) for Γ ∈ Ob(C) with ℓ(Γ) > 0 one has
(
idft(Γ)

)∗
Γ = Γ and q(idft(Γ),Γ) = idΓ, and

vii) for Γ ∈ Ob(C) with ℓ(Γ) > 0, g : ∆ → ft(Γ) and f : E → ∆, we have (g ◦ f)∗Γ = f∗g∗Γ and
q(g ◦ f,Γ) = q(g,Γ) ◦ q(f, g∗Γ).

Intuitively, an object Γ of the category underlying a C-system can be thought of as a context of length
ℓ(Γ). Types do not appear explicitly in the definition of C-system; however, intuitively, the types in
context Γ are all those contexts ∆ with ft(∆) = Γ (hence, in particular, ℓ(∆) = ℓ(Γ) + 1). Similarly,
terms are not explicitly given; a term in context ft(Γ) corresponds to a section to pΓΓ→ ft(Γ). This is
exactly how terms are defined in the definition of an E-system from a CE-system, see Construction 5.6.

The length function ℓ does not lift in general to a stratification on C. However, it does on a suitable
subcategory, see Corollary 3.9.

Definition 3.2. A morphism of C-systems from C to D is a functor F : C → D between the
underlying categories that strictly preserves the rest of the structure, that is:

i) F (1C) = 1D,

ii) ℓD ◦Ob(F ) = ℓC : Ob(C)→ N,

iii) Ob(F ) ◦ ftC = ftD ◦Ob(F ) : Ob(C)→ Ob(D),

iv) FpΓ = pFΓ, for every Γ ∈ Ob(C),

v) F (f∗Γ) = (Ff)∗(FΓ) and F (q(f,Γ)) = q(Ff, FΓ), for every Γ ∈ Ob(C) such that ℓC(Γ) > 0 and
f : ∆→ ft(Γ).

Example 3.3 (C-systems and Lavwere theories). Fiore and Voevodsky [FV20] construct an isomor-
phism of categories between the category of Lawvere theories and the category of ℓ-bijective C-systems,
that is, of C-systems whose length function is a bijection. Intuitively, such a C-system can be seen as
modelling an untyped (or single-sorted) language.

Example 3.4 (C-systems and contextual categories). C-systems are equivalent to Cartmell’s contex-
tual categories. In his Ph.D. dissertation, Cartmell [Car78, Section 2.4] constructs an equivalence be-
tween the category of contextual categories and homomorphisms between them and the category of Gen-
eralized Algebraic Theories (GATs) and (equivalence classes of) interpretations between them. Hence
C-systems are equivalent to GATs.
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Example 3.5 (C-system from a universe category). Any universe category gives rise to a C-system,
via a construction by Voevodsky [Voe15a, Construction 2.12]. A universe category is a category with a
chosen terminal object and a universe, that is, a morphism p : Ũ → U together with a choice of pullback
of p along any morphism X → U . Roughly, the C-system constructed from a universe category has,
as objects of length n, sequences of n morphisms f1, . . . , fn into U such that the domain of fi+1 is the
chosen pullback of p along fi. Such a sequence can be thought of as a sequence of (dependent) types
(A1, A2, . . . , An) such that A1, . . . Ai ⊢ Ai+1. Furthermore, any small C-system can be obtained via this
construction; given a C-system C, a universe can be constructed ([Voe15a, Construction 5.2]) on the
presheaf category Ĉ such that the C-system obtained from that universe is isomorphic to the C-system
C. For a brief overview of these constructions, see [KL21, Section 1.3].

Voevodsky’s simplicial model of univalent foundations [KL21] is built on top of a C-system obtained
from a universe in the category of simplicial sets.

Problem 3.6. To construct a functor C2RtTr : Csys→ RtTr.

Construction 3.7 (for Problem 3.6). Let C = (C, 1, ℓ, ft, p, . . . ) be a C-system. The objects of C can
be arranged into a rooted tree by defining

Tn := {Γ | ℓ(Γ) = n} and tn(Γ) := ft(Γ) ∈ Tn, for Γ ∈ Tn+1.

That is, the front square in the diagram of sets and functions

Tn+1 Ob(C)

Tn Ob(C)

1 N

1 N

tn

ℓ

ft

ℓ
n+1

pred

n

is a pullback for every n ∈ N, and the function tn is defined by its universal property as the right-hand
square commutes by 3.1.ii. The set T0 is a singleton by (i) in Definition 3.1.

A homomorphism of C-systems F : C → D restricts, for every n ∈ N, to a function Fn : Tn → Sn
between the fibres Tn and Sn of the length function of C and D, respectively, by 3.2.ii as in the front
part of the diagram below.

Tn+1 Ob(C)

Tn Ob(C)

Sn+1 Ob(D)

Sn Ob(D)

1 N

1 N

Fn+1

tn

Ob(F )

ft

Ob(F )

ℓ

sn

ℓ

ftFn

ℓ
n+1

pred

n

(5)
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The upper-right square commutes by Definition 3.2.iii , thus the upper-left square commutes as well
since the rest of the diagram commutes. Functoriality holds since each Fn is defined by a universal
property.

Lemma 3.8. Let C be a C-system with underlying strict category C and let p(C) denote the wide
subgraph of C on the canonical projections pΓ for Γ in C. Then p(C) is isomorphic to the graph
G ◦C2RtTr(C) naturally in C, where G : RtTr→ Grph is from Definition 2.13.

Proof. The vertices of G ◦ C2RtTr(C) are pairs (ℓ(Γ),Γ) and edges are of the form (ℓ(Γ),Γ) →
(ℓ(ft(Γ)), ft(Γ)) for ℓ(Γ) > 0. In particular, every vertex (n+ 1,Γ) has exactly one outgoing edge. The
bijection between vertices then extends to an isomorphism between p(C) and G ◦C2RtTr(C).

Every C-homomorphism F : C → D induces a morphism of graphs p(F ) : p(CC) → p(CD) by 3.2.iv.
Naturality then follows from 3.2ii.

Corollary 3.9. Let F be the free category on the graph p(C) on the canonical projections. Then the
terminal object 1 of C is terminal in F and the function ℓ extends to a stratification functor on F .

Proof. By Lemma 3.8 there is an iso F = Fp(C) ∼= F ◦G ◦C2RtTr(C). The claim thus follows from
Proposition 2.14.

3.2 The category of CE-systems

In this section, we define CE-systems and their morphisms.

Definition 3.10. A CE-system consists of two strict category structures F and C on the same set
of objects Ob(F) = Ob(C) and an identity-on-objects functor I : F → C between them, together with

1. a chosen object 1 which is terminal in F, and

2. for any f : ∆→ Γ in C and any A ∈ F/Γ, a functorial choice of a pullback square

∆.f∗A Γ.A

∆ Γ

π2(f,A)

I(f∗A) I(A)

f

such that f∗A ∈ F/∆. Explicitly, the functoriality requirement is that

(a) For any f : ∆→ Γ, one has

f∗(idΓ) = id∆ and π2 (f, idΓ) = f.

(b) For any A ∈ F/Γ, one has

(idΓ)∗A = A and π2 (idΓ, A) = idΓ.A

(c) For any f : ∆→ Γ, g : Ξ→ ∆ and A ∈ F/Γ, one has

(f ◦ g)
∗
A = g∗(f∗A) and π2 (f ◦ g,A) = π2 (f,A) ◦ π2 (g, f∗A)

(d) For any P ∈ F/Γ.A and f : ∆→ Γ, one has

f∗(A.P ) = f∗A ◦ (π2 (f,A))
∗
P and π2 (f,A.P ) = π2 (π2 (f,A) , P )
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A CE-system is rooted if I(1) = 1 is terminal in C.
For any f : ∆ → Γ we write f∗ for the induced functor F/Γ → F/∆ and refer to the arrows in

F as the families of the CE-system. We shall write arrows in F with a double head as in the above
diagram.

We may write IA : FA → CA for the functor underlying a CE-system A, whenever we need to make
the CE-system explicit.

We show in Section 3.3 that CE-systems generalize C-systems. To provide some intuition, we can
think of F as the category spanned by the projections pΓ : Γ → ft(Γ) of a C-system; in this case, the
functor I : F → C is faithful.

We now give two examples of CE-system.

Example 3.11 (CE-system on finite sets). Let F be the category whose objects are natural numbers,
and whose morphisms f : m → n are functions f : std(m) → std(n) from the standard finite set of
m elements to the standard finite set of n elements. Consider the identity-on-objects functor [−] :
(N,≥) → Fop given, on n + k ≥ n, by the opposite of the initial-segment inclusion, which we write
in+k
n : [n+ k]→ [n].

We equip it with the structure of a CE-system as follows. The chosen pullback of a family n+k ≥ n
and an arrow f : [m]→ [n] in F

op is

[m+ k] [n+ k]

[m] [n]

im+k
m

π2(f,n+k≥n)

in+k
n

f

where the morphism π2(f, n + k ≥ n) is the opposite of the arrow [f, 1k] : [n + k] → [m + k] in F

obtained from the universal property of the coproduct [n + k]. Functoriality follows immediately from
the definitions.

This CE-system is, of course, rooted — as [0] is terminal in Fop — and stratified in the sense of
Definition 3.15 — as initial-segment inclusions factor uniquely into individuals in+1

n . Note also that
the choice of pullback squares is forced by Remark 3.18.

Definition 3.12. Let A and B be two CE-systems. A CE-homomorphism F : A→ B consists of a
commutative square of functors

FA FB

CA CB

IA

FF

IB

FC

such that,

1. FF (1A) = 1B, and

2. for every A ∈ FA/Γ and f : ∆→ Γ, it is

FF (f∗A) = (FCf)
∗
(FFA) and FC(π2 (f,A)) = π2 (FCf, FFA) .

Remark 3.13. If F is a CE-homomorphism between rooted CE-systems A and B, then FC(1A) = 1B
and FC preserves terminal objects in the usual categorical sense.

Definition 3.14. We write CEsys for the category of CE-systems and CE-system homomorphisms
and rCEsys for its full subcategory on rooted CE-systems.
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For the comparison of CE-systems with C-systems, the notion of stratification of a CE-system is
needed:

Definition 3.15. A CE-system A is stratified if its category of families F is stratified in the sense
of Definition 2.1 and, for every f : ∆→ Γ in C, the functor

F/Γ F/∆
f∗

induced by the functorial choice of pullbacks is stratified with respect to the stratification induced on
slices in Lemma 2.11.

A CE-homomorphism between stratified CE-systems is stratified if its component on families is
a stratified functor.

Remark 3.16. It follows from Proposition 2.8 that CE-systems are stratified in at most one way.

Definition 3.17. We denote by CEsyss →֒ CEsys and rCEsyss →֒ rCEsys the respective subcate-
gories spanned by stratified (rooted) CE-systems and stratified CE-homomorphisms between them.

Remark 3.18. In a stratified CE-system, for every f : ∆→ Γ in C and A ∈ F/Γ it is

L(∆.f∗A) = L(∆) + L(Γ.A)− L(Γ).

Lemma 3.19. Let A and B be two stratified CE-system. A commuting square of functors

FA FB

CA CB

IA

FF

IB

FC

is a stratified CE-homomorphism A→ B if and only if

1. FF is a stratified functor, and

2. for every individual arrow A ∈ FA/Γ and every f : ∆→ Γ, it is

FF(f∗A) = (FCf)
∗
(FFA) and FC(π2 (f,A)) = π2 (FCf, FFA) .

Proof. One direction is trivial. The other one is proved by induction on the length n of an arrow
A ∈ F/Γ.

3.3 Characterising C-systems as stratified CE-systems

Recall from Corollary 3.9 that every C-system C has a stratified wide subcategory F of its underly-
ing category C. In this section, we show that the inclusion F → C has the structure of a stratified
CE-system (Construction 3.21). Moreover, we prove that this correspondence is functorial (Construc-
tion 3.24) and, in fact, an equivalence between the category of C-systems and the category of stratified
CE-systems (Theorem 3.30).

Problem 3.20. To construct a CE-system CE(C) from a C-system C = (C, 1, ℓ, ft, . . .).

Construction 3.21 (for Problem 3.20). Recall from Lemma 3.8 that p(C) denotes the wide subgraph
of C on the canonical projections pΓ for Γ in C and let F be the free category on p(C). In particular,
F has the same objects of C and the object 1 is terminal in F by Corollary 3.9. It follows that the
inclusion p(C) →֒ C extends to an identity-on-objects functor I : F → C that maps a path of length
n > 0 in p(C), i.e. a list of composable canonical projections

Γ ft(Γ) · · · ftn−1(Γ) ftn(Γ).
pΓ pft(Γ)

pft2(Γ) p
ftn−1(Γ)

(6)
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to their composite in C.
It remains to provide I with a suitable choice of pullback squares along an arbitrary arrow f : ∆→ Γ

in C. As an arrow p : Ξ → Γ in F is a path in p(C), we proceed by induction on the length n of the
path p, proving also conditions (2b) and (2c) from Definition 3.10.

If n = 0, the path p is the identity on Γ and we take f∗(idΓ) := id∆ and π2(f, idΓ) := f . This choice
is clearly functorial in f and it trivially gives rise to a pullback square. It also ensures condition (2a).

For n > 0, it is I(p) = pΞ ◦ I(p′) where the length of p′ is n− 1. By inductive hypothesis we have
f∗p′ ∈ F/∆ and a chosen pullback square of I(p′) along f , which is the lower square in the diagram
below. The upper square is the canonical pullback square (4) given by the C-system structure.

(π2(f, p′))∗Ξ Ξ

∆.f∗(p′) ft(Ξ)

∆ Γ

p(π2(f,p′))∗Ξ

q(π2(f,p′),Ξ)

pΞ

I(f∗p′)

π2(f,p′)

I(p′)

f

(7)

Thus we define π2(f, p) := q(π2(f, p′),Ξ) and f∗p to be the concatenation of f∗p′ with pp(π2(f,p′))∗Ξ

so that I(f∗p) = I(f∗p′) ◦ pp(π2(f,p′))∗Ξ
. Functoriality in f of this choice of pullback squares follows

from the fact that both the lower and upper pullback squares are functorial by inductive hypothesis
and by assumption, respectively. In more details: given g : Θ → ∆, the inductive hypothesis yields
(f ◦ g)∗p′ = g∗(f∗p′) and π2(f ◦ g, p′) = π2(f, p′) ◦ π2(g, f∗p′). It follows by 3.1.vii that

π2(f ◦ g, p′)∗Ξ = π2(g, f∗p′)∗(π2(f, p′)∗Ξ)

and, in turn, that (f ◦ g)∗p = g∗(f∗p). The other component also follows from 3.1.vii:

π2(f ◦ g, p) = q(π2(f ◦ g, p′),Ξ)

= q(π2(f, p′),Ξ) ◦ q(π2(g, f∗p′), π2(f, p′)∗Ξ)

= π2(f, p) ◦ π2(g, f∗p).

Finally, condition (2d) for a composite q ◦ p in F is proven by induction on the length of the path
p.

Lemma 3.22. Let C be a C-system and F the category of families of CE(C).

1. The individual arrows in F are of the form pΓ for some object Γ.

2. The CE-system CE(C) is stratified and L(Γ) = ℓ(Γ), for every object Γ.

3. The CE-system CE(C) is rooted.

Proof.

1. Immediate from the description of arrows in F in (6) and 3.1.ii.

2. By Corollary 3.9, the category F is stratified and L(Γ) = ℓ(Γ). By Lemma 2.10, it is enough
to show that the choice of pullback squares in Construction 3.21 preserves individuals. But this
follows immediately from the construction of pullbacks in (7) and (1) just shown.

3. The terminal object in F is terminal in C by assumption.
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Problem 3.23. To construct a functor CE : Csys→ rCEsyss into rooted stratified CE-systems and
stratified homomorphisms.

Construction 3.24 (for Problem 3.23). The action of CE on objects is defined in Construction 3.21.
Every morphism F : C→ D of C-systems restricts to the graphs of canonical projections p(F ) : p(C)→
p(D) by conditions (i,iii,iv) in Definition 3.2 and induces, in turn, a functor between free categories
FF : FC → FD whose action is determined by the action of F on individual arrows. The square

FC FD

CC CD

IC

FF

ID

F

commutes since it does so when precomposed by the unit p(C) → FC. The functor FF is strati-
fied by 3.2.ii. Lemma 3.19 then ensures that the pair CE(F ) := (FF , F ) lifts to a stratified CE-
homomorphism as soon as it preserves pullbacks of individual arrows. But this is precisely condi-
tion 3.2.v. Functoriality of CE follows since FF is defined by a universal property.

Problem 3.25. To construct a C-system C(A) from a stratified and rooted CE-system A.

Construction 3.26 (for Problem 3.25). Let I : F → C be the underlying functor of A. The underlying
category of C(A) is C and the length function ℓ is given by the action of the stratification functor L on
objects. Since A is rooted, the chosen terminal object 1 in F is terminal in C too. Conditions (iv) and (i)
are clearly met.

Given an object X with n = L(X) > 0, let X
xn−−→ Xn−1 → · · · → X1

x1−→ 1 be the factorisation of
X → 1 into n individuals in F . We define

ft(1) := 1, ft(X) := Xn−1 and pX := I(xn). (8)

Conditions (ii) and (iii) hold by construction.

Given also f : Y → ft(X), let Y
yn
−→ Yn−1 → · · · → Y1

y1
−→ 1 be the factorisation of Y → 1 into

individuals and consider the pullback square below.

Y.f∗xn X

Y ft(X)

I(f∗xn)

π2(f,xn)

I(xn)

f

(9)

It is L(Y.f∗(xn)) = L(Y ) + 1 by Remark 3.18, thus Y.f∗xn
f∗xn
−−−→ Y

yn
−→ Yn−1 → · · · → Y1

y1
−→ 1 is

the factorisation of Y.f∗xn → 1 into individuals. It follows that ft(Y.f∗xn) = Y and pf∗xn = I(f∗xn).
Condition (v) follows defining f∗X := Y.f∗(xn) and q(f,X) := π2(f, xn). Condition (vi) holds
by 3.10.2b since ft(X).xn = X , and (vii) by 3.10.2c as below:

(f ◦ g)∗X = Z.(f ◦ g)∗xn = Z.(g∗(f∗xn))

= g∗(f∗X)

q(f ◦ g,X) = π2(f ◦ g, xn) = π2(f, xn) ◦ π2(g, f∗xn)

= q(f,X) ◦ q(g, f∗X).

Lemma 3.27. Let F : A→ B be a stratified homomorphism of rooted stratified CE-systems. Then the
underlying functor F : CA → CB is a homomorphism of C-systems C(F ) : C(A)→ C(B).

Proof. We verify the conditions in Definition 3.2. (i) The functor F maps the chosen terminal object
of A to the one of B by assumption. (ii) Since F is stratified, its action on objects commutes with
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the length functions. (iii–iv) The action on objects also preserves individual arrows by Lemma 2.10,
thus it commutes with the father functions and preserves canonical projections. (v) F maps chosen
pullback squares in A to chosen ones in B by 3.12.2. In particular, it preserves the choice of pullbacks
along individual arrows.

Definition 3.28. Let C : rCEsyss → Csys be the functor given by Construction 3.26 and Lemma 3.27.

Lemma 3.29. For every C-system C, the identity functor on the underlying strict category of C is an
isomorphism C(CE(C)) ∼= C of C-systems, naturally in C.

Proof. Let C be the underlying strict category of C. To see that the identity functor idC is a C-
homomorphism note first that the category C, its terminal object and the length function are the same
in C(CE(C)) and C. Since individual arrows in CE(C) coincide with the canonical projections pΓ by
Lemma 3.22, factorisations in CE(C) into individual arrows are of the form in (6). It follows that the
function ft and the canonical projections as defined in (8) are equal to the ones from C. Since the
choice of pullback squares in CE(C) is defined inductively by the choice along individual arrows in (7),
the choice of pullbacks along canonical projections in (9) coincides with the one in C.

Naturality follows from the fact that C(CE(F )) = F for every C-homomorphism F .

Theorem 3.30. The functor CE : Csys→ rCEsyss from Construction 3.24 is an equivalence.

Proof. By Lemma 3.29, it is enough to find, for every stratified rooted CE-system A, an isomorphism
CE(C(A)) ∼= A natural in A. Let I : F → C be the underlying functor of A and let Fi := p(C(A))
be the subgraph of F on the individual arrows. The CE-system CE(C(A)) consists, in particular, of

a functor Î : F̂ → C, where F̂ is the free category on Fi, and Î maps a list of composable individual
arrows to the composite of their images in C under I, by (8), (6) and Lemma 3.22.2.

The inclusion Fi →֒ F induces an identity-on-objects functor comp : F̂ → F . Conversely, the
factorisation into individual arrows (3) in A yields an identity-on-objects functor fact : F → F̂ , which
is a (strict) inverse of comp. Since I is a functor, the squares

F̂ F

C C

Î

comp

I

idC

F F̂

C C

I

fact

Î

idC

(10)

commute. Since both functors comp and fact are identities on objects and on individual arrows, the
squares above are stratified CE-homomorphisms CE(C(A)) → A and A → CE(C(A)), respectively,
by Lemma 3.19. Therefore CE(C(A)) ∼= A.

To see that this isomorphism is natural in A, note that (comp, idC) is natural in A since comp is
equivalently defined as the composite of the counit of the free-forgetful adjunction at F with the image
under the left adjoint of the graph inclusion Fi →֒ F .

4 The category of B-systems

In this section, we study Voevodsky’s B-systems.
In Section 4.1 we review the definition of B-systems and their homomorphisms. In Section 4.2 we

introduce the notion of E-system and their homomorphisms. Intuitively, E-systems model type theory
with strict Σ-types, see Section 4.2.5. Finally, in Section 4.3 we construct an equivalence between the
category of B-systems and the subcategory of “stratified” E-systems.

In order to simplify the construction of such equivalence, we structure the definitions in the next
sections in three step. In the case of B-systems, for example, we first introduce some piece of struc-
ture on sets consisting of functions, which we refer to as pre-B-systems, see Definition 4.7. Then
we define morphisms between these structures, also called pre-homomorphisms, and finally we define
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B-systems as those pre-B-systems whose structure functions are themselves pre-homomorphisms. Ho-
momorphisms are then just pre-homomorphisms between B-systems. We shall follow the same pattern
when introducing each of the structures that give rise to an E-system, in Sections 4.2.1 to 4.2.3, and
when defining E-systems in Section 4.2.4.

4.1 The category of B-systems

In this section, we review the definition of Voevodsky’s B-systems [Voe14]. We introduce a few auxiliary
intermediate definitions which we will use in later constructions.

Definition 4.1. A B-frame B is a diagram of sets of the following form:

B̃1 B̃2

{∗} ∼= B0 B1 B2 · · ·

∂ ∂

ft ft ft

In other words, a B-frame consists of:

1. for all n ∈ N two sets Bn and B̃n+1.

2. for all n ∈ N functions of the form

ftn : Bn+1 → Bn

∂n : B̃n+1 → Bn+1.

3. B0 is a singleton.

For m,n ∈ N, we denote the composition ftn ◦ · · · ◦ ftn+m : Bn+m+1 → Bn by ftmn .
A homomorphism H : B → A of B-frames is a natural transformation of B-frames, i.e., it

consists of maps Hn : Bn → An and H̃n+1 : B̃n+1 → Ãn+1 such that

ft(H(X)) = H(ft(X))

∂(H̃(x)) = H(∂(x))

for any X ∈ Bn and x ∈ B̃n+1. The category of B-frames is denoted by Bfr.

To provide some intuition for B-frames, we look back at the introduction, where we constructed,
implicitly, a B-frame from a module over a monad.

Example 4.2. Recall from Section 1.2.2 the two sets B(R,LM) (see Eq. (1)) and B̃(R,LM) (see
Eq. (2)). From these sets, we obtain a B-frame with the following sets of families (note the shift in the
indexing of B̃),

Bn := B(R,LM)n :=

n−1∏

i=0

LM([i])

B̃n+1 := B̃(R,LM)n :=

n−1∏

i=0

LM([i])×RR([n])× LM([n])

and the obvious maps for ft and ∂. We call this B-frame the B-frame generated by a module LM over
a monad R. We write elements of Bn as A0, . . . , An−1 ⊢ An, and elements of B̃n+1 as A0, . . . , An ⊢
t : An+1, where t ∈ RR([n]).
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More generally, the elements of Bn+1 of a B-frame can be thought of as a pair of a context of length
n, and a type in that context. Hence, the elements of B1 are the types in the empty context. Just like
with C-systems, there is no explicit structure to denote types in a given context. An element t ∈ B̃n+1

is then a term, and the context and type t lives in is given by ∂n+1(t).

Example 4.3. Recall from Example 3.11 that std(n) denotes the set {0, . . . , n−1}. We shall consider
the B-frame defined, for each n ∈ N, by Bn := {n} and B̃n+1 := std(n).

Example 4.4. B-frames are the same as Garner’s “type-and-term structures” [Gar15, Def. 8]. Gar-
ner [Gar15, Prop. 13] constructs an equivalence between the category of type-and-term structures and
the category of ∅-GATs, that is, of Generalized Algebraic Theories [Car86] without weakening, projec-
tion, and substitution rules, and interpretations between them.

We now define more structure on B-frames which represents operations on syntax.
The first operation could be called “slicing”; given a B-frame B and a “context” X ∈ Bn in that

B-frame, we construct the slice of B over X :

Definition 4.5. For every B-frame B and any X ∈ Bn, there is a B-frame B/X given by

(B/X)m := {Y ∈ Bn+m | ft
m(Y ) = X}

(B̃/X)m+1 := {y ∈ B̃n+m+1 | ft
m+1(∂(y)) = X}.

Also, for any homomorphism H : B → A of B-frames and any X ∈ Bn, there is a homomorphism
H/X : B/X → A/H(X) defined in the obvious way.

Note that for X ∈ Bn and Y ∈ Bn+m such that ftm(Y ) = X , we have an isomorphism (B/X)/Y ∼=
B/Y of B-frames, constructed in the obvious way, which is natural in the sense that for any homomor-
phism H : B→ A of B-frames, the square

(B/X)/Y B/Y

(A/H(X))/H(Y ) A/H(Y )

∼=

(H/X)/Y H/Y

∼=

commutes.

Definition 4.6. Every B-frame B has an underlying rooted tree given by the sets Bn and the functions
ftn : Bn+1 → Bn, for n ∈ N. Similarly, a homomorphism of B-frames is in particular a homomorphism
of rooted trees. Thus we define

Bfr RtTr
R

to be the forgetful functor from B-frames to rooted trees.

We will now consider different type-theoretic structures on B-frames, specifically substitution, weak-
ening, and projection. Garner considers similar structures in terms of algebras of suitable monads on
the category of B-frames a. k. a. type-and-term structures. We have not established a precise relation-
ship (e.g., an equivalence) between our structures and the ones obtained by Garner as the algebras for
“his” monads.

Definition 4.7. 1. A substitution structure on a B-frame B is a collection of homomorphisms

Sx : B/∂(x)→ B/ft(∂(x))

for all x ∈ B̃n+1 and all n ∈ N.
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2. A weakening structure on a B-frame B is a collection of homomorphisms

WX : B/ft(X)→ B/X

for all X ∈ Bn+1 and all n ∈ N.

3. The structure of generic elements on a B-frame B equipped with weakening structure W is
a collection of functions

δn : Bn+1 → B̃n+2

such that ∂(δn(X)) = WX(X) for any X ∈ Bn+1.
A pre-B-system B is a B-frame equipped with weakening structure, substitution structure, and

generic elements.

Example 4.8. Consider the B-frame generated by a module LM over a monad R of Example 4.2.
Given an element x ∈ B̃n+1, and hence in particular, a term t ∈ R([n]), we obtain a substitution map
Sx : B/∂(x) → B/ft(∂(x)) that substitutes the term t for the “last” free variable in any element of B

lying “over” ∂(x). For instance, taking x to be A0 ⊢ t1 : A1, the substitution Sx maps the element
A0, A1 ⊢ s : A2 to A0 ⊢ s[t1] : A2[t1].

For weakening, consider X ∈ B1+1 to be a context A0 ⊢ A1. The weakening WX maps any context
of the form A0, A

′
1, . . . , A

′
n ⊢ A

′
n+1 to the weakened context A0, A1, A

′
1, . . . , A

′
n ⊢ A

′
n+1, and similar for

elements in B̃.
For the generic element, consider, for instance, a context X = A0 ⊢ A1 in B2. This context induces

the generic element A0, A1 ⊢ var(1) : A1, where η(1) ∈ RR([2]) is the “de Bruijn” variable 1 bound by
A1 in the context, and considered as a term by being wrapped in an application of the monadic unit η
of the monad RR (the inclusion of variables into terms). We have

∂(A0, A1 ⊢ var(1) : A1) = A0, A1 ⊢ A1 = WA0⊢A1(A0 ⊢ A1).

Example 4.9. Recall the B-frame of finite sets defined in Example 4.3. Here we construct structures
of substitution, weakening and generic elements on it.

Note first that its slice on the (unique) element n in Bn is such that

(B̃/n)m+1 = B̃n+m+1 = std(n+m).

It follows that a substitution structure must consist of a family of functions Sx,j : std(n+1+j)→ std(n+
j), for n, j ∈ N and x ∈ B̃n+1. We define Sx,j := sx+idj, where sx is the function [idn, x] : std(n+1)→
std(n) given by the universal property of the coproduct std(n+1). In other words, Sx,j lists all elements
in std(n+j) repeating the element x ∈ std(n) in position n+1. In particular, it fixes the first n elements,
and decreases the last j by 1.

Similarly, a weakening structure must consist of a family of functions Wn,j : std(n + j) → std(n +
1 + j). We define Wn,j to be the function in + idj, where in : std(n)→ std(n+ 1) is the initial-segment
inclusion. In other words, it lists all elements in std(n+ 1 + j) except for n. Equivalently, it fixes the
first n elements, and increases the remaining j by 1.

Finally, the structure of generic elements is given by an element δn ∈ B̃n+2 = std(n+ 1) for every
n ∈ N, which we define to be its maximum, that is, δn := n.

Taking advantage of the fact that finite sets are finite coproducts, and slightly abusing notation, we
find it convenient to write

n
n

1

j

j

+

+x

+

n
n

1

j

j

+

+

+

for the functions Sx,j : std(n+ 1 + j)→ std(n+ j) and Wn,j : std(n+ j)→ std(n+ 1 + j), respectively.
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Example 4.10 (B-frames with structure and D-GATs). Garner [Gar15] constructs an equivalence
between the category of GATs and a category of algebras for a monad on B-frames. We expect B-
systems to be equivalent to Garner’s algebras.

Definition 4.11.

1. Consider two B-frames B and A, both equipped with substitution structure. A homomorphism
H : B→ A of B-frames is said to preserve the substitution structure if the diagram

B/∂(x) A/∂(H(X))

B/ft(∂(x)) A/ft(∂(H(X)))

H/∂(x)

Sx SH̃(x)

H/ft(∂(x))

of B-frame homomorphisms commutes for every x ∈ B̃n+1 and every n ∈ N.

2. Consider two B-frames B and A, both equipped with weakening structure. A homomorphism
H : B→ A of B-frames is said to preserve the weakening structure if the diagram

B/X A/H(X)

B/ft(X) A/ft(H(X))

H/X

WX

H/ft(X)

WH(X)

of B-frame homomorphisms commutes for all X ∈ Bn and all n ∈ N.

3. Consider two B-frames B and A, both equipped with weakening structure, and both equipped
with generic elements. A B-frame homomorphism H : B→ A is said to preserve the generic

elements if
H̃(δ(X)) = δ(H(X))

for any X ∈ Bn+1 and any n ∈ N.

A pre-B-homomorphism H : B→ A is a homomorphism of pre-B-systems preserving the weakening
structure, substitution structure and the generic elements.

Definition 4.12. A B-system is a pre-B-system for which the following conditions hold:

1. Every Sx is a pre-B-homomorphism.

2. Every WX is a pre-B-homomorphism.

3. For every x ∈ B̃n+1 one has Sx ◦W∂(x) = idB/ft(∂(x)).

4. For every x ∈ B̃n+1 one has Sx(δ(∂(x))) = x.

5. For every X ∈ Bn+1 one has Sδ(X) ◦WX/X = idB/X .

B-homomorphisms are pre-B-homomorphisms between B-systems. We denote the category of B-
systems by Bsys.

The idea is that first substitution and weakening preserve all the structure of a (pre-)B-system.
The third axiom asserts that substitution in weakened type families is constant. Furthermore, the
generic elements should behave like internal identity morphisms. Axioms 4 and 5 are akin to two of
the well-known monadic laws of substitution.

Lemma 4.13. The forgetful functor Bsys→ Bfr is faithful.
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Proof. This functor faithful because its action on morphisms only forgets a property.

Example 4.14. The structures given in Example 4.9 make the B-frame defined in Example 4.3 into
a B-system as follows.

Consider first homomorphism of B-frames Sy : B/(k + 1) → B/k, for k ∈ N and y ∈ std(k). The
homomorphism Sy preserves the substitution structure if, for every n ∈ N, x ∈ std(k + 1 + n) and
j ∈ N, the square

std(k + 1 + n+ 1 + j) std(k + n+ 1 + j)

std(k + 1 + n+ j) std(k + n+ j)

Sx,j

Sy,n+1+j

SSy,n(x),j

Sy,n+j

commutes. This can be readily verified in the three cases x < k, x = k or k < x < n + 1 + k. For
example, in the last case Sy,n(x) = x− 1 and

k

k

1 k

1
n n

n

1 j

j

j

+

+

+ +y

+
+ +

+x

+

=

k

1 k

n n

1 j

j

+

y
+ +

+ +
x−1

+

=

k

k

1 k
n

n n

1

1 j

j

j

+

+y

+ +
+

+ +Sy,n(x)

+

+

The homomorphism Sy preserves the weakening structure if for every n, j ∈ N, the square

std(k + 1 + n+ 1 + j) std(k + n+ 1 + j)

std(k + 1 + n+ j) std(k + n+ j)

Sy,n+1+j

Wk+1+n,j

Sy,n+j

Wk+n,j

commutes. This is indeed the case:

k

k k

1

1 n
n

n 1

1

j j

j

y

=

k k

1 n

n 1

j j

y

=

k k

k

1 n
n

n 1

j

j j

y

Finally, for every n ∈ N, the function Sy,n+1 : std(k + 1 + n + 1) → std(k + n + 1) preserves the
maximum. It follows that Sy preserves the generic elements.

We have shown that Sy is a pre-B-homomorphism. We leave the verification that Wn : B/n →
B/(n+ 1) is a pre-B-homomorphism to the reader and consider instead the remaining three conditions
of Definition 4.12.
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Condition 3 amounts to the commutativity of the left-hand diagram below, for every n, j ∈ N and
x ∈ std(n). Its commutativity is shown in the right-hand diagram.

std(n+ j) std(n+ 1 + j)

std(n+ j)

id

Wn,j

Sx,j

n
n n

1

j j

j

+

+ +x

+

Condition 4 holds since Sx,0(δn) = Sx,0(n) = x, for every n ∈ N and x ∈ std(n).
Condition 5 amounts to the commutativity of the left-hand diagram below, for every n, j ∈ N. Its

commutativity is shown in the right-hand diagram.

std(n+ 1 + j) std(n+ 2 + j)

std(n+ 1 + j)

idn+1+j

Wn,1+j

Sδn,j

n
n n

1

1 1

1

j j

j

+

+ +

+

+ +

+

Example 4.15 (B-systems and Generalized Algebraic Theories). Continuing Example 4.10, any Gen-
eralized Algebraic Theory (in Garner’s taxonomy also known as {w, p, s}-GATs) gives rise to a B-
system. The axioms of Definition 4.12 follow mostly from the definition of substitution and the con-
gruence rules that substitution satisfies.

Composing Cartmell’s equivalence of categories between contextual categories and GATs with our
equivalence between B-systems and C-systems constructed in Section 5.4, we later can establish a more
precise relationship between B-systems and GATs, in the form of an equivalence of categories.

4.2 The category of E-systems

In Section 4.3 we will show how for any B-frame we get a category F with objects (n,X) where X ∈ Bn.
As we saw in Definition 4.6, the family of sets Bn induces a tree, with objects (n,X), and F is the free
category generated by this tree. The sets B̃n+1 then induce a family of sets of terms indexed by the
morphisms of F . In particular for a morphism (n+ 1, X)→ (n, ft(X)) we get a set of terms ∂−1(X).

In this section we will define the structure of a type theory directly on F of the kind that one gets
when turning a B-system into a category. Such systems are called E-systems, and in Section 4.3 we
will show that the category of B-systems is equivalent to a subcategory of E-systems. Thus, E-systems
can be seen as a generalisation of B-systems.

Just like B-systems (and different from C-systems), E-systems have an explicit structure for “terms”.
Indeed, the first step towards the definition of E-system is that of a “term structure”:

Definition 4.16. A category with term structure is a category F equipped with a family of sets
(T (A))A∈Mor(F) indexed by the morphisms Mor(F) of F . Given two categories F and D with term
structure, a functor with term structure from F to D is a functor F : F → D equipped with a
family of functions T (A)→ T (F (A)) for every morphism A in F .

Any B-frame, and hence any B-system, generates a category with term structure; details will be
given in Construction 4.62.

The identity functor with term structure idF : F → F is the identity functor on F equipped with
the identity functions T (A) → T (A) indexed by the morphisms A in F . Similarly, the composition
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G ◦F of two functors F and G with term structure is defined to be the composition of the underlying
functors, equipped with the composites

T (A) T (F (A)) T (G(F (A))).

Definition 4.17. Let F be a strict category with term structure and Γ an object of F . The slice

term structure on the strict slice category F/Γ is given by TF/Γ(A) = TF(A).

Remark 4.18. Every functor F : F → F ′ with term structure gives rise to a functor with term
structure F/X : F/X → F ′/F (X).

In order to illustrate the additional structure that we shall consider on a category with term
structure, we introduce the following example.

Example 4.19. Consider the the poset (N,≥). We write (n, k) : n+k ≥ n for arrows in (N,≥). Let N
be the category with term structure which consists of the poset (N,≥) and the term structure given by
T (n, k) := Set([k], [n]), i.e. the set of functions from the standard set with k elements to the standard
set with n elements.

4.2.1 Substitution systems

Given a (strict) category F , an object Γ ∈ F and an object A ∈ F/Γ, we will write Γ.A for the domain
of A. In other words, A is a morphism Γ.A→ Γ.

Definition 4.20. A pre-substitution structure on a strict category with term structure F consists
of a functor with term structure Sx : F/Γ.A → F/Γ for every x ∈ T (A) and A ∈ F/Γ, such that
Sx(idΓ.A) = idΓ.

A pre-substitution system is a strict category with term structure together with a pre-substitution
structure.

Definition 4.21. A pre-substitution homomorphism F : F → D is a functor with term structure
for which the diagram

F/Γ.A D/F (Γ.A)

F/Γ D/F (Γ)

F/Γ.A

Sx SF (x)

F/Γ

commutes for every x ∈ T (A) and A ∈ F/Γ.

Definition 4.22. LetF be a pre-substitution system and Γ an object ofF . The slice pre-substitution

structure on the strict slice category with term structure F/Γ from Definition 4.17 is given by
S(F/Γ)x = S(F)x, for every A ∈ F/Γ, P ∈ F/Γ.A and x ∈ TF(P ).

Definition 4.23. A substitution system is a pre-substitution system for which each Sx is a pre-
substitution homomorphism. A substitution homomorphism is a pre-substitution homomorphism
between substitution systems.

Corollary 4.24. For any object Γ of a substitution system, the strict slice category F/Γ is a substi-
tution system.

Remark 4.25. The condition that every Sx is a substitution homomorphism, asserts that the diagram

F/Γ.A.P .Q F/Γ.Sx(P ).Sx(Q)

F/Γ.A.P F/Γ.Sx(P )

Sx/P.Q

Sy SSx(y)

Sx/P

commutes for every y ∈ T (Q).

27



Example 4.26. We can equip the category with term structure N from Example 4.19 with a substi-
tution structure as follows. Consider the functor −k : N/(n + k) → N/n that maps (n + k + j, l) to
(n+ j, l). It preserves terminal objects since an arrow (m, i) is an identity if and only if i = 0. Given
(n, k) : n+k ≥ n and a function f : [k]→ [n], define Sf : N/(n+k)→ N/n as the functor −k together
with functions T (n+ k + j, l)→ T (n+ j, l) defined by postcomposition

[l] [l]

[n+ k + j]

[n+ k + j] [n+ j]

h Sf (h)

h

[idn,f ]+idj

where [idn, f ] is the function given by the universal property of the coproduct [n] ← [n + k] → [k] in
Set, and similarly for [idn, f ] + idj.

The fact that Sf is a pre-substitution homomorphism follows from the fact that postcomposition
distributes on [−,−] as shown below: given g : [l]→ [n+ k + j], then

Sf/(n+ k, j) ◦ Sg = SSf (g) ◦ Sf/(n+ k, j + l)

since

([idn, f ] + idj) [idn+k+j , g] = [[idn, f ] + idj , Sf (g)]

= [idn+j , Sf (g)] ([idn, f ] + idj+l) .

Example 4.27. Consider a group G. A term structure on G consists of a set T (g) for every element
g of G.

A pre-substitution structure on G consists of a functor with term structure Sx : G/• → G/• (where
• denotes the only object in G viewed as a category) for every g ∈ G and every x ∈ T (g) such that
Sx(id•) = id•. One can show that such functors Sx : G/• → G/• correspond to functions G→ G which
preserve the identity, so a pre-substitution structure amounts to functions Sx : G→ G for every g ∈ G,
x ∈ T (g) preserving the identity together with functions Sx : T (h) → T (Sx(h)) for every g, h ∈ G,
x ∈ T (g).

A substitution structure T on G is a pre-substitution structure S as described above such that the
following diagrams commute for all g, h, k ∈ G, x ∈ T (g), and y ∈ T (h).

G G

G G

Sx

Sy SSx(y)

Sx

T (k) T (Sxk)

T (Syk) T (SxSyk)

Sx

Sy SSx(y)

Sx

Now for a particular example, suppose that each T (g) is Aut(G), that each Sx : G → G is just the
automorphism x, and that each Sx : T (h)→ T (Sxh) takes y ∈ T (h) to xyx−1. Then we find indeed that
the first diagram commutes since (xyx−1)x = xy for all x ∈ Sx = Aut(G) and all y ∈ Sy = Aut(G).
The second diagram commutes since (xyx−1)xzx−1(xyx−1)−1 = xyzy−1x−1 for all x ∈ T (g) = Aut(G),
y ∈ T (h) = Aut(G), and z ∈ T (k) = Aut(G).

4.2.2 Weakening systems

Definition 4.28. Consider a category F with term structure T . A pre-weakening structure on F
is a family of functors with term structure WA : F/Γ→ F/Γ.A indexed by the morphisms A : Γ.A→ Γ
in F such that

1. WidΓ
= idF/Γ for every object Γ ∈ F .
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2. WA◦P = WP ◦WA for every P ∈ F/Γ.A and A ∈ F/Γ.

3. WA strictly preserves the final object, i.e., WA(idΓ) = idΓ.A.

A pre-weakening system is a strict category with term structure equipped with a pre-weakening
structure.

Definition 4.29. A pre-weakening homomorphism F : F → D between pre-weakening systems
is a functor F : F → D with term structure such that the square

F/Γ.A D/F (Γ.A)

F/Γ D/F (Γ)

F/Γ.A

WA

F/Γ

WF (A)

of functors with term structure commutes for any A ∈ F/Γ.

Definition 4.30. Let F be a pre-weakening system and Γ an object of F . The slice pre-weakening

system on the strict slice category with term structure from Definition 4.17F/Γ is given byW (F/Γ)P =
W (F)P for every P ∈ F/Γ.A and A ∈ F/Γ.

Definition 4.31. A weakening system is a pre-weakening system F such that WA is a pre-weakening
homomorphism for every morphism A in F . A weakening homomorphism is a pre-weakening
homomorphism between weakening systems.

Remark 4.32. The condition that every WA is a pre-weakening homomorphism implies that the
square

F/Γ.B.Q F/Γ.A.WA(B.Q)

F/Γ.B F/Γ.A.WA(B)

WA/B.Q

WQ

WA/B

WWA(Q)

commutes for each A,B ∈ F/Γ and Q ∈ F/Γ.B. On objects, this property asserts that for any
k ∈ F/E, the dotted arrows in the diagram

• • •

• • • •

• Γ.B

Γ.A Γ

(WA/B.Q)(WQ(R)) W(WA/B)(Q)((WA/B)(R))
WQ(R)

(WA/B)(Q) (WA/B)(R) Q R

WA(B) B

A

are equal.
A useful special case of this property is where B = idΓ. Thus, if W is a weakening system, then

the diagram

F/Γ.C F/Γ.A.WA(C)

F/Γ F/Γ.A

WA/C

WC

WA

WWA(C)

commutes for every A,C ∈ F/Γ. In particular, we see that WA(WC(D)) = WWA(C)(WA(D)) for any
D ∈ F/Γ, i.e. that weakening is a self-distributive operation.
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Corollary 4.33. For any object Γ of a weakening system F , the strict slice category F/Γ is a weakening
system.

Example 4.34. Consider the term category N from Example 4.19. We can equip N with a weakening
structure as follows. Consider the functor +k : N/n→ N/(n+k) that maps (n+j, l) to (n+k+j, l). It
preserves terminal objects as in Example 4.26. Given (n, k) : n+k ≥ n, define Wn,k : N/n→ N/(n+k)
as the functor +k together with functions T (n+ j, l)→ T (n+ k + j, l) defined by postcomposition

[l] [l]

[n+ j]

[n+ j] [n+ k + j]

h Wn,k(h)

h

in+k
n +idj

where in+k
n : [n] → [n + k] is the initial-segment inclusion and in+k

n + idj is the function given by the
universal property of the coproduct [n]← [n+ j]→ [j] in Set.

The fact that Wn,k is a pre-weakening homomorphism follows from the fact that initial-segment
inclusions factor uniquely into inclusions whose images have codimension 1: given (n + j, l) in N/n,
then

Wn,k/(n, j + l) ◦Wn+j,l = WWn,k(n+j,l) ◦Wn,k/(n, j)

since
(in+k
n + idj+l)i

n+j+l
n+j = in+k+j+l

n+k+j (in+k
n + idj).

Example 4.35. Consider the situation of Example 4.27 above where the underlying category is a group
G with term structure S.

A pre-weakening structure on G is a family of functions Wg : G→ G for each g ∈ G which preserves
the identity in each coordinate (i.e. We(g) = Wg(e) = g for any g ∈ G) and where Whg = Wg ◦Wh

together with term structure Wg : T (h)→ T (Wg(h)) for any g, h ∈ G.
If each Wg : G → G is a group homomorphism, this structure is a weakening system when the

following diagrams commute for every g, h, k ∈ G.

G G

G G

Wh

Wg

Wh

WWh(g)

T (Wgk) T (Wghk)

T (k) T (Whk)

Wh

Wg

Wh

WWh(g)

Now consider the more particular example discussed in Example 4.27, where G is still an arbitrary
group, but T (g) = Aut(G) for all g ∈ G. We can let each Wg : G → G be ϕg, the conjugation
automorphism sending h to ghg−1, and we can let each Wg : T (k)→ T (k) be ‘conjugation by conjuga-
tion’ taking each automorphism x ∈ T (k) to ϕgxϕ

−1
g . Since ϕhϕg = ϕϕh(g)ϕh , the left-hand diagram

above commutes, and using that equation we find that ϕhϕg(−)ϕ−1
g ϕ−1

h = ϕϕh(g)ϕh(−)ϕ−1
ϕh(g)ϕ

−1
h so

the right-hand diagram commutes.

4.2.3 Projection systems

Definition 4.36. A pre-projection system is a pre-weakening system F equipped with an element
idtmA ∈ T (WA(A)) for every A ∈ F/Γ and Γ ∈ F .

Definition 4.37. A pre-projection homomorphism F : F → D is a pre-weakening homomorphism
for which

F (idtmA) = idtmF (A)

for every A ∈ F/Γ and Γ ∈ F .
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Definition 4.38. Let F be a pre-projection system and Γ an object of F . The slice pre-projection

structure on F/Γ is given by the slice pre-weakening structure in Definition 4.30 together with
idtmΓ

P := idtmP , for every P ∈ F/Γ.A and A ∈ F/Γ.

Definition 4.39. A projection system is a pre-projection system for which every WA is a pre-
projection homomorphism. A projection homomorphism is a pre-projection homomorphism be-
tween projection systems.

Corollary 4.40. For any object Γ of a projection system F , the strict slice category F/Γ is a projection
system.

Example 4.41. Consider the weakening system on N from Example 4.34. We can equip it with
a projection structure defining, for every (n, k) in (N,≥), the element idtmn,k ∈ T (Wn,k(n, k)) =
Set([k], [n+ k]) to be the final-segment inclusion

[k] [n+ k]
in+k
k

The fact that each Wn,j : N/n→ N/(n+ j) is a projection homomorphism is readily verified:

Wn,j(idtmn+m,k) = (in+j
n + idm+k)in+m+k

k

= in+m+j+k
k

= idtmWn,j(n+m,k).

Example 4.42. Consider the particular example discussed in Example 4.35 where the underlying
category is an arbitrary group G, each T (g) is the set of automorphisms of G, and Wg is conjugation
by G both on elements of G and terms (automorphisms of G).

A pre-projection system consists of an element idtmg ∈ Aut(G) for every g ∈ G. We will let idtmg

be the identity automorphism on G.
For a projection system on a group G, we need Wg(idtmh) = idtmWg(h) for every g, h ∈ G. In our

particular example, this means g1Gg
−1 = 1G, which holds.

4.2.4 The definition of E-systems

We can now give the definition of E-systems.

Definition 4.43. A pre-E-system E is a strict category F with term structure equipped with a
chosen terminal object [] in F , the structure of a pre-substitution system S, the structure of a pre-
weakening system W , and the structure of a pre-projection system idtm.

Definition 4.44. A pre-E-homomorphism from E to D is a functor H : FE → FD between the
underlying categories with term structure such that F ([]E) = []D, which is a pre-substitution homo-
morphism, a pre-weakening homomorphism, and a pre-projection homomorphism.

Definition 4.45. An E-system is a pre-E-system E such that

1. each Sx is a pre-E-homomorphism,

2. each WA is a pre-E-homomorphism,

3. Sx ◦WA = idE/Γ for any x ∈ T (A) and A ∈ F/Γ,

4. Sx(idtmA) = x for any x ∈ T (A) and A ∈ F/Γ, and

5. SidtmA
◦WA/A = idE/Γ.A for any A ∈ F/Γ.

An E-homomorphism H : E→ D is a pre-E-homomorphism from an E-system E to an E-system D.
We write Esys for the category of E-systems and E-homomorphisms.
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Remark 4.46. The condition that each WA is a substitution homomorphism asserts that the diagram

F/Γ.B.Q F/Γ.A.WA(B).WA(Q)

F/Γ.B F/Γ.A.WA(B)

WA/B.Q

Sy SWA(y)

WA/B

of functors with term structure commutes for every Q ∈ F/Γ.B, B ∈ F/Γ and each y ∈ T (Q).
Likewise, the condition that each Sx is a weakening homomorphism asserts that the diagram

F/Γ.A.P F/Γ.Sx(P )

F/Γ.A.P .Q F/Γ.Sx(P ).Sx(Q)

Sx/P

WQ WSx(Q)

Sx/P.Q

of functors with term structure commutes for every Q ∈ F/Γ.A.P .

Corollary 4.47. For any object Γ of a E-system F , the strict slice category F/Γ is an E-system.

Example 4.48. We can finally show that the category with term structure N from Example 4.19
can be equipped with the structure of an E-system. It can be turned into a pre-E-system because of
Examples 4.26, 4.34 and 4.41. Conditions 1 and 2 of Definition 4.45 are left to the reader. The other
ones are verified as follows:

3. Given f : [k]→ [n], it is Sf ◦Wn,k = idN/n since [idn, f ]in+k
n = idn.

4. Given f : [k]→ [n], it is Sf (idtmn,k) = [idn, f ]in,kk = f .

5. Given (n, k) in N , it is Sidtmn,k
◦Wn,k/(n, k) = idN/(n+k) since [idn+k, i

n+k
k ](in+k

n +idk) = idn+k.

Example 4.49. Consider the situation in Example 4.42 where our underlying category is an arbitrary
group G, the terms of each g ∈ G are Aut, substitution Sx : G→ G is given by the automorphism x itself
and substitution Sx : T (h) → T (Sxh), weakening Wg : G → G, and weakening Wg : T (h) → T (Wgh)
are given by conjugation.

Understood as a category, G does not have a terminal object (unless it is trivial), but we can
still understand the conditions of Definition 4.45. The condition 2 in that definition means that the
following diagrams must commute for g, h, k ∈ G and x ∈ T (h)

G G

G G

Wg

Sx SWg(x)

Wg

T (k) T (Wgk)

T (Sxk) T (SWg(x)Wgk)

Wg

Sx SWg(x)

Wg

Since ϕgx = ϕgxϕ
−1
g ϕg, the left-hand diagram above commutes, and since ϕgx−x−1ϕ−1

g = (ϕgxϕ
−1
g )ϕg(−)ϕ−1

g (ϕgxϕ
−1
g )−1,

the right-hand square above commutes.
The condition 1 in Definition 4.45 means that the following diagrams must commute for g, h, k ∈ G

and x ∈ T (h).

G G

G G

Sx

Wg WSx(g)

Sx

T (k) T (Sxk)

T (Wgk) T (SxWgk)

Sx

Wg WSx(g)

Sx
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Since xϕg = ϕx(g)x, the left-hand diagram commutes, and since then xϕg−ϕ−1
g x−1 = ϕx(g)x−x

−1ϕ−1
x(g),

the right-hand diagram commutes.
Condition 3 does not hold since (on G) Sx ◦Wg = xϕg, and in general this is not the identity.
Condition 4 does not hold since Sxidtmg = x1Gx

−1 which is not in general x.
Condition 5 does not hold since (on G) Sidtmg

Wg = 1Gϕg = ϕg which is not the identity in general.

We introduce more convenient notation for weakening and substitution.

Definition 4.50. Let A ∈ F/Γ. Recall that WA : F/Γ → F/Γ.A acts on objects, morphisms and
terms. We introduce the infix form of weakening by A ∈ F/Γ to be 〈A〉−. Thus, we will write

〈A〉B := WA(B) for B ∈ F/Γ

〈A〉Q := WA(Q) for B ∈ F/Γ and Q ∈ F/Γ.B

〈A〉g := WA(g) for B ∈ F/Γ, Q ∈ F/Γ.B and g ∈ T (Q)

Definition 4.51. Let x ∈ T (A) for a family A ∈ F/Γ. The infix form of substitution by x is taken to
be −[x]. Thus, we will write

P [x] := Sx(P ) for P ∈ F/Γ.A

Q[x] := Sx(Q) for P ∈ F/Γ.A and Q ∈ F/Γ.A.P

g[x] := Sx(g) for P ∈ F/Γ.A, Q ∈ F/Γ.A.P and g ∈ T (Q)

Definition 4.52. A (pre-)E-system is stratified if its underlying category is stratified in the sense
of Definition 2.1 and the underlying functor of each WA and Sx is stratified with respect to the
stratification induced on slices.

A morphism of stratified (pre-)E-systems is stratified if its underlying functor is stratified.
The category of stratified E-systems and stratified E-homomorphisms between them is denoted by

Esyss.

Example 4.53. The E-system on N from Example 4.48 is stratified by the identity functor.

4.2.5 Pairing and the projections

The composition A.P of A ∈ F/Γ and P ∈ F/Γ.A behaves like a strict Σ-type. In this section we
define the pairing term pairA,P := idtmA.P ∈ T (WP (WA(A.P ))) and the projections and prove several
useful properties about them. The strictness is found, among other things, in the fact that we can
prove judgmental η-equality, and that pairing is strictly associative.

In this section we make use of the infix form of the weakening and substitution operations introduced
in Definitions 4.50 and 4.51.

Definition 4.54. Let x ∈ T (A) and u ∈ T (Sx(P )) for A ∈ F/Γ and P ∈ F/Γ.A. We define the term

extension of x and u to be
x.u := idtmA.P [x][u] ∈ T (A.P ).

It is well defined since

T (WA.P (A.P )) T (WP [x](A.P )) T (A.P )
Sx Su (11)

where Sx ◦WA.P = WP [x] because Sx is a weakening homomorphism and Sx ◦WA = Id.

To prove anything about the term x.u, we need the following property.

Theorem 4.55. Let x ∈ T (A) and u ∈ T (Sx(P )) for A ∈ F/Γ and P ∈ F/Γ.A. Then we have

Sx.u = Su ◦ (Sx/P ) : E/Γ.A.P → E/Γ
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Proof.

Sx.u = SSu(Sx(idtmA.P )) (By 4.54)

= SSu(Sx(idtmA.P )) ◦ (Su ◦WSx(P )) ◦ (Sx ◦WA) (By 4.45.3)

= Su ◦ SSx(idtmA.P ) ◦WSx(P ) ◦ Sx ◦WA (By 4.45.1)

= Su ◦ (Sx/P ) ◦ SidtmA.P
◦WP ◦WA (By 4.45.1)

= Su ◦ (Sx/P ) ◦ SidtmA.P
◦WA.P (By 4.28.2)

= Su ◦ (Sx/P ). (By 4.45.5)

Corollary 4.56. For every x ∈ T (A), u ∈ T (Sx(P )) and v ∈ T (Sx.u(Q)) we have

(x.u).v = x.(u.v) ∈ T (A.P .Q).

Proof. By Theorem 4.55, we have Sv ◦ (Sx.u/Q) = Sv ◦ (Su/Q[x]) ◦ (Sx/P.Q) = Su.v ◦ (Sx/P.Q), so
associativity of term extension follows.

Definition 4.57. Let A ∈ F/Γ and P ∈ F/Γ.A. We define

prA,P0 := 〈P 〉idtmA

prA,P1 := idtmP

Lemma 4.58. Let F : E → D be an E-homomorphism. For every A ∈ F/Γ, P ∈ F/Γ.A, x ∈ T (A)
and u ∈ T (Sx(P )), it is

F (x.u) = F (x).F (u), F (prA,P0 ) = pr
F (A),F (P )
0 , and F (prA,P1 ) = pr

F (A),F (P )
1

Proof. We compute:

F (x.u) = F (idtmA.P [x][u]) = idtmFA.FP [Fx][Fu] = Fx.Fu,

F (prA,P0 ) = F (〈P 〉idtmA) = 〈FP 〉idtmFA = prFA,FP0 ,

F (prA,P1 ) = F (idtmP ) = idtmFP = prFA,FP1

where the outer equalities hold by definition, and the inner ones since F is an E-homomorphism.

Lemma 4.59. For every A ∈ F/Γ, P ∈ F/Γ.A, x ∈ T (A) and u ∈ T (Sx(P )), it is

prA,P0 [x.u] = x,

prA,P1 [x.u] = u,

prA,P0 .prA,P1 = idtmA.P .

Proof. To show that prA,P0 [x.u] = x, we use that Sx.u = Su ◦ Sx/P to show that

prA,P0 [x.u] = (〈P 〉idtmA)[x.u] (By 4.57)

= (〈P 〉idtmA)[x][u] (By Theorem 4.55)

= (〈P [x]〉idtmA[x])[u] (By 4.45.1)

= idtmA[x] (By 4.45.3)

= x (By 4.45.4)
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To show that prA,P1 [x.u] = u, note that

prA,P1 [x.u] = idtmP [x][u] = idtmP [x][u] = u

Finally note that
〈A.P 〉A.(WA.P /A)(P ) = 〈A.P 〉A.P

and idtm〈A.P 〉A.P = (WA.P /A.P )(idtmA.P ). Thus prA,P0 .prA,P1 = idtmA.P follows from the commuta-
tivity of the outer square in the diagram below.

T (W〈A.P〉A.P (〈A.P 〉A.P )) T (WP /P (〈A.P 〉A.P ))

T (〈A.P 〉A.P ) T (〈A.P 〉A.P )

S
pr

A,P
0

S
pr

A,P
1

WA.P /A.P
WP /P

id

The bottom-right triangle commutes by 4.45.5. For the top-left one:

S〈P 〉idtmA
◦WA.P /A.P = S〈P 〉idtmA

◦WP /(WA(A.P )) ◦WA/A.P (By 4.28.2)

= (WP ◦ SidtmA
◦WA/A) /P (By 4.45.2)

= WP /P. (By 4.45.5)

Theorem 4.60. For every A ∈ F/Γ and P ∈ F/Γ.A, the map

∐
x∈T (A) T (P [x]) T (A.P )

(x, u) x.u

is a bijection.

Proof. The inverse to the given map is defined by w 7→ (prA,P0 [w], prA,P1 [w]). Thanks to Lemma 4.59
it is enough to show that, for every w ∈ T (A.P ), one has

prA,P0 [w].prA,P1 [w] = w.

Lemma 4.58 gives us that y

prA,P0 [w].prA,P1 [w] = (prA,P0 .prA,P1 )[w].

Thus the claim follows from prA,P0 .prA,P1 = idtmA.P , which holds again by Lemma 4.59.

One consequence of this theorem is that the set T (idΓ) has exactly one element, see Corollary 5.18.

4.3 Characterising B-systems as stratified E-systems

In this section we construct an equivalence of categories between B-systems and the subcategory of
Esys on the stratified E-systems and stratified homomorphisms. The functor from B-systems to
stratified E-systems is constructed in Section 4.3.1, the one in the other direction in Section 4.3.2.
That these form an equivalence is shown in Section 4.3.3.
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4.3.1 From B-systems to stratified E-systems

Note first that we obtain a functor Bfr→ Cat as the composition

Bfr RtTr Grph Cat
R G F

where G and F are the functors from Definition 2.13 and R is the forgetful functor from Definition 4.6.
Arrows in FGR(B) are of the form (X, k) : (n+ k,X)→ (n, ftk(X)), for X ∈ Bn+k.

We begin by equipping FGR(B) with a term structure. The B-frame B already provides us with
sets of terms for the edges of GR(B), namely T (X, 1) := ∂−1(X). In order to construct sets of terms
for (X, k) for each k, which we do in Construction 4.62, we assume that B comes with a substitution
structure in the sense of Definition 4.23. We then show in Construction 4.65 that FGR gives rise
to a functor T from B-frames with substitution to strict categories with term structure. Next, in
Construction 4.68 we provide T(B) with a pre-E-system structure when B is a B-system, and prove
in Lemma 4.69 that T preserves and reflects weakening and projection homomorphisms. Finally, we
show in Lemma 4.71 that the functor T lifts to a full and faithful functor from B-systems to stratified
E-systems.

Problem 4.61. For every B-frame B with substitution structure S, to construct a term structure T
on the strict category FB := FGR(B) and to construct, for any t ∈ T (X, k), a homomorphism of
B-frames Skt : B/X → B/ftk(X).

Construction 4.62 (for Problem 4.61). We define the term structure by induction on n ∈ N. More
precisely, for any X ∈ Bn and k ≤ n we will define a set T (X, k) and, for any t ∈ T (X, k), a
homomorphism of B-frames Skt : B/X → B/ftk(X).

For every n and X ∈ Bn, let T (X, 0) := {∗} and S0
∗ := id : B/X → B/X .

For every n and X ∈ Bn+1, let

T (X, 1) := ∂−1(X) ⊆ B̃n+1 (12)

and S1
x := Sx : B/X → B/ft(X) which is a homomorphism of B-frames by assumption.

Suppose now that, for every m ≤ n and Y ∈ Bm, we have defined sets T (Y, k) for k ≤ m and, for
every t ∈ T (Y, k), a homomorphism of B-frames Skt : B/Y → B/ftk(Y ). Let X ∈ Bn+1 and define, for
1 ≤ k ≤ n,

T (X, k + 1) :=
∐

t∈T (ft(X),k)

T (St(X), 1). (13)

and, for (t, x) ∈ T (X, k + 1), a homomorphism of B-frames Sk+1
(t,x) as the composite below

B/X B/ftk+1(X)

B/Skt (X)

Sk+1

(t,x)

Sk
t /X

Sx

(14)

where Sx comes from the substitution structure and Skt from the inductive hypothesis.

Remark 4.63.

1. For every B-frame B and X ∈ Bn, there is an isomorphism of strict categories FGR(B/X) ∼=
FGR(B)/(n,X) natural in B which maps (i, Y ) to (n + i, Y ) and it is the identity on arrows.
It follows that, when B is a B-system, we can choose the identity as the action on the term
structure. Therefore this isomorphism of categories lifts to an isomorphism of categories with
term structure (FGR(B/X), TB) ∼= (FGR(B)/(n,X), TB).

Once we establish an E-system structure on FGR(B), we will see that this isomorphism is in
fact an isomorphism of E-systems.
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2. Let A and B be B-frames with substitution structure and H : A → B be a homomorphism of
B-frames. If H preserves the substitution structure, then for every X ∈ Bn+k and t ∈ T (X, k)
the square

A/X B/H(X)

A/ftk(X) B/ftkH(X)

Sk
t

H/X

Sk
H̃(t)

H/ftk(X)

(15)

commutes in Bfr, where H̃(t) := (H̃(t1), . . . , H̃(tk)). Indeed, by definition of Skt in (14), the
square (15) factors vertically into k squares of the form in Definition 4.11.1, each of which
commutes if H preserves the substitution structure.

3. Let A and B be B-frames with substitution structure and H : A → B be a homomorphism of
B-frames. Suppose that A and B have weakening structure and define, for every X ∈ Bn+k, the
homomorphism of B-frames W k

X : B/ftk(X)→ B/X as the composite

B/ftk(X) · · · B/ft(X) B/X

Wk
X

W
ftk−1(X)

Wft(X) WX
(16)

which we take to be idB if n = k = 0.

If H preserves weakening structure, then for every X ∈ Bn+k the square

A/X B/H(X)

A/ftk(X) B/ftkH(X)

H/X

Wk
X

H/ftk(X)

Wk
H(X)

(17)

commutes in Bfr. Indeed, by definition of W k
X in (16) the square (17) factors vertically into k

squares of the form in Definition 4.11.2, each of which commutes if H preserves the weakening
structure.

Problem 4.64. To lift the functor FGR : Bfr → Cat to a functor T : SubBfr → TCat from the
category SubBfr of B-frames with substitution structure and homomorphisms of B-frames that preserve
the substitution structure, to the category of strict categories with term structure.

Construction 4.65 (for Problem 4.64). Let A and B be B-frames with substitution structure. For
every homomorphism of B-frames H : A → B, the functor FGR(H) : FA → FB, maps an object
(n,X) to (n,H(X)) and an arrow (X, k) to (H(X), k). Since H(∗) = ∗, the functor FGR(H) strictly
preserves the (unique) terminal object.

To make T(H) := FGR(H) into a functor with term structure note that, for every t = (t1, . . . , tk) ∈
T (X, k) and 1 ≤ j ≤ k, the function H̃ restricts as follows

T (ftk−jStj−1 · · ·St1(X), 1) Ãn−k+1

T (ftk−jSH̃(tj−1) · · ·SH̃(t1)H(Y ), 1) B̃n−k+1

H̃ H̃ (18)
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since H commutes with the functions ft and preserves the substitution structure in the sense of Defi-
nition 4.11. It follows that

T(H)(t) := (H̃(t1), . . . , H̃(tk)) ∈ T (H̃(X), k). (19)

This makes T(H) : F/(n,X)→ F/(n− k, ftk(X)) into a functor with term structure.
The action of H on the sets T (X, k) is clearly functorial in H .

Remark 4.66.

1. The functor T : SubBfr→ TCat from Construction 4.65 is faithful, since the functors R : Bfr→
RtTr, G : RtTr → Grph and F : Grph → Cat are faithful and the sets T (X, 1) for X ∈ Bn
form a partition of B̃n.

2. For every B-frame with substitution structure B, it follows by Propositions 2.8 and 2.14 that the
underlying category of T(B) is stratified by the functor that maps (X, k) : (n+k,X)→ (n, ftk(X))
to n+ k ≥ n.

Problem 4.67. For every B-system B, to construct a pre-E-system structure on the category with
term structure T(B) from Construction 4.62.

Construction 4.68 (for Problem 4.67). Construction 4.62 provides a homomorphism of B-frames
Skt : B/X → B/ftk(X) for every X ∈ Bn+k and t ∈ T (X, k). The homomorphism Skt preserves the
substitution structure since it factors, as in Remark 4.63.2, into k B-homomorphisms of the form Sxj ,

where xj ∈ B̃n+k−j for j < k. Construction 4.65 and Remark 4.63.1 then yield a functor with term
structure

(T(B)/(n + k,X), TB) (T(B)/(n, ftk(X)), TB)
St:=T(Sk

t )
(20)

as required.
For the pre-weakening structure, consider the homomorphism of B-frames W k

X : B/ftk(X)→ B/X
defined in Remark 4.63.3. Since B is a B-system, each factor of W k

X in (16) is a homomorphism of
B-systems and so is W k

X . Construction 4.65 and Remark 4.63.1 provide a functor with term structure

T(B)/(n, ftk(X)) T(B)/(n,X).
W(X,k):=T(Wk

X )
(21)

It remains to construct the pre-projection structure. In fact, we will prove a little bit more. We con-
struct by induction on n ∈ N, for every X ∈ Bn and k ≤ n, an element idtm(X,k) ∈ T (W(X,k)(X, k)) =

T (W k
X(X), k) with the property that the triangle of B-homomorphisms

B/X B/X

B/W k
X(X)

Wk
X/X

id

Sk
idtm(X,k)

commutes. This additional condition is needed in the inductive construction. For every n and X ∈ Bn,
let

idtm(X,0) := ∗ ∈ T (W(X,0)(X, 0), 0) = T (X, 0).

For every n and X ∈ Bn+1, it is ∂ ◦ δ(X) = WX(X) ∈ Bn+2. Thus we can define

idtm(X,1) := δ(X) ∈ T (W(X,1)(X, 1)) = T (WX(X), 1) (22)

and S1
idtm(X,1)

◦WX/X = idB/X by condition 5 in Definition 4.12.

38



Suppose now that we have defined, for every m ≤ n, Y ∈ Bm and i ≤ m, an element idtm(Y,i) ∈
T (W(Y,i)(Y, i)) such that Siidtm(Y,i)

◦W i
Y /Y = idT /(m,Y ). Let X ∈ Bn+1. It follows from (13) that, for

every 1 ≤ k ≤ n

T (W(X,k+1)(X, k + 1)) =
∐

t∈T (Wk+1
X

(ft(X)),k)

T (Skt ◦W
k+1
X (X), 1).

But W k+1
X = WX ◦W k

ft(X), thus

t̄ := W̃X(idtm(ft(X),k)) ∈ T (W k+1
X (ft(X)), k)

and

Skt̄ ◦W
k+1
X /ft(X) = Skt̄ ◦WX/W

k
ft(X)(ft(X)) ◦W k

ft(X)/ft(X)

= WX ◦ S
k
idtm(ft(X),k)

◦W k
ft(X)/ft(X)

= WX

(23)

by Remark 4.63.2 and the fact that WX preserves the substitution structure, and assumption (4.68).
In particular, T (St̄ ◦W

k+1
X (X), 1) = T (WX(X), 1) and we can define

idtm(X,k+1) := (t̄, δ(X)). (24)

It remains to check that Sk+1
idtm(X,k+1)

◦W k+1
X /X = idB/X . This is indeed the case by (14), (23) and

condition 5 in Definition 4.12:

Sk+1
idtm(X,k+1)

◦W k+1
X /X = Sδ(X) ◦

(
Skt̄ ◦W

k+1
X /ft(X)

)
/X

= Sδ(X) ◦WX/X

= idB/X .

This completes the construction of the pre-E-system structure.

Lemma 4.69. Let A and B be B-systems and H : A→ B a homomorphism of B-frames that preserves
the substitution structure.

1. The functor with term structure T(H) : FA → FB is a pre-substitution homomorphism.

2. H preserves the weakening structure if and only if T(H) is a pre-weakening homomorphism.

3. H preserves the structure of generic elements if and only if T(H) is a pre-projection homomor-
phism.

Proof.

1. By definition of the pre-substitution structure in Construction 4.68 and Remark 4.63.1, T(H) is
a pre-substitution homomorphism if every image under T of any square in Bfr of the form (15)
commutes. By Remark 4.63.2, such squares commute since H preserves the substitution struc-
ture.

2. By definition of the pre-weakening structure (16) and Remark 4.63.1, T(H) is a pre-weakening
homomorphism if and only if the image under T : Bsys → TCat of any square in Bfr of the
form (17) commutes. By Remark 4.63.3, such squares commute if H preserves the weakening
structure. The converse holds since T is faithful by Remark 4.66.1.

3. By (18) and (19), T(H) acts componentwise as H̃ on a term t ∈ T (X, t). It follows that T(H)
preserves the terms idtm(X,k+1) = (δ(ftk(X)), . . . , δ(X)) for X ∈ Bn, k < n if and only if H
preserves generic elements.
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Lemma 4.70. For every B-system B, the pre-E-system constructed in 4.68 is a stratified E-system.

Proof. First, we need to verify conditions 1–4 in Definition 4.45, as condition 5 holds by construction.

1. It follows from Lemma 4.69 and (20) since Skt , as defined in (14), is a homomorphism of B-systems
when B is a B-system.

2. As above, it follows by Lemma 4.69 and (21) since W k
X , as defined in (16), is a homomorphism

of B-systems.

3. The case X ∈ Bn, ∗ ∈ T (X, 0) holds trivially. The case X ∈ Bn+1, x ∈ T (X, 1) follows from
condition 3 in Definition 4.12 and functoriality of T. The case X ∈ Bn+k+1, (t, x) ∈ T (X, k+ 1),
where t ∈ T (ft(X), k) and x ∈ T (Skt (X), 1), holds by induction and functoriality of T as

Sk(t,x) ◦W
k+1
X = Sx ◦ S

k
t /X ◦WX ◦W

k
ft(X)

= Sx ◦WSt(X) ◦ S
k
t ◦W

k
ft(X)

= idB/ftk+1(X)

by (14) and (16), the fact that St is a pre-E-homomorphism, and Definition 4.12.2 and the
inductive hypothesis.

4. As above, the case k = 0 holds trivially and the case k = 1 holds by condition 4 in Definition 4.12.
For X ∈ Bn+1, k ≤ n and (t, x) ∈ T (X, k + 1),

S̃k+1
(t,x)(idtm(X,k+1)) = S̃x ◦ S̃

k
t (W̃X(idtm(ft(X),k)), δ(X))

= S̃x(W̃Sk
t (X) ◦ S̃

k
t (idtm(ft(X),k)), δ(S

k
t (X)))

= (S̃x ◦ W̃Sk
t (X)(t), S̃x(δ(Skt (X))))

= (t, x)

by (14) and (24), the fact that St is a pre-E-homomorphism, the inductive hypothesis, and
conditions 3 and 4 in Definition 4.12.

Finally, the underlying category F = FGR(B) is stratified by Remark 4.66.2. By definition, weakening
and substitution functors preserve the N-component of objects and arrows. It follows that T(B) is a
stratified E-system.

Lemma 4.71.

1. The functor T : SubBfr → TCat from Construction 4.65 lifts to a functor B2E : Bsys →
Esyss.

2. The functor B2E is full and faithful.

Proof.

1. By Lemma 4.70, it is enough to show that, for every homomorphism of B-systems H : A → B,
the functor with term structure T(H) : T(A)→ T(B) is a stratified homomorphism of E-systems.
By Lemma 4.69, T(H) is a homomorphism of E-systems. It is stratified since it preserves the
N-component of objects and arrows by definition.

2. The functor B2E is faithful by Remark 4.66.1. Let then K : B2E(A)→ B2E(B) be a stratified
homomorphism of E-systems. Since K is stratified, the function on objects K :

∐
mAm →

∐
nBn

is the identity on indices and gives rise to a family of functions H :
∏
n(An → Bn) such that

K(n,X) = (n,Hn(X)). (25)
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This function commutes with ft functions since, for every X ∈ An+1, the arrow K(X, 1): (n +
1, Hn+1(X))→ (n,Hn(ft(X))) in FB is necessarily of the form (n+ 1, Y )→ (n, ft(Y )).

The sets T (X, 1) for X ∈ An+1 form a partition of Ãn+1, thus the functions KX : T (X, 1) →
T (Hn+1(X), 1) for X ∈ An+1 glue together to form a function H̃n+1 : Ãn+1 → B̃n+1 such that

H̃n+1(x) = K∂(x)(x). (26)

It follows that ∂ ◦ H̃ = H ◦ ∂ since H̃n+1(x) ∈ T (Hn+1(∂(x)), 1). Thus we have defined a
homomorphism of B-frames H : A→ B.

Let x ∈ B̃n+1. Since K is a substitution homomorphism, for every Y ∈ Bn+k+1 such that
ft
k(Y ) = ∂(x), it is

(n+ k, H̃n+k ◦ Sx(Y )) = K ◦ Sx(n+ k + 1, Y )

= SK∂(x)(x) ◦K(n+ k + 1, Y )

= (n+ k, SH̃n+1(x) ◦Hn+k+1(Y ))

and, for every y ∈ B̃n+k+1 such that ftk ◦ ∂(y) = ∂(x), it is

H̃n+k ◦ S̃x(y) = K∂◦Sx(y) ◦ Sx(y)

= SK∂(x)(x) ◦K∂(y)(y)

= S̃H̃n+1(x) ◦ H̃n+k+1(y).

It follows that the homomorphism of B-frames H preserves the substitution structure. Moreover,
it is T(H) = K by (25), (26) and Construction 4.65. Thus B2E(H) = T(H) = K once we show
that H is a homomorphism of B-systems.

It remains to verify that H also preserve the weakening structure and the structure of generic
elements. Since K is a projection homomorphism, for every X ∈ Bn+1 it is

T(H/X ◦WX) = K/(n+ 1, X) ◦W(X,1) = WK(X,1) ◦K/(n, ft(X)) = T(WHn+1(X) ◦H/ft(X)).

The first claim then follows from faithfulness of B2E. Finally, H preserves generic elements

H̃n+2 ◦ δ(X) = KWX(X)(idtm(X,1)) = idtmK(X,1) = δ ◦Hn+1(X)

since K is a projection homomorphism.

4.3.2 From stratified E-sytems to B-systems

We have constructed a full and faithful functor Bsys → Esys
s
. Here we construct a functor in the

opposite direction. We begin in Construction 4.75 with a functor E2B from stratified categories with
term structures to B-frames. In Construction 4.77 we consider substitution, weakening and projection
structures and prove in Lemma 4.78 that E2B maps homomorphisms into homomorphisms. This
allows us to lift E2B to a functor Esyss → Bsys in Construction 4.80.

Problem 4.72. Given a stratified category with term structure (F , T ), to construct a B-frame B2E(F , T ).

Construction 4.73 (for Problem 4.72). For every object X in F , let X denote the unique individual
arrow with domain X . For every n ∈ N, define sets

B(F , T )n := {X ∈ Ob(F) | L(X) = n} (27)

B̃(F , T )n+1 :=
∐

X∈B(F ,T )n+1

T (X) (28)
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and functions ftn : B(F , T )n+1 → B(F , T )n and ∂n : B̃(F , T )n+1 → B(F , T )n+1 by

ft(X) := cod(X) (29)

∂(X,x) := X. (30)

These definitions give rise to a B-frame E2B(F , T ).

Problem 4.74. To construct a functor E2B : TCats → Bfr from the category of stratified cate-
gories with term structure and stratified functors with term structure to the category of B-frames and
homomorphisms.

Construction 4.75 (for Problem 4.74). The action on objects is given by Construction 4.73. Let then
F : (F , T ) → (F ′, T ′) be a stratified functor with term structure. We need to construct a homomor-
phism of B-frames E2B(F ) : E2B(F , T )→ E2B(F ′, T ′). Since F is stratified, it maps B(F , T )n into
B(F ′, T ′)n. For every X ∈ B(F , T )n+1, the functor F maps the individual arrow X to the individual
arrow F (X) by Lemma 2.10. It follows first that

F ◦ ft(X) = F ◦ cod(X)

= cod(F (X))

= ft ◦ F (X),

and secondly that we can define, for every n ∈ N, a function F̃ : B̃(F , T )n+1 → B̃(F ′, T ′)n+1 such that
∂ ◦ F̃ (X, t) = F ◦ ∂(X, t) by

F̃ (X, t) := (F (X), F (t)). (31)

This defines a homomorphism of B-frames E2B(F ) := (F, F̃ ).

Problem 4.76. Let (F , T ) be a stratified category with term structure and consider the B-frame
E2B(F , T ) from Construction 4.73

1. From a stratified pre-substitution structure on (F , T ), construct a substitution structure on E2B(F , T ).

2. From a stratified pre-weakening structure on (F , T ), construct a weakening structure on E2B(F , T ).

3. From a pre-projection structure on (F , T ), construct a structure of generic elements on E2B(F , T ).

Construction 4.77 (for Problem 4.76).

1. For every (X, t) ∈ B̃(F , T )n+1, the functor with term structure St : (F , T )/X → (F , T )/ft(X) is
stratified. Construction 4.75 then yields a homomorphism of B-frames

E2B(F , T )/X E2B(F , T )/ft(X).
S(X,t):=E2B(St)

(32)

2. For every X ∈ B(F , T )n, the functor with term structure WX : (F , T )/ft(X) → (F , T )/X is

stratified, where X denotes the unique individual arrow with domain X . Construction 4.75 then
yields a homomorphism of B-frames

E2B(F , T )/ft(X) E2B(F , T )/X.
WX :=E2B(W

X
)

(33)

3. For every X ∈ B(F , T )n+1, we can define

δ(X) := (WX(X), idtmX) ∈ B̃(F , T )n+2 (34)

since WX(X) = WX(X).
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Lemma 4.78. Let F : (F , T )→ (F ′, T ′) be a stratified functor with term structure.

1. If (F , T ) and (F ′, T ′) have stratified pre-substitution structure and F is a pre-substitution homo-
morphism, then E2B(F ) : E2B(F , T )→ E2B(F ′, T ′) preserves the substitution structure.

2. If (F , T ) and (F ′, T ′) have stratified pre-weakening structure and F is a pre-weakening homo-
morphism, then E2B(F ) : E2B(F , T )→ E2B(F ′, T ′) preserves the weakening structure.

3. If (F , T ) and (F ′, T ′) have stratified pre-projection structure and F is a pre-projection homomor-
phism, then E2B(F ) : E2B(F , T )→ E2B(F ′, T ′) preserves the structure of generic elements.

Proof.

1. We need to show that, for every (X, t) ∈ B̃(F , T )n+1, it is E2B(F )/ft(X)◦S(X,t) = S(F (X),F (t))◦
E2B(F )/X . This follows from (32), functoriality of E2B and F/ft(X)◦St = SF (t) ◦F/X , which
holds because F is a pre-substitution homomorphism.

2. We need to show that, for every X ∈ B(F , T )n, it is E2B(F )/X ◦WX = WF (X) ◦E2B(F )/ft(X).
This follows from (33), functoriality of E2B and F/X ◦WX = W

F (X)
◦ F/ft(X), which holds

because F is a pre-substitution homomorphism and F (X) = F (X).

3. For every X ∈ B(F , T )n+1, it is

E2B(F ) ◦ δ(X) = (F (WX(X)), F (idtmX)) = (WF (X)(F (X)), idtm
F (X)

) = δ ◦E2B(F )(X)

where the first and last equality hold by (31) and (34), and the middle one because F is a
pre-projection homomorphism.

Problem 4.79. To lift the functor E2B : TCats → Bfr to a functor E2B : Esys
s
→ Bsys.

Construction 4.80 (for Problem 4.79). Let E be a stratified E-system. Then E2B(F , T ) can be given
the structure of a pre-B-system E2B(E) by Construction 4.77. To show that E2B(E) is a B-system,
we need to verify conditions 1–5 of Definition 4.12.

1,2. Since every stratified functor with term structure of the form St, WA is an E-homomorphism, it
follows by Lemma 4.78 that the homomorphisms of B-frames constructed in (32) and (33) are
homomorphisms of B-systems.

3. For (X, t) ∈ B̃(E)n+1, it is

S(X,t) ◦WX = E2B(St ◦WX) = idE2B(E)/ft(X)

by (32), (33), functoriality of E2B and 4.45.3.

4. For (X, t) ∈ B̃(E)n+1, it is

S(X,t) ◦ δ(X) = ((S(X,t) ◦WX)(X), St(idtmX)) = (X, t)

by (32), (34), condition 3 just proved and 4.45.4.

5. For every X ∈ B(E)n+1, it is

Sδ(X) ◦WX/X = E2B(Sidtm
X
◦WX/X) = idE2B(E)/X

by (32–34), functoriality of E2B and 4.45.5.

Finally, for every stratified E-homomorphismF : E→ D, the homomorphism of B-frames E2B(F ) : E2B(E)→
E2B(D) is a homomorphism of B-systems by Lemma 4.78.
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4.3.3 Equivalence of B-systems and stratified E-systems

Here we show in Theorem 4.83 that the functors B2E from Lemma 4.71 and E2B from Construc-
tion 4.80 form an equivalence of categories. We do so by showing in Construction 4.82 that E2B : Esyss →
Bsys is an essential section of the full and faithful functor B2E.

Problem 4.81. For every stratified E-system E, to construct an isomorphism B2E(E2B(E)) ∼= E of
stratified E-systems, natural in E.

Construction 4.82 (for Problem 4.81). In this construction we decorate the structures from B2E(E2B(E))
with a hat, as in F̂ . Since F is stratified, the function mapping (n,X) ∈

∐
nB(E)n to X extends to an

isomorphism ϕ between the underlying strict category F̂ of B2E(E2B(E)), constructed in 4.62, and

F . In particular, it maps an arrow (X, k) to the arrow X
k

:= ftk−1(X) ◦ · · · ◦X : X → ftk(X) in F as
in (3).

In order to lift ϕ to an isomorphism of categories with term structure, we need to show that

T̂ (X, k) ∼= T (X
k
) for everyX ∈ B(E)n and k ≤ n, where T̂ (X, k) is the set defined in Construction 4.62.

For every X ∈ Bn+1, by (12) it is

T̂ (X, 1) = ∂−1(X) =
{

(Y, y) ∈ B̃(E)n+1 | Y = X, y ∈ T (Y )
}
∼= T (X).

Suppose that T̂ (Y, j) ∼= T (Y
j
) for every m < n, Y ∈ Bm and j ≤ m. It follows by (13) that

T̂ (X, k + 1) =
∐

t∈T (ft(X),k)

T (St(X), 1) ∼=
∐

t∈T (ft(X)
k

)

T (St(X)) ∼= T (X
k+1

)

where the last bijection follows from Theorem 4.60 since X
k+1

= ft(X)
k
◦X and St(X) = St(X). In

other words, elements of T̂ (X, k) are lists of length k of pairs (Y, y) ∈ B̃(E)n+j for j = 1, . . . , k, where
y ∈ T (Y ), and the action on terms of ϕ first acts componentwise dropping the first component of each
pair and then applies the bijection from Theorem 4.60.

Next, we show that this choice of isos is natural in E. Given a stratified E-homomorphismF : E→ D,
we need to show that ϕD ◦B2E(E2B(F )) = F ◦ϕE. The functor B2E(E2B(F )) maps an arrow (X, k)
to (F (X), k), thus

ϕD ◦B2E(E2B(F ))(X, k) = F (X)
k

= F (X
k
) = F ◦ ϕE(X, k).

since F preserves individual arrows by Lemma 2.10. The functor with term structure B2E(E2B(F ))
maps (X,x) ∈ T̂ (X, 1) to (F (X), F (x)) by (18) and (31), thus

ϕD ◦B2E(E2B(F ))(X,x) = F (x) = F ◦ ϕE(X,x).

Suppose now that, for everym ≤ n, Y ∈ B(E)m, i ≤ m and (Y, t) ∈ T̂ (Y, i), it is ϕD◦B2E(E2B(F ))(Y, t) =
F ◦ ϕE(Y, t). Let X ∈ B(E)n+1 and (t, (X,x)) ∈ T̂ (X, k + 1), then

ϕD ◦B2E(E2B(F ))(t, (X,x)) = (ϕD ◦B2E(E2B(F ))(t)).F (x)

= (F ◦ ϕE(t)).F (x)

= F (ϕE(t).x)

= F ◦ ϕE(t, (X,x))

by definition of ϕ, inductive hypothesis, Lemma 4.58, and definition of ϕ again. Therefore we conclude
that, for every E-homomorphism F : E→ D,

ϕD ◦B2E(E2B(F )) = F ◦ ϕE. (35)

It remains to show that each component ϕE is an E-homomorphism.
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To show that ϕ is a weakening homomorphism, note that for every X ∈ B(E)n+k, it is Ŵ(X,k) =

B2E(W k
X) by (21) and

W k
X = Wftk−1(X) ◦ · · ·WX

= E2B(W
ftk−1(X)

◦ · · · ◦WX)

= E2B(Wϕ(X,k))

by, in order, (16); (33) and functoriality of E2B; condition 4.28.1 in the case k = 0 and condition 4.28.2
for k > 0; and definition of ϕ. Moreover, Wϕ(X,k) is an E-homomorphism, thus ϕ is a weakening
homomorphism by (35).

To show that ϕ is a substitution homomorphism we reason by induction. The case X ∈ B(E)n
and ∗ ∈ T̂ (X, 0) is trivial. For every X ∈ B(E)n+1 and (X,x) ∈ T̂ (X, 1), it is Ŝ(X,x) = B2E(S(X,x))
by (20) and

S(X,x) = E2B(Sx) = E2B(Sϕ(X,x))

by (32) and definition of ϕ. Suppose now that, for every m ≤ n, Y ∈ B(E)m, i ≤ m and t ∈ T̂ (Y, i),
it is St = E2B(Sϕ(t)) as homomorphisms of B-systems. Then for every X ∈ B(E)n+1, k ≤ n and

(t, (X,x)) ∈ T̂ (X, k + 1), it is Ŝ(t,(X,x)) = B2E(S(t,(X,x))) by (20) and

S(t,(X,x)) = S(X,x) ◦ St/X

= E2B(Sx ◦ Sϕ(t)/X)

= E2B(Sϕ(t).x)

= E2B(Sϕ(t,(X,x)))

by, in order, (14); inductive hypothesis, (32) and functoriality of E2B; Theorem 4.55; and definition
of ϕ. Therefore St = B2E(E2B(Sϕ(t))) for every X ∈ B(E)n+k and t ∈ T̂ (X, k)). We conclude that
ϕ is a substitution homomorphism by naturality (35).

To show that ϕ is a projection homomorphism we reason by induction. The case (X, 0) for X ∈
B(E)n is again trivial. Let X ∈ B(E)n+1, then

ˆidtm(X,1) = δ(X) = (WX(X), idtmX)

by (22) and (34). Therefore ϕ( ˆidtm(X,1)) = idtmϕ(X,1) by definition of ϕ. Suppose that, for every

m ≤ n, Y ∈ B(E)m, i ≤ m, it is ϕ( ˆidtm(Y,i)) = idtmϕ(Y,i). Let X ∈ B(E)n+1 and k ≤ n. Then

ϕ( ˆidtm(X,k+1)) = ϕ(W(X,1)( ˆidtm(ft(X),k)), δ(X))

=
(
WX(ϕ( ˆidtm(ft(X),k)))

)
.idtmX

=
(
WX(idtmϕ(ft(X),k))

)
.idtmX

= idtm
ft(X)

k
◦X

= idtmϕ(X,k+1)

by (24), definition of ϕ and the fact that ϕ is a weakening homomorphism, the inductive hypothesis,

Lemma 5.20, and definition of ϕ again. Therefore ϕ( ˆidtm(X,k)) = idtmϕ(X,k) for every X ∈ B(E)n+k.
This concludes the proof that ϕ is an E-homomorphism.

Finally we reach the main result of this section.

Theorem 4.83. The functors B2E : Bsys → Esys
s

from Lemma 4.71 and E2B : Esys
s
→ Bsys

from Construction 4.80 form an equivalence of categories.

Proof. As the functor B2E is fully faithful by Lemma 4.71.2, it is enough to show that E2B is an
essential section of B2E. This holds by Construction 4.82.
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5 Equivalence between B- and C-systems

In this section, we construct an equivalence between B-systems and C-systems, in several steps. We
first construct an adjunction between the categories of CE-systems and of E-systems. To this end, we
construct, in Section 5.1, a functor from CE-systems to E-systems, and, in Section 5.2, a functor in the
other direction, from E-systems to CE-systems. In Section 5.3 we show that these functors form an
adjunction that restricts to an equivalence when considering rooted CE-systems. Finally, in Section 5.4,
we give our equivalence between B-systems and C-systems, obtained by restricting the aforementioned
equivalence to stratified rooted CE-systems and E-systems, respectively.

5.1 From CE-sytems to E-systems

Definition 5.1. Let A be a CE-system. For any Γ ∈ C, we define the slice CE-system A/Γ as
follows. Let C (Γ) be the strict category with the same objects as F/Γ and with all arrows from I(A)
to I(B) in C/Γ as arrows from A to B. The functor I/Γ: F/Γ→ C/Γ factors as an identity-on-objects
IΓ followed by a full and faithful one as shown in the diagram below.

F/Γ C/Γ

C (Γ)

I/Γ

IΓ

We take IΓ to be the underlying functor of A/Γ. The choice of pullback squares is induced by A.

Remark 5.2. Let A be a CE-system.

1. For every object Γ, the identity idΓ is terminal in CA (Γ). It follows that any slice CE-system is
rooted.

2. For every f : ∆ → Γ in C, the functor f∗ : F/Γ → F/∆ lifts to a functor f∗ : C (Γ) → C (∆)
making the square below commute.

F/Γ F/∆

C (Γ) C (∆)

IΓ

f∗

I∆

f∗

3. For every f : ∆ → Γ the commutative square in Remark 5.2 lifts to a CE-homomorphism
f∗ : A/Γ→ A/∆.

Lemma 5.3. Let F : A → B be a CE-homomorphism. Then for every f : ∆ → Γ in CA the diagram
below commutes.

FA/Γ FB/FΓ

CA (Γ) CB (FΓ)

FA/∆ FB/F∆

CA (∆) CB (FC∆)

IΓ

f∗

FF/Γ

IF Γ

(Ff)∗

FC/Γ

f∗

I∆

FF/∆

IF ∆

F/∆

(Ff)∗
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Proof. Commutativity of the back face follows from the fact that (Ff)
∗
(FA) = F (f∗A) for every

A ∈ FA/Γ, commutativity of the front face follows from the universal property of pullbacks, and
commutativity of the other faces is immediate.

Lemma 5.4. Let A be a CE-system. For every f : ∆ → Γ in C and every g : A → B in C (Γ) the
diagram below commutes.

F/Γ.B F/∆.f∗B

C (Γ.B) C (∆.f∗B)

F/Γ.A F/∆.f∗A

C (Γ.A) C (∆.f∗A)

I/Γ.B

g∗

I/∆.f∗B

(f∗g)∗

f∗/B

g∗

I/Γ.A I/∆.f∗A

f∗/A

(f∗g)∗

Proof. This is Lemma 5.3 applied to f∗ seen as a homomorphism of CE-systems thanks to Remark 5.2.3.

Problem 5.5. To construct a functor CE2E : CEsys→ Esys.

Construction 5.6 (for Problem 5.5). Let A be a CE-system with underlying functor I : F → C. The
underlying category of the E-system CE2E(A) is F . The chosen terminal object is the one in A. To
equip F with a term structure we define, for every A ∈ F/Γ, the set

T (A) := {x : Γ→ Γ.A | I(A) ◦ x = idΓ}. (36)

We define for any A ∈ F/Γ, the functor

WA := A∗ : F/Γ→ F/Γ.A. (37)

Likewise, we define for any x ∈ T (A), the functor

Sx := x∗ : F/Γ.A→ F/Γ. (38)

These clearly extend to functors with term structure. We also define idtmA : T (WA(A)) by the universal
property of pullbacks as in the diagram below.

Γ.A

ΓA.WA(A) Γ.A

Γ.A Γ

idΓ.A

idΓ.A

idtmA

π2(I(A),A)

I(A)

As an immediate consequence of Lemma 5.4, we get that each functor WA and Sx is both a weakening
functor and a substitution functor. It follows by the definitions that weakening and substitution
preserve the terms idtmA.

It remains to verify the remaining conditions of E-systems.

3. To show that substitution in weakened families is constant, note that

Sx ◦WA = x∗ ◦A∗ = (A ◦ x)∗ = (idΓ)∗ = idCF/Γ.
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5. The identity terms are neutral for pre-composition:

SidtmA
◦WA/A = SidtmA

◦ π2(A,A)∗ = (π2(A,A) ◦ idtmA)∗ = (idΓ.A)∗ = idCF/Γ.A.

4. The identity terms behave like identity functions: by the universal property, Sx(idtmA) is the
unique section of A such that the square

Γ Γ.A

Γ.A ΓA.WA(A)

Sx(idtmA)

π2(x,idΓ.A)

idtmA

π2(x,WA(A))

commutes. Thus, it suffices to show that this square also commutes with x in the place of
Sx(idtmA). Note that π2(x, idΓ.A) = x. Since ΓA.WA(A) is itself a pullback, it suffices and it is
straightforward to verify the equalities

WA(A) ◦ π2(x,WA(A)) ◦ x = WA(A) ◦ idtmA ◦ x

π2(A,A) ◦ π2(x,WA(A)) ◦ x = π2(A,A) ◦ idtmA ◦ x.

Let now F : A → B be a CE-system homomorphism. The underlying functor of CE2E(F ) is
FF : FA → FB, which clearly preserves the choice of terminal objects, while the action on terms is
given by FC . This functor with term structure is both a weakening and a substitution homomorphism
because of Lemma 5.3. Note that commutativity of the front square in the diagram in Lemma 5.3 is
needed for the equations on the action on terms. Finally, it is a projection homomorphism since it
preserves identities.

Remark 5.7. It follows immediately from the above construction that, for every CE-system A, the
E-system CE2E(A) has the property that T (idΓ) is a singleton set for every Γ ∈ F . As we shall see in
Corollary 5.18, this is true for every E-system. In fact, it will follow from Lemma 5.40.1 that CE2E

is essentially surjective on objects.

5.2 From E-systems to CE-systems

In this section we construct a functor from Esys to CEsys. We proceed in several steps: In Section 5.2.1
we define the strict category of internal morphisms of an E-system. There are two kinds of morphisms in
this category: internal morphisms from A to B in context Γ, and for any internal morphism f : A→ B
in context Γ there are morphisms over f . There are also two kinds of composition, and in Section 5.2.2
we prove an interchange law for them. In Section 5.2.3 we complete the construction of the functor
from Esys to CEsys.

5.2.1 The strict category of internal morphisms of an E-sytem

In this section we define for every E-system E, and every context Γ in E, a category CE(Γ). This goal
is accomplished in Theorem 5.17. The empty context [] of E, i.e. a terminal object in F , allows us
to have a non-trivial category structure on the contexts of E. In this case, the category structure is
inherited from the category CE := CE([]).

Definition 5.8. For every A,B ∈ F/Γ we define the set

thom(A,B) := T (〈A〉B).

An element f ∈ thom(A,B) is called an internal morphism in context Γ. We sometimes write
f ∈ thom(A,B) to indicate that f is an internal morphism over Γ, or we may draw a diagram of the
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form

A B

Γ

f

but we shall generally omit the arrows down to Γ and say instead that we have a diagram in context
Γ.

Remark 5.9. Note that thom(idΓ, A) = T (A) for any A ∈ F/Γ, because we have WidΓ.A
= idF/Γ.A.

Note also that thom(A.P,B) = thom(P, 〈A〉B) for any P ∈ F/Γ.A and B ∈ F/Γ, because WA.P =
WP ◦WA. Once we have established a strict category of which the morphisms are given by thom(−,−),
we therefore get that

A.(−) ⊣WA.

The right adjoint to weakening by A, if it exists, will be the dependent product ΠA.

Definition 5.10. Let A,B ∈ F/Γ. For any f ∈ thom(A,B) we define the pre-composition E-
homomorphism

f∗ := Sf ◦WA/B : E/Γ.B → E/Γ.A.

We shall denote the action of f∗ on a family Q ∈ F/Γ.B as Q ◦ f . Similarly, for every C ∈ F/Γ, we
shall write g ◦ f for the action of f∗ on g ∈ thom(B,C) = T (WB(C)).

Lemma 5.11. Let F : E → D be an E-homomorphism. Then for every f ∈ thom(A,B) in E, the
square of E-homomorphisms below commutes.

E/Γ.B D/FΓ.FB

E/Γ.A D/FΓ.FA

F/Γ.B

f∗ (Ff)∗

F/Γ.A

Proof. As F is both a weakening and a substitution homomorphism, it is

(F/Γ.A) ◦ f∗ = (F/Γ.A) ◦ Sf ◦ (WA/B) = SFf ◦ (F/Γ.A.WA(B)) ◦ (WA/B)

= SFf ◦ (WFA/FB) ◦ (F/Γ.B) = (Ff)∗ ◦ (F/Γ.B).

Definition 5.12. Let A,B ∈ F/Γ, Q ∈ F/Γ.A and R ∈ F/Γ.B. For every f ∈ thom(A,B) we define

thomf (Q,R) := thom(Q,R ◦ f).

Remark 5.13.

1. The terms prA,P0 and prA,P1 from Definition 4.57 are internal morphisms:

prA,P0 ∈ thom(A.P,A) and prA,P1 ∈ thomprA,P
0

(A.P, P ).

2. Note that for g ∈ thom(B,C), we have g ◦ f ∈ T (Sf (WA/B(WB(C)))), whereas we would like
that g ◦ f ∈ thom(A,C). More generally, we can show that

Sf ◦ (WA/B) ◦WB = WA.

Since weakening is a weakening homomorphism, we have

Sf ◦ (WA/B) ◦WB = Sf ◦WWA(B) ◦WA.

By condition 3 in Definition 4.45 we get that

Sf ◦WWA(B) ◦WA = WA.
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Remark 5.14. The term structure of f∗, for f ∈ thom(A,B), provides us also with an action on the
internal morphisms over B. To see how this extended notion of precomposition works, suppose we
have a diagram

Q R

B

g

in context Γ, i.e. g ∈ thom(Q,R). Precomposing by f gives us a diagram

Q ◦ f R ◦ f

A

g◦f

in context Γ.

Remark 5.15. Note that condition 5 in Definition 4.45 asserts precisely that (idtmA)
∗

= idF/Γ.A for
any A ∈ F/Γ. In particular, it follows that g ◦ idtmA = g for any g ∈ thom(A,B)

Lemma 5.16. For any f ∈ thom(A,B) and g ∈ thom(B,C) we have f∗ ◦ g∗ = (g ◦ f)∗.

Proof.

f∗ ◦ g∗ = Sf ◦ (WA/B) ◦ Sg ◦ (WB/C)

= Sf ◦ SWA(g) ◦ (WA/B.WB(C)) ◦ (WB/C)

= SSf (WA(g)) ◦ (Sf/WA(WB(C))) ◦ (WA/B.WB(C)) ◦WB/C

= SSf (WA(g)) ◦ ((Sf ◦ (WA/B) ◦WB)/C)

= SSf (WA(g)) ◦ ((Sf ◦WWA(B) ◦WA)/C)

= SSf (WA(g)) ◦WA/C

= (g ◦ f)∗.

Theorem 5.17.

1. For every E-system E and every object Γ in its underlying strict category F , objects of F/Γ and
internal morphisms of E over Γ form a strict category CE(Γ).

2. Every E-homomorphism F : E→ D induces a functor FΓ : CE(Γ)→ CD(F (Γ)) for every Γ in FE.

Proof.

1. For A,B ∈ F/Γ, the set of arrows from A to B is thom(A,B). The fact that composition is
associative is a direct corollary of Lemma 5.16. The axiom (idtmA)∗ = idΓ.A implies that the
identity morphisms satisfy the right identity law. It remains to show that idtmB ◦ f = f , which
is a simple calculation:

idtmB ◦ f = Sf ◦WA(idtmB) = Sf (idtmWAB) = f.

2. The action of FΓ on arrows is given by the term structure of F . Functoriality of FΓ follows from
Lemma 5.11 and the fact that F is a projection homomorphism.

Now that we have a category structure, we can state and prove the following consequence of
Theorem 4.60.

Corollary 5.18.
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1. Let A ∈ F/Γ and Q ∈ F/Γ.B, then for every f ∈ thom(A,B) there is a bijection

ϕ : T (Q ◦ f)
{
h ∈ thom(A,B.Q) | prB,Q0 ◦ h = f

}
.∼

given by ϕ(t) = f.t.

2. For every object Γ, T (idΓ) = {idtmidΓ
}.

Proof.

1. Theorem 4.60 yields the following bijection:

thom(A,B.Q) = T (〈A〉(B.Q))

= T (〈A〉B.〈A〉Q)

∼=
∐

f∈T (〈A〉B)

T (〈A〉Q[f ])

=
∐

f∈thom(A,B)

T (Q ◦ f).

Also, we find pr
〈A〉B,〈A〉Q
0 [h] = 〈A〉prB,Q0 [h] = prB,Q0 ◦ h.

2. The above bijection becomes in this case

T (idΓ.A) ∼= {h ∈ thom(A,A) | prA,idΓ.A

0 ◦ h = idtmA} = {idtmA}

where the second equality follows from prA,idΓ.A

0 = idtmA. Since idΓ = WidΓ
(idΓ), the only

element in T (idΓ) is idtmidΓ
.

Theorem 5.19. Let A ∈ F/Γ and P ∈ F/Γ.A. Precomposition with prA,P0 is weakening by P , i.e.

E/Γ.A E/Γ.A.P
(prA,P

0 )
∗

=WP

Proof.

(
prA,P0

)∗

= SprA,P
0
◦WA.P /A

= S〈P 〉idtmA
◦WP /WA(A) ◦WA/A

= WP ◦ SidtmA
◦WA/A

= WP

We conclude this section with a description of the projections and the pairing operation of an E-
system in the image of the functor CE2E from Construction 5.6 in terms of the underlying CE-system
structure.

Lemma 5.20. Let A be a CE-system and consider the E-system E := CE2E(A). For every object Γ,
every A ∈ F/Γ, P ∈ F/Γ.A, it is

prA,P0 = 〈idΓ.A.P , P 〉 ∈ CA(Γ.A.P,Γ.A.P .〈A.P 〉A)

prA,P1 = 〈idΓ.A.P , idΓ.A.P 〉 ∈ CA(Γ.A.P,Γ.A.P .〈P 〉P )

and, for every x ∈ T (A) and u ∈ T (SxP ), it is

x.u = π2 (x, P ) ◦ u ∈ CA(Γ,Γ.A.P ).
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Proof. The first two claims follow immediately from Definition 4.57 and the definitions in Construc-
tion 5.6. The third claim follows from commutativity of the front-left face in the diagram below.

Γ Γ.SxP Γ.A.P

Γ Γ.SxP Γ.A.P

Γ.A.P • •

Γ Γ.A

Γ.A.P •

Γ

Γ.A.P

x.u

u

id

π2(x,P )

id id

id

u

SxP

π2(x,P )

P

A.P

id

WSxP (A.P )
idtmA.P

WA.P (A.P )

id

x

A

π2(x,P )

A.P

id

WA(A.P )

A.P

id

This diagram commutes by definition, in the sense that every square not involving the top row is a
chosen pullback in A, and the remaining part commutes by definition of idtmA.P and x.u in Construc-
tion 5.6 and Definition 4.54, respectively. In this diagram we drop occurrences of the functor I and
freely use notation from the E-system CE2E(A) to increase readability.

5.2.2 The interchange laws

We are now in the position to define vertical and horizontal composition, and prove properties of them.
In particular, we conclude the section showing in Theorem 5.29 that every pair f ∈ thom(A,B) and

F ∈ thomf (P,Q) induces a morphism, i.e. a commuting square, from prA,P0 to prB,Q0 .

Definition 5.21. Let f ∈ thom(A,B) and F ∈ thomf (P,Q). Then we define

f ⋉ F := 〈P 〉f.F ∈ thom(A.P,B.Q)

Whenever we say that we have a diagram of the form

R S

P Q

A B

f2

f1

f0

we mean that we have f0 ∈ thom(A,B), f1 ∈ thomf0 (P,Q) and f2 ∈ thomf0⋉f1 (R,S).

Lemma 5.22. Let H : E → D be an E-homomorphism. For every f ∈ thom(A,B) and F ∈
thomf (P,Q) it is

H(f ⋉ F ) = H(f) ⋉H(F ).

Proof. H(f ⋉ F ) = H(〈Q〉f.F ) = 〈HQ〉Hf.HF = H(f) ⋉H(F ).

Lemma 5.23. Vertical composition is associative.
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Proof. Consider the diagram

R S

P Q

A B

f2

f1

f0

in context Γ. Because weakening distributes over term extension, and term extension is associative,
we have

(f0 ⋉ f1) ⋉ f2 = 〈R〉(〈P 〉f0.f1).f2

= (〈R〉〈P 〉f0.〈R〉f1).f2

= 〈P.R〉f0.(〈R〉f1.f2) (By Corollary 4.56)

= f0 ⋉ (f1 ⋉ f2).

Definition 5.24. Let f ∈ thom(A,B) and F ∈ thomf (P,Q). Then we define the E-homomorphism

F • := F ∗ ◦ (f∗/Q) : E/ΓB.Q→ E/ΓA.P.

The infix notation of F • is taken to be − • F .

Lemma 5.25. Let f ∈ thom(A,B) and F ∈ thomf (P,Q). Then we have the equality

F • = (f ⋉ F )∗.

Proof.

F ∗ ◦ (f∗/Q) = SF ◦WP ◦ Sf/(WA(Q)) ◦WA/B.Q

= SF ◦ SWP (f)/WP (WA(Q)) ◦WP /WA(B.Q) ◦WA/B.Q

= SF ◦ SWP (f)/WP (WA(Q)) ◦WA.P /B.Q

= SWP (f).F ◦WA.P /B.Q (By Theorem 4.55)

= (f ⋉ F )∗.

In the next theorem we prove the interchange law of horizontal and vertical composition. Its proof
uses the following fact.

Lemma 5.26. Let f ∈ thom(A,B) be an internal morphism in context Γ. Then one has

f∗ ◦WB = WA.

Proof. The proof is a simple calculation:

f∗ ◦WB = Sf ◦WA/B ◦WB = Sf ◦WWA(B) ◦WA = WA.

Theorem 5.27. Consider the diagram

P Q R

A B C

F G

f g

in context Γ. Then the equality

(g ⋉G) ◦ (f ⋉ F ) = (g ◦ f) ⋉ (G • F )

of morphisms from A.P to C.R in context Γ holds.
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Proof. By Lemma 5.25, we have

(g ⋉G) ◦ (f ⋉ F ) = (〈Q〉g.G) ◦ f ◦ F (By Lemma 5.25)

= (〈Q ◦ f〉g ◦ f).(G ◦ f) ◦ F

= (〈Q ◦ f〉g ◦ f ◦ F ).(G ◦ f ◦ F )

= (〈Q ◦ f〉g ◦ f ◦ F ).(G • F )

= (〈P 〉g ◦ f).(G • F ) (By Lemma 5.26)

= (g ◦ f) ⋉ (G • F ).

Theorem 5.28. Consider the diagram

P Q R

A B C

F G

f g

in context Γ. Then F • ◦G• = (G • F )•. In other words the composition − • − is associative.

Proof.

F • ◦G• = (f ⋉ F )∗ ◦ (g ⋉G)∗ (By Lemma 5.25)

= (g ⋉G ◦ f ⋉ F )∗ (By Lemma 5.16)

= (g ◦ f ⋉G • F )∗ (By Theorem 5.27)

= (G • F )•. (By Lemma 5.25)

Theorem 5.29. Let f ∈ thom(A,B) and F ∈ thomf (P,Q). Then f⋉F is the unique morphism from
A.P to B.Q with the property that both the diagram

A.P B.Q

A B

f⋉F

prA,P
0 prB,Q

0

f

commutes and prB,Q1 ◦ f ⋉ F = F .

Proof. We first note that

prB,Q0 ◦ f ⋉ F = prB,Q0 ◦ f ◦ F (By Lemma 5.25)

= 〈Q ◦ f〉idtmB ◦ f ◦ F

= 〈Q ◦ f〉f ◦ F

= 〈P 〉f (By Lemma 5.26)

= f ◦
(

prA,P0

)
. (By Theorem 5.19)

Also, we have

prB,Q1 ◦ f ⋉ F = idtmQ ◦ f ◦ F (By Lemma 5.25)

= idtmQ◦f ◦ F

= F.

Thus, we conclude that f ⋉F has indeed the stated property. For the uniqueness, let G : A.P → B.Q

be a morphism such that prB,Q0 ◦G = f ◦
(

prA,P0

)
and prB,Q1 ◦G = F . Then it follows that

G = f ◦
(

prA,P0

)
.F = 〈P 〉f.F = f ⋉ F.
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5.2.3 The functor from E-systems to CE-systems

Let Esys∗ be the category of pointed E-systems: objects are pairs (E,Γ) of an E-systems E and
an object Γ in its underlying strict category, and arrows are E-homomorphisms that preserve the
distinguished object. There is an evident forgetful functor Esys∗ → Esys together with an embedding
E2E∗ : Esys →֒ Esys∗ which picks out the terminal object of an E-system.

Problem 5.30. To construct a functor E∗2CE : Esys∗ → CEsys.

Construction 5.31 (for Problem 5.30). Let (E,Γ) be a pointed E-system and consider the category
of terms CE(Γ) from Theorem 5.17. Define a functor IΓ

E
: F/Γ → CE(Γ) as follows. It is the identity

on objects and maps an arrow Q : A.Q → A in F/Γ to prA,Q0 ∈ thom(A.Q,A). For functoriality, we

compute prA,idΓ.A

0 = 〈idΓ.A〉idtmA = idtmA and

prA,Q.R0 = 〈Q.R〉idtmA = 〈R〉(〈Q〉idtmA) = 〈R〉prA,Q0

=
(

prA,Q0

)∗

(〈R〉idtmQ)

= prA,Q0 ◦ prQ,R0 .

Given f ∈ thom(A,B) and R in F/Γ.B, there is R ◦ f in F/Γ.A. We define

π2(f,R) := f ⋉ idtmR◦f : A.R ◦ f → B.R. (39)

Then the following diagram in CE(Γ)

A.R ◦ f B.R

A B

π2(f,R)

prA,R◦f
0

prB,R
0

f

(40)

commutes. The functoriality conditions follow immediately from the interchange laws proven in Sec-
tion 5.2.2.

To show that (40) is a pullback square, consider a morphism g : X → A in CE(Γ). Then we have
the isomorphisms

{h ∈ thom(X,B.Q) | prB,Q0 ◦ h = f ◦ g} ∼= T ((f ◦ g)∗(Q)) ∼= {u ∈ thom(X,A.Q ◦ f) | prA,Q◦f
0 ◦ u = g}

Thus, we find for every h : X → B.Q satisfying prB,Q0 ◦h = f ◦ g, a unique morphism u : X → A.Q ◦ f

satisfying prA,Q◦f
0 ◦ u = g. It is easy to verify that π2(f,Q) ◦ u = h, so the universal property of

pullbacks holds.
Let now (D,∆) be a pointed E-system and let F : E→ D be an E-homomorphism such that FΓ = ∆.

In particular, for every A,B ∈ FE/Γ there is a function F : T (〈A〉B)→ T (〈FA〉FB). These functions
give the action on arrows of a functor FΓ : CE(Γ) → CD(FΓ) whose action on objects is given by
F/Γ: FE/Γ→ FD/FΓ. Functoriality of FΓ follows from the fact that F is a projection homomorphism
and Lemma 5.11. Using Lemma 4.58, we see that FΓ ◦ IΓ

E
= IFΓ

D
◦ (F/Γ). Finally, it follows from

Lemma 5.11 and Lemma 5.22 that FΓ preserves the choice of pullback squares.
We have described the action of E∗2CE on objects and arrows. Its functoriality is straightforward.

We obtain a functor E2CE : Esys→ CEsys defining E2CE := E∗2CE ◦E2E∗.

Remark 5.32. For every E-system E and every Γ, the CE-system E∗2CE(E,Γ) is rooted. The
canonical terminal object idΓ of FE/Γ is terminal in CE(Γ) by Corollary 5.18 since for every A ∈ FE/Γ

thom(A, idΓ) = T (WA(idΓ)) = T (idΓ.A).
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Next we give the choice of pullbacks in a CE-system in the image of E2CE in terms of the underlying
E-system structure.

Lemma 5.33. For E an E-sytem and Γ an object in E, consider the CE-system A := E∗2CE(E,Γ).
For every A ∈ F/Γ and P,Q ∈ F/Γ.A it is

(
prA,P0

)∗

Q = 〈P 〉Q ∈ F/Γ.A.P

and
π2(prA,P0 , Q) = pr

P,〈P 〉Q
1 ∈ thom(P.〈P 〉Q,Q).

Proof. The first equality follows from Theorem 5.19. For the second one:

π2(pridΓ,A
0 , B) = pridΓ,A

0 ⋉ idtm〈A〉B

=
(
W〈A〉B〈A〉idtmidΓ

)
.idtm〈A〉B

= (WA〈B〉idtmidΓ
).(WAidtmB)

= 〈A〉(〈B〉idtmidΓ
.idtmB)

= 〈A〉
(

pridΓ,B
0 .pridΓ,B

1

)

= 〈A〉idtmB = idtm〈A〉B

= pr
A,〈A〉B
1 .

5.3 Equivalence between E-systems and CE-systems

In this section, we show that the functors constructed in Sections 5.1 and 5.2 form an adjunction
that, when suitably restricted, yields an equivalence of categories between rooted CE-systems and
E-systems.

Specifically, we prove the following results:

Theorem 5.34.

1. The functor E2CE is left adjoint to CE2E

CEsys Esys
CE2E

⊥

E2CE

2. The functor E2CE is full and faithful.

3. The image of E2CE is equivalent to rCEsys.

Consider the functors E2rCE and rCE2E obtained obtained by (co)restricting E2CE and CE2E

to rCEsys.

Corollary 5.35. The pair of adjoint functors E2CE and CE2E induces an equivalence between the
category Esys of E-systems and the category rCEsys of rooted CE-systems.

Proof. The equivalence follows from Theorem 5.34.3 and the fact that a coreflective subcategory is
equivalent to its image.

To prove Theorem 5.34 we construct unit and counit and prove the triangular identities. In this
proof we denote as

F/1 F
d

!
(41)

the canonical isomorphism of strict categories, for any strict category F with a terminal object 1. We
may still leave this isomorphism implicit when doing so creates no confusion.
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Problem 5.36. To construct, for each E-system E, an E-homomorphism ηE : E→ CE2E◦E2CE(E),
naturally in E.

Construction 5.37 (for Problem 5.36). Let E be an E-system and denote its terminal object by
[]. In this proof we shall decorate with a hat the constituents of the E-system structure of Ê :=
CE2E ◦E2CE(E). The underlying pre-category of Ê is FE/[] and, for X ∈ (FE/[])/!Γ

T̂ (X) =
{
h ∈ thom(!Γ, !Γ.X) | pr!Γ,!Γ.X

0 ◦ h = idtm!Γ

}
.

We define ηE as the functor ! : FE → FE/[] in (41) with term structure given by the bijections

T (A) T̂ (!(A))
ϕ

(42)

from Corollary 5.18, that is, for A ∈ FE/Γ and t ∈ T (A), it is ηE(t) := idtm!Γ
.t.

To conclude that this defines an E-homomorphism we compute for A ∈ FE/Γ

Ŵ!(A) ◦ (!/Γ) =
(

pr!Γ,A
0

)∗

◦ (!/Γ) = WA ◦ (!/Γ)

= (!/Γ.A) ◦WA,

and for t ∈ T (A),

Ŝ!(t) ◦ (!/Γ.A)) = (idtm!Γ
.t)

∗

= Sidtm!Γ
.t ◦ (W!Γ

/!Γ.A)

= St ◦ (Sidtm!Γ
◦ (W!Γ

/!Γ))/A

= (!/Γ) ◦ St,

and finally

ϕ(idtmA) = idtm!Γ
.idtmA

= idtm!Γ.A

= ˆidtm!(A).

Naturality in E requires that any E-homomorphism F : E → D commutes with η as functors, this is
clear, with term structures, and this follows from Lemmas 5.11 and 4.58.

Problem 5.38. To construct, for each CE-system A, a CE-homomorphism εA : E2CE◦CE2E(A)→
A, naturally in A.

Construction 5.39 (for Problem 5.38). Let A be a CE-system and let E := CE2E(A) be the
associated E-system. The underlying functor of the CE-system Â := E2CE ◦CE2E(A) is IE : F/[] →
CE defined in Construction 5.31. As before, we decorate with a hat the constituents of the CE-system
structure of Â. For Γ,∆ in F , recall that thom(!∆, !Γ) = {∆

x
−→ ∆.(!∆

∗!Γ) | I(!∆
∗!Γ) ◦ x = id∆} and

let

thom(!∆, !Γ) C(∆,Γ)
ψ

(43)

be the function that maps x to the arrow π2 (I(!∆), !Γ) ◦ x of C. The functions ψ give rise to a
functor Ψ: CE → C as follows. It maps identities to identities since the identity on Γ in CE is the only
h ∈ thom(!Γ, !Γ) such that π2 (I(!Γ, !Γ) ◦ h = idΓ. To see that it preserves composites, consider the
commutative diagram below which defines the composite y ◦x of x ∈ thom(!∆, !Γ) and y ∈ thom(!Γ, !Ξ)
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in CE.

∆ ∆.(!∆
∗!Γ) Γ Γ.(!Γ

∗!Ξ)

∆.(!∆
∗!Ξ) Ξ

Γ

∆ 1

id∆

x π2(!∆,!Γ)

I(!Γ)

y

π2(!Γ,!Ξ)π2(!∆,!Ξ)y◦x

I(!Ξ)

I(!Γ)

I(!∆)

Functoriality of Ψ amounts to the commutativity of the upper face.
To conclude that (d,Ψ) is a CE-homomorphism it remains to show that it preserves chosen pull-

backs, since the square below commutes by definition of Ψ.

F/[] F

CE C

IE

d

IA

Ψ

Let then x ∈ thom(!∆, !Γ) and A ∈ F/Γ. It is

x∗̂(!(A)) = Sx ◦ (W!∆
/!Γ)◦!(A)

= x∗ ◦ (I(!∆)∗/!Γ)◦!(A)

=!
(
(π2 (I(!∆), !Γ) ◦ x)

∗
A
)

=!
(
Ψ(x)

∗
A
)

whereas
Ψ(π̂2 (x, !(A))) = π2(I(!∆.(Ψ(x)∗A)), !Γ.A) ◦ π̂2 (x, !(A)) = π2 (Ψ(x), A)

holds by commutativity of the upper face in

∆.Ψ(x)
∗
A

• ∆.Ψ(x)∗A

• • Γ.A

∆.Ψ(x)
∗
A ∆

• • Γ

∆.Ψ(x)
∗
A ∆ 1

id

idtmΨ(x)∗A

id

Ψ(x)∗A

π2(Ψ(x),A)

π̂2(x,!(A))

A

id

Ψ(x)∗A

id

x
Ψ(x)

π2(I(!∆),!Γ)

!Γ

Ψ(x)∗A !∆
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This diagram commutes because all the squares not involving the top-left object are chosen pullback
squares in A, two of the remaining triangles commute by definition of idtm, and the third one involving
π̂2(x, !(A)) commutes by (39) and Lemma 5.20.

The component εA : E2CE ◦CE2E(A)→ A of the counit at A is defined to be the pair (d,Ψ). To
see that this choice is natural in A it is enough to show that the square of functors

CCE2E(A) CA

CCE2E(B) CB

ΨA

FC

ΨB

commutes for every CE-homomorphism F : A → B. Note that the action of the left-hand functor
coincide with that of F . Commutativity of the square thus follows from

F (π2 (x,A)) = π2 (Fx, FA)

which holds by definition of CE-homomorphism.

Lemma 5.40.

1. For every E-system E, the E-homomorphism ηE from Problem 5.36 is invertible.

2. For every CE-system A, the CE-homomorphism εA from Problem 5.38 is invertible if and only
if A is rooted.

Proof. 1. By construction, the E-homomorphism ηE is invertible as a functor with term structure. The
inverse is an E-homomorphism too:

(d/!Γ.A) ◦ Ŵ!(A) =
(

pr!Γ,A
0

)∗

◦ (d/!Γ) = SWA(idtm!Γ
) ◦ (W!Γ.A

/!Γ) ◦ (d/!Γ)

= WA ◦ Sidtm!Γ
◦ (W!Γ

/!Γ) ◦ (d/!Γ)

= WA ◦ (d/!Γ),

and for t ∈ T (A),

(d/!Γ) ◦ Ŝ!(t) = (idtm!Γ
.t)

∗ ◦ (d/!Γ.A) = Sidtm!Γ
.t ◦ (W!Γ

/!Γ.A) ◦ (d/!Γ.A)

= St ◦ (Sidtm!Γ
◦ (W!Γ

/!Γ))/A ◦ (d/!Γ.A)

= St ◦ (d/!Γ.A),

and finally

d( ˆidtm!(A)) = pr
!Γ.A,WA(A)
1 [idtm!Γ.A

.pr!Γ,A
1 [idtm!Γ.A

]]

= pr!Γ,A
1 [idtm!Γ

.idtmA]

= idtmA.

2. Note first that each function ψ in (43) induces a bijection

thom(!∆, !Γ) {f ∈ C(∆,Γ) | I(!Γ) ◦ f = I(!∆)}∼ (44)

with inverse given by the universal property of the canonical pullback square below.

∆.!∆
∗!Γ Γ

∆ 1

I(!Γ)

I(!∆)

As soon as 1 is terminal in C, the right-hand set in (44) coincide with C(∆,Γ). Conversely, if the counit
components are invertible it follows from (44) that C(∆, 1) = {!∆}.
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Proof of Theorem 5.34. 1. To complete the proof we show that, for an E-system E and a CE-system
A

CE2E(εA) ◦ ηCE2E(A) = IdCE2E(A) and εE2CE(E) ◦E2CE(ηE) = IdE2CE(E).

It is clear that these equations hold between functors on families by the isomorphism in (41). It
remains to show that they hold also between the term structures in the left-hand one, and between
functors on substitutions in the right-hand one.

For a CE-system A, a family A ∈ F/Γ and y ∈ T (A) = {x : Γ→ Γ.A | I(A)◦x = idΓ}, Lemma 5.33
yields ηCE2E(A)(y) = π2(idtm!Γ

, π2(!Γ, !Γ)
∗
A) ◦ y. It follows that

CE2E(εA) ◦ ηCE2E(A)(y) = π2(!Γ, !Γ.A) ◦ π2(idtm!Γ
, π2(!Γ, !Γ)

∗
A) ◦ y

= π2(π2(!Γ, !Γ), A) ◦ π2(idtm!Γ
, π2(!Γ, !Γ)∗A) ◦ y

= π2(π2(!Γ, !Γ) ◦ idtm!Γ
, A) ◦ y

= y.

For an E-system E, objects ∆ and Γ and f ∈ thom(!∆, !Γ), Lemmas 5.33 and 4.59 yield

εE2CE(E) ◦E2CE(ηE)(f) = pr
!∆,〈!∆〉!Γ

1 [idtm!Γ
.f ] = f.

This concludes the proof of the adjunction.
2. It is a consequence of Lemma 5.40.1.
3. We have already observed in Remark 5.32 that, for every E-system E, the CE-system E2CE(E)

is rooted. The converse follows from Lemma 5.40.2.

5.4 Equivalence between B-systems and C-systems

Here we describe the main contribution of our work: the construction of an equivalence of categories
between the category of C-systems of Section 3 and the category of B-systems of Section 4.

Lemma 5.41. The functor CE2E : CEsys→ Esys restricts to a functor CE2E : rCEsys
s
→ Esys

s

between stratified systems.

Proof. To see that the E-system CE2E(A) is stratified whenever the rooted CE-system A is stratified,
note first that the underlying category F is stratified by assumption. Weakening and substitution
homomorphisms are stratified since the pullback functor that defines them in Construction 5.6.(37,38)
is stratified.

For a stratified CE-homomorphism F , the underlying functor of the E-homomorphism CE2E(F )
is the component FF of F on families, which is stratified by assumption.

Lemma 5.42. The functor E2CE : Esys→ rCEsys restricts to a functor E2CE : Esyss → rCEsyss

between stratified systems.

Proof. Let E be a stratified E-system. In particular, the underlying category F is stratified. Since
weakening and substitution homomorphisms are also stratified by assumption, so is the precomposition
homomorphisms from Definition 5.10. It follows that the CE-system E2CE(E) is stratified.

For a stratified E-homomorphismF , the component on families of the CE-homomorphism E2CE(F )
is the underlying functor of F , which is stratified by assumption.

Lemma 5.43.

1. For every stratified E-system E, the unit component ηE of Construction 5.37 is a stratified E-
homomorphism.

2. For every stratified CE-system A, the counit component εA of Construction 5.39 is a stratified
CE-homomorphism.
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3. The adjunction E2CE ⊣ CE2E from Theorem 5.34.1 restricts to an adjunction

CEsyss Esyss.
CE2E

⊥

E2CE

between subcategories of stratified structures.

Proof.

1. The underlying functor of the unit component ηE is the functor ! : F → F/[] from (41). This
functor is stratified since L([]) = 0.

2. The underlying functor of the counit component εA on families is the inverse d: F/1 → F of
! : F → F/1, and it is stratified for the same reason.

3. This is a consequence of Lemmas 5.41 and 5.42 and Items 1 and 2 just proved.

Define a functor C2B : Csys→ Bsys as the composite

Csys rCEsyss Esyss Bsys
CE CE2E E2B (45)

where the functors are, in order, CE from Construction 3.24 CE2E from Construction 5.6 and E2B

from Construction 4.80. Similarly, we obtain a functor B2C : Bsys→ Csys in the other direction as
the composite

Bsys Esyss rCEsyss Csys
B2E E2CE C (46)

where the functors are, in order, B2E from Lemma 4.71, E2CE from Construction 5.31 and C from
Definition 3.28.

Theorem 5.44. The pair of functors C2B and B2C establish an equivalence between the category of
C-systems and the category of B-systems.

Proof. The functors defining C2B in (45) and B2C in (46) are essentially inverse to each other by
Theorems 3.30 and 4.83 and Corollary 5.35. The claim follows since equivalences compose.

6 Conclusion

We have constructed an equivalence between the category of C-systems and the category of B-systems,
each equipped with a suitable notion of morphism. The equivalence does not rely on classical reasoning
principles such as the axiom of choice or excluded middle. This equivalence constitutes a crucial piece
in Voevodsky’s research program on the formulation and solution of an initiality conjecture.

Some questions that remain open:

• Voevodsky has studied different type constructions on C-systems, in particular, dependent func-
tion types [Voe16a, Voe17b] and identity types [Voe15b]. The equivalence constructed in the
present paper should be extended to type and term constructors on C-systems and B-systems.

• Via Generalized Algebraic Theories, B-systems and C-systems relate to Garner’s algebras for a
monad on type-and-term systems [Gar15], in the form of an equivalence of categories. It would
be very useful to have an explicit description of the maps back and forth, without passing through
GATs.

• E-systems and CE-systems should be related to other unstratified categorical structures for the
interpretation of type theory, such as categories with families [Dyb96].
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