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The world’s most challenging environmental issue is climate change. Agricultural 
productivity and nutritional quality are both substantially threatened by extreme 
and unpredicted climate events. To develop climate resilient cultivars, stress 
tolerance along with the grain quality needs to be  prioritized. Present study 
was planned to assess the effect of water limitation on seed quality in lentil, a 
cool season legume crop. A pot experiment was carried out with 20 diverse 
lentil genotypes grown under normal (80% field capacity) and limited (25% field 
capacity) soil moisture. Seed protein, Fe, Zn, phytate, protein and yield were 
recorded in both the conditions. Seed yield and weight were reduced by 38.9 and 
12.1%, respectively, in response to stress. Seed protein, Fe, Zn, its availability as well 
as antioxidant properties also reduced considerably, while genotype dependent 
variation was noted with respect to seed size traits. Positive correlation was 
observed between seed yield and antioxidant activity, seed weight and Zn content 
and availability in stress. Based on principal component analysis and clustering, 
IG129185, IC559845, IC599829, IC282863, IC361417, IG334, IC560037, P8114 
and L5126 were promising genotypes for seed size, Fe and protein content, while, 
FLIP-96-51, P3211 and IC398019 were promising for yield, Zn and antioxidant 
capacity. Identified lentil genotypes can be  utilized as trait donors for quality 
improvement in lentil breeding.
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1. Introduction

Climate change is detrimental to all the dimensions of food and nutritional security. Climate 
unpredictability has disturbed the global food production, accessibility, utilization as well as 
food system stability (1). During the past 40 years, agricultural productivity has suffered a 
significant setback as a result of climatic variabilities like extreme temperatures, flooding, 
drought, and an increase in the occurrence of pests and diseases (2). The United Nations has set 
Sustainable Development Goals (SDGs) to achieve a better and sustainable future for all till 2030. 
The accomplishment of “Zero Hunger” and eradication of poverty is the most important goal 
among SDGs. To achieve these goals, agriculture and food systems must be  sustainable, 
resource- efficient, nutrition-sensitive, and climate-smart.
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Legumes play an important role in food and nutritional security 
and contribute roughly 10% of daily protein consumption and 5% of 
daily energy intake (3). They also contain considerable levels of 
vitamins (thiamin, riboflavin, pyridoxine, vitamin K, E, B and folic 
acid) and minerals (Ca, Fe, Zn, Mg, and lysine). Though the food 
legumes grow in a diverse range of environments, abiotic stresses such 
as drought, heat/temperature, salinity, and heavy metals adversely 
affect grain yield and quality (4, 5). Water stress is among the most 
critical factors limiting the production of legumes, particularly in the 
arid and semi-arid tropics. Water limitation during the flowering/
grain filling is highly detrimental to grain yield and quality (6). High 
temperature/water stress may lead to early senescence, shorten seed 
filling duration and affect remobilization of assimilates from source to 
sink (7). Grain development is mostly limited by stress-induced 
reductions in assimilate supply (8, 9). Poor soil moisture deteriorated 
grain quality in wheat by affecting protein composition and dietary 
fibre content (10), while, grain N, P, Fe, and Zn levels along with the 
total grain protein in chickpea (11). In rice, grain length, width, and 
total milling recovery decreased, and chalkiness increased under the 
water deficit (12). Terminal stress altered the fatty acid composition of 
soybean seeds, which depreciated the oil content, quality, and stability 
(13). Though different studies have shown the negative impact of 
water stress on yield in major cereals and legumes, nutritional aspects 
have not gained much attention.

Lentil (Lens culinaris L.) is an important legume crop, which is 
primarily cultivated in Canada, India, and Turkey (14). Lentil seeds 
are highly rich in protein (20–30%), low digestible carbohydrates 
(20%), fat (1.0%), and vitamins (15). The high concentrations of 
prebiotic or low-digestible carbohydrates in lentils, such as resistant 
starch (75 mg g−1), raffinose-family oligosaccharides (40.7 mg g−1), 
sugar alcohols (14.2 mg g−1) and fructo-oligosaccharides (0.62 mg g−1) 
contribute to its health benefits (16). In black gram and green gram, 
water stress during the post-flowering growth phase may reduce up to 
70% of grain yield (17). Heat individually and in combination with 
water stress declined grain Fe, Zn and crude protein content in lentils. 
Combined stress was more detrimental to lentil yield and quality 
compared to heat individually (18). Since lentil is a highly nutritious 
legume crop, there is a need to generate information on effect of water 
limitation on grain quality to ensure nutritional security amid climatic 
variability. Therefore, we  hypothesized that water limitation may 
deteriorate the seed quality in lentils and identification of genotypes 
with better yield and quality under stress should be targeted in lentil 
improvement breeding.

Keeping this in view, the present study aimed to (i) determine the 
effect of limited soil moisture on nutritional quality in diverse lentil 
genotypes (ii) analyze the relationship among yield and quality traits 
in different water regimes (iii) selection of superior lentil genotypes in 
terms of seed yield and quality in response to stress.

2. Materials and methods

2.1. Experimental material

A set of 20 lentil accessions (P3211, IC560037, IC398019, P8110, 
L5126, IC278791, IC559845, IG129185, IG334, IC282863, IC201678, 
IC361417, IC559829, IC279627, IC201676, IC208327, EC78391, 
P8114, FLIP-96-51, JL3) was assessed for their yield and quality 

response to water stress in controlled conditions during 2019–20 and 
2020–21. The seeds were obtained from National Genebank, ICAR- 
National Bureau of Plant Genetic Resources, New Delhi, India.

2.2. Experimental conditions

The experiment was conducted in a randomized control block 
design with four replications (10 pots per replication) and two 
treatments during rabi season at ICAR-National Bureau of Plant 
Genetic Resources, New Delhi (28.6331°N, 77.1525°E). Pots with 14″ 
diameter were filled with the top field soil (sandy loam, pH 7.0) and 
farmyard manure in a ratio of 1:1. The potting mixture was 
supplemented with Tricalcium phosphate fertilizer (10 mg kg−1) before 
pot filling. Plants were maintained at 80% field capacity till flowering. 
Field capacity was maintained gravimetrically by measuring the pots 
regularly and supplying only the required amount of water (19). At the 
onset of flowering, water stress was implemented in one set of 
genotypes by restricting the water supply till 25% field capacity is 
reached. Thereafter, stressed plants were maintained at the same field 
capacity till harvesting. Normal plants were maintained at 80% field 
capacity till harvesting. Before sowing, seeds were treated with 1% 
Sodium hypochlorite solution followed by thorough washing. Seed 
germination was carried out in dark at 22°C. After emergence, five 
seedlings were transferred to pots. Later on, two plants were 
maintained in each pot. Plants from normal and stress were harvested 
at maturity for recording the yield and quality parameters.

2.3. Grain yield and test weight

At maturity, the plants were harvested. Grain yield was measured 
by thrashing 10 plants from each replication. Test weight was recorded 
from three replications for 100 seeds per replication.

2.4. Estimation of seed quality traits

Seed samples from three replications were taken for quantifying 
Fe and Zn content from both water regimes. Samples were digested 
using the standard diacid digestion method. Total Fe and Zn were 
measured by using atomic absorption spectroscopy (20). N content 
was determined in seed samples using the Kjeldahl method (21). Seed 
protein was calculated by multiplying the N content with 6.25 as a 
conversion factor.

Phytic acid (PA) was analyzed in the seed samples using the 
Megazyme kit (22) as per standard assay procedure for P issued by 
phytase and alkaline phosphatase. The inositol phosphates are acid 
extracted, then treated with a phytase that is selective for PA (IP6), 
and the lower myo-inositol phosphate forms. Further reaction with 
alkaline phosphatase produces the final phosphate from myo-inositol 
phosphate (IP1) which is relatively phytase resistant. A modified 
colorimetric method was used to determine the total released 
phosphate. Inorganic phosphate was quantified as P from a 
calibration curve developed using standards of known P 
concentration. PA and Zn contents were converted to moles and the 
ratio was calculated accordingly. DPPH radical scavenging activity 
assay was carried out in a methanolic extract of lentil genotypes 
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spectrophotometrically (23). The activity was calculated using the 
below- mentioned equation:

 

( )
( )
DPPH free radical scavenging activity %
1 Absorbance of sample / Absorbance of control 100

=
− ×

2.5. Seed size traits

Seed size (area, length and breadth) was studied from each 
replication by scanning the seeds of each genotype with a flatbed 
scanner (Canon LiDE 110 version 1.3.00). The scanned images were 
analyzed using Grain Size & Shape Properties, a MATLAB based 
software developed by ICAR-Central Institute of Agriculture 
Engineering, Bhopal, India.

2.6. Statistical analysis

Data was analyzed using R software. The least significant 
difference was calculated at 5 and 1% p level. Pearson’s correlation 
coefficient analysis and principal component analysis were done to 
study the correlation and identification of traits contributing to yield 
and quality under normal and stress conditions. The clustering of the 
genotypes was done using Ward’s method in Microsoft Excel.

3. Results

In both normal and stress conditions, lentil genotypes were 
assessed for yield (seed plant−1, test weight), seed size (length, width, 
and area), and quality parameters (Fe, Zn, protein, phytic acid, PA:Zn, 
DPPH radical scavenging activity). The effects of genotype (G), 
environment (E), and their interaction (G × E) were highly significant 
for all examined characteristics at p < 0.001, with the exception of test 
weight (TW) at p < 0.01.

3.1. Effect of water stress on yield traits

Seed yield plant−1 (SY) and test weight (TW) decreased 
significantly because of stress (Table 1). Effect of stress was more on 
yield compared seed weight as shown by reduction in mean SY 
(38.9%) and TW (12.1%). Coefficient of variation was 6.3% for yield 
and 7.34% for seed weight under normal condition, which reduced 
under stress environment (Table  1). G, E and G × E interaction 
effects were highly significant for SY at p < 0.001 and TW at p < 0.01 
(Table 2).

3.2. Effect of water stress on grain quality

Fe content ranged 31.3–84.1 ppm with a mean value of 52.8 ppm 
and reduced by 24.2% on exposure to stress (Table 1). Similarly, Zn 
content recorded the depreciation of 31.1% compared to the control. 
Zn content varied from 36.6–66.8 ppm under normal and 20.4–
49.6 ppm under stress conditions. Grain protein ranged from T
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17.8–25.8% among different genotypes and. it reduced severely by 
25.3% (Table 1).

Mean PA content ranged from 5.1–13.3 in normal with a mean of 
8.5 (Table 1). Stress increased PA by 32.4%. Genotypic variation was the 
highest for PA (11.5%) among all the recorded traits in no stress 
condition. Similarly, the mean PA:Zn ratio became two -fold in water 
stress. PA:Zn ratio ranged from 8.05–28.08 in normal conditions. DPPH 
free radical scavenging activity ranged 4.2–8.4 in normal and declined 
remarkably by 44.9% on exposure to stress (Table 1). G, E and G × E 
effects were significant for all the quality traits at p < 0.001 (Table 2).

3.3. Effect of water stress on seed size

Limited moisture availability resulted in a significant increase in 
mean seed length, breadth, and area by 18.9, 17.7 and 33.5%, 
respectively, (Table 1). Variation was the highest for BRD (9.02%) 
under drought compared to all observed traits. The range for seed 
LEN was 3.2–6.3 mm, BRD 2.6–6.2 mm and AREA 6.4–29.3 mm2 
under normal condition. ANOVA showed the existence of highly 
signification G, E, G × E interaction effects for all the size traits 
(Table 2).

3.4. Association between yield, seed size 
and quality traits

The correlations between yield and other quality traits are 
depicted in Figure 1. Seed yield had negative correlation to Fe (r = 0.49, 
p < 0.05) and a positive correlation to DPPH activity (r = 0.54, p < 0.05) 
under normal condition (Figure 1A). Grain weight was positively 
associated with seed length (r = 0.63 p < 0.05), breadth (r = 0.62 
p < 0.05) and area (r = 0.66 p < 0.05). No correlation between TW and 
seed nutritional quality traits existed in normal condition.

Under stress, yield showed a significant positive correlation to 
DPPH activity only (r = 0.55 p < 0.05; Figure 1B). Seed weight exhibited 
a positive association with Zn (r = 0.66 p < 0.05) and negative 
correlation to PA (r = 0.51 p < 0.05), PA/Zn (r = 0.71, p < 0.05) in 
stress conditions.

3.5. Principal component analysis

Principal component analysis (PCA) was used to determine the 
major traits accountable for genotypic variability under both the 
treatments. Eigenvalues, variance, and cumulative variances are 
shown in Table 3. We identified four principal components explaining 
81.21% variability under normal and 80.26% variability under 
stress conditions.

The PCA analysis revealed that PC1 contributed 33.40% of total 
variability and it was positively associated with grain quality 
parameters while grain size traits were negatively correlated in 
normal conditions (Table 3). The PC2 accounted for 19% and was 
associated positively with Zn, protein, and phytic acid. Similarly, PC3 
contributed to 16.52% of the variability and had a significant 
association with Zn, Fe, and PA, TW and a low association with grain 
yield. PC4 explained a 12.30% highly positive association with Zn, 
protein, and other studied traits except for Fe and grain weight 
(Table 3). PCA biplot analysis considering PC1, and PC2 identified 
three trait groups among studied genotypes (Figure 2A). Seed size, 
quality (Except Fe, PA and PA:Zn ratio) and yield traits were the 
major contributors to PC1 and were highly correlated in the 
genotypes present in group I, and IV. Seed Fe, phytate and PA:Zn 
ratio contributed to PC2 and was correlated in genotypes present in 
group II. Genotypes in group III were associated to yield and quality 
traits contributing to PC1.

In stress, PC1 explained 35.02% variability and was positively 
correlated to all the grain yield, quality parameters and morpho-
metric parameters except phytic acid and PA/Zn (Table  3). PC2 
contributed 17.94% and phytate and its ratio to Zn contributed mainly 
to component 2. Similarly, PC3 accounted for 15.58% variation and 
had a profound positive association with Zn and Fe. PC4 depicted 
11.72% variability with a significant positive association with Zn, seed 
protein, and phytate. PCA biplot based on PC1 and PC2 accounting 
for 52.96% variation showed the presence of two groups under stress 
(Figure 2B). All the seed size, yield, and quality traits contributed for 
PC1 and group II genotypes had a great association with the traits 
referring to PC1. PA and its ratio to Zn were the major traits for PC2 
and group I genotypes were strongly correlated to these traits.

3.6. Identification of potential genotypes 
by clustering

The hierarchical cluster analysis was performed following Ward’s 
method considering all the recorded traits under normal and water 
limited conditions. The genotypes were grouped into 4 clusters each 
in normal and stress environment (Figure 3). In no stress condition, 
the genotypes were put together into two major clusters at a distance 
of 38% under normal condition (Figure 3A). Cluster I had FLIP-96-
51. Second cluster was further divided into 3 sub-clusters., cluster II 
IC278791, IC208327, IC559845 and IC282863, cluster III IG129185, 
C279627, IG334, IC201678, P8110, P8114, IC398019, IC361417, 
IC559829, EC78391 and cluster IV L5126, JL3, P3211, IC560037 and 
IC201676 (Figure 3A).

In stress, genotypes were classified into two major clusters 
(Figure  3B). Cluster I  consisted of JL3, IC201676, IC208327 and 
Cluster 2 had the rest of the genotypes and was further sub divided 

TABLE 2 Analysis of variance (ANOVA) for seed size, quality and yield traits of lentil genotypes.

Fe Zn PRT PA PA:Zn DPPH AREA LEN BRD SY TW

G 501.51*** 344.62 *** 18.99 *** 13.96 *** 3.50 *** 5.47 *** 62.98 *** 1.51 *** 1.50 *** 2.38 *** 0.65 ***

E 219.36*** 9216.92*** 1039.35*** 226.82 *** 9.93 *** 281.39 *** 316.14 *** 15.48 *** 9.84 *** 120.98 *** 3.05***

GxE 318.62*** 239.65 *** 8.61 *** 3.34 *** 1.50 *** 1.51 *** 25.80 *** 1.09 *** 0.66 *** 0.43 *** 0.10**

*p < 0.05, **p < 0.01,***p < 0.001. Fe, Iron; Zn, Zinc; PRT, protein; PA, phytic acid; DPPH, DPPH scavenging activity; AREA, seed area; LEN, length; BRD, breadth; SY, seed yield; TW, test 
weight; G, genotype; E, environment.
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into small subclusters. The most diverse genotypes, JL3 and P8114, 
were identified along the dendrogram’s edge. Accessions within each 
cluster showed less variation, however among the clusters a significant 
difference was observed with respect to grain yield and quality traits. 
Cluster 1 (JL3, IC201676, IC208327) recorded poor performance with 
respect to seed size, yield and quality traits and reported higher values 
for phytate and PA/Zn ratio under stress (Figure 2B). In cluster II, 
IG129185, IC559845, IC599829, IC282863, IC361417, IG334, 
IC560037, P8114 and L5126 were promising with respect to seed size, 
Fe and protein content (Figures 2B, 3B). FLIP-96-51, P3211, IC398019, 
and P8110 performed better in terms of yield, Zn, and DPPH radical 
scavenging activity (Figures 2B, 3B).

4. Discussion

Lentil is sensitive to water limitation during the seedling and 
flowering stage. Severe water stress may reduce the crop yield by 50% 
depending on the stage (18). In the study, the effect of water stress was 
studied on yield, seed size and quality traits in lentils. Stress reduced 
seed Fe, Zn, protein, and DPPH radical scavenging capacity in 
different lentil genotypes (Table 1). In contrast, there was an increase 
in mean length, breadth, area, phytate, and PA/Zn ratio in all the 
tested genotypes.

Seed yield and test weight reduced in genotypes on exposure to 
stress and G, E, and their interaction effects were significant at 

FIGURE 1

Pearson correlation’s coefficient between selected traits in (A) normal and (B) stress conditions. The non-significant correlations (p < 0.05) are indicated 
with a cross in the individual cells. PRT, protein; PA, phytic acid; DPPH, DPPH scavenging activity; LEN, length; BRD, breadth; SY, seed yield; TW, test 
weight.

TABLE 3 Extracted Eigenvalues and vectors associated with the first four principal components (PC) under normal and stress condition.

Particulars Treatment PC1 PC2 PC3 PC4

Eigenvalues Normal Stress 3.67 3.85 2.09 1.97 1.82 1.72 1.35 1.29

variance (%) Normal Stress 33.40 35.02 19.00 17.93 16.52 15.58 12.30 11.72

Cumulative variance (%) Normal Stress 33.40 35.02 52.40 52.95 68.92 68.53 81.22 80.25

Traits Coefficient vectors

Zn Normal Stress 0.19 0.21 0.03 0.32 0.52–0.25 0.76–0.45

Fe Normal Stress 0.36 0.34 −0.17 -0.30 0.35–0.30 −0.12 0.22

Protein Normal Stress 0.17 0.23 0.01 0.28 −0.65 -0.31 0.45–0.57

Phytic acid Normal Stress −0.34 -0.27 0.17 0.28 0.22 0.06 0.26 0.38

PA/Zn ratio Normal Stress −0.39 -0.39 0.24 0.32 −0.15 0.29 0.16–0.06

DPPH scavenging activity Normal Stress 0.37 0.06 −0.10 -0.23 −0.19 0.62 0.14–0.24

Area Normal Stress −0.25 0.39 −0.51 0.33 −0.03 0.20 0.13 0.29

Length Normal Stress −0.28 0.30 −0.42 0.38 −0.05 0.04 0.14 0.08

Breadth Normal Stress −0.27 0.37 −0.48 0.28 −0.05 0.23 0.10 0.34

Seed yield Normal Stress 0.37 0.13 −0.09 -0.29 −0.24 0.51 0.13 0.02

Test weight Normal Stress 0.22 0.40 −0.45 -0.29 0.13–0.01 −0.16 -0.05
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FIGURE 3

Dendrogram representing the clustering in (A) normal and (B) water stress conditions.

p < 0.001. As already reported in different studies, impairment of 
physiological mechanism, photosynthate mobilization, and loss of 
pods was associated with the yield loss in lentil under stress condition 
(24–26).

Genetic constitution and environmental factors affect the seed 
composition in legumes significantly (27). Grain mineral and 
protein content have a profound correlation to environmental 
conditions. Present reported significant reduction in Fe and Zn 
content in different lentil genotypes in stress. Water limitation 
induced decrease in grain Fe and Zn content may be  due to 
hampered nutrient uptake, availability, transport and unloading 

mechanism (28, 29). In addition, nutrient absorption and utilization 
efficiency may further decline due to slow transpiration rate under 
water stress (26, 30). Though we reported low mineral content in 
lentil, on the contrary, water deficit had no effect on seed mineral 
content in common bean (31).

The PA is an important form of phosphorus storage in legumes. 
It is required during germination and the early stages of plant 
growth. It is a potential chelator of cations and can bind with 
minerals in the digestive tract available by food consumption. 
Therefore, PA poses a constraint to nutrient absorption and may lead 
to deficiency. Though the lentil germplasm had significant variability 

FIGURE 2

PCA biplots of studied traits in normal (A) and water stress (B) conditions. PRT: protein, PA: phytic acid, DPPH: Total antioxidant activity, LEN: length, 
BRD: breadth, SY: seed yield, TW: test weight.
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for Fe and Zn content, but the presence of antinutrients like PA may 
limit the intake of micronutrients. Therefore, in the present study PA 
and its ratio to Zn were quantified under normal and water stress 
conditions. We observed a highly significant increase in PA and a 
reduction in Zn availability because of stress. Dumschott et al. (32) 
reported the accumulation of phytic acid like myo-inositol hexa 
phosphoric acid during water scarcity observed in the present study 
as well. High PA concentration was reported in lentils and common 
beans under the high temperature regimes (33, 34) and also under 
combined heat and water stress (24, 26). Water limitation 
downregulates the protein synthesis. In addition, poor N fixation 
and partitioning also result in low protein in legumes under drought 
conditions (18). We also observed mean reduction of 25.3% in the 
protein content of the lentil genotypes (18) and chickpeas (11). 
However, the highest protein content was 25.81 and 22.5% under 
normal and stress conditions, respectively, (Table 1), which shows 
that response was genotype dependent. Lentil is rich in polyphenols, 
which have antioxidant, anti-inflammatory, and nephro-protective 
properties. Lentil consumption is recommended to decrease the risk 
of diabetes, obesity, and other cardio-vascular diseases. Mean 
antioxidant activity quantified using DPPH asaay declined 
dramatically under stress. Reduction in antioxidant capacity may 
be attributed to a decrease in phenol concentration as reported in 
cow pea (35). Correlation study showed that grain yield was 
positively related to antioxidant properties in stress. Though mean 
antioxidant activity reduced, genotypes with higher yield may had 
comparatively more antioxidant capacity. Seed size is indirectly 
determined by measuring the test weight of seeds in majority of the 
studies (36). But seed weight does not represent the seed size 
precisely. In the present study, seeds were scanned, and images were 
analyzed to measure seed length, breadth and area under both the 
conditions. We  noticed an increase in seed shape parameters in 
stress conditions. Mean length and breadth increased slightly, while 
the change in seed area was the most significant (Table 1). The range 
for different parameters revealed that minimum seed length, 
breadth, and area increased slightly, while maximum reduced 
(Except length) in water- limited environment (Table 1). Correlation 
analysis showed that seed size traits were correlated to grain weight 
under normal condition and no correlation existed in water stress. 
Shrestha et  al. (37) reported 40 and 30% reduction in flower 
formation and seed abortion, respectively, in lentil under water 
deficit. Since these parameters were not recorded in the present 
study, there is a possibility that due to high seed abortion, seed 
length might have increased. However, there was no significant 
difference between control and water stress conditions for pod 
related traits in the present investigation, intensity of water stress 
imposed in both the studies may be the reason for the difference in 
the trait response. Another possible reason for increase in grain size 
may be  genotypic adaptation in response to drier conditions as 
observed in wild lupin in contrast to cultivated lupin species (38). In 
this regard, a more detailed study considering the seed coat thickness 
and role of pod wall may be  carried out. Similar findings were 
documented in lentils under heat (39) and soybean (40). As 
hypothesized, we  reported reduced seed yield along with poor 
quality in different lentil genotypes in response to water limitation.

Correlation analysis showed presence of positive correlation 
between antioxidant properties and grain yield under water stress, 

which may be due to tolerance in lentil genotypes for water stress. 
Lentil genotypes with higher Zn content and availability were able to 
maintain higher grain weight by maintain better plant water relations, 
antioxidative potential, stomatal regulation and photosynthesis in 
stress as reflected by its positive correlation to TW in stress. PCA 
analysis defined major traits contributing to total variability in the 
studied genotypes, which was mainly explained by yield and 
nutritional traits as reported in previous studies in lentils (18, 39). 
Clustering identified four groups under normal and two groups under 
stress conditions. Genotypes present in Cluster I had greater decline 
in seed quality traits (Fe, Zn, PRT and DPPH radical scavenging 
activity) compared to cluster II and its sub-clusters (Figures 2, 3). 
Cluster I genotype showed more susceptibility to water stress. Similar 
findings were previously reported in lentils (41, 42). Based on 
clustering, genotypes IG129185, IC559845, IC599829, IC282863, 
IC361417, IG334, IC560037, P8114 and L5126 were promising for 
seed size, Fe and protein content and FLIP-96-51, P3211, IC398019 
promising for yield, Zn and antioxidant properties. By focusing on 
seed quality traits along with seed yield, we could identify promising 
genotypes, which can be target for quality breeding in drought prone 
environment. Identified genotypes can also be  used for further 
detailed study of Fe/Zn uptake, transport and availability during water 
scarcity in lentil.

5. Conclusion

Our findings revealed that water stress not only reduced yield but 
also deteriorated grain quality in lentils, therefore breeding for water 
limited environment should also take grain quality into consideration. 
Genotypic responses were significantly different with respect to the 
yield and quality in different moisture regimes, which may 
be  attributed to the diversity prevailing in the studied genotypes. 
Positive correlation among yield and antioxidant property, grain Zn 
and TW in stress may be investigated and validated further with large 
number of genotypes.Identified genotypes IG129185, IC559845, 
IC599829, IC282863, IC361417, IG334, IC560037, P8114 and L5126, 
FLIP-96-51, P3211, IC398019 may serve as potential donor for 
different yield and quality traits in lentil genetic improvement 
or biofortification.
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