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Abstract: The use of Unmanned Aerial Vehicle (UAV) images for biomass and nitrogen estimation
offers multiple opportunities for improving rice yields. UAV images provide detailed, high-resolution
visual information about vegetation properties, enabling the identification of phenotypic characteris-
tics for selecting the best varieties, improving yield predictions, and supporting ecosystem monitoring
and conservation efforts. In this study, an analysis of biomass and nitrogen is conducted on 59 rice
plots selected at random from a more extensive trial comprising 400 rice genotypes. A UAV acquires
multispectral reflectance channels across a rice field of subplots containing different genotypes. Based
on the ground-truth data, yields are characterized for the 59 plots and correlated with the Vegetation
Indices (VIs) calculated from the photogrammetric mapping. The VIs are weighted by the segmen-
tation of the plants from the soil and used as a feature matrix to estimate, via machine learning
models, the biomass and nitrogen of the selected rice genotypes. The genotype IR 93346 presented
the highest yield with a biomass gain of 10,252.78 kg/ha and an average daily biomass gain above
49.92 g/day. The VIs with the highest correlations with the ground-truth variables were NDVI and
SAVI for wet biomass, GNDVI and NDVI for dry biomass, GNDVI and SAVI for height, and NDVI
and ARVI for nitrogen. The machine learning model that performed best in estimating the variables
of the 59 plots was the Gaussian Process Regression (GPR) model with a correlation factor of 0.98 for
wet biomass, 0.99 for dry biomass, and 1 for nitrogen. The results presented demonstrate that it is
possible to characterize the yields of rice plots containing different genotypes through ground-truth
data and VIs.

Keywords: rice yield; UAV; multispectral imagery; vegetation indices; machine learning; nitrogen
and biomass estimation

1. Introduction

Rice is a staple crop in Colombia and plays a significant role in the country’s economy
and food security. The average consumption of rice per capita in Colombia was 43.16 kg
in 2021. According to the National Rice Growers Federation (FEDEARROZ), Colombia
produced approximately 3.326 million metric tons of milled rice in the same year. The
country’s rice production is concentrated in Tolima, Huila, Meta, Cauca, and Valle del
Cauca. In Colombia, rice is primarily grown in two cropping seasons: a primary season
from March to July and a second season from August to December [1]. The phenotypic
expression of the rice varies depending on the interaction of the rice genotype with the
environmental and growing conditions. FEDEARROZ defines five rice regions in the
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country with distinct environmental dynamics and high genetic variability in the weedy
rice grown, resulting in highly diverse morphological characteristics [2].

Rice yields in Colombia vary depending on the location and production system, with
higher yields typically achieved in irrigated systems. However, yields in rain-fed systems
can also be high under favorable environmental and management conditions [3]. Various
initiatives are in place to improve rice productivity and sustainability, including promoting
high-yielding varieties and providing technical assistance and training to farmers [4–6].
One topic of interest is plant breeding, where, through the selection of favorable genes and
higher-level omics characterization [7], optimal rice varieties are obtained for cultivation.
To identify the important genetic characteristics expressed in the environment, phenotyping
is performed in two directions: biomass accumulation and nitrogen content [8–10].

Biomass is a critical variable in rice crops, and estimating its accumulation in grow-
ing cycles enables crop-yield performance to be gauged, determining high-producing
varieties [11]. The biomass estimation is usually made by cutting the plant, obtaining its
fresh weight, and then dehydrating it to obtain its dry weight. An estimation of this variable
using UAV imaging is a common approach that employs multispectral or hyperspectral
sensors to capture information about the reflectance properties of vegetation in different
parts of the spectrum [12]. This information can be used to calculate vegetation indices
(VIs) from which biomass estimates can be derived. In [13–16], the effectiveness of this
approach has been demonstrated, with biomass estimates obtained from UAV images
showing strong correlations with on-the-ground measurements in different varieties of rice
crops. In addition to providing accurate biomass estimates, UAV images can also be used
to create detailed maps of biomass distribution, which can help identify spatial patterns
and variability within crop fields [17].

Leaf-blade nitrogen concentration is correlated with the chlorophyll range in plants,
and the variability of the pigments is another phenotypic characteristic. Nitrogen is an es-
sential nutrient for plant growth and productivity, and accurate estimations of the nitrogen
content in plants can lead to greater precision in fertilizer application, subsequently improv-
ing crop yields [18]. A correlation has been found between a plant’s leaf-blade nitrogen
concentration and chlorophyll range. Given that the latter is a measurement of leaf-pigment
variability, it can be estimated using UAV images. The detailed high-resolution visual data
obtained from UAV images can be used to estimate the chlorophyll range and, therefore,
indicate likely nitrogen distribution within rice crops. A common approach for estimating
nitrogen using UAV images is to use spectral information to derive VIs related to nitrogen
content [19]. These indices are based on the fact that radiation absorption in the visible
and near-infrared spectra is related to nitrogen content in the vegetation. Several studies
have demonstrated the potential of this approach, with UAV-based nitrogen content esti-
mates showing strong correlations with on-the-ground measurements across various crops
and ecosystems [9,20,21]. In addition to providing accurate estimates of plant nitrogen
content, UAV images can also be used to create detailed maps of the nitrogen distribution
within rice fields, which can help identify spatial patterns, variability, and guide precision
fertilization [22,23].

Using UAV images for biomass and nitrogen estimation in rice crops is a promising
approach for precision agriculture research [24]. By leveraging the high spatial and spectral
resolution of UAV imagery, researchers can derive accurate and detailed estimates of
these important variables, providing valuable information for understanding rice-crop
dynamics [25]. Developing a model for biomass and nitrogen in rice is an important
research topic within the area of food security, as rice is a staple crop that feeds more
than half of the world’s population [26]. Accurately estimating biomass and nitrogen
content in rice can help optimize crop management practices, increase yields, and reduce
the environmental impact [27,28]. Developing non-invasive estimation methods, such as
parameter estimation through multispectral imaging, allows for more frequent, automated
estimates to be made, resulting in closer crop monitoring throughout the growing cycle and
the possibility of more timely responses. A number of machine learning (ML) techniques
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have been employed to correlate VIs with biomass and nitrogen [29–31], including linear
and nonlinear multivariate regression, support vector machine (SVM), and neural network
(NN) models. However, there are other techniques that remain relatively unexplored such
as decision trees, regression ensembles, and Gaussian regression processes.

This paper explores biomass and nitrogen dynamics in 59 rice plots and correlates
these ground-truth measurements with information drawn from multispectral images
captured at a height of 20 m. This study aims to (1) observe the dynamics of biomass
and nitrogen behavior in the different genotypes sampled, establishing the ones with the
highest yields; (2) analyze the behavior of the VIs in each plot in relation to its genotype;
and (3) test various ML techniques to correlate the samples taken using traditional methods
with the data drawn from the multispectral sensor images.

2. Materials and Methods

The experiment was conducted during the dry season in 2021 at Saldaña, which is a
municipality located in the department of Tolima, Colombia. Situated in the Magdalena
River Valley, Saldaña has fertile soils and a suitable climate for rice cultivation. Rice is one
of the main agricultural crops in the region, and Saldaña is one of the top rice-producing
municipalities in Tolima. Low-lying Tolima has a typically tropical climate, with average
temperatures between 18 °C and 28 °C. It has two rainy seasons per year, one from March to
May and the other from September to November, and two dry seasons, one from December
to February and the other from June to August.

Samples were obtained from the FEDEARROZ (National Rice Growers Federation)
experimental station Las Lagunas, in the plot located at latitude 3°54′55.29′′ north and
longitude 74°59′02.75′′ west at 304 masl. The plot has 410 crop subplots, with an average
crop area of 1.72 m2 each, and contains 330 different genotypes. At flowering, 56 genotypes
were randomly selected based on their distribution in the experimental field. Of these
genotypes, 53 had 1 repetition, whereas the other 3 had 2 repetitions due to their agronomic
relevance. The sampling unit for the determination of biomass had an area of 0.2 m2

(5 plants per linear meter). Figure 1 shows the GPS points and the distributions of the
genotypes in the experiment. The images taken by the UAV are aligned and orthorectified
in two orthomosaic maps, the first in the visible light spectrum with red, blue, and green
RGB channels, and the second with the red, red-edge, and near-infrared channels. The
genotype of interest is labeled with its GPS points and the image extracted to relate it to
the biomass and nitrogen measurements in the crop. The genotype image dataset consists
of 2475 images in each channel. This set of images was used to evaluate five models for
estimating biomass and nitrogen parameters by calculating VIs.

2.1. Experiment Sampling

Sampling was conducted using two methods: destructive or invasive methods and
non-destructive or non-invasive methods. The first method consisted of harvesting the
entire plant above ground level. The plants were weighed to determine their fresh weight
and later the organs were separated into their different parts (such as stems, leaves, and
panicles. The plants were dried in an oven at 65 °C for 72 h and weighed to determine
the total dry weight of the plant. The values of both the fresh and dry weights were
used to determine the percentage of water content (WC) of the plant for each genotype
according to:

%WC =
Weight f resh −Weightdry

Weight f resh
× 100 (1)

This method is considered the most accurate but time-consuming. In addition, 5 plants
per plot were selected due to the amount of plant material to be processed, and 59 samples
were obtained to determine the biomass using this method. Plant height was also measured
as an indicator of biomass [32,33].
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Figure 1. Methodology for canopy nitrogen and biomass estimation in large genotype rice plots using
UAV multispectral images.

Nitrogen levels were determined using a chlorophyll meter to measure the relative
chlorophyll content in the leaves. These meters emit light of a specific wavelength onto the
leaf, and the amount of light absorbed by the chlorophyll is measured. The meter reading
can then estimate a plant’s nitrogen content [34]. The rice plots were sampled using a SPAD
502 Plus meter (Konica-Minolta), and the ground truth was established using this measure
to correlate with the VI estimates.

The values obtained in the field through the first sampling method are displayed in
Tables 1 and 2. The variables include fresh weight, dry weight, water percentage, SPAD
measurement, and height of the selected rice crops.

The second method involved instruments and techniques that did not destroy the
plants, allowing for repeated measurements and, therefore, monitoring over time. The
sampling was carried out by a UAV, which captured multispectral images to estimate the
biomass and nitrogen content in the rice crops. The channels of each camera can detect
differences in the reflectance of light at different wavelengths, which can be correlated with
the biomass and nitrogen content in the plants [35].

Figure 2 illustrates the tools employed for acquiring the multispectral images and the
outcome of each channel. The UAV followed the yellow trajectory across each row of rice
plots. The rice plots were georeferenced according to the flight altitude and geo-tagged
ground-level markers. With each separate spectral sensor, the camera offered a resolution
of 1600 × 1300 pixels, translating to a crop-to-image resolution of 2.5 cm/pixel at a flying
height of 20 m.
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Table 1. Average values of measured parameters in the field for rice plots 1–30.

Parameter Values

Plot ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Fresh weight (g) 940 1000 1020 700 1380 1380 1140 860 880 840 1180 840 940 1060 700 820 980 1260 1120 1260 1200 1160 840 780 1060 740 780 600 860 840

Dry Weight (g) 260 280 280 240 360 380 320 240 260 280 320 260 300 280 220 260 300 400 320 360 340 320 260 280 340 240 280 200 280 280

Water percentage 72.3 72.0 72.5 65.7 73.9 72.5 71.9 72.1 70.5 66.7 72.9 69.0 68.1 73.6 68.6 68.3 69.4 68.3 71.4 71.4 71.7 72.4 69.0 64.1 67.9 67.6 64.1 66.7 67.4 66.7

SPAD 40.48 37.72 36.42 41.68 40.74 41.24 39.58 38.66 40.2 40.02 42.26 35.06 41 38.64 34.86 36.4 36.04 43.48 38.62 44.76 40.94 38.14 33.5 41.2 42.36 41.14 35.14 39.28 38.02 37

Height 84 105.2 96.2 87 117.2 145.8 111 96.8 106 109.4 104.4 122 99.4 90.8 104.6 95.8 98.2 113.6 98.8 116 117.2 97.2 95.8 90 115.2 96.8 129.6 104.4 100.8 122.6

Table 2. Average values of measured parameters in the field for rice plots 31–59.

Parameter Value

Plot ID 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

Fresh weight (g) 900 1180 980 1440 1180 1000 760 980 1040 700 760 960 760 660 940 1000 980 1240 1220 760 1060 1200 920 1320 900 1180 940 780 1080

Dry Weight (g) 280 340 380 300 320 280 260 300 340 240 240 280 260 220 320 340 280 360 360 260 300 380 300 360 280 340 300 240 280

Water percentage 68.9 71.2 61.2 79.2 72.9 72.0 65.8 69.4 67.3 65.7 68.4 70.8 65.8 66.7 66.0 66.0 71.4 71.0 70.5 65.8 71.7 68.3 67.4 72.7 68.9 71.2 68.1 69.2 74.1

SPAD 38.02 38.44 41.9 37.32 37 35.66 34.64 32.7 35.16 37.36 41.32 37.94 39.28 32.64 33.3 34.42 37.84 37.52 34.9 35.64 36.1 38.14 37.42 37.58 40.08 38.72 34.04 30.58 39.88

Height 106.6 116.2 113.8 118.8 131.4 111.8 94.4 109.2 131.4 100 99.2 93.6 106 97.6 106.8 152.4 108 109.2 121.4 108 118 131 119.6 133.6 112 129.2 103.4 88 91
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Figure 2. Non-invasive sampling method using multispectral images.

The selected UAV was the Phantom 4 Multispectral, which had six cameras, each with
1/2.9-inch CMOS sensors, including an RGB camera and a multispectral camera array with
five cameras covering the blue (B), green (G), red (R), red-edge (RE), and near-infrared (NIR)
bands, with wavelengths of 450 nm, 560 nm, 650 nm, 730 nm, and 840 nm respectively. The
uncertainty in each channel was ±16 nm. The precision of the multispectral data obtained
was maximized by the spectral sunlight sensor on top of the aircraft, which could detect
solar irradiance in real time for image compensation. To prevent aberrations that could
occur when employing a rolling shutter, the P4 Multispectral used a global shutter.

The acquisition of the multispectral images was carried out on 14 September 2021, from
9:45 a.m. to 12:10 p.m., and the traditional sampling of the other parameters was conducted
in parallel. The sampling was carried out on these dates because it was 90 days after
sowing, which is the average period during which all genotypes are in the reproductive
stage, allowing for the collection of samples at an intermediate state in plant growth. The
drone sampling was conducted in a single flight, capturing 588 images with the 6 cameras
(RGB, R, G, B, IR, NIR) at 98 points within the crop.

The images were orthorectified with the camera parameters derived from the camera
and its position to correct any geometric distortions in the image. This process was aimed at
removing any potential distortions and perspective effects from the images, as distortions
can significantly impact the precision of the orthomosaic process.

The interior orientation parameters (IOPs) describe the technical specifications of
the camera, such as the focal length, location of the principal point, and lens distortion
coefficients. These parameters were used to correct distortions caused by the camera’s lens
and sensor. Equations (2) and (3) illustrate the orthocorrected pixel coordinates [36].

X =
(x− cx) · H

h
−

(y− cy) · tan(φ) · H
h

+ X0 (2)

Y =
(y− cy) · H

h · cos(φ)
+ Y0 (3)

where X and Y are the orthocorrected pixel coordinates in the image, x and y are the
original pixel coordinates in the image, cx and cy are the coordinates of the image center, H
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is the height of the camera above the ground, h is the image height in pixels, φ is the pitch
angle of the camera (in radians), and X0 and Y0 are the coordinates of the image center in
the ground coordinate system.

2.2. Feature Extraction

In the feature extraction process, the characteristics of the selected rice crop were
extracted from the images captured across all channels. An orthomosaic was then created
from the 98 images captured from the five channels, as shown in Figure 3a. The orthomosaic
was created using the geo-tagged ground-level markers depicted in Figure 2 to ensure
that all channels were aligned when subsampling was performed in the plot. The channel
data were combined and registered into two images for the purpose of visualizing the
orthomosaic. The first orthomosaic, shown in Figure 3b, contains the red, green, and blue
channels. The second orthomosaic, displayed in Figure 3c, includes the red, red-edge, and
near-infrared channels. In the figures, each rice plot is subdivided into 40 subplots, each of
which contains an average of one plant.

(a)

(b) (c)

Figure 3. Preprocessing of the 98 images captured across the red, green, blue, red-edge, and near-
infrared channels. (a) Orthomosaic of the different channels (red, green, blue, red-edge, and near-
infrared, (b) Orthomosaic red-green-blue. (c) Orthomosaic red, red-edge, near-infrared.

In order to ensure precision in the extraction of features, a segmentation method called
GFkuts was applied, which has been used to accurately estimate biomass in other crops [15].
For the feature extraction from the UAV images, two methods were selected: the calculation
of VIs and the use of the pixel averages of the multispectral images. A VI is a numerical
value used to describe the health, density, or growth of vegetation in a particular area.
Eight VIs were selected based on their relationship with biomass, nitrogen, and the spectral
bands captured by the sensors used. The calculation of the VIs is presented in Table 3 and
is explained in [35,37].
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Table 3. Vegetation indices used in the experiment.

Vegetation Index Formula Application

Difference Vegetation
Index (DVI) NIR− RED

This index distinguishes between soil and vegetation but does
not take into account the difference between the reflectance and
radiance caused by atmospheric effects or shadows [38].

Normalized Difference
Vegetation Index (NDVI)

NIR−RED
NIR+RED

NDVI is a widely used vegetation index that measures
the difference between the near-infrared (NIR) and red light reflected
by vegetation. Healthy vegetation typically reflects more NIR light and
less red light so a high NDVI value indicates a high level of vegetation
density and productivity [39].

Green Normalized Difference
Vegetation Index (GNDVI)

NIR−GREEN
NIR+GREEN

GNDVI is primarily used to estimate vegetation biomass and monitor
vegetation health [40].

Soil-Adjusted Vegetation
Index (SAVI)

NIR−RED
NIR+RED+L · (1 + L) SAVI is widely used to estimate vegetation biomass and monitor

vegetation health, especially in areas with high soil background noise [41].

Modified Soil-Adjusted
Vegetation Index (MSAVI)

2∗NIR
2 + 0.5−

√
(2∗NIR+1)2−8∗(NIR−RED)

2
MSAVI is widely used to estimate vegetation biomass and monitor
vegetation health in a variety of environmental conditions [35].

Corrected Transformed
Vegetation Index (CTVI)

NDVI+0.5
|NDVI+0.5| ·

√
|NDVI + 0.5| CTVI is primarily used to monitor vegetation health and stress [42].

Simple Ratio SR NIR
RED

SR is widely used to estimate vegetation biomass and monitor
vegetation health [43].

Transformed
Vegetation Index (TVI)

√
|NDVI + 0.5| TVI is used to monitor vegetation health and stress, and is also

sensitive to changes in vegetation structure and composition [35].

Enhanced
Vegetation Index (EVI) G ∗ (NIR−RED)

(NIR+C1∗RED−C2∗BLUE+L) EVI is used to monitor rice growth and canopy biomass [44].

Atmospherically Resistant
Vegetation Index (ARVI) ARVI = NIR−(BLUE−γ∗(RED−BLUE))

NIR+(BLUE−γ∗(RED−BLUE))
ARVI is widely used to estimate vegetation biomass and monitor
sensitive changes in vegetation with atmospheric correction [45].

The GFKuts segmentation algorithm comprises multiple parts, including K-means
clustering, GrabCut, and guided filtering. K-means is an unsupervised clustering algorithm
that partitions an image into K clusters. It minimizes the within-cluster variance, which
can be defined as follows:

k

∑
i=1

∑
x∈Si

||x− µi||2 (4)

where x is a point in the image, Si is the set of points in cluster i, and µi is the mean of
points in cluster i.

The GrabCut algorithm can be modeled as an energy-minimization problem. The
energy of a labeling f can be defined as the sum of a region term R( f ) and a boundary term
B( f ):

E( f ) = R( f ) + λB( f ) (5)

where f is the label field and λ is a parameter that balances the two terms. The region
term R( f ) is the sum of the negative log-likelihoods of the color model for each pixel. The
boundary term B( f ) is defined in terms of the edges in the graph.

The output of the guided filter qi for an input image I and a guidance image p is
defined as:

qi = ak Ii + bk (6)

where for every pixel i in a box window k, ak and bk are linear coefficients that are the
solution of the following minimization problem:

min
ak ,bk

∑
i∈ωk

((ak Ii + bk − pi)
2 + εa2

k) (7)

where ε is a regularization parameter and ωk is the window centered at pixel k.
In the GFKuts algorithm, K-means clustering is first applied to the image to generate

an initial segmentation. This segmentation is then refined using GrabCut. Finally, guided
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filtering is used to smooth the segmentation result. The final output of the GFKuts algorithm
is a binary mask that separates the rice canopy from the background.

Four feature matrices were proposed. The first two involved estimations using the
genotype ID: the first feature set (FS1) used the aforementioned VIs, and the second feature
set (FS2) used the mean pixel value of each multispectral channel and the segmentation.
The last two involved estimations using the height: the third feature set (FS3) used the VIs
and multispectral channels, and the fourth feature set (FS4) used the mean segmentation
value. These feature matrices were designed to evaluate the usefulness of calculating the
vegetative indices and the mean of the channels for estimating the variables. Once the four
sets of features were obtained, they were labeled with the wet biomass, dry biomass, and
SPAD estimation variables.

2.3. Estimation Models

The ground-truth data for training these ML algorithms are specified in Tables 1 and 2.
The data include the fresh weight, dry weight, percentage of water content, and measured
SPAD values, which, through their adherence to a linear correlation, were directly correlated
with the leaf-blade N concentrations. A number of plants that matched the previously
mentioned plots were manually collected for destructive biomass testing. The samples
taken from each subplot were weighed at the time of cutting for a fresh weight estimate, and
again after drying to produce a dry-weight estimate in order to define the corresponding
ground truth.

The collected multispectral image database consisted of 11,800 images, resulting from
the 59 rice plots and the 40 subplots in each rice plot, totaling 2360 images in each channel.
For the experiments, a cross-validation approach was proposed, using 80% of the data for
cross-validation, amounting to a total of 1888 images. The remaining 20% of the data were
used for testing and were not involved in the training process at all. From the 1888 images,
five k-folds were randomly assembled, with each fold comprising 70% of the data for
training and 30% for validation in order to enhance the robustness of the model. Training
was performed for five models, including Gaussian process (GP) regression, tree regression
(TR), ensemble regression (ER), support vector machine (SVM) regression, and neural
network regression (NNR).

Tree regression is an ML technique in which a decision tree model is created to predict
a continuous target variable. In this approach, the tree is constructed by categorizing the
data into subsets based on the value of one of the input features. The goal is to recursively
create binary splits that maximize the reduction in the variance of the target variable. The
final model is a tree structure, where each leaf node contains a predicted value for the target
variable [46]. Tree regression can be prone to overfitting so techniques such as pruning or
ensembling multiple trees can be used to improve its performance.

MSE(t) =
1

Nt
∑

i∈Dt

(yi − ȳt)
2 (8)

where MSE(t) is the mean square error at node t, Nt is the total number of samples at node
t, Dt is the dataset at node t, yi is the target value of the i-th instance at node t, and ȳt is the
average value of the responses at node t.

Ensemble regression involves combining multiple models to make a more accurate
prediction. One popular ensemble technique is random forest, which is an extension of the
decision tree model. It creates multiple trees on randomly sampled subsets of the data and
combines their predictions by averaging. Another popular ensemble technique is gradient
boosting, which builds a sequence of decision trees in which each new tree attempts to
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correct the errors made by the previous trees [47]. Ensemble regression techniques can be
more accurate than a single decision tree or linear model.

ŷ(x) =
1
M

M

∑
m=1

fm(x) (9)

where ŷ(x) represents the ensemble prediction for an input x, M is the number of base
regression models in the ensemble, and fm(x) is the prediction of the m-th base regression
model for input x.

Gaussian process (GP) regression is a probabilistic machine learning technique used
for regression problems. It is based on the assumption that any finite set of points in the
input space has a joint Gaussian distribution over the corresponding target values. In GP
regression, a prior distribution over the space of functions is defined using a covariance
function, which determines how correlated the output values are for any two inputs. Given
a set of input–output pairs, the posterior distribution over functions can be computed,
which can be used to make predictions or calculate uncertainty estimates [48]. A Gaussian
process is defined by a mean function m(x) and a covariance function (kernel) k(x, x′):

f (x) ∼ GP(m(x), k(x, x′)) (10)

where f(x) represents the function value at input x, GP denotes a Gaussian process, m(x) is
the mean function, (which is often assumed to be zero for simplicity), and k(x, x′) is the
covariance function (kernel) that defines the relationship between different input points.

Support vector machines can also be used for regression problems. In SVM regression,
the goal is to find a hyperplane that maximizes the margin between the predicted values
and the actual values. The model tries to fit a linear function to the data while minimizing
the errors or deviations from the target variable [49]. In cases where a linear function is
inadequate for accurately fitting the data, a nonlinear kernel can be used to transform the
data into a higher-dimensional space, where a linear function can better separate the data.

minimize
1
2
||w||2 + C

N

∑
i=1

(ξi + ξ∗i ) (11)

subject to yi −wTφ(xi)− b ≤ ε + ξi (12)

wTφ(xi) + b− yi ≤ ε + ξ∗i (13)

ξi, ξ∗i ≥ 0, i = 1, . . . , N (14)

where w is the weight vector, φ(xi) is a feature mapping function that maps the input
vector xi to a higher-dimensional space, b is the bias term, C is a regularization parameter
that controls the trade-off between maximizing the margin and minimizing the training
error, ξi and ξ∗i are slack variables that account for prediction errors outside the ε-tube, yi is
the target value for the i-th instance, and N is the number of instances in the dataset.

Neural network regression models are a type of machine learning model that are
well-suited for prediction tasks involving nonlinear data. They consist of an input layer,
one or more hidden layers, and an output layer. Each layer consists of a number of nodes
or “neurons”. Each neuron in a layer is connected to every neuron in the previous and
subsequent layers [50]. The neurons transform the inputs using a weighted sum and a
nonlinear activation function. The weights are learned during training by minimizing a
loss function, such as the mean squared error for regression tasks, using an optimization
algorithm such as stochastic gradient descent.

y(x, w) = f

(
M

∑
j=1

w(2)
j σ

(
D

∑
i=1

w(1)
ji xi + w(1)

j0

)
+ w(2)

0

)
(15)
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where y(x, w) is the output of the neural network for the input vector x and weights w; f is
the activation function of the output layer; σ is the activation function of the hidden layer;
w(1)

ji and w(2)
j are the weights of the first and second layers, respectively; D is the number

of input features; and M is the number of neurons in the hidden layer.
The performance of these machine learning models can be significantly influenced

by the choice of hyperparameters. Hyperparameters are parameters whose values are set
prior to the commencement of the learning process. To find the optimal hyperparameters,
training is performed by varying these initial values to obtain the model with the minimum
mean squared error (MSE). The hyperparameter optimization method selected for all the
models was Bayesian optimization. This method can improve the search speed using
past performances and achieve high accuracy with fewer samples [51]. The number of
iterations for each model was defined based on the training time of each model. The
models with the longest training times were Gaussian process regression (GPR) and neural
network regression (NNR), with 5 and 300 iterations, respectively. Support vector machine
regression (SVMR) followed, with 600 iterations. The models with the shortest training
times were ensemble regression (ER) and tree regression (TR), with 800 and 900 iterations,
respectively.

The evaluation of the estimations was conducted using regression metrics such as the
coefficient of determination R², root mean square error (RMSE), and mean absolute error
(MAE). The R2 value was used to observe the fit between the estimated curves and the
ground truth. The MAE provides a straightforward measure of the average magnitude of
the error. One benefit of the MAE is that it is not overly sensitive to large errors, unlike the
RMSE, which assigns a higher penalty to extreme values.

3. Results

The results were obtained from the selected and sampled genotypes, including the dry
biomass, wet biomass, water percentage, height plant, and SPAD measurements. A total
of 59 plots and 53 genotypes were sampled. Among these genotypes, the three genotypes
IRBB, BR28, and Fedearroz had two samples each in different subplots, with varying
sampling values. The remaining 50 genotypes had only one sample per plot. Sampling was
carried out during two stages of the crop’s growth cycle: vegetative and harvest.

Figure 4 presents the dry-weight values for the 59 rice plots. The blue bars represent
measurements taken during the vegetative stage, and the red bars represent measurements
taken at the time of harvest. The dry weight is given in grams per plant, with an average
of 296.27 g and a standard deviation of 45.70 g during the vegetative stage, and a mean
of 994.20 g and a standard deviation of 181.03 g at the time of harvest. The plots with the
highest dry weights during the vegetative stage were 18, 52, 33, and 6, with weights above
360 g. The plots with the highest dry weights at the time of harvest were 50, 6, 36, and 54,
with weights above 1170 g.
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Figure 4. Total dry weight of each plot during the vegetative stage and at harvest time.
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The fresh-weight values shown in Tables 1 and 2 are given in grams per plant, with a
mean of 982.71 g and a standard deviation of 199.91 g during the vegetative stage, and a
mean of 1244.44 g and a standard deviation of 2439.60 g at the time of harvest. The plots
with the highest fresh weights during the vegetative stage were 34, 6, 5, and 54, all with
weights for these genotypes of over 1300 g. The plots with the highest fresh weights at the
time of harvest were 50, 6, 36, and 56, with weights of 1500 g. Both stages had similar total
water weights but, as a proportion of the plant, the percentage of water was much higher
during the vegetative stage. At the time of harvest when the crop was fully grown, the
percentage of water was much lower with a higher proportion of biomass.

Figure 5 presents the SPAD values for the 59 rice plots. The blue bars represent
measurements taken during the vegetative stage, and the red bars represent measurements
taken at the time of harvest. The SPAD values had a mean of 37.97 and a standard deviation
of 2.94 during the vegetative stage, and a mean of 37.36 and a standard deviation of 2.93 at
the time of harvest. The plots with the highest SPAD values during the vegetative stage
were 18, 20, 33, and 52, whereas the plots with the highest SPAD values at the time of
harvest were 20, 18, 25, and 11. The SPAD value remained stable between the vegetative
and harvest stages, indicating that the crop was adequately nourished throughout its
growth period.

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0
3

1
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3

9
4

0
4

1
4

2
4

3
4

4
4

5
4

6
4

7
4

8
4

9
5

0
5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9

Plot

0

5

10

15

20

25

30

35

40

45

S
P

A
D

Vegetative Harvest

Figure 5. SPAD values of each plot at different times.

In order to determine the genotypes with the highest yield, both the yield per area and
the biomass gain were calculated. The plots with the highest yields were 50, 36, 6, and 54
with 10, 252.75 kg/ha, 8702.85 kg/ha, 8600.76 kg/ha, and 8330.06 kg/ha, respectively. For
the biomass gain, the baseline was taken as the date of sampling during the vegetative stage
and compared to the final biomass at the time of harvest. The greatest biomass gain was
observed in plots 50, 6, 56, and 28, with averages of 49.91 g/day, 47.27 g/day, 46.78 g/day,
and 40.44 g/day, respectively.

The orthomosaics were composed of 400 plots of different genotypes, and the first
step in their processing was to locate them using the same spatial reference, allowing for
alignment with the same reference point. Although not all 400 genotypes were sampled,
an analysis of the VIs was performed on the entire orthomosaic. Figure 6 shows the VIs
with the most significant differences in their values. The alignment and orthorectification
allowed for the VI statuses to be mapped for the different genotypes. Although the entire
crop was rice, significant variations in the VIs were observed. These variations were not
necessarily due to different biomass and nitrogen values but rather to the phenotypic
expressions of the cultivated genotypes. For rice crops of the same genotype, exploring
the VI maps can be useful since they can reveal anomalies in the crops. The phenotypic
expression should be similar and vary only due to changes in biomass or nitrogen.
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Figure 6. Distribution of the vegetative indices in the total rice crop. (a) Heatmap of the SR index.
(b) Heatmap of the NDVI index. (c) Heatmap of the TVI index.

VI calculations were performed on the segmented image dataset of the 59 sampled
plots. Figure 7 shows a box plot for the simple ratio (SR) index, which ranged from 0.5 and
2.5. This allowed us to observe the behavior of the simple ratio indices of the 59 selected
genotypes and the uncertainty associated with each index. It was observed that genotype 1
had high variations, which further complicated its estimation. The plots with the highest
values of this index were 3, 33, and 16. The plots with the most significant variations were
4, 24, and 26.
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Figure 7. Box plot distribution for the SR vegetative index. Outliers are presented in the red values.

Figure 8 presents a box plot of the SR, DVI, GNDVI, and CTVI values for the three
genotypes that had two plots each. These indices were selected for visualization because
their range of variation was similar. The other indices exhibited smaller variations and
similar behavior. These genotypes had a range of variation since the VIs were not uniform
across the entire plot. However, sampling was only performed on one plant, assuming
that the rest of the plants would have similar values, given that they belonged to the same
genotype under the same growing conditions.

For the genotype IRBB 66, the SR average was 1.23 for plot 4 and 1.2 for plot 24, with a
standard deviation of 0.24. The range was from 1.1 to 1.3, with outliers between 0.8 and 0.9
for plot 4. This plot had a fresh-weight value of 700 g, a dry-weight value of 240 g, and a
SPAD value of 41.68. The range for plot 24 was from 1 to 1.2, with a fresh-weight value of
780 g, a dry-weight value of 280 g, and a SPAD value of 41.2. Although there was a directly
proportional relationship with the SPAD values, the relationship with the biomass values
was inversely proportional. It is essential to note that the variation between the VIs was
low, as was the variation between the ground-truth values.

For the genotype Fedearroz 67, the SR average was 1.65 for plot 36 and 1.4 for plot 44,
with a standard deviation of 1. A range of 1.2 to 2.1 was recorded, with outliers between 1
and 1.2 for plot 36. This plot had a fresh-weight value of 1000 g, a dry-weight value of 280 g,
and a SPAD value of 35.66. The range for plot 44 was from 0.9 to 1.6, with a fresh-weight
value of 660 g, a dry-weight value of 220 g, and a SPAD value of 32.64. This genotype had
a directly proportional relationship between the SPAD values and the biomass values. In
addition, the variation between the VIs was significant, as was the variation between the
ground-truth values.
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Finally, for the genotype IR 64-21, the SR average was 1.62 for plot 13 and 1.4 for
plot 31, with a standard deviation of 0.6. The range was from 1.4 to 1.8, with the outliers
at 1.1 for plot 13. This plot had a fresh-weight value of 940 g, a dry-weight value of 300 g,
and a SPAD value of 41. The range for plot 31 was from 0.9 to 1.6, with a fresh-weight
value of 900 g, a dry-weight value of 280 g, and a SPAD value of 38.02. This genotype had
an inversely proportional relationship with the SPAD values and a directly proportional
relationship with the biomass values. The variation between the VIs was significant, as was
the variation between the ground-truth values.
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Figure 8. Box plots for the plot samples by genotype. (a) Box plot for genotype IRBB 66. (b) Box plot
for genotype Fedearroz 67. (c) Box plot for genotype IR 64-21.

Figure 9 shows a correlation matrix for the dataset used, where W-BM is the wet
biomass in grams, D-BM is the dry biomass, N is the SPAD value, and He is the average
height of the plants. The VIs referenced in Table 3, the multispectral channels, and the GF
segmentation values are also included. The correlation matrix revealed strong correlations
among the data obtained using traditional methods. The VIs, which are mathematical
operations between different reflectance values, also showed high correlations with each
other. The VIs with the highest positive correlations with the ground-truth variables were
the NDVI and SAVI for wet biomass, GNDVI and NDVI for dry biomass, GNDVI and SAVI
for height, and NDVI and ARVI for nitrogen. The multispectral channels that correlated the
most with wet biomass were REG, NIR, and GFkuts segmentation, whereas for dry biomass,
the same channels were present but they also correlated with the RGB channels. Nitrogen
showed fewer correlations with these channels and correlated more closely with the VIs.
The ID genotype was highly correlated with the RGB channels, as well as the height. It can
be observed that the height was highly correlated with the biomass variables, a valuable
observation as it is an estimation parameter that does not require destructive methods.

As mentioned in Section 2, tests were conducted for five models. Each of the methods
was optimized using Bayesian optimization, which can minimize a model’s confidence
interval by adjusting the hyperparameters. The five models selected for training were
evaluated using the four feature matrices. This process was executed using a common
machine learning technique known as k-fold cross-validation, specifically with five ran-
domly formed folds. In k-fold cross-validation, the original sample is randomly partitioned
into k equal-sized subsamples. Of the k subsamples, a single subsample is retained as
the validation data for testing the model, and the remaining k-1 subsamples are used as
training data.

In this case, the folds were created from 80% of the total 2360 rice subplots, resulting
in 1888 samples. These samples were used to train the models, taking into account the
variability of the different datasets. These datasets were distributed in a 70/30 split, where
70% was used for training and 30% for validation. This split helps prevent overfitting,
which is a modeling error that occurs when a function is too closely aligned to a limited set
of data points.
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Figure 9. Correlation matrix of the selected features.

In addition, 472 samples composed of 8 rice subplots of each genotype, were randomly
set aside. These were not included in the model training and were reserved for the
independent evaluation of the trained models. This is a necessary step to test how well the
models generalize to unseen data.

In Tables 4–6, the values of the selected metrics, R2, MAE, and RMSE, are presented.
In general, it was found that decision tree regression, regression ensemble, and Gaussian
process regression were the machine learning models that yielded the best correlations
when trained on the data obtained during the experiment. Decision tree regression and
regression ensemble are known for their efficiency and speed in training, whereas the
Gaussian process regression, although it produces good results, is considerably slower.

Table 4. Evaluation metrics for the implemented models for dry biomass estimation.

Model
FS1 FS2 FS3 FS4

R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE

GPR 0.998 0.0305 0.119 0.97 0.0562 0.189 0.95 0.115 0.345 0.93 0.214 0.759

ER 0.96 21.509 41.668 0.96 21.606 41.391 0.83 29.769 81.012 0.93 39.303 54.028

TR 0.94 14.293 49.829 0.9 15.319 61.489 0.83 29.769 81.012 0.77 44.02 94.11

NNR 0.48 114.4 140.6 0.62 95.14 125 0.54 102.5 134 0.65 90.54 110

SVMR 0.42 125.2 158.6 0.58 102.65 118.6 0.53 109.4 140 0.6 97.86 122

Table 5. Evaluation metrics for the implemented models for wet biomass estimation.

Model
FS1 FS2 FS3 FS4

R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE

GPR 0.987 0.59112 2.4142 0.96 0.653 2.681 0.95 3.4624 7.456 0.92 3.589 9.1563

ER 0.88 11.295 15.481 0.85 13.146 18.158 0.85 19.64 23.231 0.7 20.114 25.099

TR 0.95 0.4432 5.7246 0.83 10.146 20.4562 0.9 9.5462 13.562 0.75 19.456 21.025

NNR 0.75 24.056 28.245 0.68 24.256 29.256 0.59 23.251 31.256 0.43 27.156 33.254

SVMR 0.64 21.055 30.025 0.42 28.745 35.254 0.43 26.152 34.521 0.31 30.376 39.272
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Table 6. Evaluation metrics for the implemented models for nitrogen estimation.

Model
FS1 FS2 FS3 FS4

R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE

GPR 0.999 0.0305 0.119 0.998 0.0562 0.189 0.95 0.115 0.345 0.93 0.214 0.759

ER 0.97 0.194 0.482 0.98 0.197 0.454 0.91 0.452 0.956 0.92 0.241 0.901

TR 0.97 0.282 0.531 0.97 0.198 0.523 0.9 0.458 0.898 0.9 0.526 0.918

NNR 0.77 0.793 1.082 0.79 0.642 1.325 0.61 0.889 1.185 0.62 1.101 1.004

SVMR 0.65 0.861 1.154 0.68 0.785 1.552 0.54 1.001 1.201 0.58 1.165 1.198

The use of VIs improved the correlations for the estimations of the wet biomass, dry
biomass, and nitrogen variables. The highest correlation among this set of training features
was found when using the genotype ID, whereas the lowest correlation was associated
with plant height. These correlations suggest that the genotype ID is a more significant
predictor of crop yield.

The following figures show graphs of the estimations for the wet biomass, dry biomass,
and nitrogen variables from the learning models with the highest correlation coefficients,
with the estimated values in orange and the ground-truth values in blue. In Figure 10, the
estimation for the first variable, wet biomass, is displayed. The results are shown for the
training set of 472 images for the ensemble regression, tree regression, and Gaussian process
regression estimation models. The graphs present the wet biomass of the samples (Y-axis)
versus the samples obtained (X-axis) from each of the characterized images. In general,
Gaussian process regression performed the best, obtaining a correlation coefficient of 0.987.
This indicates that this model handles uncertainty much better for smaller datasets.
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Figure 10. Models’ fresh-weight estimations. (a) Ensemble regression. (b) Tree regression. (c) Gaussian
process regression.

In Figure 11, the estimations for the second variable, dry biomass, are displayed. In
general, better performance was observed for Gaussian process regression, which obtained
a correlation coefficient of 0.998. This indicates that this model handles uncertainty much
better for smaller datasets.
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Figure 11. Models’ dry-weight estimations. (a) Ensemble regression. (b) Tree regression. (c) Gaussian
process regression.
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In Figure 12, the estimations for the third variable, SPAD, are displayed. Better
performance was observed for Gaussian process regression, which obtained a correlation
coefficient of 0.999. This indicates that this model handles uncertainty much better for
smaller datasets.
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Figure 12. Models’ SPAD estimations. (a) Ensemble regression. (b) Tree regression. (c) Gaussian
process regression.

4. Discussion

The comparison of the GPR, SVMR, TR, ER, and NNR techniques provides valuable in-
sights into the potential benefits and drawbacks of each method in the context of estimating
the wet biomass, dry biomass, and nitrogen content in rice plots.

One notable aspect of this comparison is the emphasis on the probabilistic nature of
GPR. In many practical applications, having a measure of uncertainty about the predictions
can be just as important as the predictions themselves. Especially in agricultural applica-
tions, this measure of uncertainty can support decision-making tasks in the context of risk.
For instance, knowing the uncertainty around the estimated nitrogen content in a rice plot
can inform decisions about fertilization that balance potential yield improvements against
the risk of over-fertilization and its environmental repercussions.

However, the computational cost of GPR, particularly for large datasets, is a significant
drawback. As technological advances facilitate the collection of more and more data
through increasingly sophisticated remote sensing technologies, the scalability of models
becomes a critical concern. In this respect, the TR and ER methods may have an advantage.

The ability of ER and TR to handle complex, nonlinear relationships using decision
rules is a significant advantage, considering the complex interactions among environmental
factors, plant physiology, and the resulting variables to be estimated (biomass, nitrogen
content). However, the careful selection of the kernel function and fine-tuning of hyperpa-
rameters can be potential drawbacks, as these require additional computational resources
and domain expertise.

Ensemble techniques, which combine multiple base regression models, can potentially
offer robustness and improved predictive performance, which is a significant advantage.
Additionally, in this study, the estimation models were calibrated and tested by including
both time-independent imagery samples and time-dependent vegetation index dynam-
ics throughout each phenological cycle, enabling the characterization of spatio-temporal
variations in above-ground biomass and leaf nitrogen.

However, these methods can also pose computational challenges, as multiple base
models need to be trained and combined. Additionally, the interpretability of these models
can be lost or reduced, which could be a disadvantage in scenarios where understanding
the model’s decision process is crucial.

Selecting the most suitable method depends on factors such as the size of the dataset,
the complexity of the relationship between the VIs and target variables, and the impor-
tance of uncertainty quantification in the predictions. It is also important to consider the
computational resources available, the level of domain expertise for model tuning and
interpretation, and the specific decision-making context in which the model’s predictions
will be used.
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It is worth noting that these methods are not mutually exclusive and could potentially
be combined in a hybrid approach. For example, one could use a TR or an ER model to
handle the main predictive task and a GPR model to provide uncertainty estimates.

Finally, the choice of the model should not only be guided by theoretical considerations
but also validated through rigorous empirical testing. Cross-validation and performance
metrics are indeed crucial tools for assessing and comparing the predictive performance
of the models. Furthermore, whenever possible, models should be evaluated not only on
their predictive performance but also on their practical impact when employed for decision
making in the field.

5. Conclusions

The orthomosaic application is a useful tool for working with UAV images, as it allows
for the integration of images captured by the UAVs in a flight plan, merging them into a
single image. For this application to work, the images must have an area of coincidence
greater than 40%. This tool enables a general mapping of the crop to be obtained in the form
of VIs, classifying the vegetation on the ground by reflectance levels in order to estimate
plant health and nutrient distribution patterns. In this study, the variation observed within
each genotype reflects the heterogeneous nature of agricultural fields. This emphasizes
the importance of using robust statistical methods in analyzing remote sensing data for
biomass and nitrogen content estimation.

Multispectral images are useful for estimating wet biomass, dry biomass, and SPAD.
Through the use of VIs, characteristics can be identified that closely correlate with the results
from in-the-field sampling, offering researchers a non-invasive alternative for measuring
this parameter and potentially eliminating the use of destructive sampling methods. The
correlation between the VIs and the parameters measured in the field will vary according
to the genotype and its phenological expression. In this study, the correlation matrix for
the dataset revealed strong relationships between the data gathered conventionally in
the field and several VIs. In addition, the VIs that correlated the most with the ground-
truth variables were NDVI and SAVI for wet biomass, GNDVI and NDVI for dry biomass,
GNDVI and SAVI for height, and NDVI and ARVI for nitrogen.

Moreover, the multispectral channels, specifically REG, NIR, and GFkuts segmenta-
tion, showed significant correlations with both wet and dry biomass, with an additional
correlation observed with the RGB channels for dry biomass. Nitrogen content exhibited a
weaker correlation with these channels, instead presenting a stronger correlation within the
VIs. The ID genotype was highly correlated with the RGB channels and height, indicating a
relationship between genetic identity, coloration, and growth. These correlations highlight
the potential of remote sensing data in estimating key parameters such as biomass and
nitrogen content in rice plots and emphasize the value of non-destructive parameters such
as height for these estimation tasks.
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