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Abstract
While considerable breeding effort has focused on increasing the yields of staple

crops such as rice and the levels of micronutrients such as iron and zinc, breeding to

address the problems of the double-burden of malnutrition has received less atten-

tion. Pigmented rice has higher nutritional value and greater health benefits compared

to white rice. However, the genetic associations underlying pericarp coloration and

accumulation of nutritionally valuable compounds is still poorly understood. Here we

report the targeted genetic analysis of 364 rice accessions, assessing the genetic rela-

tionship between pericarp coloration (measured using multi-spectral imaging) and a

range of phenolic compounds with potential nutritional and health-promoting char-

acteristics. A genome-wide association study resulted in the identification of over

280 single nucleotide polymorphisms (SNPs) associated with the traits of interest.

Many of the SNPs were associated with more than one trait, colocalization occurring

between nutritional traits, and nutritional and color-related traits. Targeted associa-

tion analysis identified 67 SNPs, located within 52 candidate genes and associated

with 24 traits. Six haplotypes identified within the genes Rc/bHLH17 and OsIPT5
indicated that these genes have an important role in the regulation of a wide range

of phenolic compounds, and not only those directly conferring pericarp color. These

identified genetic linkages between nutritionally valuable phenolic compounds and

pericarp color present not only a valuable resource for the enhancement of the

nutritional value of rice but an easy method of selection of suitable genotypes.

Abbreviations: AMOVA, analysis of molecular variance; bHLH, basic helix-loop-helix; Bp, base pairs; CV, coefficient of variation; FIS, inbreeding
coefficient; GBS, genotyping by sequencing; GI, glycemic index; GLM, generalized linear model; GWAS, genome-wide association study (GWAS; He,
expected heterozygosity; Ho, observed heterozygosity; HPLC, high-performance liquid chromatography; LD, linkage disequilibrium; MAF, minor allele
frequency; MLM, mixed linear model; MTA, marker trait association; Na, number of alleles; PCA, principal component analysis; Q-Q, quantile-quantile;
QTL, quantitative trait loci; RIL, recombinant inbred line; SD, standard deviation; SNP, single nucleotide polymorphism.
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1 INTRODUCTION

As the world’s population continues to grow, being projected
to reach 10.4 billion by 2100 (UN DESA PD, 2022), crop
productivity needs to be increased to meet the associated
demand for food. However, increasing yields alone does not
address the increasing global problems of the double burden
of malnutrition. This is particularly relevant for the staple
crop rice, which is mostly consumed as polished, white rice.
The milling process removes many essential nutritional com-
ponents, including essential micronutrients such as iron and
zinc, vitamins, fatty-acids, phytochemicals, and fiber. This
can lead to the development of micronutrient deficiencies
among peoples for whom rice is the primary source of calo-
ries (Sarma et al., 2018; Sharma et al., 2013; Verma & Shukla,
2011). Furthermore, white rice tends to have a high glycemic
index (GI), the starch being rapidly digested in the human
intestine (Oko et al., 2012; Valarmathi et al., 2014). The con-
sumption of high GI and glycemic load foods, alongside a
decrease in physical activity and rapid urbanization, has con-
tributed to the expansion of non-communicable diseases such
as type 2 diabetes, with the Philippines having the highest
recorded levels (Ludwig et al., 2018; Saneei et al., 2016).
Thus, high consumption of white rice presents as a prime
example of the double burden of malnutrition.

Variation in pericarp color is well known in rice, with
colors ranging from brown, red, purple to black. Prized in
ancient times, pigmented rice is regaining popularity owing
to its higher nutritional value (Mbanjo et al., 2020; Priya
et al., 2019). The deposition of flavonoid and anthocyanin
compounds in the seed pericarp layer, responsible for the
color of unpolished rice (Gunaratne et al., 2013; Samyor
et al., 2017), also confer many positive health benefits, having
anti-cancer, anti-diabetic, and anti-hyperlipidemic properties
(Berni et al., 2018; Bhat & Riar, 2015). While major enzymes
of the flavonoid pathways have been identified, many aspects
underlying the regulation of these pathways in rice seed are
less well understood (Mbanjo et al., 2020).

The ancestor of modern rice varieties had red grain. The
wild rice species Oryza rufipogon has red grains and is
thought to have a common ancestor with Oryza sativa. The
intensity of the red coloration is determined by a comple-
mentary interaction between the gene Rc and a second gene,
Rd (Furukawa et al., 2006; Sweeney et al., 2006). While
Rc is responsible for the accumulation of proanthocyanidins
in the pericarp, Rd regulates the level of accumulation. A
loss of function mutation within the Rc gene (a 14–bp dele-
tion within exon 6) is thought to be the original mutation
that gave rise to the white rice rc allele (Furukawa et al.,
2006; Sweeney et al., 2006). Singh et al. (2017) identified
an independent haplotype, Rc-H2, which was associated with
white pericarps in the Aus group of rice cultivars. Subse-

Core Idea
∙ Rc/bHLH17 and OsIPT5 are associated with a

range of nutritionally valuable compounds.
∙ Additional rice candidate genes associated with
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∙ Linkages between color-related phenotypes and

nutritional content were found.

quent studies have identified additional mutations within the
Rc gene, including the Rc-S, rc-gl, and Rc-g alleles that
result in reversion to red pigmentation (Brooks et al., 2008;
Gross et al., 2010; Singh et al., 2017; Sweeney et al., 2007).
More recently, Mbanjo et al. (2019) identified other possi-
ble mutations, either in Rc or other genes, that affect pericarp
coloration.

The regulation of anthocyanins, responsible for black-
purple rice pericarps, is less well understood. Early studies
identified two classes of regulatory gene families (R or B, and
C1 or Pl) that affect anthocyanin accumulation and regulate
the deposition of anthocyanin in various tissues in rice. Two
genes were characterized in rice, Ra and Rb, which mapped to
chromosomes 4 and 1, respectively (Hu et al., 1996). Maeda
et al. (2014) identified three loci that controlled black pig-
mentation in the rice pericarp, Kala1, Kala3, and Kala4 on
chromosomes 1, 3, and 4, respectively. Ectopic expression
of Kala4, a member of the basic helix-loop-helix (bHLH)
transcription factor gene family, caused by a rearrangement
in the promoter region, was shown to result in black seeded
rice (Oikawa et al., 2015). The C-S-A gene model has also
been proposed as a model for rice seed coloration, the pattern
of anthocyanin pigmentation being determined by the allelic
status of the genes A1, C1, and S1 (Rachasima et al., 2017;
Saitoh et al., 2004; X. Sun et al., 2018). The presence of a
functional copy of both C1 and S1 is required for pericarp
coloration, while A1 acts as a catalyst for the development of
purple pericarps (X. Sun et al., 2018). Sequence variants in
other regulatory and/or structural genes associated with pur-
ple coloration could also explain the diversity of phenotypes
observed (Rachasima et al., 2017; Sakulsingharoj et al., 2016;
X. Sun et al., 2018).

Interrogation of the genetic basis underlying rice pericarp
color has also identified a number of quantitative trait loci
(QTL; Dong et al., 2008; Matsuda et al., 2012; Tan et al.,
2001; Xu et al., 2017). Tan et al. (2001) identified nine QTL
in an analysis of flour color parameters using 238 recombi-
nant inbred lines (RILs), while Dong et al. (2008), measuring
the extent of the red coloration of the pericarp, found four
QTL in a population of 182 RILs. In Dong et al. (2008),
the two largest QTL co-located with the genetic loci Rc on
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chromosome 7 and Rd on chromosome 1. A QTL analysis
using 85 lines suggested that flavonoid content was governed
by genetic factors that controlled flavone glycosylation (Mat-
suda et al., 2012). More recently, 21 QTL were identified that
affected the composition and concentration of anthocyanins
and proanthocyanidins (Xu et al., 2017). Using a diversity
panel of 416 rice accessions, Shao et al. (2011) identified
25 marker-trait associations (MTAs) with color-related traits,
confirming the major role of Ra and Rc, but also identifying
a number of genetic regions with minor effects. Yang et al.
(2018) reported 763 single nucleotide polymorphisms (SNPs)
tightly linked to pericarp color in rice landrace germplasm,
further confirming the polygenic nature of rice pericarp col-
oration and demonstrating the need to capture this genetic
variation for rice breeding.

Developments in genetic technologies now offers new
prospects for crop improvement. Low-cost and parallel
sequencing platforms such as genotyping-by-sequencing
(GBS) have facilitated high-density marker discovery for crop
genetic studies, while cutting-edge analytical technologies
have enabled sensitive and accurate detection of the genetic
loci associated with the trait of interest (Elshire et al., 2011;
He et al., 2014; Mgonja et al., 2017). Spectral imaging tech-
niques have been increasingly used as a rapid phenotyping
tool to quantify several seed traits (Elmasry et al., 2019;
Mbanjo et al., 2019; D. Sun et al., 2019) and enable efficient
assessment of the phenotypic diversity of rice germplasm.
Together, the improvements in phenotypic and genotypic
analyses support the extensive mining of natural variation in
rice germplasm, and discovery of new genes/alleles associ-
ated with important rice traits such as those associated with
grain coloration.

The aim of this study was to identify genetic associa-
tions between pericarp color parameters and nutritional traits
that would enable a better understanding of the genetic
regulation of these characteristics, while providing simple
seed phenotypes that could be screened for by breeders to
improve nutritional value in rice. To this aim, we assessed
a range of grain nutritional and color parameters, using
multispectral imaging, in 364 rice accessions from the
International Rice Research Institute (IRRI) Genebank. The
rice accessions were subjected to genotyping-by-sequencing,
enabling high-density genome-wide SNP markers to be
generated. The SNP markers were used to estimate link-
age disequilibrium (LD) decay, assess genetic diversity
and population structure within the rice germplasm, and
perform genome-wide association mapping using the seed
traits. Candidate genes within genomic regions identified
as showing a highly significant MTA were further ana-
lyzed via targeted gene-based association and haplotype
analyses.

2 MATERIALS AND METHODS

2.1 Plant material

A total of 376 rice accessions from 24 countries were selected
from the IRRI Genebank (Table S1). Accessions were chosen
to generate a panel of rice genotypes that presented a full range
of colored grain, represented the geographical diversity across
South-East Asia, and included both traditional rice varieties
and landraces. Visual assessment of color was undertaken
using Biodiversity indicators for pericarp color (Bioversity
International et al., 2007).

2.2 DNA extraction and
genotyping-by-sequencing

Fresh leaf material from seedlings of each rice accession
was lyophililized using an Alpha 1–4LD plus Martin Christ
Freeze dryer for 72 h, with vacuum set at 0.630 mbar and con-
denser temperature at −55˚C. DNA extraction was performed
using the KingFisher Flex System (www.thermofisher.com).
DNA quality was checked on 1% agarose gels, while DNA
quantity was assessed using PicoGreen® (www.thermofisher.
com) and then standardize to 100 ng/μL for library prepa-
ration. To ensure that the DNA was of high quality and
suitable for genotyping-by-sequencing (GBS), a trial digest
of DNA from 10% of the accessions was performed using
the restriction enzyme ApekI. The DNA (minimum concentra-
tion of 100 ng/μL) was shipped to Elshire Group Ltd (https://
www.elshiregroup.co.nz) for GBS library construction and
sequencing. Libraries were prepared in 188-plex using the
ApekI restriction enzyme, following the standard procedure
proposed by Elshire et al. (2011). Paired-end sequencing of
188-plex libraries per flow cell channel was performed on the
Illumina Hiseq X Ten sequencing platform.

2.3 SNP identification

The Fastq raw files received from Elshire Group Ltd.
were processed using the workflow proposed by Elshire
(https://gitlab.com/relshire/gbs-pipeline-scripts) with some
modifications. The paired-end reads were demultiplexed into
individual samples using axe-demux (Murray & Borevitz,
2018). Seqhax (https://github.com/kdmurray91/seqhax) was
used to add fake barcodes and append 130 Ns. Seqhax was
also used to trim the reads to 130 bp for efficient downstream
processing. SNP calling was performed with TASSEL v.5.0
(Bradbury et al., 2007) using the modified enzyme defini-
tion. SNP calling was achieved by aligning the tags to the
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Nipponbare RefSeq genome (Nipponbare IRGSP 1.0
genome). Indels and multiallelic markers were discarded,
with only SNP markers being retained. The SNP data were
extracted in hapmap file format.

Control quality of the genotypic data was performed
using SNP & Variation Suite (SVS v8.8.3) (Golden Helix,
Inc., Bozeman, MT, USA). Markers with a call rate (CR)
of <0.90 and a minor allele frequency (MAF) of <0.05 were
removed from the data set. The observed SNP heterozygosity
(Ho)/expected SNP heterozygosity (He) values were calcu-
lated for individual SNPs using the hardy function in PLINK
1.9 (Chang et al., 2015). SNP inbreeding coefficients were
estimated as F = 1 − Ho/He. A cut-off Ho/He <0.5 was used
to remove SNPs with an excessive number of heterozygotes.
The remaining markers were pruned using SNP & Variation
Suite (SVS v8.8.3) (Golden Helix) and the default parame-
ters (window size = 50, window increment = 5, r2 = 0.5)
to produce a set of 5181 markers for LD, population struc-
ture, and genetic diversity studies. Rice accessions with a
heterozygosity rate above 10% were discarded, leaving 364
accessions.

2.4 Linkage disequilibrium

Genome-wide and chromosome-specific LD values were esti-
mated based on adjacent and pairwise measurements in SNP
& Variation Suite (SVS v8.8.3) (Golden Helix, Inc.) and TAS-
SEL v.5.0 (Bradbury et al., 2007). The genome-wide LD
decay was plotted as LD (r2) versus physical distance using
the ggplot 2 function (Wickham, 2016) of R statistical soft-
ware (Rstudio Team, 2016). A cut-off value of r2 = 0.2 was
set to estimate the average LD. EM algorithm was used as
an interactive technique for obtaining maximum likelihood
estimates of sample haplotype frequency.

2.5 Population structure

The population structure of the rice accessions was assessed
using the selected 5181 SNP markers that reduced the
influence of strong LD. The maximum likelihood estimate,
implemented in the admixture program (Alexander & Lange,
2011), was used to assign rice accessions to hypothetical
groups without prior knowledge of their population affin-
ity. This analysis was carried out using the CoARE facility
of the DOST-Advanced Science and Technology Institute
(DOST-ASTI) and the Computing and Archiving Research
Environment (CoARE) project. A 10-fold cross-validation
procedure was used to estimate the most suitable K-value.
The number of K-value computes ranged from 1 to 15.
Cross-validation error estimates were compared to iden-
tify the K-value with the lowest cross-validation error. The

proportion of the putative ancestral population of each rice
accession was defined in the Q-matrix. Rice accessions were
assigned to a group if the probability of their group member-
ship, as determined by ADMIXTURE, was ≥80%. Accessions
with less than 80% probability of a single group membership
were classified as admix. Population information of previ-
ously characterized accessions was used to identify distinct
genetic groups.

Population structure was also assessed using principal com-
ponent analysis (PCA). The genomic additive relationship
matrix was computed using the “A.mat” function from the
rrBLUP package in the statistical software R (Endelman,
2011), and PCA was performed using the prcomp command
in R. The genetic distance between all possible pairs of
rice accessions was calculated using the bitwise.dist function
implemented in the R package Poppr (Kamvar et al., 2014).
A phylogenetic tree was constructed and visualized in the
R package—Analyses of phylogenetics and Evolution (ape)
(Paradis et al., 2004).

2.6 Genetic diversity

The following genetic metrics were estimated: the num-
ber of alleles (Na), observed heterozygosity (Ho), expected
heterozygosity (He), and the inbreeding coefficient (FIS).
Estimates of genetic diversity were performed with the R
package diveRsity, using the divBasic function (Keenan et al.,
2013). The genetic metrics He and FIS were estimated for
each individual rice accession using Golden Helix SNP &
Variation Suite (Golden Helix, Inc.). FIS significance was
assessed using a 95% confidence interval and 1000 boot-
strap replicates. Significant differences in diversity between
groups were estimated using Wilcoxon signed rank test in
R (RStudio Team, 2016). Analysis of molecular variance
(AMOVA) was performed to estimate the variance between
populations and/or groups using R package Poppr (Kamvar
et al., 2014). Population differentiation was evaluated using
pairwise FST estimate based on Wright F statistics (Weir &
Cockerham, 1984) using the R package diversity (Keenan
et al., 2013) and the diffCalc function.

2.7 Multi-spectral imaging of rice pericarps

Dehulled rice seed was used for multi-spectral phenotyp-
ing. All digital images were captured using VideometerLab
4 (https://videometer.com) using the method described by
Mbanjo et al. (2019). Color difference metrics measured
included a* (green to red shade), b* (blue to yellow shade),
L (lightness, clarity of the pericarp), intensity, saturation (the
saturation of a color describes its degree of purity in relation
to neutral gray), and hue (angular specification of the color
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perceived as red, yellow, blue, or green), as well as providing
an estimate of anthocyanin levels. Geometric traits assessed
were area, length, width, and roundness (an estimate of how
closely the shape of the grain resembles a circle).

2.8 Nutritional profiling of rice grain

Eighteen phenolic compounds associated with pericarp pig-
mentation and nutritional potential (referred to as nutritional
traits) were quantified in dehulled seed of the 364 retained rice
accessions using high-performance liquid chromatography
(HPLC). These compounds included quercetin, kaempferol,
catechin, myricetin, flavone, ferulic acid, vanillic acid,
syringic acid, gallic acid, cinnamic acid, p-coumaric acid,
protocatechuic acid, peonidin and peonidin glycoside, del-
phinin and delphinidin glycoside, and cyanidin and cyanidin
glycoside. Dehulled, unpolished seeds of each rice accession
were milled using a Glen Creston Mill and a sieve size of
2 mm. Flour samples of approximately 2.5 g were extracted
into 50 mL of ethanol-acetic acid (10% 1 M acetic acid v/v)
under reflux conditions for 2 h. Extracts were stored at −20˚C
until analyzed. The extracts were prepared for chromatogra-
phy by centrifugation for 2 min at 13,000 rpm (approximately
10,000 g) and then filtered through a 0.2 μm filter. The com-
pounds were separated using the Dionex Ultimate 3000 HPLC
system. A 150 mm× 4.6 mm× 5 μm× 100 Å Kinetix C18 col-
umn was used. The mobile phase was a mixture of 1% formic
acid and neat acetonitile, ran at 0.2 ml/min, generating a gra-
dient of 0.95:0.05 for 2 min, 0.72:0.10 for 18 min, 0.00:0.28
for 28 min, and then held until 45 min. The column efflu-
ent was monitored with a photo diode array detector between
200 and 600 nm, with data recorded at 254, 280, 340, and
520 nm. Three technical replications were performed on each
grain sample.

2.9 Phenotype data analysis

The average values from 2 to 3 readings of 20 grain for
each accession were calculated and used in further analyses.
Descriptive statistics for each trait (minimum and maximum
values, range, median, variance, coefficient of variation [CV],
standard deviation [SD]) were obtained using the R package
pastecs describe function (Grosjean et al., 2018). Boxplots
were constructed to assess variability of the phenotypes
and histograms to evaluate trait distributions. Correlations
between traits and their level of significance were conducted
in the R package Hmisc (Harrell et al., 2020) using the
function rcorr. Correlograms were generated using library
“corrplot.” A correlation network, to visualize interconnectiv-
ity between the traits, was built using the R package qgraphic.
Phenotypic data were subjected to PCAs using the R package

factorMineR (Lê et al., 2008). The relationship between the
364 rice accessions was evaluated using the grain trait pheno-
typic data sets. Dissimilarity values were computed using the
function dist () implemented in R (RStudio Team, 2016) and
used with Ward’s minimum variance method for hierarchical
clustering. The hierarchical clustering result was visualized
using ggtree (Yu et al., 2017).

2.10 Genome-wide association study

The Shapiro–Wilk test was used to check phenotype data
for normality. The generalized linear model (GLM) with the
appropriate distribution was used for traits that did not follow
a normal distribution. Outliers were excluded after comput-
ing residuals for each trait. The process was repeated until
the model fitted the data. A genome-wide association study
(GWAS) was performed in SNP & Variation Suite (SVS
v8.8.3) (Golden Helix, Inc.) using the initial data with nor-
mally distributed residuals. The geometric and color-related
data obtained from the videometer, multispectral analyses
of rice grain, as well as the phenolic data, were used to
identify MTAs. Several approaches were assessed, includ-
ing the naïve and mixed linear model (MLM) approaches.
The naïve approach assumes independence of samples, and
although the input data were corrected for population stratifi-
cation, a high inflation rate was obtained (data not shown).
Therefore, MLMs implemented in SNP & Variation Suite
(SVS v8.8.3) were used. MLM approaches included the
single-locus method developed by Efficient Mixed-Model
Association eXpedited Model (EMMAX), and the multiple-
locus linear mixed model (MLMM; Segura et al., 2012).
With EMMAX, one SNP at a time is tested for associations
with the phenotypic data set (Kang et al., 2010). MLMM
assumes that multiple loci are associated with the phenotype
and involves a stepwise implementation of EMMAX with
multiple iterations. Cofactors were selected at each stepwise
implementation by choosing the SNP with the smallest p-
value and adding that as a cofactor in subsequent, forward
including steps. A PCA matrix (first three vectors used as
fixed covariates) and a GBLUP matrix were used to correct for
population stratification and genetic relatedness, respectively.
Ten steps were implemented in the MLMM. The optimal
step at Bonferroni correction was considered. To evaluate
the extent of quantile-quantile (Q-Q)-plot inflation, Q-Q-plots
were generated by plotting the negative log10-transformed
observed p-values obtained for each SNP marker association
against their expected distribution under the null hypothe-
sis of no genetic association. The p-value for each SNP was
subject to Bonferroni multiple comparison adjustment. The
Bonferroni corrected p-value [−log10(P) = ; P = 0.05/N],
where N is the total number of markers, was used as a thresh-
old p-value. Markers exhibiting a Bonferroni p-value ≤7.80
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10−7 were considered associated with the trait. In addition,
we considered a p-value ≤1 × 10−5 (−log10(P) ≥ 5) as
being suggestive of an SNP/trait association. Manhattan plots
of associated SNPs were visualized in GenomeBrowse V1.0
(Golden Helix).

2.11 Targeted association analysis and
functional annotation of target loci

All putative genes lying within the genomic region of sig-
nificant SNPs, as identified by single-locus GWAS, were
subjected to targeted association analysis. The candidate
genes were annotated based on the Nipponbare Reference
Genome (MSU7) using ANNOVAR (Wang et al., 2010).
All SNPs located in the 2 kb upstream (to include pro-
moter region), genic coding, and 1 kb downstream (to include
3′UTR) regions of each gene were extracted using PLINK
(Purcell et al., 2007) and tested for association with each
trait of interest using EMMAX (Kang et al., 2010), simi-
lar to the method of Misra et al. (2020). The Bonferroni
correction method (Haynes, 2013) was used to control the
false positive rate and further filter for significant SNPs for
each candidate gene, using the formula: α/m, where α = 0.05
and m is the number of SNPs per gene. Results were visu-
alized using Cytoscape (Shannon et al., 2003). Edges were
defined based on the beta effect of each SNP to the trait of
interest, with blue and red representing positive and nega-
tive effects, respectively. Source nodes represented the traits
of interest, and the target nodes represented the candidate
genes.

3 RESULTS

3.1 Assessment of rice grain color and
nutritional traits

The 364 rice accessions originated from 24 countries, primar-
ily collected from South-East Asia. The number of accessions
by country ranged from 1 to 141 (Figure S1, Table S1).
Visual assessment of pericarp color qualified 36.54% as red,
24.45% as variable purple, 10.99% as purple, 26.92% as white,
with 1.10% being classified as mixed color (Figure S2). The
descriptive statistics of the grain geometric and color-related
traits (Table S2), and the nutritional traits (Table S3), are
shown in Table S4. The greatest CV was observed in the nutri-
tional parameters, as compared to pericarp color and grain
geometric parameters. The quantitative variation within each
trait is displayed in boxplots (Figure S3). The Shapiro–Wilk
test indicated departure from a normal distribution (p < 0.05)
for all traits except grain length and width, which showed no
significant deviation from normality (p> 0.05) (Figure S4).

Analysis of the plant phenolic compounds (Figure 1)
revealed differences in whole grain between rice acces-
sions, both within and between color groups (Figure S3).
Kaempferol, ferulic acid, and protocatechuic acid were
present in all rice accessions, while cyanidin, peonidin, and
delphinidin were not detected, being found only in the glyco-
sylated form. Gallic acid was also not detected in any of the
rice accessions. Quercetin was detected in 84.6% of the acces-
sions and across all grain color types. Catechin was detected
in all accessions, except in one purple accession. Delphinidin
glycoside and peonidin glycoside were absent from all of the
white rice accessions. Delphinidin glycoside was only found
in purple and variable purple rice accessions. Peonidin glyco-
side was predominately present in purple and variable purple
rice accessions but was also found in three red accessions.
Delphinidin glycoside and peonidin glycoside are recognized
as the dominant anthocyanins in rice varieties with black and
purple grain (Frank et al., 2012; Shao et al., 2018; Sompong
et al., 2011). Cyanidin glycoside, a precursor of anthocyanin,
was more abundant in purple and variable purple rice acces-
sions. Vanillic acid, cinnamic acid, and p-coumaric acid were
detected in all color groups, and in nearly all accessions.
Syringic acid was also reported in all the rice grain color
groups. However, a large proportion of red rice accessions
(64%) and a considerable number of white rice accessions
(19.4%) were devoid of syringic acid. Flavone was present in
27.7% of the rice accessions.

The interconnectivity between geometric, color-related and
nutritional traits was revealed by the network visualization
analysis (Figure 2) and Pearson’s correlation (Figure S5).
The network visualization analysis (Figure 2) highlighted
the interconnectivity between geometric traits, as well as
between videometric color traits. Phenolic compounds that
are closely associated through their biochemical synthesis
pathways (Figure 1) also clustered together. As expected, net-
work 1 consists of quercetin, kaempferol, cyanidin glycoside,
and peonidin glycoside; however, ferulic acid was also part
of this cluster, despite being on a different part of the shiki-
mate pathway. Network 2 consisted of the color parameters L,
a*, b*, intensity, saturation and hue, and anthocyanin. Cat-
achin, a flavonoid, connected the two networks. Cinnamic
acid was not connected to any of the other traits measured.
Similarly, Pearson’s correlation analysis indicated significant
positive correlations between the color parameters saturation
and b*, and L and intensity. The highest positive correlation
between nutritional parameters was observed between vanillic
acid and syringic acid. Anthocyanin levels (measured using
the VideometerLAB4) exhibited a strong negative correlation
with L and intensity, while vanillic and syringic acid exhib-
ited strong negative correlations with L, intensity, b*, and
saturation.

PCA of the geometric, color-related and nutritional
traits separated the accessions into three main groups
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MBANJO ET AL. 7 of 21The Plant Genome

F I G U R E 1 Biochemical pathway of selected phenolic compounds. The schematic shows the biochemical relationship between the phenolic
compounds measured in this study (shown in bold) (Katsumoto et al., 2017; Mbanjo et al., 2020).

F I G U R E 2 Correlation-based network visualization of geometric, color-related and nutritional traits. Correlation was computed using the rcorr
function implemented in the R package Hmisc, and the correlation-based network was constructed using the R package qgraph (Re). Only significant
correlations are depicted. The traits are presented as nodes and their relationships as links. Positive correlations are denoted as green edges and
negative correlations as red edges. The size of the link corresponds to their relative connectedness.
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8 of 21 MBANJO ET AL.The Plant Genome

F I G U R E 3 Principal component analysis (PCA) of the 364 retained rice accessions using geometric, color-related and nutritional traits. (A)
PCA showing the distribution of the 364 rice accessions relative to visual color assessment. (B) PCA trait distribution and contribution to the total
variance for the Videometer parameters saturation (Sat), Cielab_L (L), Cielab_A (a*), Cielab_B (b*), hue, intensity (Int), and anthocyanin (Anth),
and the nutritional traits protocatechuic acid (DBHA), peonidin glycoside (Pn-gly), quercetin (Que), kaempferol (KEM), cinnamic acid (CA),
syringic acid (SA), vanillic acid (VA) ferulic acid (FA), and cyanidin glycoside (Cy-gly).

(Figure 3A). The first group contained white accessions
and the second group contained red accession, while the
third group contained mix, purple, and variable purple
accessions. Considerable phenotypic variation was observed
among variable and purple rice accessions. The first prin-
cipal component (PC) explained 39.1% of the phenotypic
variation, while PC2 explained 12.8%. The variation in
PC1 was mainly associated with nutritional traits, while
variation in the PC2 was driven by color-related traits
(Figure 3B).

3.2 SNPs discovery and quality control

The unfiltered hapmap file obtained from Elshire Group Ltd.
contained 558,526 SNP markers. After removing SNP with
CR <0.9 and MAF <0.05, a total of 81,580 SNP markers
were retained. The distribution of the ratio Ho/He showed
a binomial distribution (Figure S6). Using a cut-off value
of Ho/He < 0.5, heterozygous SNPs markers were filtered
out, leaving 64,139 SNPs markers for subsequent analyses
(Figure S7). The number of markers on each chromosome
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MBANJO ET AL. 9 of 21The Plant Genome

T A B L E 1 Summary statistics of genetic diversity indicators across rice subspecies and seed color groups.

A ± SD Percentage Ar ± SD Ho ± SD He ± SD Fis Fis_Low Fis_High
Subspecies

groupings
Indica 9444 ± 0.38 91.14 1.79 ± 0.38 0.01 ± 0.03 0.24 ± 0.18 0.96 0.95 0.97

Japonica 9139 ± 0.42 88.2 1.7 ± 0.42 0.01 ± 0.02 0.18 ± 0.18 0.96 0.95 0.97

temperate
japonica

7840 ± 0.50 75.68 1.47 ± 0.47 0.01 ± 0.03 0.13 ± 0.18 0.95 0.92 0.96

Tropical
japonica

8849 ± 0.45 85.4 1.59 ± 0.45 0.01 ± 0.02 0.16 ± 0.18 0.96 0.95 0.97

Color Purple 10328 ± 0.08 99.67 1.98 ± 0.10 0.01 ± 0.02 0.24 ± 0.14 0.97 0.96 0.98

Red 10356 ± 0.03 99.94 1.99 ± 0.04 0.01 ± 0.02 0.25 ± 0.13 0.97 0.97 0.98

White 10311 ± 0.1 99.51 1.97 ± 0.12 0.01 ± 0.02 0.22 ± 0.14 0.96 0.93 0.97

Note: Total number of alleles observed across SNP marker loci (A). Total observed alleles per locus as a percentage of population samples (%). Mean allele richness (Ar).
Observed heterozygosity across loci (Ho). Expected heterozygosity across loci (He). Inbreeding coefficient (FIS) showing the 95% confidence intervals (FIS_Low and
FIS_High).

varied from 3,478 on chromosome 12 to 8,756 markers on
chromosome 1, with an overall marker density of 1 marker
every 5.93 kb (Table S5, Figure S8). Filtering resulted in
64,139 high-quality markers that were used for the GWAS.
Twelve rice accessions with a heterozygosity rate of above
10% were removed, leaving 364 rice accessions for subse-
quent analyses (Table S1). A selection of 5,181 SNP markers,
which reduced the influence of strong LD, were retained for
population structure and genetic diversity assessment.

When considering all 364 rice accessions, the LD decay
distance was 350.58 kb at r2 = 0.2. For indica accessions,
the value of r2 decreased to 0.2 at about 223.29 kb, while
in japonica the value r2 decreased to 0.2 at about 189.64 kb
(Figure S9). The LD decay varied across chromosomes, with
the shortest LD decay distance of 105.34 kb being seen with
chromosome 5, and the longest distance of 498.35 kb with
chromosome 1 (Table S5).

3.3 Genetic diversity within the rice
accessions

High genetic diversity was present within the 364 accessions
(He = 0.24 ± 0.12; Wilcoxon signed rank test, p < 0.05), with
higher levels of diversity being observed within the indica
(He = 0.24 ± 0.18) compared to japonica (He = 0.18 ± 0.18)
rice accessions (Table 1). Within grain color groups, the
highest diversity was observed in red rice accessions
(He = 0.25 ± 0.13), followed by purple (He = 0.24 ± 0.14)
and then non-pigmented (He = 0.22 ± 0.14). The level of
inbreeding was high across all groups (He = 0.96 ≤ FIS ≥

0.97) (Table 1).
An FST test was used to assess genetic differentia-

tion between all groups based on allele discrepancies.
Genetic differentiation was high between indica and japon-
ica (FST = 0.31), between indica and temperate japonica

(FST = 0.36), tropical japonica and indica (FST = 0.33),
and between tropical and temperate japonica (FST = 0.29)
groups (Table 2). When accessions were assessed based
on pericarp coloration, little differentiation was observed
between the different groups (FST < 0.05) (Table 2).

AMOVA indicated that 30.30% of the total genetic vari-
ation occurred between the indica and japonica groups,
while within group differences accounted for 67.53% of
the variation. Residual, within rice accession heterozygosity,
accounted for 2.18% of the total genetic variation. Comparing
groups within sub-species, the molecular variance increased
to 32.49%, while between the accessions within those groups,
the variation was 65.26% (Table 3). When rice color groups
were compared, most of the genetic variation was within
the groups (95.02%), with very little between group varia-
tion (2.45%), indicating that diversity for pericarp color was
equally as high in indica and japonica subspecies groups.
The remaining variation was within rice accessions (2.53%)
(Table 3).

3.4 Population structure within the 364
retained rice accessions

The population structure of the 364 rice accessions was evalu-
ated using 5,181 independent SNP markers. Structure analysis
indicated the presence of the two main rice subspecies, indica
and japonica, as well as subdivisions within each (Figure 4A).
The majority of the rice accessions belonged to the japonica
sub-species (60.71%), while 36.54% were classified as indica,
leaving 2.75% of accessions as admixed (Table S1). PCA
supported the ADMIXTURE results, with a clear separation
between japonica and indica types (Figure 4B). Subdivisions
were identified within each subspecies. Japonica accessions
were separated into tropical japonica and temperate japon-
ica, and a subset of indica accessions was classified as aus
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10 of 21 MBANJO ET AL.The Plant Genome

T A B L E 2 Pairwise FST comparison between rice subspecies and seed color groups.

Populations FST Lower Upper
Subspecies groupings Indica vs. japonica 0.31 0.30 0.31

Indica vs. temperate japonica 0.36 0.34 0.38

Indica vs. tropical japonica 0.33 0.32 0.33

Temperate japonica vs. tropical japonica 0.29 0.26 0.31

Color groupings Purple vs. red 0.02 0.01 0.04

Purple vs. white 0.03 0.02 0.05

Red vs. white 0.02 0.01 0.05

T A B L E 3 Analysis of molecular variance (AMOVA) between and within rice subspecies and seed color groups.

Source of variation
Degree of
freedom

Sum of
squares

Mean sum of
square

Estimate
variance

Percentage of
variation

Sub-species Between groups 1 99,218.84 99,218.84 299.86 30.30

Between accessions within group 349 474,011.20 1358.20 668.33 67.53

Within accessions 351 7557.52 21.53 21.53 2.18

Total 701 580,787.57 828.51 989.72 100

Color Between groups 2 12,438.21 6219.10 19.69 2.45

Between accessions within group 356 550,759.52 1547.08 763.38 95.02

Within accessions 359 7290.82 20.31 20.31 2.53

Total 717 570,488.55 795.66 803.38 100

Subspecies groups Between groups 2 132,656.7 66,328.33 309.75 32.49

Between accessions within groups 348 440,573.4 1266.02 622.242 65.26

Within accessions 351 7557.52 21.53 21.53 2.26

Total 701 580,787.6 828.51 953.53 100

(Figure 4B). While most of the accessions from the Philip-
pines and Indonesia were tropical japonica, and most of the
accessions in the temperate japonica sub-group originated
from Thailand, Myanmar, Cambodia, Thailand, and Lao Pdr,
PCA did not suggest a relationship between geographical ori-
gin and genetic structure (Figure S10). The neighbor-joining
tree analysis (Figure 4C) produced similar results to those
obtained with PCA and ADMIXTURE.

3.5 Genome-wide marker trait associations

A total of 64,139 polymorphic markers with a call rate
≥0.9 and MAF ≥0.5 were used to identify genomic regions
associated with the geometric, color-related and nutritional
parameters measured in the retained 364 rice accessions.
Two MLM approaches were utilized: the single-locus MLM
method developed by EMMAX (Kang et al., 2010) and the
MLMM (Segura et al., 2012), which assumes that multi-
ple loci are associated with the phenotype. Manhattan plots

from the EMMAX and MLMM analyses are shown in
Figure S11.

Using EMMAX and the nominal threshold (p ≤ 1 × 10−5)
as the cut-off for significance, a total of 743 SNPs, corre-
sponding to 423 unique loci, were identified for 20 of the
25 traits (Table 4, Table S6). The number of MTAs var-
ied from 2 for the color-related traits L and anthocyanin to
204 for ferulic acid. Using MLMM, 93 SNPs, correspond-
ing to 70 unique loci, were detected. The number of MTAs
varied from 1 for width and roundness to 9 for ferulic acid
(Table 4, Table S7). After applying the Bonferroni correction-
value of −log10(P) = 6.1, EMMAX identified 401 significant
SNPs located within 228 putative loci (Table 4, Table S8).
Using the MLMM, 53 significant SNPs, corresponding to
40 loci, were found associated with 16 traits (Table 4, Table
S9). No MTAs were reported for the multi-spectral imaging
trait intensity, or the phenolic compounds flavone, p-coumaric
acid, cyanidin glycoside, and delphinidin glycoside using any
of the above approaches. Therefore, these nutritional pheno-
types were scored as a binary phenotype, that is, the phenolic
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F I G U R E 4 Analysis of the genetic relationship between the 364 retained rice accessions, applying 5,181 independent single nucleotide
polymorphism (SNP) markers. (A) Structure analysis. Each individual accession is represented by a vertical line. The proportion of the color of each
vertical line represents the proportion contributed by the ancestral population. The best supported clustering (K = 2) divided the 364 rice accessions
into two main groups, corresponding to indica and japonica rice types. With increased K values (K= 3, 4, and 5), additional substructure within each
cluster was observed. (B) Principal component analysis (PCA). The additive relationship matrix was calculated in rrBLUP using the R package
rrBLUP (Endelman, 2011) and used as input to the PCA. (C) Neighbor-joining tree, constructed based on bitwise genetic distance.

compound either being detected (present) or not detected
(absent). Applying the Bonferroni correction, this approach
detected 12 MTAs using EMMAX and MLMM (Table S10).

Significant SNPs associated with grain length on chromo-
some 3 explained 6.60%–7.92% of the phenotypic variance
(Tables S6–S8). The most significant SNP (S03_16840706)
was located at the 5′ UTR of LOC_Os03g29540, which
encodes for an ATP-dependent protease. SNPs significantly
associated with roundness were also found on chromosome
3, accounting for 7.55% of the phenotypic variance (Tables
S6–S8). The most significant SNP (S03_16725803) was
within an intergenic region between loci LOC_Os03g29370
and LOC_Os03g29389, both of which are annotated as
hypothetical proteins without a known functional. Five SNPs
were associated with width on chromosome 5, accounting for
7.01%–10.78% of the phenotypic variance (Table S8). We
identified 25 SNPs significantly associated with saturation
on chromosomes 2, 3, 4, and 7 that explained 6.78%–11.51%
of the phenotypic variance (Table S8). For a*, 47 significant
SNPs were detected on chromosome 7, while 42 SNPs
associated with b* were located on chromosomes 1, 2, 3, 4,
and 7 (Table S8). The phenotypic variance explained by the
individual SNPs ranged from 6.53% to 16.16%. Thirty-nine
SNPs were identified on chromosome 7 associated with

hue, explaining 10.51%–19.89% of the phenotypic variation
(Table S8).

Six significant SNPs associated with syringic acid were
found on chromosome 7 (Table S8). The most significant
SNP (S07_6090597) was a synonymous SNP within the rice
gene OsIPT5, which encodes for the isopentenyl transferase
5 protein (Nguyen et al., 2021). SNP S07_6090597 was also
significantly associated with the color-related traits a*, b*,
saturation and hue, and catechin levels (Table S8). Forty-six
SNPs were associated with catechin on chromosome 7 (Table
S8) with the most significant SNP S07_6069227, which
explained 26.06% of the phenotype variance, being located
at the 3′ UTR of the Rc/OsbHLH17 gene. With ferulic acid,
112 significant SNPs were identified across chromosomes 1,
2, 3, 4, 5, 8, 10 and 12, with phenotypic variance values rang-
ing from 6.68% to 18.11% (Table S8). The most significant
SNPs laid within predicted genes peroxidase 2, stress repres-
sive zinc finger protein 3, grain weight 2, DnaJ domain protein
C30, and spotted leaf 11. A total of 17 MTAs were found
for vanillic acid on chromosome 4 (Table S8). The most sig-
nificant SNP, explaining 11.37% of the phenotypic variance,
was located upstream of the Subtilisin 44 gene involved in
protein degradation. The 31 SNPs associated with quercetin
were identified on eight chromosomes and explained 7.93%
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to 15.69% of the phenotypic variance (Table S8). Two of
the most significant SNPs (S02_8132119 and S01_8132119),
explaining 15.69% and 14.61% of the phenotypic variance
of quercetin, were located in the intergenic position between
the gene grain weight 2 and LOC_Os02g14730, and within
an intronic regions of OsGSTF7, respectively. Eleven SNPs
were found to be associated with kaempferol (Table S8).
These SNPs were located on chromosomes 1, 2, 3, and 4 and
explained between 6.70% to 8.92% of the phenotypic vari-
ance. MTAs associated with protocatechuic acid were located
on chromosomes 2 and 3, and explained 7.93% to 9.70%
of the phenotypic variance (Table S8). The most significant
SNP on chromosome 2 (S02_8132119) was located within
an intergenic region between a Grain Weight 2 gene and a
gene encoding for a ubiquitin carboxyl-terminal hydrolase
family protein. On chromosome 3, SNP S02_10771077 was
located downstream of LOC_Os03g19200, within an exon
of OsALS, which encodes for acetolactate synthase. With
peonidin glycoside, seven significant SNPs were detected on
chromosomes 3, 4, and 6, with phenotypic variance ranging
from 8.79% to 13.47% (Table S8). The most significant SNP
(S03_16672065) lies within an exon of LOC_Os03g29280.

Significant MTAs were not found for myricetin and cin-
namic acid when applying the Bonferroni correction, but only
when using the nominal threshold (Table S7). Assessing the
data as a binary phenotype, seven statistically significant asso-
ciations were detected between SNP markers and cyanidin
glycoside located on chromosomes 3 and 4, explaining 7.0%
to 9.58% of the phenotypic variance (Table S10). SNP associ-
ations with p-coumaric acid were found on chromosome 1 and
explained 7.09% to 9.92% of the phenotypic variance (Table
S10). A single MTA was found for flavone on chromosome
1, while two MTAs were found for delphinidin glycoside on
chromosomes 1 and 3 (Table S10).

The MLMM approach resulted in fewer significant hits
between SNPs and phenotypic traits, using both the nominal
and Bonferroni thresholds (Tables S7 and S9), compared to
EMMAX (Tables S6 and S8). However, MLMM did identify
MTA that were not detected by EMMAX. A significant SNP
on chromosome 7 (S07_2177220) was found to be associated
with the color-related traits saturation and b*, while an MTA
was found for b* on chromosome 1 (S01_15126251) (Table
S9). An MTA was found for anthocyanin on chromosome 1
(S01_28051821) (Table S9). This SNP was located in the 5′

UTR of a wax synthase gene, LOC_Os01g48874. Numerous
MTAs were found for ferulic acid when applying EMMAX
with the Bonferroni correction (Table S8); however, only
eight significant SNPs were identified to be associated with
ferulic acid levels when applying MLMM and the Bonfer-
roni correction (Table S9), including four SNPs that were not
detected by EMMAX. Four MTAs were found for kaempferol
on chromosomes 3, 7, 9, and 11, and three MTAs for
quercetin on chromosomes 4 (S04_1780371), chromosome

10 (S10_13843153), and chromosome 12 (S12_9926677)
(Table S9). The SNP on chromosome 12 was located within
LOC_Os12g17340, which encodes for a CC-NBS-LRR resis-
tance protein MLA13. The SNP on chromosome 4 was also
associated with ferulic acid (Table S8). Two MTAs were
found for syringic acid on chromosomes 5 and 6, located
in LOC_Os05g31525 and LOC_Os06g03676 (Table S9). An
additional MTA was found for catechin on chromosome 7
(S07_6259359) that was also associated with the color-related
traits hue and a* (Table S7). Four MTAs were found for peoni-
din glycoside, two on chromosome 9 (S09_21842414 and
S09_5624836), one on chromosome 3 (S03_2052290), and
a fourth on chromosome 1 (S01_28597777), which was also
associated with kaempferol (Table S6).

3.6 Co-localization of marker trait
associations between traits

Many of the significant SNPs were associated with more
than one trait (Tables S11–S14). Most colocalization occurred
between nutritional traits, and nutritional and color-related
traits. Many of the multi-trait loci involved MTA for fer-
ulic acid, quercetin, and kaempferol. In addition, some of
these loci were also associated with b*. A large number
of multi-trait loci were found that linked catechin levels
with the color-related traits hue, a* and b*, as well as sat-
uration and syringic acid. Links were also found between
vanillic acid and saturation and b*, and between peonidin
glycoside and saturation and b*. The SNP S07_6069227,
located in the 3′ UTR of the RC/OsbHLH17 gene, was asso-
ciated with catechin and syringic acid, and the color-related
traits hue, saturation, a*, and b*. The SNP S03_16672065,
located within LOC_Os03g29280 (hypothetical protein), was
linked with saturation, b*, and peonidin glycoside. The SNP
S02_8132119 was associated with quercetin, ferulic acid
and protocatechuic acid, and the color-related traits satura-
tion and b*. S02_8132119 is located between the rice gene
OsGW2, which encodes for Grain Width and Weight2, and
LOC_Os02g14730. OsGW2 represses cell expansion in rice
endosperm, affecting grain filling, weight, width, and yield
(Song et al., 2007).

3.7 Association network of targeted
multi-spectral imaging and nutritional data

Targeted association analysis identified 520 significant SNP–
trait interactions with high beta effects (−0.3 > β or β > 0.3),
which involved 67 unique SNPs, within 52 candidate genes,
that were associated with 24 traits of interest (Figure 5, Figure
S12, Table S15). The reference alleles of 14 candidate genes
with positive beta effects associated with nutritional traits
displayed negative beta effects with color-related traits. Four
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F I G U R E 5 Association network summary of candidate genes linked with rice grain geometric, color-related and nutritional traits. Targeted
association analysis identified 520 significant single nucleotide polymorphism (SNP)–trait interactions with high beta effects (−0.3 > β or β > 0.3),
which involved 67 unique SNPs, within 52 candidate genes, associated with 24 traits of interest.

SNPs within an acetolactate synthase gene (OsALS) showed
positive beta effects for cyanide glycoside, ferulic acid, peoni-
din glycoside, quercetin, syringic acid, and vanillic acid but
negative beta effects with b* and saturation. Similarly, the
candidate gene OsIPT5 showed positive effects with cyanidin
glycoside, peonidin glycoside, syringic acid, and vanillic acid
but negative effects with saturation, a*, and b*. The reference
alleles of three significant SNPs within the gene Rc/bHLH17
showed positive effects for syringic acid and vanillic acid but
negative effects for saturation, a*, and b*. Both candidate
genes OsIPT5 and Rc/bHLH17 exhibited strong associations
with catechin content. The candidate gene OsGSTF7, which
encodes a glutathione S-transferase, contained two intronic
SNPs positively associated with cyanidin glycoside, ferulic
acid, kaempferol, myricetin, peonidin glycoside, quercetin,
syringic acid, and vanillic acid but showed negative effects
with a*, b*, and saturation. Similarly, two candidate genes
involved in protein degradation, OsSub44 (Subtilisin 44, with
potential serine-type endopeptidase activity; Zheng et al.,
2022) and OsFbox97 (a cyclin-like F-box domain containing
protein 97; Hua et al., 2011) exhibited positive effects with
nutritional traits but negative effects with color-related traits.

Nine candidate genes, having SNPs positively affecting
color-related traits but negatively affecting nutritional traits,
included OsSRZ3 (C. Zhang et al., 2020), which positively
affected saturation, a*, b*, and L, but negatively affected
cyanidin glycoside, ferulic acid, kaempferol, peonidin glyco-
side, quercetin, and vanillic acid levels. Similarly, OsDiC30
(a DnaJ domain protein C30) was negatively associated with

anthocyanin, cyanidin glycoside, protocatechuic acid, ferulic
acid, myricetin, peonidin glycoside, quercetin, syringic acid,
and vanillic acid, while showing positive effects with b*, L,
intensity, and saturation.

The association network analysis also helped to iden-
tify candidate genes unique to specific phenolic compounds.
LOC_Os03g14349, a Ty1-copia subclass retrotransposon
and LOC_Os03g02280, a DUF584 domain containing pro-
tein, were associated with quercetin. An upstream SNP
of LOC_Os03g62530, a conserved gene with unknown
function, strongly associated with kaempferol, while pro-
tocatechuic acid was associated with the predicted gene
LOC_Os05g43800 and cinnamic acid with an exonic SNP
of LOC_Os05g38984. With grain geometric traits, the
known gene OsGW5 was positively associated with width
but negatively associated with roundness. Grain length
was also associated with SNPs from three loci on chro-
mosome 3: LOC_Os03g29540, LOC_Os03g29389, and
LOC_Os03g29370.

3.8 Traits associated with Rc/bHLH17 and
IPT5 gene haplotypes

Significant SNPs found within the 3′UTR and exonic regions
of the Rc/bHLH17 gene identified four haplotypes, each con-
tributing to distinct phenotypes (Figure S13). Rice accessions
with the haplotype AGC were mostly red, while the rice
accessions with the TAT haplotype varied in grain color.
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Accessions carrying the TAT haplotype in general had higher
levels of cinnamic acid, cyanidin glycoside, kaempferol,
myricetin, p-coumaric acid, peonidin glycoside, quercetin,
and vanillic acid, while AGC haplotype accessions showed
higher a*, b*, and saturation values. However, AGC rice
accessions had higher levels of catechin compared to TAT
accessions. The other two haplotypes, AAT and TGC, were
rare haplotypes represented by only nine and three rice
accessions, respectively.

The four haplotypes found by five significant SNPs located
within exonic regions of the IPT5 gene also showed distinct
phenotypes (Figure S14). The haplotype CGCCT showed
lower a*, b*, saturation and catechin levels, but higher levels
of cyanidin glycoside, ferulic acid, flavone, quercetin, vanil-
lic acid, myricetin, p-coumaric acid, peonidin glycoside, and
syringic acid, as well as less roundness compared to other
haplotype groups.

Combining SNPs from Rc/bHLH17 and IPT5 generated six
haplotypes with distinct phenotypes (Figure 6). Most of the
rice accessions had haplotype TATCGCCT and included rice
lines of all grain color groups. Haplotype TATCGCCT had
significantly higher levels of cyanidin glycoside, myricetin,
and p-coumaric acid but lower levels of catechin than haplo-
type AGCTAGGC, as well as low saturation, a* and b* levels,
and high hue compared to the red accessions within hap-
lotype AGCTAGGC. Haplotype AATCGCCT also differed
from the other haplotypes, having lower saturation, a*, b*,
anthocyanin, and catechin values and high values of L and
intensity.

4 DISCUSSION

The international rice genebank maintained by IRRI hosts an
untapped reservoir of rice accessions with varying pericarp
coloration, providing a wealth of biodiversity for rice nutri-
tional breeding. By targeting specific phenolic compounds,
with known nutritional potential, this study was able to iden-
tify rice accessions, candidate genes and specific haplotypes
of value for the enhancement of the nutritional potential of
new rice varieties. The identification of multi-trait loci, that
contribute to both pericarp color-related parameters and the
level of valuable phenolic compounds, provides the opportu-
nity to select for nutritionally valuable rice accessions based
on these color-related parameters.

GWAS is a powerful tool to identify genetic variation asso-
ciated with traits. Using a panel of 364 accessions and 64,139
SNPs markers, significant genomic regions associated with
geometric, color-related, and nutritional-related traits were
identified. Many of the significant SNPs were associated
with more than one trait, with most colocalization occur-
ring between nutritional traits, and between nutritional and
color-related traits. The colocalization of trait loci aligned

well with the correlations seen between traits in the Pearson
correlation and network visualization analyses. The associa-
tion networks, based on the identified candidate genes, further
emphasized the interconnectivity between traits, highlight-
ing the genetic linkage between pericarp pigmentation and
secondary metabolites.

One of the most significant SNPs, S07_6069227, was
located in the 3′ UTR of the gene Rc/bHLH17 and associ-
ated with catechin and syringic acid, and the color-related
traits hue, saturation, a*, and b*. Being a positive regulator of
proanthocyanidin, Rc/bHLH17 is known to play a key role in
regulating pericarp color in rice (Sweeney et al., 2006). The
targeted association analysis further identified positive beta
effects for the gene OsIPT5, which encodes for an isopen-
tenyl transferase and has previously been suggested to play
a role in pericarp color and metabolite accumulation (Brot-
man et al., 2021). Positive beta effects were found between
OsIPT5 and cyanidin glycoside, peonidin glycoside, syringic
acid, and vanillic acid, as well as with roundness and hue,
while negative beta effects were found for OsIPT5 with a*,
b*, and saturation.

The six haplotypes identified from significant SNPs within
the genes Rc/bHLH17 and OsIPT5 identified a range of phe-
notypes, particularly for color-related traits (Figure 6). The
genes Rc/bHLH17 and OsIPT5 have previously been sug-
gested to play a role in catechin accumulation, pericarp color
determination, starch structural composition, glycemic index
values, and antioxidant metabolites (Brotman et al., 2021).
The haplotypes identified in this study were similar to the
haplotypes identified by Brotman et al. (2021), of which
haplotype 4 (GATGCGACCAGAGTTAGAGGTGT) exhib-
ited antioxidant activity, contributing to increased anti-cancer
properties, as demonstrated using cancer cell lines. However,
in this study, phenotypic variation between the six haplotypes
was observed not only for catechin but also for protocate-
chuic acid, anthocyanin, cyanidin glycoside, myricetin, and
p-coumaric acid, suggesting that Rc/bHLH17 and OsIPT5
may have an important role in the regulation of a wider range
of phenolic compounds, and not only those directly conferring
pericarp color.

Aside from Rc/bHLH17 and OsIPT5, multiple candidate
genes, not previously reported, were found to be linked to the
color- and nutritional-related traits analyzed. These genes fell
into two groups, those that conferred positive effects toward
nutritional traits, but negative effects towards color-related
traits, and those that conferred positive effects toward color-
related traits, but negative effects toward nutritional traits. It
is evident that both groups of candidate genes could be key
regulators of pigmentation, as well as metabolite profiles in
rice. Moreover, color-parameters such as a*, b*, L*, satura-
tion, and intensity could be used as indicators of the presence
or abundance of the associated phenolic compounds in
rice.
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Some of the candidate genes included OsPhyB, OsGSTF7,
OsALS, OsSub44, OsRopGEF, OsSRZ3, and OsBCH2. The
candidate gene OsPhyB encodes for a phytochrome B pro-
tein, which is the main photoreceptor for red light (Nagy &
Schafer, 2002) and interacts with bHLH transcription factors
to regulate red/far-red light phototransduction (Rausenberger
et al., 2010). Previously, it has been noted that the biosynthe-
sis of anthocyanin and proanthocyanidin is influenced by high
light intensity (Ma et al., 2018; Y. Zhang et al., 2018), support-
ing the observations of rice grain having deeper pigmentation
when grown at higher elevations. The gene OsGFT7 encodes
for a glutathione S-transferase (GST). The family of GST
genes is known to be involved in detoxification of xenobiotics
(Armstrong, 1997), regulation of redox homeostasis for cell
protection against UV radiation and oxidative stress (Jiang
et al., 2010), herbicide response (Cummins et al., 2013),
as well as biosynthesis and transport of secondary metabo-
lites (Dixon et al., 2010). OsALS encodes for an acetolactate
synthase, a thiamine pyrophosphate enzyme involved in the
first biosynthetic step in branched-chain amino acid synthe-
sis, catalyzing the reaction of two pyruvate molecules to
produce acetolactate, which is known as an intermediate prod-
uct of valine, leucine, and isoleucine (Yean et al., 2021).
OsSub44 encodes for a putative subtilisin homologue hav-
ing orthologues functions with cucumisin and/or xylem serine
proteinase 1. These proteinases are known to be involved in
pathogen response and programmed cell death in plants (Var-
tapetian et al., 2011). OsRopGEF encodes for a rho guanine
nucleotide exchange factor whose orthologue in Arabidopsis,
ATROPGEF7, is involved in pattern formation during the for-
mation of secondary cell wall pits (Nagashima et al., 2018).
The candidate gene OsSRZ3, which was negatively associated
with the phenolic compounds kaempferol, quercetin, ferulic
and vanillic acids, and cyanidin and peonidin glycosides, but
positively associated with the color-related traits a*, b*, L,
and saturation, encodes for a stress repressive zinc finger pro-
tein. It belongs to a gene family where the genes contain
at least one highly conserved SRZ domain and are known
to be involved in abiotic stress responses (C. Zhang et al.,
2020). The color-related traits intensity and L* were positively
associated with the candidate gene OsBCH2, which encodes
a beta-carotene hydroxylase 2 involved in the hydroxylation
of beta-carotene, producing zeaxanthin, known to be impor-
tant in the regulation of the xanthophyll cycle in plants and
adaptation to high light stress (Johnson et al., 2008). Zeax-
anthin, together with lutein, comprises more than 90% of the
total carotenoids found in rice (Ashraf et al., 2017; Melini &
Acquistucci, 2017).

The development of markers that identify the Rc/bHLH17
and IPT5 haplotypes associated with enhanced nutritional
value would provide robust tools for selecting these posi-
tive alleles at early stages within a rice breeding program,
eliminating the need for extensive phenotyping. Bi-parental

mapping of informative crosses would further validate many
of the additional MTAs and candidate genes identified in this
study. These candidate genes, interlinking color-related traits
with phenolic content, provide useful targets for future exper-
imental studies, including haplotype analysis. The relevant
haplotypes could then be used to screen further rice acces-
sions to select appropriate rice donor lines to breed for new
rice varieties with enhanced nutritional value. The associa-
tions between phenolic compound content and color-related
traits could also enable nutritionally valuable rice genotypes
to be identified quickly through videometer analysis.
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