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Increasing selection differential and decreasing cycle time, the rate of genetic
improvement can be accelerated. Creating and capturing higher genetic with
higher accuracy within the shortest possible time is the prerequisite for
enhancing genetic gain for any trait. Comprehensive yield testing at multi-
locations at early generations together with the shortest line fixation time can
expedite the rapid recycling of parents in the breeding program through
recurrent selection. Genomic selection is efficient in capturing high breeding
value individuals taking additive genetic effects of all genes into account with and
without extensive field testing, thus reducing breeding cycle time enhances genetic
gain. In the Bangladesh Rice Research Institute, GS technology together with the
trait-specific marker-assisted selection at the early generation of RGA-derived
breeding lines showed a prediction accuracy of 0.454–0.701 with
0.989–2.623 relative efficiency over the four consecutive years of exercise. This
study reports that the application of GS together with trait-specific MAS has
expedited the yield improvement by 117 kg ha−1·year−1, which is around seven-fold
larger than the baseline annual genetic gain and shortened the breeding cycle by
around 1.5 years from the existing 4.5 years.
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Introduction

Rice plays a key role in food security of Bangladesh. Climate change impact and ever-
increasing population are pushing tremendous pressure on agriculture for increasing food
production. Under the scenario of decreasing arable land annually by 0.43% and diminishing
natural resources, no other viable alternative to increase production per unit area (Salam et al.,
2020). Rice production in Bangladesh has increased by around four-fold during the last
5 decades through the introduction and use of improved varieties (MVs) and the practice of
optimum crop management solutions. Although in recent years Bangladesh has attained self-
sufficiency in rice production, it is still not sustainable. Different natural calamities and human-
created crises are endangering food security. A study shows that Bangladesh will require
45 million tons of rice in 2050 to feed its 250 million people (Kabir et al., 2015). It will be a great
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challenge to meet this demand with the current rate of genetic gain in
the yield of rice as estimated by Rahman et al. (2022) as 0.24% for
winter rice (Boro) and 0.15% for monsoon rice (RLR-T.Aman),
respectively. Therefore, the improvement of breeding materials
needs to be focused on top of everything. Genetic gain in crops for
a particular trait can be enhanced by shortening the breeding cycle, the
time span required for the selection of parents from the progenies of a
mating between two grandparents, and the recycling of high-value
parents in the breeding program. Application of different speed
breeding techniques, such as rapid generation advance (RGA),
double haploid, embryo rescue, etc. is the effective means of
shortening breeding cycle time. Recycling of elite germplasm in the
breeding crosses increases the frequency of favorable alleles of
quantitative traits like yield. The genomic selection approach
expedites the recycling process of parents; can thereby accelerate
the rate of genetic gain for yield.

Genomic selection (GS) is a form of marker-assisted selection,
which utilizes markers across the entire genome to estimate genomic
estimated breeding values (GEBVs) taking additive genetic effects of
all genes into account. The GEBVs are directly used for making the
selection of individuals for specific trait. As GEBVs can be predicted
with or without phenotyping, the selection at early generation is
possible, thus reducing breeding cycle time greatly. GS uses a
training population of known phenotypes and genotypes to
construct a model of each marker’s effect on the trait. The model
is then applied to predict the phenotypic performance of the untested
individuals having only genotypes. However, the reliability of such
predicted phenotype depends on the accuracy of the estimates. The
prediction accuracy is estimated from the correlation between the
GEBVs of the individuals and measured phenotype for which it is
available. The GS has been reported to be more efficient than the
phenotypic selection considering resources involvement (Heffner
et al., 2009; Jannink et al., 2010; Lorenz et al., 2011; 2012; Rutkoski
et al., 2011; Rutkoski et al., 2012; Wang et al., 2012; Onogi et al., 2015;
Spindel and Iwata 2018). Since its first application in cattle breeding
(Schaeffer, 2006; Hayes et al., 2009; Venot et al., 2016; Wiggans et al.,
2017). GS is increasingly being used in both plant and animal breeding
programs to accelerate genetic gain of the traits governed by minor
genes (Juma et al., 2021). The application of GS in rice was first
reported by Grenier et al. (2015) and its use in rice breeding is
continuously increasing. The GS in rice has been used for selection
against yield (Xu et al., 2014; Grenier et al., 2015; Spindel et al., 2016;
Wang et al., 2017), heading date (Onogi et al., 2016), plant height,
flowering time (Grenier et al., 2015; Spindel et al., 2016; Wang et al.,
2017), panicle weight (Grenier et al., 2015), tiller number, grain
number, thousand kernel weight (Xu et al., 2014; Wang et al.,
2017), as well as panicle length, secondary branch number, and
productive panicle number per plant (Wang et al., 2017). Iwata
et al. (2015) suggested that GS could be useful for predicting rice
grain shape, with average accuracy ranging from 0.40 to 0.64. The GS
accuracies for grain yield ranged approximately from 0.09 to
0.40 across different studies (Xu et al., 2014; Grenier et al., 2015;
Spindel et al., 2016; Wang et al., 2017). In a GS study for heading date
with 174 backcrossing inbred lines together with its parental lines of
rice using different models, Onogi et al. (2016) reported very high
accuracy (r > 0.9) across all models. The accuracy for plant height and
flowering time ranged approximately from 0.25 to 0.86 in different
studies (Grenier et al., 2015; Spindel et al., 2016; Wang et al., 2017).
The GS accuracy reported by Xu et al. (2014) for tiller number, grain

number, and thousand kernel weight ranged from 0.67 to
0.69 depending on the models used. In general, the GS accuracy in
rice studies varies by trait, population, and the models being used. The
commonly used genomic prediction models are ridged regression best
linear prediction (rrBLUP) (Whittaker et al., 2000; Meuwissen et al.,
2001), Bayesian LASSO (BL) (de los Campos et al., 2009; Park and
Casella, 2008), reproducing kernel Hilbert spaces (RKHS) (Gianola
et al., 2006) regression, and random forest (RF) (Breiman, 2001). The
ridge regression best linear unbiased prediction (rrBLUP) model
performs adequately well compared to many other models (Spindel
et al., 2015; Spindel et al., 2016; Spindel and Iwata 2018). However,
prediction accuracy depends on many factors, including the model,
crop, size of the reference population, extent of linkage disequilibrium
(LD), marker set, and heritability of the trait of interest (Crossa et al.,
2010). Accurate phenotyping of a large training population, preferably
over multiple environments and years is required to derive accurate
predictions due to the interactions between these factors (Rikkerink
et al., 2007; Xu and Crouch, 2008; Resende et al., 2012; Desta and
Ortiz, 2014). In this paper, we report the progress of testing training
populations in multiple environments and further scope of applying
GS in enhancing genetic gain in the breeding program aiming to
develop rice varieties for the favorable irrigated ecosystem of
Bangladesh.

Materials and methods

Grain yield data of 1445 breeding lines tested in 64 historical trials
during 2014–2019 under the irrigated breeding program of
Bangladesh Rice Research Institute (BRRI) were used to estimate
baseline genetic gain. The trials included only the elite breeding lines
and released varieties as standard check varieties with up to a
maximum of 8% common entries in the succeeding years.
Performance BLUP for yield extracted for each the breeding lines
and used to determine baseline gain, while genomic BLUPs for
3767 breeding lines evaluated at multi-locations under 183 trials
during 2019–2022 were extracted and used to estimate the rate of
changes in genetic improvement of rice yield.

Extraction of performance BLUP

Two-stage linear mixed model (Piepho et al., 2008; Smith and
Cullis 2018) analysis was performed for extracting performance BLUP
for the yield of each line. In the first step, each trial was analyzed
separately to realize the best linear unbiased estimation (BLUE)
following the model:

Yij � βXi + εij (1)

Where, Yij represents the vector for observed yield for ith

observation, β is the fixed effect of ith genotype and εij is the
residual error with εij ~ N(0, σ2ε) and E(ε) = 0. The possible
blocking factors were modeled to determine which factors led to
the lowest Bayesian Information Criterion (Spilke et al., 2010; Piepho
et al., 2015). For trials that followed a row-column design, the possible
factors were row and column, for those following an RCBD or
augmented RCBD, the possible factor was replicated. The
R-packages ‘emmeans’ (Lenth et al., 2019) were used to implement
the models.
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In the second stage, the BLUEs obtained from the first stage model
were used as the response variables in the mixed model analysis. The
BLUEs for yield within each environment was modeled according to
Bates et al. (2015). The model used is as follows:

Yij � μ + gi + ej + εijk (2)

Where Yij is the BLUE of each line in environment j, μ is the
overall mean, gi is a random effect of line i with gi ~ N(0, Aσ2g), where
σ2g is the genetic variance and A is the additive genetic relationship
matrix based on pedigree, ej is a fixed effect of the environment j, εijk is
the residual error in k environment with εij ~ N(0,Rσ2ε), where R is a
matrix proportional to the residual error covariance matrix and σ2ε is
the error variance. The R-packages lme4 (Bates et al., 2015) were used
to implement the models.

Genotyping and phenotyping of the breeding
lines

In total 431, 816, 1491, and 1029 advanced breeding lines of F7-F9
generations along with five released varieties (BRRI dhan28, BRRI
dhan29, BRRI dhan67, BRRI dhan74, and BRRI dhan89, were
evaluated for yield at multi-locations during Boro season of
2018–19, 2019–20, 2020–21, and 2021–22, respectively. The trial
meta-data can be seen the Supplementary Table S1. Green leaf
tissues from a representative plant of each breeding line was
collected in labeled glassine bag at 4–5 weeks after transplanting
and stored immediately on ice. The samples were stored in
a −80°C freezer until processing for genotyping. DNA was isolated
and purified according to the modified Cetyltrimmethyl Ammonium
Bromide (CTAB) protocol (Aboul-Maaty and Oraby 2019).
Genotyping with genome-wide 1024 SNP markers including
92 trait-specific markers named as 1K-RiCA panel (Arbelaez et al.,
2019) was performed at an outsourcing genotyping service provider
with the help of IRRI Genotyping Services Laboratory, The
Philippines. The genotyping data of 1k-RiCA SNPs were filtered
using TASSEL v5.0 (Bradbury et al., 2007) following the criteria
that the individuals with more than 15% of heterozygous loci were
removed, markers with more than 15% of missing values and minor
allele frequency below 0.05 were removed. After filtering,
814–889 markers were retained for doing downstream analysis.

Estimation of genomic estimated breeding
values and optimization of training population
size

The rrBLUP model was used to estimate the marker effects in R
software using mixed. solve function of rrBLUP package (Endelman
2011). Individual GEBVs were then obtained using estimated marker
effects. The prediction accuracy from the rrBLUP model was used to
estimate GS relative efficiency (REc). Five hundred iterations of cross-
validation were used with a random sampling approach, in which 20%,
30%, 40%, 50%, 60%, and 80% of the entries were randomly sampled
as training population (TP) for 669 breeding lines tested in the Boro
season, 2019-20 to assess the accuracy and optimize TP size for GS.
The GS accuracy was estimated as the correlation coefficient of the
GEBVs and the phenotypic values for all accessions. The average

accuracy realized from the random sampling was reported as the mean
correlation coefficient values from 500 runs. The REc was estimated
using the equation:

REc � rG.O
���

H2
√ (3)

Where rG.O is the accuracy of GS and H2 is the estimated
heritability

Sparse testing of training population

The efficiency of GS depends on the relative proportion (size) and
genetic relationship of the training population with the whole breeding
population under the model. Based on the accuracy of prediction with
the 500-fold cross-validation of varying sizes training population, four
training populations comprising 60% of the total breeding lines were
considered for yield testing at four locations following the sparse
testing model of GS (Jarquin et al., 2020; Atanda et al., 2021; Atanda
et al., 2022). An example scheme of sparse testing of TP has been
shown in Figure 1. To save resources and to make connectivity
between the trials, 40% of the total entries of the whole breeding
population were sampled first as a common share to each training
population. The common share of the TP was constructed in such a
way that it contained the breeding lines of all the crosses in the study
with at least one parent common. The remaining portion of the TP
was sampled randomly from the remaining lines of the breeding
population taking 25% lines at each time without replacement to avoid
resampling of the same entry in the next round of sampling.

Estimation of genetic gain for yield

Genetic gain was estimated as the rate of change in breeding value
per unit of time following the procedure reviewed by Garrick (2010).
Briefly, performance BLUPs of 1108 individual lines tested in 44 trials
during 2016–2019 were extracted by using Eq 1, 2 in the two-stage

FIGURE 1
A scheme of sparse testing of training population for the genomic
selection followed for the irrigated ecosystem. In this scheme, 40% of
lines of the breeding population are common in all four TPs and the
remaining lines were sampled by 25% at each time avoiding
duplication among the TPs.
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linear mixed model described above. These BLUP values were
regressed on the year when the lines were evaluated to get the
baseline genetic gain. Genomic BLUP values of each line were
extracted from the trials conducted during 2020, 2021, and
2022 following the same principle using R-package rrBLUP, and
the rate change in genetic improvement in yield was determined by
regressing on the trial year. The regression line was fitted on the scatter
plots at 95% confidence intervals following the formula given below,

CI � �x ± z* ×
σ
�

n
√ (4)

where, �x is the sample mean, z* is the level of confidence, σ is the
population standard deviation and n is the sample size

The regression co-efficient i.e. genetic gain was subjected to t-test
for level of significance.

Post facto analysis of BRRI crosses

All the crosses made for the irrigated breeding program during
1994–2022 were retrieved from the BRRI crossing database. The initial
filtering boundary to the year “1994”was set taking the released year of
BRRI dhan28 and BRRI dhan29 into consideration. BRRI dhan28 and
BRRI dhan29 are the widely cultivated varieties in the irrigated
ecosystem of Bangladesh. The frequency of the crosses using these
two varieties as parents were estimated in the percentage of the total
number of crosses made under the irrigated breeding program after
their release.

Results

Assessment of baseline genetic gain for yield

The analysis of 1108 individual lines tested in 44 trials from
2016 to 2019 under irrigated favorable ecosystem showed the yield
BLUP varied from 5.79 t ha−1 (in 2016) to 5.88 t ha−1 (in 2019) with an
average of 5.78 t ha−1. The variation among the tested lines was much
narrow (up to 4.65%) across the years (Table 1). Importantly, trial size
(no. of entries), locations, and design were variable across the year. The
simple regression analysis of the BLUP values with the trial year

showed a baseline genetic grain for the yield of 0.0174 t ha−1·year−1
(Figure 2).

Assessment of the accuracy of genomic
selection

Accuracy of GS was estimated through Pearson’s correlation
between the predicted performance and the actual performance.
The GS accuracy in an observational yield trial (OYT) trial with
799 breeding lines conducted during Boro season 2020–21 at four
locations (Cumilla, Gazipur, Habiganj, and Rangpur) following sparse
testing model ranged from 0.456 to 0.715 (Figure 3), while in the trials
of Boro 2021–22 season, it varied from 0.396 to 0.757 across the sites
with a different set of 618 breeding lines. On the other hand, the GS
accuracy in multiple trials conducted at different regional research
stations with different sets of breeding lines in Boro 2018–19 (431 lines
in 26 trials), Boro 2019–20 (816 lines in 43 trials), Boro 2020-21
(1491 lines in 71 trials), Boro 2021–22 (1029 lines in 43 trials) were
0.672, 0.701, 0.454, and 0.509, respectively (Table 2; Supplementary
Figure S1). A study aiming to optimize training population size with
669 breeding lines tested in the Boro season of 2020 at multi-locations
showed that average prediction accuracy gradually increased up to

TABLE 1 Meta data and descriptive statistics of the analysis for the yield of 1108 individual breeding lines/varieties tested in 44 trials during Boro season of
2016–2019 under favorable ecosystems.

Year of field trial

2016 2017 2018 2019 Across the year

No. of genotypes tested 63 324 290 431 1108

No of trial 10 4 4 26 44

No. of location 1 7 4 19 31

Trial design RCB RCB, ARCB RCB, RC RCB, RC —

Range (t ha−1) 5.05–6.15 5.11–6.56 5.12–6.58 5.11–6.56 —

Average (t ha−1) 5.79 ± 0.20 5.77 ± 0.27 5.82 ± 0.26 5.88 ± 0.27 —

CV (%) 3.46 4.65 4.46 4.45 —

RCB, randomized complete block; SA, systematic arrangement; ARCB, augmented randomized complete block; RC, Row-Column.

FIGURE 2
Baseline genetic gain for yield in the irrigated breeding program of
BRRI during 2016–2019. Performance BLUP for the yield of each line
was regressed over the year of the trial to extract the rate of genetic
improvement per year.
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27.42% with the increase of training population size (up to when 80%
of the entries of the breeding population was included in the training
population) and afterward it sharply jumped to 62.64% when 100%
lines were in the training population (Figure 4).

Genomic selection for choosing parents

The GS approach has been in routine use since Boro
2018–19 season for selecting high breeding value lines to recycle
in the crossing program. In Boro 2018–19, 27 parents out of 431 lines
tested in different classes of trials at 19 locations across the country
were selected based on GEBV for yield (Table 2). Similarly,
23 parents out of 816 lines tested during Boro 2019–20,
31 parents out of 1491 lines tested during Boro 2020–21, and
25 parents out of 1029 lines tested during Boro 2021–22 were
selected based on GEBV for yield and used in the crossing
program. The prediction accuracy and relative prediction
efficiency varied from 0.454 to 0.701 and 0.989 to 2.623,
respectively. The Supplementary Figure S1 shows the association
of GEBV for yield and the BLUE for yield.

Genomic selection at the early generation
yield testing stage

The sparse testing model of GS allows the evaluation of a large set
of lines under different sets of training populations at multi-locations.
This method was practiced in the irrigated breeding program at the
OYT stage, which is the first stage of yield trial. In the 2020–21 Boro
season, out of 650 breeding lines, 249 lines at Cumilla, 289 lines at
Gazipur, 232 lines at Habiganj, and 275 lines at Rangpur were tested as
training population. The genomic prediction of these four sites
showed a range of predicted yield between 5.94–6.81 t/ha at
Cumilla, 5.04–6.96 t/ha at Gazipur, 7.40–8.18 t/ha at Habiganj, and
6.22–6.86 t/ha at Rangpur. The prediction accuracy with the training
population was 0.456 at Cumilla, 0.715 at Gazipur, 0.499 at Habiganj,
and 0.456 at Rangpur (Figure 3). On the other hand, out of
548 breeding lines, 292 lines at Cumilla, 249 lines at Gazipur,
280 lines at Habiganj and 125 lines at Rangpur tested as training
population in Boro 2021–22 showed prediction accuracy 0.396, 0.603,
0.378, and 0.329, respectively. The predicted yield based on GEBV was
found 4.89–4.95 t/ha at Cumilla, 5.23–7.50 t/ha at Gazipur,
6.4262–6.4263 t/ha at Habiganj, and 4.70–5.66 t/ha at Rangpur.

FIGURE 3
Accuracy of genomic prediction estimated from OYT trial conducted with 799 lines during Boro 2020–21 (A) and OYT trial conducted with 548 lines
during Boro 2021–22 (B) at four locations in Bangladesh.

TABLE 2 Prediction accuracy and relative efficiency of prediction in selecting high breeding value parents during four consecutive Boro seasons, 2018–19 to 2021–22.

Season No. of lines tested (in different
trials)

No. of parents selected based on GEBV
for yield

Prediction
accuracy

Relative efficiency of
prediction

Boro
2018-19

431 (26) 22 0.672 1.933

Boro
2019-20

816 (43) 23 0.701 2.623

Boro
2020-21

1491 (71) 31 0.454 0.989

Boro
2021-22

1029 (43) 25 0.509 1.580
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Genomic selection at F5:6 LST without yield
evaluation

GS was performed on 505 F5:6 LST (Line Stage Testing) lines
derived from 77 crosses using genotyping data of 860 SNPs and
yield data of their 39 parents. The prediction accuracy was found
0.103 when correlation analysis was performed between the
predicted yield (gBLUP) of the LST lines and the BLUE values
extracted for the same set of lines from the OYT trials in the Boro
season of 2021–22 (Figure 5). However, the correlation coefficient
between the gBLUP and BLUEs of the parents was as high
as 0.708.

Estimation of current genetic gain

The analysis of 3767 individual lines (with a maximum of 8.4%
duplicates over the year) tested from 2019 to 2022 under irrigated
favorable ecosystem showed a range of gBLUP for yield (5.69–7.2 t/ha)
over the trial year (Table 3). In 2019, it varied from 5.69 t/ha to 6.28 t/
ha with an average of 5.90 t/ha, in 2020, it was 5.72 t/ha to 7.2 t/ha with
an average of 6.42 t/ha. In total, 1491 breeding lines were evaluated in
2021 and gBLUP varied from 5.72 t/ha to 7.03 t/ha. In 2022, 1029 lines
were evaluated under 43 trials at 27 locations. The gBLUP extracted
for each line in this year varied from 5.82 t/ha to 6.76 t/ha with an
average value of 6.16 t/ha. The variation among the tested lines in
gBLUP was a maximum of up to 5.61% across the years. The
regression analysis of the gBLUP with the trial year showed a
change in rate of genetic improvement in yield by
0.1178 t ha−1 year−1 (Figure 6).

Discussion

Genetic gain is the amount of increased genetic improvement of
a population over time due to intervention of selection for specific
traits. It is usually estimated per unit of time and/or per unit area
and/or per unit investment. Measuring the genetic gain of rice

breeding programs is extremely important, as it is the staple food
crop in Bangladesh. The analysis of baseline genetic grain for yield
based on trial year shows that the irrigated breeding program of
Bangladesh Rice Research Institute had a value of
0.0146 t ha−1 year−1 (Figure 1) from 2016 to 2019. This rate of
genetic improvement is quite low and inadequate compared to
the expected genetic gain of at least 0.044 t ha−1 per year
(approximately 1% annually) (Kabir et al., 2015) to meet
Bangladesh’s requirements through 2050 for ensuring food
security. In a study using historical series data of the released
varieties over 50 years from 1970 to 2020, Rahman et al. (2022)
reported the baseline genetic gain as 0.01 t ha−1 year−1 for both
rainfed lowland (monsoon rice) and irrigated rice (winter rice).
However, these rates are consistent with those observed for other
South Asian rice breeding programs serving favorable environments
(Kumar et al., 2021). In general, low rates of genetic gain in South
and Southeast Asian rice breeding are likely due to long breeding
cycles caused by repeated use of older, popular varieties as parents,
and by limited selection intensity for yield in multi-location trials.
Post facto analysis of BRRI crosses showed that in its irrigated
breeding program, the most popular varieties BRRI dhan28 and
BRRI dhan29 were repeatedly used as parents. Also, frequent use of
landrace varieties in the crossing programs (Supplementary Table
S2) without proper pre-breeding activities has resulted in limited
improvement in additive breeding value for grain yield of rice in the
irrigated breeding program.

Breeder’s equation (Lush 1937) suggests that by increasing the
selection differential per unit of time or cost, the genetic gain can be
enhanced. Increased selection differential depends on the trial
heritability/accuracy, selection intensity, the genetic variance of
the trait, and re-cycling time or length of the breeding cycle.
Multi-location trials improve trial heritability. The inclusion of
high-breeding-value parents in the breeding program increases
genetic variance and selection intensity. Cutting-edge speed
breeding techniques, such as RGA, double haploid, embryo
rescue, etc. have shown promise in reducing breeding cycle time
(Cobb et al., 2019; Ahmar et al., 2020; Shanmugavel et al., 2022). GS
provides an opportunity to hasten the cycle of selection. It also
showed the potential to select high-breeding value individuals from

FIGURE 5
Scatter plot of gBLUP for the yield of F5:6 lines against the
corresponding BLUE values estimated from yield testing in OYT during
the Boro season of 2022. The value “r” indicates the accuracy of the
prediction.

FIGURE 4
Mean prediction accuracy for yield in relation to training population
size determined from a population of 669 breeding lines tested in Boro
season at multi-locations during 2020. Average accuracy was
determined from 500 iterations of cross-validation of different
sizes (proportion of the breeding population) of the training population.
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early-generation populations without extensive field testing. GS has
been shown effective in wheat (Bonnett et al., 2022), maize (Beyene
et al., 2021), barley (Sallam et al., 2015), and even rice (Xu et al.,
2021). In our study, we also found that genetic gain per unit of time is
much faster in the GS strategy than in the conventional selection
methods. Since 2018-19, the GS approach is routinely practiced in
selecting high-breeding value parents for recycling in the breeding
program. One hundred Six superior lines with high GEBVs
comprising 27 lines from the breeding trials conducted in
2018–19, 23 lines from 2019–20’s trial 31 from 2020–21’s trial
and 25 from 2021–22’s trial were isolated and recycled in the
crossing program (Tables 2, 3) and thereby, frequency of
favourable alleles for yield has been increased in the breeding
population. GS strategy helped grab the high GEBV lines as it
accounts for the marker effect with the phenotypic performance
(Contaldi et al., 2021).

Prediction accuracy is a very important factor for applying GS in
filtering selection candidates. The prediction accuracy depends on
various factors including the model used in the GS scheme. The
rrBLUP is the frequently used GS model in the field of plant breeding.
However, Rutkosky et al. (2012) reported Reproducing Kernel Hilbert
Spaces (RHKS) regression and Random Forest (RF) regression as the
most accurate models for genomic prediction. The simplicity of

rrBLUP to extract marker effect made it popular among plant
breeders. Thus, we used this model in our study for genomic
prediction of the untested breeding lines. Another factor is the size
of the training population which significantly affects the accuracy of
genomic prediction. In a study of optimization of the training
population size, we found that prediction accuracy gradually
increases with the increase of breeding lines and sharply increases
when TP contains more than 80% of the breeding lines of a validation
population (Figure 4). Data quality of the training population is
another important factor for GS accuracy. The heritability of a trial
is an ideal indicator of data quality. Heritability for a quantitative trait
like yield between 0.4 to 0.6 is considered to be optimum for the best
quality data.

The GS technology not only can capture high-value parents but
can be used to predict the performances of the untested (validation
population) lines together with the tested lines, thus it saves
resources required for the field testing of the whole population.
The sparse testing approach of GS (Jarquin et al., 2020), in which the
breeding population is subsetted into training populations with
different but genetically related lines by pedigree for field testing,
saves resources further by reducing duplication of the lines across the
locations. Applying the sparse testing model, we evaluated
650 breeding lines in 2020–21 and 548 breeding lines in

TABLE 3 Genomic BLUP for yield extracted from the breeding trials conducted at different locations during 2019–2022 under irrigated favorable ecosystem in Boro
season.

Year of field trial

2019 2020 2021 2022 Across the year

No. of genotypes tested 431 816 1491 1029 3767

No of trial (location) 26 (19) 43 (21) 71 (23) 43 (27) 183 (90)

Range (t ha−1) 5.69–6.28 5.72–7.20 5.72–7.03 5.82–6.76 5.69–7.20

Average (t ha−1) 5.90 ± 0.18 6.42 ± 0.06 6.37 ± 0.24 6.16 ± 0.14 —

CV (%) 3.12 5.61 3.81 2.27 —

FIGURE 6
Genetic gain for yield in the irrigated breeding program of BRRI during 2019–2022. Genomic BLUP for the yield of each line was regressed over the year
of the trial to obtain the rate of genetic improvement per year.
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2021–22 at four locations without testing all of them in all locations.
The level of prediction accuracy observed at Cumilla (0.456 and
0.396), Gazipur (0.715 and 0.603), Habiganj (0.499 and 0.378) and
Rangpur (0.456 and 0.329) during 2020–21 and 2021–22 (Figure 3),
respectively suggests the reliability of the predicted performance of
the untested breeding lines. The GS accuracy for grain yield of rice
was reported with a range from 0.09 to 0.40 in many studies
conducted by Xu et al. (2014), Grenier et al. (2015), Spindel et al.
(2016), Wang et al. (2017). In addition, GS accuracy in the multiple
advanced yield trials conducted at different regional research
stations with different sets of breeding lines in Boro 2018–19
(431 lines 26 trials), Boro 2019–20 (816 lines in 43 trials), Boro
2020–21 (1491 lines in 71 trials), Boro 2021–22 (1029 lines in
43 trials) season were 0.672, 0.701, 0.454, and 0.509 with high
(1.933, 2.623, 0.989, and 1.58, respectively) relative efficiency of
prediction (Table 2; Supplementary Figure S1). These results
indicated that the sparse testing model of GS was as effective for
capturing expected selection candidates as the GS models with the
same set of training population tested across the sites.

The rate of genetic gain can be improved by increasing selection
differential with sufficient accuracy and decreasing cycle time (Cobb
et al., 2019). Before adopting the RGA technique in advancing

segregating populations, the breeding cycle length was roughly
8–10 years in the breeding program of BRRI and IRRI (Collard
et al., 2017; Cobb et al., 2019). The cycle time of BRRI’s breeding
programs has been cut down from 8–10 years to 4–5 years by the use
of RGA techniques (Rahman et al., 2019) as shown in Supplementary
Table S3. For further reduction in cycle time, in this study, the GS
technique was used for predicting the performance without yield
testing of a portion of the total breeding lines at the initial yield
trial called OYT and found reliable prediction accuracy in the trials of
Boro 2020–21 and Boro 2021–22 (Figure 3). Also, marker-assisted
selection was performed for different target traits viz. cold tolerance,
disease and insect resistance, grain quality, etc. using trait makers
embedded within the 1K-RiCA panel for filtering the superior
selection candidates. Thus, GS has cut down another 0.5–1.0 years
that would be required for yield testing in the advanced yield trials and
phenotyping for grain quality and pest reaction before selecting
parents for recycling (Figure 7). Applying GS together with MAS
for key target traits at the line fixation stage (F4-F5) has further reduced
cycle time by at least half a year and thereby increased the rate of
genetic gain as indicated in Figure 6. However, the accuracy of
prediction was compromised greatly (Figure 5). Careful selection of
breeding lines in the training population, recycling only the elite lines
with adequate genetic variance for the traits as parents in the crossing
program and good quality phenotyping data could improve prediction
accuracy. Non-etheless, practicing GS for the consecutive 4 years from
2019 to 2022, genetic improvement for yield has been recorded at the
rate of 117 kg ha−1 year−1, which is around 6.77 fold higher than the
baseline gain.

Based on the above findings it can be concluded that by applying
GS, superior lines with high breeding value can be reliably captured
with and without extensive field phenotyping. GS approach
particularly sparse testing of the training population saved
resources required for the phenotyping without sacrificing
prediction accuracy. Moreover, results show that by practicing GS
at OYT level, breeding cycle time could be reduced to 3.5 years from
the existing 4.5 years. If GS is performed at the LST stage, cycle time
can be further reduced by another half a year.
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