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A B ST R A CT 

Cereal crop breeders have achieved considerable genetic gain in genetically complex traits, such as grain yield, while maintaining genetic diver-
sity. However, focus on selection for yield has negatively impacted other important traits. To better understand multi-trait selection within a 
breeding context, and how it might be optimized, we analysed genotypic and phenotypic data from a genetically diverse, 16-founder wheat 
multi-parent advanced generation inter-cross population. Compared to single-trait models, multi-trait ensemble genomic prediction models 
increased prediction accuracy for almost 90 % of traits, improving grain yield prediction accuracy by 3–52 %. For complex traits, non-paramet-
ric models (Random Forest) also outperformed simplified, additive models (LASSO), increasing grain yield prediction accuracy by 10–36 %. 
Simulations of recurrent genomic selection then showed that sustained greater forward prediction accuracy optimized long-term genetic gains. 
Simulations of selection on grain yield found indirect responses in related traits, involving optimized antagonistic trait relationships. We found 
multi-trait selection indices could effectively optimize undesirable relationships, such as the trade-off between grain yield and protein content, or 
combine traits of interest, such as yield and weed competitive ability. Simulations of phenotypic selection found that including Random Forest 
rather than LASSO genetic models, and multi-trait rather than single-trait models as the true genetic model accelerated and extended long-term 
genetic gain whilst maintaining genetic diversity. These results (i) suggest important roles of pleiotropy and epistasis in the wider context of 
wheat breeding programmes, and (ii) provide insights into mechanisms for continued genetic gain in a limited genepool and optimization of 
multiple traits for crop improvement.

KEY WORDS: Genomic prediction; multi-parent advanced generation inter-cross (MAGIC) population; recurrent selection; simulation; 
Triticum aestivum.

1.  I N T RO D U CT I O N
Classical plant breeding aims to achieve continuous genetic gain 
by recurrent selection of important traits over many genera-
tions. However, the biological and genetic processes that allow 
continued genetic gain within a finite genepool are still unclear. 
For example, the Illinois maize long-term selection experiment 

achieved continuous increases in seed oil and protein concen-
tration in a closed population for more than 100 generations 
without apparent loss of genetic variation (Dudley 2007). Long-
term trends in wheat (Triticum aestivum) breeding also reflect 
this, where significant genetic gain in traits such as yield has been 
achieved in the last century (e.g. McCraig et al. 1995; Mackay et 
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al. 2011; Tadesse et al. 2019), whilst molecular studies have not 
found the expected reductions in genetic diversity over the same 
period of modern plant breeding (e.g. White et al. 2008; van de 
Wouw et al. 2010; Fu 2015).

Selection on one trait can have positive or negative pleio-
tropic effects on other traits. For example, the Illinois long-term 
selection experiment found correlated responses to selection for 
seed oil and protein content and indirect effects on other traits, 
such as starch content. Wheat breeding requires selection for 
multiple traits of economic importance, including grain yield 
and grain quality traits, as well as other agronomically important 
or physiologically adaptive traits such as developmental stage, 
plant architecture and disease resistance. In many cases, positive 
correlated responses in combinations of desirable traits can be 
achieved, but there are often complex trade-offs between antag-
onistically related traits. Considerable work has succeeded in 
identifying underlying quantitative trait loci (QTL) controlling 
individual yield components, such as grain size (e.g. Brinton et 
al. 2017) and spikelet number (e.g. Kuzay et al. 2019; Muqaddasi 
et al. 2019). However, the effects of such yield component loci 
rarely have consistent positive effects on yield in broader genetic 
backgrounds due to compensatory effects which trade-off against 
other yield components. For example, increased grain number 
per inflorescence in wheat is commonly associated with reduc-
tions in other yield components such as thousand grain weight 
(TGW), or tiller number (Quintero et al. 2018; Corsi et al. 2021; 
Xie and Sparkes 2021). Similarly, trade-offs in ‘source’ traits can 
result in trade-offs, such as the genetic control of wheat leaf size 
versus stomata size and density traits (Zanella et al. 2022).

In general, long-term increases in wheat yields have been 
achieved phenotypically by optimization of harvest index (the 
ratio of grain to total shoot dry matter) to reduce intra-crop 
competition (Fischer and Kertesz 1976), as well as through 
increased grain filling with starch carbohydrates (Lovegrove et 
al. 2020; Shewry et al. 2020). However, these have led to neg-
ative trade-offs in other valuable traits. Decreased competitive 
ability of modern wheat varieties with weeds (Vandeleur and 
Gill 2004; Murphy et al. 2008) necessitates increased reliance on 
herbicides as well as potentially poorer uptake of soil nutrients 
(Ruisi et al. 2015). Yield loss from weed competition has become 
even more problematic in intensified cropping systems (Storkey 
et al. 2021). Additionally, increased yield and starch grain filling 
has been subject to the long-standing trade-off between yield 
and grain protein content (GPC; Simmonds 1995; White et 
al. 2021), and has led to dilution of wheat GPC (Austin et al. 
1980; Fufa et al. 2005) and mineral nutrient density (Davis 
2009; Shrewry et al. 2016). This has also led to higher optimum 
nitrogen fertilizer application rates to meet milling wheat grain 
protein requirements with diminishing increases in yield, and 
thus poorer nitrogen use efficiency (Hawkesford 2014). Trade-
offs between grain yield and both protein content and weed 
competitive ability seem not to have been generally addressed 
by commercial breeding due to yield being considered the high-
est economically important trait. Recent analysis by Raherison 
et al. (2020) suggested that negative pleiotropic genetic effects 
in wheat have rarely been compensated for and optimized by 
breeding, and Yang et al. (2022) showed that breeders’ selec-
tions have almost always been in favour of yield at the expense 
of protein. Changing economic, legislational, environmental and 

societal factors mean that breeding focus will increasingly need 
to consider how to deliver sustainable intensification of food 
supply, ensuring yield stability of our future crops in the face of 
such pressures. Plant breeding will play a role in delivering these 
goals, and will likely require the application of new breeding 
approaches and methodologies.

Genomic selection models aim to predict as large a proportion 
of heritable phenotypic variation as possible using genome-wide 
marker data to allocate estimated breeding values to untested 
individuals (Meuwissen et al. 2001; Jannink et al. 2010), and 
are likely to be a major source of improvement in plant breeding 
in the coming decades (Mackay et al. 2021). Genomic predic-
tion models include genetic effects that do not necessarily reach 
genome-wide significance in QTL mapping, which only detects 
large additive genetic effects and often fails to account for a large 
proportion of heritable trait variation in traits with complex 
genetic architectures, despite extensive genomic and phenotypic 
characterization (Goddard et al. 2016). However, the role of 
non-additive epistatic effects in complex trait genetic architec-
tures (i.e. the interactions between genes) remains understud-
ied, and is often overlooked (Carlborg and Haley 2004)—likely 
due to the high computational and sample size requirements to 
model high order interactions ( Jiang and Reif 2015). Genomic 
prediction models that take epistatic effects into account have 
recently been developed, including the extension of the genomic 
best linear unbiased prediction (GBLUP) ( Jiang and Reif 2015) 
and machine/ensemble learning methods such as Random 
Forest (RF; Wright et al. 2016; Schmalohr et al. 2018), which 
are often able to improve prediction accuracies in real data sets 
(Charmet et al. 2020).

The NIAB Diverse MAGIC (multi-parent advanced genera-
tion inter-cross) wheat population (NDM) was recently devel-
oped to investigate the genetic architecture of a range of traits in 
wheat (Scott et al. 2021). It consists of 16 founders genotyped 
via exon and promotor capture sequencing and 504 recom-
binant inbred lines genotyped via whole-genome sequencing 
and imputation, resulting in ~1.1 M single nucleotide polymor-
phisms (SNPs) between genotypes, or 55 000 SNPs after filter-
ing for linkage disequilibrium (LD) (Scott et al. 2021). The 16 
founders are wheat varieties that span 70 years of breeding and 
capture a large proportion of the north-west European genetic 
diversity. The genetic diversity present in the NDM is efficiently 
recombined through multiple generations of inter-crossing, 
eroding LD accumulated in the founders over long-term selec-
tive breeding. For this reason, traditional genomic prediction 
models, such as GBLUP, that make use of kinship relationships 
(Clark et al. 2011) may perform poorly in MAGIC where causal 
variants can be considered more independently (Scott et al. 
2021). The NDM is ideal for investigating trait relationships, 
due to intensive phenotyping and the lack of the confounding 
effects of age and origin that are present in panels of selectively 
bred varieties (Scott et al. 2020). Furthermore, this population 
provides a good test for multi-trait (MT) selection indices, such 
as grain yield protein deviation (GYPD; Michel et al. 2019), that 
have been proposed to help minimize trade-offs between traits.

Here we use NDM resources as a microcosm of long-term 
selection in wider wheat breeding programmes to test differing 
genetic models and selection approaches. Within the overall con-
text of understanding the phenotypic and genetic mechanisms 
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that may enable enhanced genetic gain in the future, we (i) inves-
tigate complex trait relationships relating to yield in the observed 
population of lines. We then (ii) develop MT genomic predic-
tion models that increase prediction accuracy by exploiting plei-
otropic effects among traits, and (iii) investigate how increased 
prediction accuracy translates to greater genetic gain in simula-
tion of long-term recurrent genomic selection within the NDM. 
We also (iv) simulated both phenotypic and genotypic effects of 
recurrent phenotypic selection within the population comparing 
different true genetic models based on genomic prediction mod-
els trained on the observed population. Our results reveal corre-
lated responses in a wide range of traits when selection is purely 
on yield, as well as the potential to achieve genetic gain in several 
traits of interest that trade-off by using use MT selection indices. 
Comparison of response to selection under differing genomic 
prediction models (simplified models with a minimal number 
of additive effects versus more complex polygenic models that 
take higher order epistatic interaction effects into account) also 
highlights the important role of considering both pleiotropy and 
epistasis in achieving continued genetic gain in crop breeding.

2.  M ET H O D S
2.1 Germplasm, phenotypic and genotypic data sets

Genotypic and phenotypic data for the NDM wheat population 
was sourced from Scott et al. (2021). Briefly, the population of 
504 NDM recombinant inbred lines derived from the 16 found-
ers was phenotyped for a wide range of traits over the 2016–17 
(lat: 52.23548; lon: 0.09181) and 2017–18 (lat: 52.09865; 
lon: 0.13300) growing seasons (hereafter termed ‘year 1’ and 
‘year 2’ trials) in the UK. All but 1 of the 73 traits described 
by Scott et al. (2021) were used (Table 1), the exception being 

seed germination rate due to a large proportion of missing data. 
Traits measured in each year were considered separately. Missing 
data for all remaining traits (at <1.2 %) were imputed with the 
median trait value. Line genotypes were previously characterized 
by skim sequencing and imputed using the founder haplotypes 
(Scott et al. 2021). Of 1.1 million SNPs identified from founder 
exome and promoter sequencing, we use the subset of ~55 000 
SNPs after pruning for LD for our analyses. Missing marker data 
(~1 %) were imputed using the ‘missForest’ package (Buhlman 
2011) in R (R Core Team 2020), which uses non-parametric RF 
prediction models to iteratively predict and impute missing data 
on a marker-by-marker basis.

2.2 Statistical analysis
All analyses were conducted using R statistical analysis software. 
Pearson’s correlation coefficients among all investigated traits 
were calculated. Hierarchical clustering of traits was performed 
using the ‘hclust’ R function and ‘complete’ method, where the 
distance matrix (d) was derived from the equation:

d = 2(1−
√
c2)

where c represents the trait correlation matrix. Traits were then 
assigned to eight groups using the ‘cutree’ R function. The trait 
correlation network was visualized using the ‘qgraph’ package in 
R (Epskamp et al. 2012).

2.2.1 Genomic prediction models.
Two contrasting genomic prediction models were cross-validated 
for both single-trait (ST) and MT models. (i) Generalized linear 
models including the Lasso penalty (LASSO) implemented in 

Table 1. Abbreviations of traits phenotyped in the NDM, as described by Scott et al. (2021). All data are from field trials, except where noted. 
Nursery = data collected from 1 × 1m unreplicated plots. Field = data collected from 2 × 6m replicated plots. Trait groups indicate groups of 
strongly positively or negatively correlated traits that grouped together through hierarchical clustering as shown in Fig. 1. Some traits were 
phenotyped at multiple time points (GLA) and in both trail years so that a total of 72 traits were included.

Abbreviation Trait Trait group Abbreviation Trait Trait group 

PHS Pre-harvest sprouting 1 GW Grain width 6
PIG General pigmentation 1 HET Height to ear tip 6
SW Specific weight 1 HFLB Height to flag leaf base 6
FLS Flag leaf senescence 2 LOD Lodging 6
GS39 Flag leaf emergence date 2 TGW Thousand grain weight 6
GS55 Ear emergence date 2 TIS Tip infertile spikelets 6
GS65 Anthesis date 2 AWN Presence of awns 7
JGH Juvenile growth habit (nursery) 2 EL Ear length 7
SH Spring habit 2 ETA Ear taper 7
FLA Flag leaf angle 3 GLAU Glaucosity 7
FLF Flag leaf floppiness 3 SPIG Stem pigmentation 7
FLL Flag leaf length 3 BIS Basal infertile spikelets 8
GLA# Green leaf area (10 time points) 4 EW Ear weight 8
GPC Grain protein content 5 FLW Flag leaf width 8
GY Yield 5 GPE Grains per ear 8
FLED Flag leaf to ear distance 6 GPS Grains per spikelet 8
GA Grain area 6 TS Total spikelets 8
GL Grain length 6 YR Yellow rust infection (field and nursery) 8
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the ‘glmnet’ R package (Friedman et al. 2010) where the major-
ity of SNP effects are shrunk to zero. (ii) For comparison, a 
non-linear, statistical learning approach was used which gener-
ally included much larger numbers of SNPs with non-additive 
effects in each model: RF, implemented in the ‘randomForest’ 
R package (Breiman 2001). For LASSO models, the value of 
lambda (a shrinkage penalty) used for each prediction was opti-
mized using 8-fold cross-validation within the available training 
data. For RF models, 300 trees were run per model and default 
parameters of one-third of variables randomly sampled at each 
split, and a minimum of five observations in terminal leaf nodes 
were used. Previous work by Scott et al. (2021) found that ridge 
regression models that include all marker effects with a small, 
but non-zero effect, did not have as high prediction accuracy 
as LASSO in the MAGIC population, and so were not further 
tested here.

Two types of MT models were implemented. Firstly, by per-
forming single value decomposition (SVD) of the matrix of all 
phenotypes, as proposed by Montesinos-López et al. (2019a), 
whereby each of the decomposed and uncorrelated vectors 
from all the traits were predicted as traits themselves using the 
same genomic models as for ST predictions. The predictions of 
vectors were then back-transformed to the original trait scales 
to derive the MT predictions per trait. Secondly, a MT stacked 
ensemble method was used which employs an approach often 
used in machine learning (Spyromitros-Xioufis et al. 2016) 
and has previously been applied for Bayesian multi-output 
regression of MT predictions (Montesinos-López et al. 2019b; 
Sapkota et al. 2020). For this, a two-step model was used where 
each trait was first predicted from genomic data with the same 
genomic models as for ST predictions, and then all trait predic-
tions were used as explanatory variables (features) in a second 
MT ensemble model to again predict each response trait. Both 
first- and second-stage predictions were fitted only on data from 
the training fraction and predictions were independently made 
for test lines with only genetic marker data. Either LASSO or 
RF models were used to fit first-stage ST models, but only RF 
models were used to flexibly include non-linear MT relation-
ships for the second-stage ensemble models. Information from 
related traits is therefore used in a model, trained only on the 
training fraction to adjust ST predictions made directly from 
genomic data. Unlike trait-assisted genomic prediction, such 
as used by Fernandes et al. (2018), no observed trait data are 
used in the tested cross-validation fraction. As both MT pre-
diction approaches can be applied with any genomic prediction 
model for each ST prediction or for SVD vectors, we were able 
to compare LASSO and RF genomic models for both ST and 
MT approaches.

Three rounds of 10-fold random cross-validation were per-
formed among all lines in the data set where all models were 
trained and optimized on a random subsample of 90  % of the 
lines and accuracy assessed on predictions of the remaining 10 % 
of lines. The prediction accuracy was determined by averaging 
the three Pearson’s correlation coefficients between all observed 
and predicted trait values across all cross-validation folds. Valid 
comparisons of prediction accuracy were ensured by testing all 
prediction models using the same cross-validation fold assign-
ments. After model cross-validation, full prediction models 
were fitted using the entire data set for combinations of both 

ST and MT models with both LASSO and RF genomic models. 
Variable importance scores for each SNP marker in RF genomic 
prediction models and for each trait covariate in MT ensemble 
models were derived from the full models as the mean decrease 
in mean square error using the ‘importance’ function in the ‘ran-
domForest’ R package. Effect sizes for each SNP marker were 
also derived from full LASSO models where the majority of 
SNP effects were shrunk to zero.

2.2.2 Simulations of recurrent genomic selection.
A genetic map [see Supporting Information—Table S1; 
Supporting Information—Fig. S1] based on the observed 
population was constructed using the ‘qtl2’ R package (Broman 
et al. 2019) with the marker data ordered by physical map posi-
tion (RefSeq v1.0, IWGSC 2018). The genetic map distance was 
then re-estimated using the ‘est_map’ function with 1000 maxi-
mum iterations and an assumed genotyping error probability of 
0.001. The cross object was considered as a 16-way multi-parent 
recombinant inbred line population, so the differing local recom-
bination effects for each founder haplotypes were preserved for 
subsequent simulations. Twenty-three markers were removed 
from the full set as they caused genetic map distortion.

We then simulated a recurrent genomic selection programme 
within the NDM using the models described in Section 2.2.1 
above to assess the performance of different prediction models 
to achieve long-term genetic gain in grain yield. This was done 
within a framework of assuming a true inherited genetic model 
based on the MT ensemble RF genetic model as outlined above 
and trained on the observed genetic and phenotype data. Thus, 
true phenotypes for all traits were derived from predictions 
from this model for genotypes at each cycle of simulations so 
that assumptions of shared pleiotropy among traits was based on 
the observed population. Then the different genomic prediction 
models outlined above were trained on the true phenotypes of 
the individuals in the first cycle.

Selection of lines for crossing at each cycle was made based 
on predicted phenotypes from the genomic prediction model. 
To reduce excessive inbreeding and loss of genetic variance, 15 
lines from different 16-way or bi-parental families with the high-
est selection index values were selected for simulated inter-cross-
ing. New cycles of inbred line genotypes were created using the 
‘sim.cross’ function in the ‘qtl’ package in R (Broman et al. 2003) 
with the genetic map of ~55 000 SNPs for each pair of selected 
lines. Thirty offspring inbred line genotypes were simulated for 
each of 105 possible pairwise cross combinations among the 
selected lines so that each following cycle was comprised of a 
total of 3150 lines from 105 bi-parental families. The true phe-
notypes of new lines were again derived from MT ensemble RF 
models and predictions of these phenotypes at all subsequent 
cycles were again predicted from the genomic prediction models 
trained on the true phenotypes of the first cycle and the process 
repeated for 20 cycles of recurrent selection. Twenty iterations 
of the simulations were run for each genomic prediction model. 
Genomic prediction models were fitted as detailed above for ST 
and MT, LASSO and RF models, but additionally RF models 
were run that were restricted to a tree depth of one (RF1) to 
completely limit the degree of marker interaction effects. Two 
thousand trees were used for RF1 models.
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Genetic gain for each trait over the selection simulations was 
determined by comparing the mean true trait value of all lines at 
each generation to the mean true trait value in the first genera-
tion. The divergence from this mean among different traits was 
standardized to the standard deviation of trait values in the first 
generation. The accuracy of genomic prediction models was also 
determined as the Pearson’s correlation coefficient between the 
true and predicted trait values among genotypes at each simula-
tion cycle.

2.2.3 Simulations of recurrent phenotypic selection.
In addition to simulations of different genomic selection pro-
cedures within a simulated true genetic model, we also com-
pared simulations with different true genetic models to assess 
both phenotypic and genomic response to selection with dif-
ferent genetic model assumptions of trait genetic architecture. 
Simulations were run as above but selections of individuals were 
based on the true phenotypes derived from different genetic 
models so that it was assumed that the simulated breeder could 
make perfect estimates of trait values from phenotypic selection. 
Different simulations were run for ST and MT as well as RF and 
LASSO models as outlined above and for different selection 
indices as outlined below. Genetic response to selection was also 
characterized as the change in allele frequency for all ~55 000 
SNPs at each generation, and the genetic diversity was calculated 
as the number of polymorphic SNPs at each generation. For 
each set of simulations, traits or SNP markers were considered 
under selection rather than drift if their response to selection was 
significantly different to 0 considering all 20 simulation repeats 
using a t-test.

2.2.4 Selection indices.
Indices for simulated selection were defined as follows:

1. Grain yield measured in each trial year.
2. Multi-trait index including grain yield and traits known to 

be associated with weed competitiveness. The weed com-
petitive ability selection index (Weeds_ESIM) was based 
on the restricted eigenvector selection index method 
(RESIM) (Cerón-Rojas et al. 2008). For this, princi-
pal component analysis was performed on a selection of 
desirable traits based on the literature, which included 
yield measured in both years as well as traits previously 
identified as valuable for weed competitive ability. These 
included high early vigour, measured as green leaf area 
(GLA) over the development phase before flowering time, 
and planophile (horizontal) flag leaf angle (FLA) (Korres 
and Froud-Williams 2002; Andrew et al. 2015; Mwendwa 
et al. 2020; Kissing Kucek et al. 2021). To mitigate risk of 
lodging (i.e. the permanent displacement of a stem from 
vertical), mean crop height (height to ear tip [HET]) 
between both years was also then restricted to values 
between 60 and 65 cm. The vector weightings on the first 
principal component with mean HET values between this 
range therefore represented the Weeds_ESIM. Most traits 
involved in this selection index were positively correlated, 
so the first principal component could be assumed to pro-
vide a desirable combined index for selection.

3. Grain yield protein deviation (GYPD). The GYPD selec-
tion index was calculated as the sum of the scaled and cen-
tred mean yield and protein across both years using the 
equation:

GYPD =
Y − Ȳ√∑

(Y−Ȳ)2

n−1

+
P− P̄√∑

(P−P̄)2

n−1

where nis the number of observations per trait, Y and Pare the 
BLUP yield and protein values across years, respectively, and Ȳ
and P̄are the mean yield and protein content values across all 
genotypes. This approach gives equal weighting to both yield 
and protein so that the direction of selection is perpendicular to 
the negative correlation. Both the Weeds_ESIM and the GYPD 
selection indices were calculated for traits across both trial years 
as these comparisons were less concerned with differences 
between trial years.

3.  R E SU LTS
3.1 Grain yield is correlated with multiple traits in the 

observed population
We analysed data from a genetically diverse and highly recom-
bined 16-founder wheat MAGIC population for a wide range 
of agronomically important traits over multiple trial years (72 
trait–year combinations) to investigate complex trait–trait rela-
tionships and their implications for breeding. Correlation analy-
sis across all traits and years revealed complex trait relationships 
and substantial differences in patterns between the two trial years 
(Fig. 1; see Supporting Information—Table S2). Considering 
grain yield as the primary trait of interest, many other secondary 
traits were found to be correlated (Fig. 1). The strong negative 
trade-off between yield and GPC was mediated by yield compo-
nent traits. For example, grain size traits (such as TGW), grains 
per spikelet (GPS) and total spikelets per ear (TS) were all 
positively correlated with grain yield, but negatively correlated 
with protein content and with each other. Therefore, potential 
benefits of selecting for any one of the yield component traits 
in isolation are buffered by problematic trade-offs with other 
yield component traits and likely have negative effects on pro-
tein content.

Supporting the low correlation between yield measured in 
the 2 years (r = 0.4), differential relationships between yield and 
other developmental stage and plant architecture traits between 
the two trial years were also found. In year 1, taller and later flow-
ering genotypes were generally higher yielding (yield–height to 
ear tip correlation = 0.20; yield–heading date correlation = 0.32), 
whereas in year 2, the correlation between height and yield was 
negative (correlation = −0.11) and between yield and heading 
date was non-significant. Therefore, strong genotype by environ-
ment interaction (G × E) effects on yield means that selection 
for yield, or related adaptive traits, in any single environment 
may have limited potential to increase yield in another environ-
ment. However, contrasting patterns of rainfall and temperature 
between the two yield trial years (Fig. 2), in which year 1 was 
characterized by high temperatures and drought before anthesis 
(March and April) whilst year 2 was characterized by extreme 

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/5/1/diad002/7045077 by guest on 31 O

ctober 2023

http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diad002#supplementary-data


6 • Fradgley et al.

terminal heat and drought after anthesis ( June and July), may 
explain the differences in relationships between adaptive traits 
and yield in this study. Each of the two trial years experienced 
different extremes of monthly climate variables at the NIAB, 
Cambridge weather station (lat: 52.245; lon: 0.102) compared 
to the distributions from 1960 to 2016 so were considered sepa-
rately in these analyses.

Other plant architecture traits, such as GLA in the develop-
ment phase, juvenile growth habit and flag leaf morphology had 
weak but positive correlations with yield, suggesting potential 
relevance of these traits as mechanisms to increase yield, or 
as valuable traits themselves to select for in combination with 

yield to increase crop competitive ability with weeds. However, 
the strong positive correlations between GLA traits and plant 
height traits mean that increasing these traits without increasing 
lodging risk may be problematic. Optimizing combinations of 
important traits therefore requires consideration of correlated 
responses due to pleiotropy and linkage.

3.2 Genomic prediction of complex traits
We tested the accuracy of several genomic prediction approaches 
to determine the genetic architecture of the multiple related 
traits, using both ST and MT models that take into account 
relationships among correlated traits. LASSO represents 

Figure 1. Correlation network for 72 traits measured in two trial years among 504 NIAB Diverse MAGIC lines. Grain yield = GY. 
Abbreviations for all additional trait names are given in Table 1. Trait node colours indicate the eight groups of related traits as identified using 
hierarchical clustering. The _1 and _2 designations used after trait abbreviations refer to trial year 1 and trial year 2, respectively. Blue and red 
connecting lines indicate positive and negative correlations, respectively, while line thickness is relative to correlation P-value significance.
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models including trait genetic architecture controlled by a mini-
mal number of additive genetic effects across the genome, while 
RF represents models including a much greater number of inter-
acting genetic effects. Random Forest outperformed LASSO for 
most traits in ST models and was particularly advantageous for 
traits with generally low genomic prediction accuracy, such as 
GLA and grain yield in both years (Fig. 3A). Prediction accuracy 
was increased from 0.34 and 0.20 in ST LASSO models to 0.38 
and 0.27 in ST RF models for grain yield measured in each year, 
respectively. In contrast, traits with greater prediction accuracy, 
such as plant height or grain dimension traits, were better pre-
dicted by LASSO. This suggests that RF can successfully predict 
genetic effects in traits with more complex genetic architecture, 
potentially using non-additive and epistatic effects.

Multi-trait ensemble models consistently produced more 
accurate predictions for almost all traits for both RF (86  % of 
traits) and particularly for LASSO (90 % of traits) models (Fig. 
3B and C). On the other hand, SVD MT models were less reli-
able and generally resulted in lower prediction accuracies (Fig. 
3B and C), although RF notably outperformed LASSO in SVD 
MT models. Therefore, including information from predictions 
of other related traits in an MT ensemble model was advanta-
geous over attempting to predict pleiotropic effects directly in 
a decomposed trait matrix. Traits that were poorly predicted by 
LASSO compared to RF for ST models (Fig. 3A, left panel) had 
particularly increased prediction accuracies via the MT ensem-
ble predictions for LASSO (Fig. 3B, left panel). This suggests 

traits that were predicted better by either of the MT models have 
few direct or large genetic effects and are rather the culmination 
of many other component traits. These indirect genetic effects 
may be picked up in complex RF prediction models, but are best 
captured by the use of MT models that can directly model plei-
otropic trait trade-offs.

Multi-trait ensemble models increased genomic predic-
tion accuracy of grain yield from an average of 0.27 to 0.33 for 
LASSO models and from 0.32 to 0.34 for RF models on average 
across both years and cross-validations. Variable importance of 
trait covariates in the RFs used in the MT ensemble models indi-
cates the influence of these traits in the model. Across all traits, 
most highly influential traits had strong positive or negative 
correlations in each year among the observed lines (Fig. 4A). 
Considering grain yield in each year as the primary trait of inter-
est, highly correlated traits such as GPC and grain yield measured 
in the other year, were highly important in MT ensemble models 
for grain yield, suggesting that pleiotropic effects mediating the 
grain yield and protein content trade-off are useful for predict-
ing grain yield itself (Fig. 4B). Base model predictions of yield in 
the other year as the focal yield trait were also included in mod-
els with high importance suggesting that the ensemble model 
effectively takes yield genotype by environment interaction (G 
× E) effects into account. Developmental stage traits including 
dates of growth stages GS39 (flag leaf blade all visible), GS55 
(ear half emerged) and GS65 (flowering half-way complete) and 
flag leaf senescence (FLS) were particularly important covariate 

Figure 2. Contrasting patterns of monthly rainfall and maximum temperature over the growing season for the two trial years. For further 
context, boxplots indicate historic variation in data for each month from 1960 to 2016 (horizontal line = median, boxes = interquartile range, 
whiskers = 1.5 times the interquartile range and points = values outside 1.5 times the interquartile range).
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8 • Fradgley et al.

traits and were positively correlated with yield in year 1 to a 
greater extent than in year 2 (Fig. 1). These traits also featured 
with greater importance in MT ensemble models when grain 
yield in year 1, compared to year 2, was predicted (Fig. 4B). This 
indicates that later-developing lines were predicted to be higher 
yielding in the year without terminal drought stress. Other yield 
component traits including GPS and grains per ear (GPE), but 
not grain size traits, were found to be of high importance (Fig. 
4B). Many GLA traits, particularly when measured in the spring, 
were also included with fairly high importance in MT ensem-
ble models (Fig. 4B), suggesting a role of the crop development 
phase in resource acquisition for final grain yield. These results 

not only identify important traits for inclusion in MT predic-
tion models, but also physiological mechanisms for grain yield 
improvement.

3.3 Accurate genomic prediction models increase long-term 
genetic gain in simulation of recurrent genomic selection

We then investigated the potential for different genomic pre-
diction models to achieve genetic gain in yield through simu-
lation of a recurrent genomic selection programme within the 
NDM. Multi-trait ensemble RF models were found to be the 
most accurate model from cross-validation within the observed 
population (Fig. 3) and so were used as the true genetic model 

Figure 3. Comparison of genomic prediction accuracies for all traits. Each circle represents a trait–year combination, with circles colour 
coded according to trait group, as in Fig. 1 between LASSO and RF models using ST, MT ensemble (MT ens) and SVD approaches. Row (A) 
compares LASSO and RF prediction models, row (B) compares ST with both MT approaches for LASSO prediction models and row (C) 
compares ST with both MT approaches for RF prediction models. Horizontal lines in boxplots represent the median and black dots represent 
the mean prediction accuracy across all traits, which is also shown above each boxplot.
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to define the true phenotypes of simulated lines. The genomic 
prediction models were then trained on the simulated true 
phenotype data of lines in the first generation and genomic 
predictions of phenotypes were used to make selections for 
subsequent cycles of lines.

The accuracy of genomic prediction models over the 
course of the selection simulations generally reflected those 
in cross-validated of the observed data. Prediction accuracy 
of all models decreased in later cycles of the simulations, but 
models that were more accurate in the observed data and main-
tained accuracy for longer, such as MT RF and ST RF (Fig. 
5A), achieved greater long-term genetic gain in yield (Fig. 5B). 
Random Forest models that included restricted trees with an 
interaction depth of one so that genetic marker interaction 
effects could not be included were much less accurate and led 
to less genetic gain, particularly for grain yield in year 1 (Fig. 5). 
This suggests an important role for prediction of non-additive 
genetic effects in RF models for continued accuracy of genomic 
prediction models, particularly as breeding cycles become more 
distantly related to the training set.

3.4 Simulation of recurrent phenotypic selection for grain 
yield reveals indirect effects on multiple traits

Phenotypic correlations identified traits that may be under 
similar genetic control through either pleiotropy or linkage, 

so we investigated the potential for recurrent selection to 
achieve genetic gains in traits directly under selection as well 
as indirect effects on other traits. Simulations of a phenotypic 
recurrent selection programme were run that compared differ-
ent selection indices and true genetic models. For these, selec-
tions were made based on the true phenotypic values, based 
on the assumed true genetic model (MT RF), rather than the 
predicted phenotypes as for simulations of recurrent genomic 
selection.

Firstly, we simulated selection based purely on grain yield 
measured in each trial year. Considering the MT ensemble RF 
as the true genetic model, which achieved the greatest predic-
tion accuracy across traits (Fig. 3), selection on grain yield per 
se resulted in rapid genetic gain in the yield trait under direct 
selection as well as indirect effects on other related traits (Fig. 
6). These included selection for combinations of related traits 
that were complementary to, as well as those that were antag-
onistic to, their correlation in the unselected population. As an 
example of complementary trait selection, GPC was shown to 
be strongly negatively correlated with grain yield in the origi-
nal population (Fig. 1) and therefore rapidly decreased as grain 
yield was selected for. Although both grain yield and GPC are 
both positively valued traits, here we define these as under com-
plementary selection where their trait correlations and selection 
covariance are in the same direction. In contrast, antagonistic 
trait selection could be demonstrated by plant height traits and 

Figure 4. The influence of related traits in MT ensemble prediction models. (A) The relationship between pairwise correlation coefficients 
among all traits and years and the variable importance score in RF MT ensemble models for all target traits. (B) The 30 most important trait 
variables used in RF MT ensemble models for prediction of grain yield in each year (GY_1 and GY_2). All trait abbreviations are as listed in 
Table 1 and colour coded according to trait group, as in Fig. 1. The _1 and _2 designations used after trait abbreviations refer to trial year 1 and 
trial year 2, respectively.
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grain dimension traits that were all positively correlated with 
each other in the original population (Fig. 1), but covaried neg-
atively over time in the simulated population under selection for 
yield measured in each trial year; large grain size traits increased 
over time (GA, GL, GW, TGW), whereas plant height traits 
(HET, HFLB) decreased (Fig. 6). Similarly, GLA traits over the 
foundation development stage were generally positively corre-
lated with plant height traits but increased over time as grain 
yield was selected for, while plant height traits decreased (Fig. 
6). Although the majority of trait relationships had complemen-
tary rather than antagonistic trait correlations in the original 
population and covariances in the simulated population (55.4 
and 57.8 % of pairwise relationship when grain yield selected in 
each year, respectively, had both positive or both negative corre-
lations and covariances under selection; Fig. 6), the significant 
remaining proportion did not. This indicates that antagonistic 
trait trade-offs were required to be optimized to achieve the 
genetic gains in yield simulated in the population, and highlights 
the benefit of the MT prediction approach.

As suggested by the low correlation between yields in 
each year, selection for yield in either year had only limited 
effects on yield in the other year where approximately half 
the genetic gain in yield in the alternate year was achieved in 
simulated selection for yield in either year. This G × E effect 
for yield was reflected by how the yield component traits were 
co-selected with yield between the 2 years. Grains per ear 
and GPS were increased when selection was for grain yield 
in year 2 but remained mostly neutral for grain yield in year 1 
(Fig. 6). Further to the differential importance of traits in the 
MT ensemble models outlined above, differential selection 
responses of yield component traits according to yield in dif-
fering environments highlights the capacity for G × E interac-
tions to buffer response to selection for grain yield. However, 
when G × E is predictable, in certain target environments, con-
trasting yield component strategies could be used to adapt the 
crop to the environment. For example, it may be supposed that 
a genotype that can be high yielding by producing many grain 
sites per ear throughout an extended development phase due 

Figure 5. Trends in (A) accuracy of forward genomic prediction models and (B) resulting genetic gain over a simulated recurrent genomic 
selection programme for grain yield (GY) measured in two trial years. Genomic prediction models are trained only on the true phenotypes of 
the first generation and forward predictions are made for all subsequent cycles. Genomic prediction models include ST and MT ensembles 
models for LASSO and RF. RF1 indicates RF models with a restricted interaction depth of one. Lines represent the averages across 20 
simulation repeats.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/5/1/diad002/7045077 by guest on 31 O

ctober 2023



Multi-trait ensemble genomic prediction and simulations • 11

Figure 6. Simulated phenotypic response to selection on grain yield measured in 2 years. Upper plots indicate response of all 72 traits under 
simulated recurrent selection for grain yield in each of the two trial years based on MT RF genomic prediction models. Genetic gain was calculated 
as difference in population mean trait values to generation 1 and scaled to the standard deviation of the trait values in generation 1. Line colours 
relate to trait groups identified by hierarchical clustering shown in Fig. 1. The _1 and _2 designations used after trait abbreviations refer to trial year 
1 and trial year 2, respectively. Line widths are relative to the t-test significance of each trait genetic gain from cycle 0 to 20 across all 20 simulation 
repeats. Lower plots compare the correlations between all pairs of traits in the original population and the covariance between mean trait values 
per cycle over time in all cycles of the simulated population under selection. Points in upper right or lower left quadrants indicate both positive or 
negative correlation and covariance which demonstrates complementary trait selection. Points in the lower right or upper left quadrants represent 
differing positive or negative correlation and covariance, suggesting antagonistic trait selection. Point colours indicate pairs of traits that are both in 
the same trait group following the colour scheme in Fig. 1, while grey points indicate trait pairs from different groups.
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to being later flowering would be better adapted to environ-
ments without terminal drought stress.

3.5 Selection indices enable optimization of trait trade-offs
We next tested whether MT selection indices could be employed 
to simultaneously optimize selection for yield and other traits of 
interest, such as GPC or crop architecture traits that aid compe-
tition with weeds. As outlined by the observed trait correlations, 
early season GLA traits and grain yield were found to be slightly 
positively correlated, so could be co-selected, but the additional 
association between GLA and plant height would need to be 
restricted to limit risk of lodging. We therefore simulated effects 
of a phenotypic selection strategy based on selection index to 
increase important traits for crop competitive ability with weeds 
in combination with grain yield, whilst restricting changes in 
plant height as well as an index for high GYPD to combine both 
negatively correlated traits.

Considering the ST RF as the true genetic model, the com-
bined grain yield + weed competition selection index succeeded 
in increasing desirable competitive traits including GLA, FLA 
as well as grain yield in both years, whilst maintaining plant 
height at an acceptable level (Fig. 7). Indirect effects on other 
traits included rapid early selection for spring-type growth habit 
(SH) up to the fifth breeding cycle, but which then remained at 
around 90 % frequency in the population without fixation in any 
of the simulation repetitions. The GYPD selection index also 
achieved genetic gain in desirable traits (grain yield and protein 
content in both years) and had some indirect effects on related 
traits (Fig. 7). As an example of one trait that was co-selected 
with GYPD, flag leaf width (FLW) increased in all simulation 
repeats, increasing by 3  % and 4.2  % for the trait when meas-
ured in year 1 and year 2, respectively. Whilst most of the trait 
relationships selected for in the weed competition index were 
positively correlated and complementary traits, such as all of the 
GLA traits and grain yield, the GYPD selection index included 
more antagonistic trait relationships (positive correlation and 
negative covariance or negative correlation and positive covari-
ance) that were required to be optimized in addition to yield and 
protein trade-off (Fig. 7). For example, under GYPD selection, 
GPS correlated negatively with GPC in each year (correlation 
= −0.33 and −0.36 in each year, respectively), but covaried pos-
itively over simulated selection (covariance = 0.52 and 0.35 in 
each year, respectively), where GPS increased by an average of 
0.23 over the course of simulated selection while GPC measured 
in each year also increased by 2.48 % and 1.57 %, respectively. 
Furthermore, the flag leaf to ear distance (FLED) and GPC 
measured in year 2 correlated positively (correlation = 0.21), but 
covaried negatively over the simulated selection (covariance = 
−0.25), where FLED decreased by 2.73 cm while GPC increased 
by 1.57 % over the course of simulated selection. These provide 
examples of trait mechanisms by which yield and GPC could be 
simultaneously selected.

Selection on multiple traits, which requires optimization of 
multiple trait trade-offs, slowed the rate of genetic gain in grain 
yield for each of the selection indices: mean grain yield across 
both trial years increased when using both selection indices, but 
at a slower rate, particularly for grain yield in year 1 under GYPD 
selection, compared to when grain yield was selected for per se 

(Fig. 8). However, in comparison to gain in grain yield in either 
one of the 2 years when selection was for grain yield in the other 
year, both GYPD and the yield + weed competition selection 
indices achieved generally comparable gains for yield whilst also 
increasing other favourable traits (Fig. 8). These results show that 
antagonistic trait relationships are generally possible to optimize 
through appropriate selection. However, while this may slow 
genetic gain to some extent in the primary traits of interest, such 
as grain yield, this more realistically represents the balance of 
selection for multiple traits that occurs in breeding programmes.

3.6 Different true genetic models affect long-term response 
to simulated selection

After comparing simulated response to different selection indi-
ces, we then tested how using different true genetic models that 
are based on the different genomic prediction models trained on 
the observed NDM population (LASSO versus RF; using either 
ST or MT approaches) affect phenotypic and genomic response 
to selection. Both RF and MT ensemble models were shown 
above to generally increase the prediction accuracy across traits 
(Fig. 3), and here we show these predictions had a lower degree 
of shrinkage towards the mean of predicted trait values in com-
parison to the grain yield trait values of observed lines (Fig. 9A). 
The MT RF models in fact had comparable variances in pre-
diction values to the observed grain yield data, indicating their 
realistic prediction of phenotypic variation. While this would 
be expected from an overfitting model, cross-validation with the 
observed data showed an increased accuracy of these models.

Simulations with MT RF true genetic models tended to have 
the largest and longest increase of genetic gain over the course 
of simulated selection of grain yield (Fig. 9B). Genetic gain in 
grain yield plateaued, at a relatively low level, after only around 
six cycles of selection using ST LASSO genetic model simula-
tions but cycle time to plateaux and plateaux height (maximum 
genetic gain) were both extended by either using a RF or MT 
model. This pattern of faster and higher genetic gain in RF or 
MT models was accompanied by the retention of higher phe-
notypic (Fig. 9C) and genetic (Fig. 9D) variance, particularly 
over long-term selection in the MT models. Almost all non-zero 
LASSO SNP effects were fixed after eight cycles of selection in 
any simulation repeat for selection for grain yield in either year, 
limiting further genetic gain (Fig. 9). Continued loss of genetic 
diversity once all genetic effects that affect phenotypic variance 
were fixed was down to genetic drift. Many of the SNP with 
highest variable importance in RF models were in common 
with the largest LASSO SNP effect coefficients, and the largest 
of these were fixed in the first few cycles of selection at a simi-
lar rate for both ST RF and ST LASSO (Fig. 9E), where almost 
all of the 10 SNPs with the largest LASSO effect or RF variable 
importance were fixed after five cycles of selection for both mod-
els. However, RF models included many more SNPs with non-
zero importance (~20  000) than non-zero LASSO effects (61 
and 87 for grain yield in years 1 and 2, respectively) and many 
more of these small or non-additive genetic effects in RF mod-
els remained polymorphic for longer (Fig. 9E). For example, a 
significant proportion of these (14.3 and 13.8 % for grain yield 
in years 1 and 2, respectively) remained polymorphic after 10 
cycles of selection while genetic gain in yield still continued to 
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Figure 7. Simulated phenotypic response to selection on two selection indices. Upper plots indicate response of all traits under simulated 
recurrent selection for two MT selection indices based on ST RF genomic prediction models. GYPD = selection to increase both grain yield 
and protein (grain yield protein deviation); Weeds_ESIM = selection to increase yield as well as weed competitive traits whilst limiting change 
in plant height. Line colours relate to trait groups identified by hierarchical clustering and correlations shown in Fig. 1. Line widths are relative 
to the t-test significance of each trait genetic gain from cycle generation 0 to 20 across all 20 simulation repeats. Lower plots compare the 
correlations between all pairs of traits in the original population and the covariance between trait pairs over time in the simulated population 
under selection. Points in upper right or lower left quadrants indicate both positive or negative correlation and covariance which demonstrates, 
suggesting complementary trait selection. Points in the lower right or upper left quadrants represent differing positive or negative correlation 
and covariance which demonstrates, suggesting antagonistic trait selection. Point colours indicate pairs of traits that are both in the same trait 
group following the colour scheme in Fig. 1, while grey points indicate trait pairs from different groups.
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increase (Fig. 9B). This suggests that accumulation of the SNP 
effects, that were too small to be included in LASSO, or complex 
non-additive SNP by SNP epistatic genetic effects, made a large 
contribution to continued long-term genetic gain in RF models 
even after large effect QTL are fixed.

Furthermore, simply adding a MT second step to LASSO 
models to include indirect pleiotropic effects also increased and 
extended long-term genetic gain to a similar or greater extent to 
ST or MT RF models (Fig. 9B). Using MT models, LASSO SNP 
effects were fixed at a much slower rate (Fig. 9E) and phenotypic 

and genetic variance was maintained for much longer (Fig. 9C 
and D), where on average 12 % of the 10 largest LASSO SNP 
effects for each ST were polymorphic after 10 cycles of selec-
tion for across all simulation repeats with selection for grain 
yield in both years. This also suggests that the greater degree of 
pleiotropy present in MT models, which increased prediction 
accuracy for low accuracy LASSO models in particular (Fig. 
3), meant that the number of small effect loci involved in each 
trait was greatly increased. However, the number of indirect 
pleiotropic LASSO SNP effects across non-additive ensemble 

Figure 8. Simulated response to selection in grain yield (GY) measured in two trial years (_1 = year 1, _2 = year 2) under different selection 
indices based on ST RF genomic prediction models. Narrow lines represent each of 20 simulation repeats while thicker lines represent the 
mean across all simulation repeats. GYPD = selection to increase both grain yield and protein (grain yield protein deviation); Weeds_ESIM = 
selection to increase yield as well as weed competitive traits whilst limiting change in plant height.
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models could not be quantified. Selection could therefore act 
on more complex trait relationships driven by pleiotropy and/
or linkage.

Linkage among antagonistic genetic effects could be shown 
to partly limit genetic gain. On average, only 0.8 and 5 % of non-
zero ST LASSO model SNP coefficients were negatively fixed 
resulting in an average of 0.28 and 2.15 % loss of the maximum 
yield after 20 cycles of selection for yield in each year, respec-
tively. However, this was exacerbated in MT LASSO genetic 
models where 16.4 and 28.7 % of ST LASSO SNP effects with 
negative effects on the trait under selection were incorrectly 
fixed resulting in 14.1 and 23.5 % loss of potential genetic gain 
if the ST LASSO SNP effects are considered. Despite this, MT 

LASSO models achieved much greater genetic gain than ST 
LASSO models because the much larger number of smaller 
genetic effects that are associated with related traits provided 
a greater genetic variance for selection. This further indicates 
insufficient recombination to completely decouple antagonistic 
linked QTL that were not directly involved in ST LASSO mod-
els for grain yield but pleiotropically linked through MT models.

4.  D I S C U S S I O N
A complex structure of trait relationships that interact with envi-
ronmental conditions were found to be involved in prediction 
of grain yield. Through simulation of recurrent selection within 

Figure 9. Simulated phenotypic and genetic response to selection with different genetic models. (A) Comparisons among distributions of 
observed and predicted trait values for two grain yield (GY) scenarios for different prediction models. LASSO and RF genomic prediction 
models in conjunction with ST or MT ensemble models are compared. (B) Rates of genetic gain in GY in each GY scenario when GY is 
directly selected under 20 cycles of simulated recurrent selection comparing different genomic prediction models. Comparisons in the rate 
of reductions in (C) phenotypic and (D) genetic variation in the NIAB Diverse MAGIC (NDM) population under recurrent selection 
comparing the same prediction models as above, and colour coded in the same way. Narrow lines represent each of 20 simulation repeats while 
thicker lines represent the mean across all simulation repeats. (E) Changes in mean allele frequency for all ~55 000 SNP markers across 20 
simulation repeats for the NDM population under simulated selection for grain yield in two yield scenarios using the four models (ST LASSO, 
ST RF, MT LASSO, MT RF). Line widths and colour are proportional to SNP effect size in LASSO models and variable importance score for 
RF models.
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a genetically diverse highly recombined multi-founder wheat 
population, and based on observed genomic and phenotypic 
data, we tested several contrasting genetic models and quantita-
tive genetic approaches to recurrent selection. We found that, in 
comparison to a simplifying LASSO genetic model where each 
trait was predicted directly from a minimal subset of markers 
with additive effects, prediction accuracies were increased both 
by using a MT ensemble approach and RF prediction models, 
which potentially incorporate pleiotropy and epistatic effects 
respectively. This was particularly so for complex traits with low 
prediction accuracy, and in simulations of recurrent selection 
these models also increased the rate and extent of long-term 
genetic gain, whilst maintaining phenotypic and genetic vari-
ance. Thus, genomic prediction models that include more com-
plex genetic effects such as epistasis, and pleiotropy may better 
reflect how continued genetic gain is achieved through breeding.

4.1 The value of MT models
We showed that modelling relationships among traits is valua-
ble for increasing genomic prediction accuracy. We validated 
this in the observed data set demonstrated the resulting bene-
fits for genetic gain in simulations of recurrent genomic selec-
tion. While demonstrating improved accuracy in noisy real data 
can be challenging, the typical increases in prediction accuracy 
observed here for grain yield by including MT ensemble models 
is comparable to differences between commonly used predic-
tion models in other studies (e.g. Heslot et al. 2012; Charmet et 
al. 2020). By comparison, demonstrating an advantage to these 
models in simulated data with the assumed true genetic model is 
more theoretical, but provides further evidence for their utility 
in a forward prediction and selection breeding context.

Traditional MT genomic prediction models consider the 
covariance structure of related traits across multiple environ-
ments and replicates and increase genomic prediction accuracy 
for cross-validation schemes when test fractions include partially 
phenotyped individuals in the test environment ( Jia and Jannink 
2012). However, other studies often do not find an advantage to 
MT models for untested genotypes in real data sets (Ward et al. 
2019; Bhatta et al. 2020). We present results from MT ensembles 
that integrate predictions of multiple traits into the same model 
(Van der Laan et al. 2007; He et al. 2016). These ensemble mod-
els consistently outperformed ST models, while a contrasting 
approach using SVD of the MT matrix performed poorly and 
more variably across traits. Although the increase in prediction 
accuracy was small for most traits, the advantage of MT ensem-
ble models was greater for traits that were poorly predicted by 
LASSO models, such as grain yield, suggesting that ensemble 
methods efficiently incorporate additional information from 
large numbers of small pleiotropic genetic effects among related 
traits, which ST LASSO models would otherwise overlook when 
each trait is considered independently. Traits such as grain yield 
are polygenic and few genetic markers with large and consistent 
effects have been identified and applied in breeding (Bernardo 
2016). However, including predictions of component traits of 
yield, many of which have simpler genetic architectures (Scott 
et al. 2021), can improve the ensemble prediction model for 
yield. We found that many highly correlated traits were used as 
covariates with high importance in MT models. Furthermore, 

the covariate importance scores of traits in the ensemble models 
highlight physiological mechanisms for trait improvement and 
enable optimization of antagonistic trait relationships (Fig. 4). 
Where yield components correlate negatively with each other, 
the MT ensemble model is able to optimize the interplay among 
these traits to increase the prediction accuracy of yield as the pri-
mary trait of interest. Similar to the approach taken by Powell et 
al. (2022) who modelled multiple systems biology development 
processes to bridge the gap between genotype to complex phe-
notype, we used multiple physiological traits in more agnostic 
models without defined crop growth parameters to aid predic-
tion of the complex processes behind grain yield.

Inter-year environmental variation can modulate relation-
ships between traits. We noted strongly contrasting weather 
conditions between the two trial years in which phenotypic data 
were collected (Fig. 2). The covariate importances of traits for 
predicting yield changed with the year scenario being predicted, 
revealing some mechanisms controlling G × E for yield (Fig. 4). 
For example, growth stage phenotypes were more important 
covariates in year 1. Similarly, trade-offs in plant size and earli-
ness likely maintain polygenic trait variation due to varying envi-
ronmental pressures in the wild plant Mimulus guttatus (Troth et 
al. 2018). In breeding, any single strategy to achieve high yield 
may be hampered by unpredictable year-to-year environmental 
variation, and thus limit response to selection and reduction in 
genetic variance. While our simulations of future genetic gain 
cannot account for unmeasured environments in the future, 
commercial wheat breeders often take this into account and 
make selections of promising lines with a diversity of phenologi-
cal or plant height traits to ensure adaptive potential.

4.2 The potential to optimize trait trade-offs that 
conventional breeding has neglected

Using MT data from a MAGIC population that controls for con-
founding effects of population structure (Scott et al. 2020), we 
found that pleiotropy and/or tight genetic linkage are significant 
causes of correlated trait responses to selection. These data also 
shed light on the combination of traits that would be required to 
be co-selected or optimized to achieve continuous gains in grain 
yield as a primary trait under selection. Furthermore, we find 
antagonistic trade-offs among traits that have been problematic 
for wheat crop improvement. We suggest that historic enhance-
ment of grain yield by breeders at the cost of key traits such as 
weed competitive ability, or GPC, has been due to the overriding 
value placed on grain yield as a primary selection criterion dur-
ing variety testing, as well as market pressures, leaving little scope 
for compromise with other traits. Integration of novel trait varia-
tion to optimize these trade-offs within an elite wheat genepool, 
which has been under such strong directional selection, would 
therefore be difficult. However, simulations presented here show 
that with appropriate selection indices, genetic gain in both yield 
and other valuable but negatively correlated traits was possible 
to some extent.

4.3 The value of complex genomic prediction models for 
continued genetic gain

Simulating selection using prediction models with contrast-
ing genetic architectures (i.e. in terms of additive or epistatic 
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and direct or pleiotropic genetic effects) had major impacts on 
the outcomes of recurrent selection. The greater complexity of 
these models both increased cross-validated prediction accu-
racy of complex traits in the observed population and extended 
the accuracy of genomic predictions in simulations of recurrent 
genomic selection. Furthermore, simulations of phenotypic 
selection assuming a complex genetic model demonstrated 
accelerated and extended potential for genetic gain while main-
taining genetic and phenotypic variance. The role of non-addi-
tive genetic effects has been demonstrated elsewhere to preserve 
genetic variance over long-term selection in simulated popula-
tions (Wientjes et al. 2022). Wang et al. (2004) used simulations 
of selection within the CIMMYT wheat breeding programme 
to compare genetic models, finding that inclusion of epistasis 
in genetic models greatly reduced the rate that additive genetic 
variance is lost due to selection. Although the role of epistasis is 
thought to contribute little to overall genetic variance, at least in 
outbred populations (Hill and Mäki-Tanila 2015), evolutionary 
theory supports these observations in crop breeding; selection 
can enable conversion of epistatic to additive genetic effects, 
allowing hidden or cryptic genetic variation to then be unlocked 
(Carlborg et al. 2006; Hill 2017). The limits to trait variation in 
our study are likely underestimates because as allele frequencies 
shift and trait genetic architectures evolve under selection new 
additive genetic effects would be unlocked for selection which 
cannot be modelled or predicted in the observed population. 
Supporting this, we found that prediction models soon become 
out of date and suffer loss of prediction accuracy, particularly 
for simple additive prediction models (LASSO), when target 
genotypes become more distantly related to the training set 
(Edwards et al. 2019). However, in realistic scenarios of a wheat 
breeding programme practicing genomic selection, the training 
model is continually updated with data from advanced breeding 
line testing which would enable more linear continued genetic 
gain. Continuous novel mutations may also play an important 
role in regenerating genetic variation and extending limits to 
long-term selection in large populations (Hill 1982) but were 
not considered in simulations reported here. Pre-breeding pro-
grammes can also introduce novel genetic diversity from the 
primary, secondary and tertiary wheat genepool (Balfourier et 
al. 2019). Nevertheless, the population we study is representa-
tive of diverse north-west European wheats across 70 years. We 
found that additive variation included in minimal LASSO pre-
diction models was quickly depleted during simulated selection. 
We propose that pleiotropic and epistatic genetic effects and G 
× E interactions have played a major role in maintaining wheat 
genetic diversity despite strong selection and will be particu-
larly important for applied genomic selection of elite varieties in 
already highly selected breeding populations.

4.4 Potential for applied crop breeding
MAGIC populations have proven valuable resources for 
direct generation of commercial varieties of some less inten-
sively bred crops than wheat (Scott et al. 2020). In simulated 
breeding programmes, Bernardo (2021) suggested that mul-
ti-parent crossing schemes may be valuable for maintaining 
genetic diversity. However, the diverse MAGIC wheat pop-
ulation described here is unlikely to generate commercially 

competitive varieties due to the broad genetic basis and his-
toric founders. Instead, this MAGIC population samples and 
recombines genetic diversity across 70 years and can therefore 
be considered a microcosm of past and future selective breed-
ing. In this context, our simulations rerun alternate histories 
to test different selection models and approaches and reveal 
physiological and genetic mechanisms for future breeding. 
We suggest that this approach, including MT ensembles, 
could be further integrated with environmental information 
to inform crop models (Stöckle and Kemanian 2020; Cooper 
et al. 2021). Considering that traditional wheat breeding 
programme cycles generally extend over at least 5 years, our 
simulations of twenty cycles of recurrent selection represent 
an equivalent of over 100 years of traditional wheat breeding 
(albeit it with no further input from genotypes outside of the 
16 founders from which the MAGIC population was con-
structed). Current wheat breeding programmes are also likely 
to be at a point towards the later stages of selection simula-
tions presented here where the majority of large effect QTL 
are either fixed or well accounted for. Further genetic gain in 
current breeding programmes will therefore likely be achieved 
through optimization of small and complex genetic effects 
(Gorjanc et al. 2018).

Through selection, breeders appear to often maintain LD 
across unexpectedly large genomic regions because they con-
tain several beneficial alleles (Fradgley et al. 2019; Brinton et al. 
2020), which could also interact epistatically. Therefore, predic-
tion models that capture relevant haplotype blocks and the most 
recently unlocked epistatic effects will be increasingly impor-
tant for forward prediction of high performing breeding lines. 
Comparisons between patterns of LD in commercial selected 
varieties and in simulations presented here would validate this 
process and uncover valuable sites for further marker assisted 
selection. Our simulations suggest that beneficial variation is 
often lost during breeding. This diverse MAGIC population is a 
reservoir for such this genetic diversity and the phenotypic and 
genomic data allow beneficial alleles to be identified. Through 
targeted rapid recurrent selection and breeding technologies 
that reduce generation time (Watson et al. 2018; Cha et al. 
2022), this population could therefore be used to provide use-
ful pre-breeding material for commercial breeding programmes 
to deliver accelerated and continued genetic gain. Optimum 
contribution selection can also be applied to maximize long-
term genetic gain by maintaining genetic variance for selection 
at later generations.

4.5 Conclusions
In summary, we demonstrated the value of MT ensemble 
models for genomic prediction of complex traits and simu-
lated recurrent selection using these genetic models based 
empirically on an extensively genotyped and phenotyped 
NDM population. We consider this a microcosm of wider 
wheat breeding programmes working with the wider pool of 
wheat germplasm so that our results provide insights into the 
trends and mechanisms by which the considerable progress 
and genetic gain has been made in modern wheat breeding 
without apparent genetic diversity loss. These findings high-
light the importance of models and approaches that take into 
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account these mechanisms to maximize further genetic gain 
in the future.

SU P P O RT I N G  I N F O R M AT I O N
The following additional information is available in the online 
version of this article—

Figure S1. Plots of genetic and physical map positions for 
each chromosome.

Table S1. Genetic map positions of 55 046 SNP markers.
Table S2. Correlation matrix among 73 traits.

A CK N O W L E D G E M E N T
We would like to thank Dr Stéphanie Swarbreck for useful com-
ments on the manuscript and the two anonymous reviewers for 
providing useful feedback that greatly improved the quality of 
the manuscript.

S O U RCE S  O F  F U N D I N G
This work was funded by Biotechnology and Biological Sciences 
Research Council (BBSRC) grants BB/M011666/1 awarded to 
J.C., BB/M011585/1 to R.M. and BB/M011194/1 as part of the 
PhD research of N.F.

CO N F L I CT  O F  I N T E R E ST
None declared.

CO N T R I B U T I O N S  BY  T H E  AU T H O R S
N.F. conceived of and undertook the analyses. J.C. and R.M. 
were awarded project funding. N.F. wrote the first draft of the 
manuscript and all authors reviewed, edited and approved the 
final manuscript.

DATA  AVA I L A B I L I T Y
Phenotypic and genotypic data used in this study were as pre-
sented by Scott et al. (2021) and can be freely accessed at http://
mtweb.cs.ucl.ac.uk/mus/www/MAGICdiverse/.

L I T E R AT U R E  CI T E D
Andrew IKS, Storkey J, Sparkes DL. 2015. A review of the potential for 

competitive cereal cultivars as a tool in integrated weed management. 
Weed Research 55:239–248.

Appels R, Eversole K, Stein N, Feuillet C, Keller B, Rogers J, Pozniak 
CJ, Choulet F, Distelfeld A, Poland J; International Wheat Genome 
Sequencing Consortium (IWGSC). 2018. Shifting the limits in wheat 
research and breeding using a fully annotated reference genome. Sci-
ence 361:eaar7191.

Austin RB, Bingham J, Blackwell RD, Evans LT, Ford MA, Morgan CL, 
Taylor M. 1980. Genetic improvements in winter wheat yields since 
1900 and associated physiological changes. The Journal of Agricultural 
Science 94:675–689.

Balfourier F, Bouchet S, Robert S, De Oliveira R, Rimbert H, Kitt J, 
Choulet F, Paux E; International Wheat Genome Sequencing Con-
sortiumInternational Wheat Genome Sequencing Consortium. 2019. 
Worldwide phylogeography and history of wheat genetic diversity. 
Science Advances 5:eaav0536.

Bernardo R. 2016. Bandwagons I, too, have known. Theoretical and 
Applied Genetics 129:2323–2332.

Bernardo R. 2021. Multiparental populations in line development: genetic 
gain, diversity, and practical limitations. Crop Science 61:4139–4150.

Bhatta M, Gutierrez L, Cammarota L, Cardozo F, Germán S, 
Gómez-Guerrero B, Pardo MF, Lanaro V, Sayas M, Castro AJ. 2020. 
Multi-trait genomic prediction model increased the predictive ability 
for agronomic and malting quality traits in barley (Hordeum vulgare 
L.). G3: Genes, Genomes, Genetics 10:1113–1124.

Breiman L. 2001. Random forests. Machine Learning 45:5–32.
Brinton J, Ramirez-Gonzalez RH, Simmonds J, Wingen L, Orford S, 

Griffiths S, Haberer G, Spannagl M, Walkowiak S, Pozniak C, Uauy 
C. 2020. A haplotype-led approach to increase the precision of wheat 
breeding. Communications Biology 3:1–11.

Brinton J, Simmonds J, Minter F, Leverington-Waite M, Snape J, Uauy 
C. 2017. Increased pericarp cell length underlies a major quantita-
tive trait locus for grain weight in hexaploid wheat. New Phytologist 
215:1026–1038.

Broman KW, Gatti DM, Simecek P, Furlotte NA, Prins P, Sen S, Yandell 
BS, Churchill GA. 2019. R/qtl2: software for mapping quantitative 
trait loci with high-dimensional data and multiparent populations. 
Genetics 211:495–502.

Broman KW, Wu H, Sen S, Churchill GA. 2003. R/qtl: QTL mapping in 
experimental crosses. Bioinformatics 19:889–890.

Buhlmann DJSP. 2011. MissForest-nonparametric missing value imputa-
tion for mixed-type data. Bioinformatics 28:113–118.

Carlborg O, Haley CS. 2004. Epistasis: too often neglected in complex 
trait studies? Nature Reviews Genetics 5:618–625.

Carlborg O, Jacobsson L, Åhgren P, Siegel P, Andersson L. 2006. Epistasis 
and the release of genetic variation during long-term selection. Nature 
Genetics 38:418–420.

Cerón-Rojas JJ, Sahagún-Castellanos J, Castillo-González F, Santa-
cruz-Varela A, Crossa J. 2008. A restricted selection index method 
based on eigenanalysis. Journal of Agricultural Biological and Environ-
mental Statistics 13:440–457.

Cha JK, O’Connor K, Alahmad S, Lee JH, Dinglasan E, Park H, Lee SM, 
Hirsz D, Kwon SW, Kwon Y, Kim KM, Ko J-M, Hickey LT, Shin D, 
Dixon LE. 2022. Speed vernalization to accelerate generation advance 
in winter cereal crops. Molecular Plant 15:1300–1309.

Charmet G, Tran LG, Auzanneau J, Rincent R, Bouchet S. 2020. BWGS: a 
R package for genomic selection and its application to a wheat breed-
ing programme. PLoS One 15:e0222733.

Clark SA, Hickey JM, Van der Werf JH. 2011. Different models of genetic 
variation and their effect on genomic evaluation. Genetics, Selection, 
Evolution 43:1–9.

Cooper M, Powell O, Voss-Fels KP, Messina CD, Gho C, Podlich DW, 
Technow F, Chapman SC, Beveridge CA, Ortiz-Barrientos D, Ham-
mer GL. 2021. Modelling selection response in plant-breeding 
programs using crop models as mechanistic gene-to-phenotype 
(CGM-G2P) multi-trait link functions. In Silico Plants 3:diaa016; 
doi:10.1093/insilicoplants/diaa016.

Corsi B, Obinu L, Zanella CM, Cutrupi S, Day R, Geyer M, Lillemo M, 
Lin M, Mazza L, Percival-Alwyn L, Stadlmeier M, Mohler V, Hartl L, 
Cockram J. 2021. Analysis of a German multi-parental population 
identifies eight genetic loci controlling two or more yield components 
in wheat, including the genetic loci Rht24, WAPO-A1 and WAPO-B1 
and multi-trait QTL on chromosomes 5A and 6A. Theoretical and 
Applied Genetics 134:1435–1454.

Davis DR. 2009. Declining fruit and vegetable nutrient composition: 
what is the evidence? Horticultural Science 44:15–19.

Dudley JW. 2007. From means to QTL: the Illinois long-term selection exper-
iment as a case study in quantitative genetics. Crop Science 47:S20–S31.

Edwards SM, Buntjer JB, Jackson R, Bentley AR, Lage J, Byrne E, Burt 
C, Jack P, Berry S, Flatman E, Poupard B. 2019. The effects of training 
population design on genomic prediction accuracy in wheat. Theoreti-
cal and Applied Genetics 132:1943–1952.

Epskamp S, Cramer AO, Waldorp LJ, Schmittmann VD, Borsboom D. 
2012. qgraph: network visualizations of relationships in psychometric 
data. Journal of Statistical Software 48:1–18.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/5/1/diad002/7045077 by guest on 31 O

ctober 2023

http://mtweb.cs.ucl.ac.uk/mus/www/MAGICdiverse/
http://mtweb.cs.ucl.ac.uk/mus/www/MAGICdiverse/
https://doi.org/10.1093/insilicoplants/diaa016


Multi-trait ensemble genomic prediction and simulations • 19

Fernandes SB, Dias KO, Ferreira DF, Brown PJ. 2018. Efficiency of mul-
ti-trait, indirect, and trait-assisted genomic selection for improvement 
of biomass sorghum. Theoretical and Applied Genetics 131:747–755.

Fischer RA, Kertesz Z. 1976. Harvest index in spaced populations and 
grain weight in microplots as indicators of yielding ability in spring 
wheat 1. Crop Science 16:55–59.

Fradgley N, Gardner KA, Cockram J, Elderfield J, Hickey JM, Howell P, 
Jackson R, Mackay IJ. 2019. A large-scale pedigree resource of wheat 
reveals evidence for adaptation and selection by breeders. PLoS Biol-
ogy 17:e3000071.

Friedman, J, Hastie T, Tibshirani, R. 2010. Regularization paths for gen-
eralized linear models via coordinate descent. Journal of Statistical 
Software 33:1.

Fu YB. 2015. Understanding crop genetic diversity under modern plant 
breeding. Theoretical and Applied Genetics 128:2131–2142.

Fufa H, Baenziger PS, Beecher BS, Graybosch RA, Eskridge KM, Nelson 
LA. 2005. Genetic improvement trends in agronomic performances 
and end-use quality characteristics among hard red winter wheat cul-
tivars in Nebraska. Euphytica 144:187–198.

Goddard ME, Kemper KE, MacLeod IM, Chamberlain AJ, Hayes 
BJ. 2016. Genetics of complex traits: prediction of phenotype, 
identification of causal polymorphisms and genetic architecture. 
Proceedings of the Royal Society of London, B: Biological Sciences 
283:20160569.

Gorjanc G, Gaynor RC, Hickey JM. 2018. Optimal cross selection for 
long-term genetic gain in two-part programs with rapid recurrent 
genomic selection. Theoretical and Applied Genetics 131:1953–1966.

Hawkesford MJ. 2014. Reducing the reliance on nitrogen fertilizer for 
wheat production. Journal of Cereal Science 59:276–283.

He D, Kuhn D, Parida L. 2016. Novel applications of multitask learning 
and multiple output regression to multiple genetic trait prediction. 
Bioinformatics 32:i37–i43.

Heslot N, Yang HP, Sorrells ME, Jannink JL. 2012. Genomic selection in 
plant breeding: a comparison of models. Crop Science 52:146–160.

Hill WG. 1982. Predictions of response to artificial selection from new 
mutations. Genetics Research 40:255–278.

Hill WG. 2017. “Conversion” of epistatic into additive genetic variance 
in finite populations and possible impact on long-term selection 
response. Journal of Animal Breeding and Genetics 134:196–201.

Hill WG, Mäki-Tanila A. 2015. Expected influence of linkage disequilib-
rium on genetic variance caused by dominance and epistasis on quan-
titative traits. Journal of Animal Breeding and Genetics 132:176–186.

Jannink JL, Lorenz A, Iwata H. 2010. Genomic selection in plant breed-
ing: from theory to practice. Briefings in Functional Genomics 9:166–
177.

Jia Y, Jannink JL. 2012. Multiple-trait genomic selection methods increase 
genetic value prediction accuracy. Genetics 192:1513–1522.

Jiang Y, Reif JC. 2015. Modeling epistasis in genomic selection. Genetics 
201:759–768.

Kissing Kucek L, Mallory EB, Darby HM, Dawson JC, Sorrells ME. 2021. 
Breeding wheat for weed-competitive ability: I. Correlated traits. 
Euphytica 217:1–15.

Korres NE, Froud-Williams RJ. 2002. Effects of winter wheat cultivars 
and seed rate on the biological characteristics of naturally occurring 
weed flora. Weed Research 42:417–428.

Kuzay S, Xu Y, Zhang J, Katz A, Pearce S, Su Z, Fraser M, Anderson JA, 
Brown-Guedira G, DeWitt N, Haugrud AP. 2019. Identification of 
a candidate gene for a QTL for spikelet number per spike on wheat 
chromosome arm 7AL by high-resolution genetic mapping. Theoreti-
cal and Applied Genetics 132:2689–2705.

Lovegrove A, Pellny TK, Hassall KL, Plummer A, Wood A, Bellisai A, 
Przewieslik-Allen A, Burridge AJ, Ward JL, Shewry PR. 2020. Histor-
ical changes in the contents and compositions of fibre components 
and polar metabolites in white wheat flour. Scientific Reports 10:1–9.

Mackay I, Horwell A, Garner J, White J, McKee J, Philpott H. 2011. 
Reanalysis of the historical series of UK variety trials to quantify the 
contributions of genetic and environmental factors to trends and var-
iability in yield over time. Theoretical and Applied Genetics 122:225–
238.

Mackay IJ, Cockram J, Howell P, Powell W. 2021. Understanding the clas-
sics: the unifying concepts of transgressive segregation, inbreeding 
depression and heterosis and their central relevance for crop breeding. 
Plant Biotechnology Journal 19:26–34.

McCaig TN, DePauw RM. 1995. Breeding hard red spring wheat in west-
ern Canada: historical trends in yield and related variables. Canadian 
Journal of Plant Science 75:387–393.

Meuwissen T, Hayes BJ, Goddard ME. 2001. Prediction of total genetic 
value using genome-wide dense marker maps. Genetics 157:1819–1829.

Michel S, Löschenberger F, Ametz C, Pachler B, Sparry E, Bürstmayr H. 
2019. Simultaneous selection for grain yield and protein content in 
genomics-assisted wheat breeding. Theoretical and Applied Genetics 
132:1745–1760.

Montesinos-López OA, Montesinos-López A, Crossa J, Ramírez-Alcaraz 
JM, Singh R, Mondal S, Juliana P. 2019a. A singular value decompo-
sition Bayesian multiple-trait and multiple-environment genomic 
model. Heredity 122:381–401.

Montesinos-López OA, Montesinos-López A, Luna-Vázquez FJ, Toledo FH, 
Pérez-Rodríguez P, Lillemo M, Crossa J. 2019b. An R package for Bayes-
ian analysis of multi-environment and multi-trait multi-environment data 
for genome-based prediction. G3: Genes, Genomes, Genetics 9:1355–1369.

Muqaddasi QH, Brassac J, Koppolu R, Plieske J, Ganal MW, Röder 
MS. 2019. TaAPO-A1, an ortholog of rice ABERRANT PANICLE 
ORGANIZATION 1, is associated with total spikelet number per 
spike in elite European hexaploid winter wheat (Triticum aestivum L.) 
varieties. Scientific Reports 9:1–12.

Murphy KM, Dawson JC, Jones SS. 2008. Relationship among pheno-
typic growth traits, yield and weed suppression in spring wheat lan-
draces and modern cultivars. Field Crops Research 105:107–115.

Mwendwa JM, Brown WB, Weidenhamer JD, Weston PA, Quinn JC, Wu 
H, Weston LA. 2020. Evaluation of commercial wheat cultivars for 
canopy architecture, early vigour, weed suppression, and yield. Agron-
omy 10:983.

Powell OM, Barbier F, Voss-Fels KP, Beveridge C, Cooper M. 2022. 
Investigations into the emergent properties of gene-to-phenotype 
networks across cycles of selection: a case study of shoot branching in 
plants. In Silico Plants 4:diac006; doi:10.1093/insilicoplants/diac006.

Quintero A, Molero G, Reynolds MP, Calderini DF. 2018. Trade-off 
between grain weight and grain number in wheat depends on G×E 
interaction: a case study of an elite CIMMYT panel (CIMCOG). 
European Journal of Agronomy 92:17–29.

R Core Team. 2020. R: a language and environment for statistical comput-
ing. Vienna, Austria: R Foundation for Statistical Computing.

Raherison E, Majidi MM, Goessen R, Hughes N, Cuthbert R, Knox R, 
Lukens L. 2020. Evidence for the accumulation of nonsynonymous 
mutations and favorable pleiotropic alleles during wheat breeding. 
G3: Genes, Genomes, Genetics 10:4001–4011.

Ruisi P, Frangipane B, Amato G, Frenda AS, Plaia A, Giambalvo D, Saia 
S. 2015. Nitrogen uptake and nitrogen fertilizer recovery in old and 
modern wheat genotypes grown in the presence or absence of inter-
specific competition. Frontiers in Plant Science 6:185.

Sapkota S, Boatwright JL, Jordan K, Boyles R, Kresovich S. 2020. Mul-
ti-trait regressor stacking increased genomic prediction accuracy of 
sorghum grain composition. Agronomy 10:1221.

Schmalohr CL, Grossbach J, Clément-Ziza M, Beyer A. 2018. Detection 
of epistatic interactions with random forest. bioRxiv:353193.

Scott MF, Fradgley NS, Bentley A, Brabbs T, Corke F, Gardner K, Hors-
nell R, Howell P, Ladejobi O, Mackay IS, Mott R, Cockram J. 2021. 
Limited haplotype diversity underlies polygenic trait architecture 
across 70 years of wheat breeding. Genome Biology 22:137.

Scott MF, Ladejobi O, Amer S, Bentley AR, Biernaskie J, Boden SA, 
Clark M, Dell’Acqua M, Dixon LE, Filippi CV, Fradgley N, Gard-
ner KA, Mackay IJ, O’Sullivan D, Percival-Alywn L, Roorkiwal M, 
Singh RK, Thudi M, Varshney RK, Venturini L, Whan A, Cock-
ram J, Mott R. 2020. Multi-parent populations in crops: a toolbox 
integrating genomics and genetic mapping with breeding. Heredity 
125:396–416.

Shewry PR, Hassall KL, Grausgruber H, Andersson AM, Lampi AM, 
Piironen V, Rakszegi M, Ward JL, Lovegrove A. 2020. Do modern 

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/5/1/diad002/7045077 by guest on 31 O

ctober 2023

https://doi.org/10.1093/insilicoplants/diac006


20 • Fradgley et al.

types of wheat have lower quality for human health? Nutrition Bulletin 
45:362–373.

Simmonds NW. 1995. The relation between yield and protein in cereal 
grain. Journal of the Science of Food and Agriculture 67:309–315.

Spyromitros-Xioufis E, Tsoumakas G, Groves W, Vlahavas I. 2016. 
Multi-target regression via input space expansion: treating targets as 
inputs. Machine Learning 104:55–98.

Stöckle CO, Kemanian AR. 2020. Can crop models identify critical gaps 
in genetics, environment, and management interactions? Frontiers in 
Plant Science 11:737.

Storkey J, Mead A, Addy J, MacDonald AJ. 2021. Agricultural intensifica-
tion and climate change have increased the threat from weeds. Global 
Change Biology 27:2416–2425.

Tadesse W, Sanchez-Garcia M, Assefa SG, Amri A, Bishaw Z, Ogbonnaya 
FC, Baum M. 2019. Genetic gains in wheat breeding and its role in 
feeding the world. Crop Breeding, Genetics and Genomics 1:e190005.

Troth A, Puzey JR, Kim RS, Willis JH, Kelly JK. 2018. Selective trade-
offs maintain alleles underpinning complex trait variation in plants. 
Science 361:475–478.

van de Wouw M, van Hintum T, Kik C, van Treuren R, Visser B. 2010. 
Genetic diversity trends in twentieth century crop cultivars: a meta 
analysis. Theoretical and Applied Genetics 120:1241–1252.

Van der Laan MJ, Polley EC, Hubbard AE. 2007. Super learner. Statistical 
Applications in Genetics and Molecular Biology 6:25.

Vandeleur RK, Gill GS. 2004. The impact of plant breeding on the grain 
yield and competitive ability of wheat in Australia. Australian Journal 
of Agricultural Research 55:855–861.

Wang J, van Ginkel M, Trethowan R, Ye G, DeLacy I, Podlich D, Cooper 
M. 2004. Simulating the effects of dominance and epistasis on selec-
tion response in the CIMMYT Wheat Breeding Program using 
QuCim. Crop Science 44:2006–2018.

Ward BP, Brown-Guedira G, Tyagi P, Kolb FL, Van Sanford DA, Sneller 
CH, Griffey CA. 2019. Multienvironment and multitrait genomic 

selection models in unbalanced early-generation wheat yield trials. 
Crop Science 59:491–507.

Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, 
Hatta MAM, Hinchliffe A, Steed A, Reynolds D, Adamski NM, Break-
spear A, Korolev A, Rayner T, Dixon LE, Riaz A, Martin W, Ryan 
M, Edwards D, Batley J, Raman H, Carter J, Rogers C, Domoney C, 
Moore G, Harwood W, Nicholson P, Dieters MJ, DeLacy IH, Zhou 
J, Uauy C, Boden SA, Park RF, Wulff BBH, Hickey LT. 2018. Speed 
breeding is a powerful tool to accelerate crop research and breeding. 
Nature Plants 4:23–29.

White J, Law JR, MacKay I, Chalmers KJ, Smith JSC, Kilian A, Powell W. 
2008. The genetic diversity of UK, US and Australian cultivars of Trit-
icum aestivum measured by DArT markers and considered by genome. 
Theoretical and Applied Genetics 116:439–453.

White J, Sharma R, Balding D, Cockram J, Mackay IJ. 2021. Genome-
wide association mapping of Hagberg falling number, protein content, 
test weight, and grain yield in U.K. wheat. Crop Science 62:965–981.

Wientjes YC, Bijma P, Calus MP, Zwaan BJ, Vitezica ZG, van den Heuvel 
J. 2022. The long-term effects of genomic selection: 1. Response to 
selection, additive genetic variance, and genetic architecture. Genetics, 
Selection, Evolution 54:1–21.

Wright MN, Ziegler A, König IR. 2016. Do little interactions get lost in 
dark random forests? BMC Bioinformatics 17:1–10.

Xie Q, Sparkes DL. 2021. Dissecting the trade-off of grain number and 
size in wheat. Planta 254:1–16.

Yang CJ, Ladejobi O, Mott R, Powell W, Mackay I. 2022. Analysis of 
historical selection in winter wheat. Theoretical and Applied Genetics 
135:3005–3023.

Zanella CM, Rotondo M, McCormick-Barnes C, Mellers G, Corsi B, 
Berry S, Ciccone G, Day R, Faralli M, Galle A, Gardner KA, Jacobs J, 
Ober ES, Sánchez del Rio A, Van Rie J, Lawson T, Cockram J. 2022. 
Longer epidermal cells underlie a quantitative source of variation in 
wheat flag leaf size. New Phytologist. 273:1558–1573.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/5/1/diad002/7045077 by guest on 31 O

ctober 2023


