

# Benefits of *Leucaena diversifolia* in grazing steer's diet: performance, methane and fatty acids

Isabel C. Molina-Botero¹; Daniel Mauricio Villegas¹; Alejandro Montoya¹; Johanna Mazabel¹; Mike Bastidas¹; Alejandro Ruden¹²; Hernan Gaviria³; Juan David Peláez³; Julián Chará⁴; Enrique Murgueitio⁴; Jon Moorby⁵; **Jacobo Arango¹** 

¹International Center for Tropical Agriculture, Tropical Forages Program, Colombia; ²University of Florida, USA; ³Asobrangus Comercial ANGUSAZUL®, Colombia; ⁴Center for Research on Sustainable Agricultural Production Systems - CIPAV, Colombia; ⁵Aberystwyth University, UK.

Contact: j.arango@cgiar.org

# Introduction

Livestock production contributes significantly to global greenhouse gas emissions (UNEP and ACC, 2021). Some strategies to reduce enteric methane (CH<sub>4</sub>) emissions propose modulating ruminal fermentation by providing legumes rich in secondary compounds.

Leucaena diversifolia is a legume species that has received little attention in terms of its nutritive value,  $CH_4$  emissions, and impact on meat quality. To address this gap, a study was conducted to compare the performance,  $CH_4$  emissions, and fatty acid content of steers grazing on a monoculture of tropical grass Urochloa hybrid cv. Cayman versus a combination of Cayman and L. diversifolia.

## Methodology

Location: The experiment was conducted at the International Center for Tropical Agriculture (CIAT) located in Valle del Cauca, Colombia.

Animals and diets: Over a period of 15 months, 14 Angus crossbred steers were used in the study, with half of them grazing only Cayman grass (**CG**, *Urochloa* hybrid cv. Cayman-CIAT BR02/1752) and the other half grazing on a combination of Cayman and *L. diversifolia* ILRI 15551 (**SPS**) at a ratio of 74:26.

Table 1. Mean (+/- SD) nutritional composition of the diets offered to the steers during the experiment.

| Variable | DM<br>g/kg | CP<br>g/kg DM | IVDMD<br>g/kg DM | Total phenols<br>g/kg DM | Tannins<br>g/kg DM |
|----------|------------|---------------|------------------|--------------------------|--------------------|
| CG       | 242±1.6    | 64±1.4        | 467±2.5          | 3.30                     | 0.10               |
| SPS      | 232±3.4    | 135±0.6       | 639±2.9          | 17.42                    | 12.40              |

SPS: 74% Urochloa brizantha cv. Toledo and 26% Leucaena diversifolia; CG: Cayman grass; DM: dry matter; CP: crude protein; IVDMD: in vitro DM digestibility.

**Evaluations:** The animals were weighed every 4 months throughout the experiment. At the end of the trial, enteric  $CH_4$  emissions were measured for one month using the polytunnel technique (Murray et al., 2001). Subsequently, the animals were slaughtered to extract a subsample of the *longuissimus dorsi* muscle to quantify fatty acid esters (Mojica-Rodriguez et al., 2017).



#### Results

Animals grazing Cayman grass plus L. diversifolia consumed 1.22 times more dry matter than animals ingesting grass alone ( $P \le 0.05$ ). This difference was doubled when calculating daily crude protein intake ( $P \le 0.05$ ). At the end of the experiment, animals consuming the **SPS** diet weighed 63 kg more than animals consuming **GC** ( $P \le 0.05$ ). On the other hand, steers consuming L. diversifolia emitted 15% less net enteric  $CH_4$  than animals on **GC** ( $P \le 0.05$ ). Likewise, in our study the omega 6: omega 3 ratio was lower in animals consuming this legume ( $P \le 0.05$ ).

Table 2. Forage intake, animal productivity, methane emissions and meat quality of steers fed with and without *L. diversifolia* 

| Variable                          | Trea<br>SPS | tment — CG | SEM   | P-value |
|-----------------------------------|-------------|------------|-------|---------|
| Intake                            |             |            |       |         |
| DM(kg/d)                          | 8.571       | 6.995      | 0.514 | 0.0082  |
| CP(g/d)                           | 847.0       | 396.9      | 27.63 | 0.0001  |
| Animal productivity and emissions |             |            |       |         |
| Final LW (kg)                     | 535.3       | 472.3      | 10.22 | 0.0410  |
| Net methane emissions (g/d)       | 142.4       | 167.6      | 5.425 | 0.0069  |
| Fatty acids                       |             |            |       |         |
| Omega-6: omega-3 ratio            | 2.59        | 2.91       | 0.223 | 0.0173  |

**SPS:** 74% *U. brizantha* cv. Toledo or *U.* hybrid cv. Cayman and 26% *L. diversifolia*; **CG:** 100% *U.* hybrid cv. Cayman or *U. brizantha* cv. Toledo; **SEM:** standard error of mean. **DM:** dry matter; **CP:** crude protein; **LW:** live weight.



## Conclusions

▶ The results of this study suggest that the inclusion of *L. diversifolia* improves nutrient intake, increases animal productivity, reduces daily enteric methane emission, and omega-6: omega-3 ratio in meat is reduced.

#### References

UNEP and CAC, 2021. Global methane assessment: Benefits and costs of mitigating methane emissions. United Nations Environment Programme and Clean Air Coalition, Nairobi. [Cited 2023 May]. Available from: <a href="https://www.unep.org/resources/report/global-methane-assessment-benefits-andcosts-mitigating-methane-emissions">https://www.unep.org/resources/report/global-methane-assessment-benefits-andcosts-mitigating-methane-emissions</a>

Murray, P.J., Gill, E., Balsdon, S.L., Jarvis, S.C., 2001. A comparison of methane emissions from sheep grazing pastures with differing management intensities. Nutr. Cycl. Agroecosyst. 60, 93–97

Mojica-Rodríguez, J. E., Castro-Rincón, E., Carulla-Fornaguera, J., Lascano-Aguilar, C. E., 2017. Efecto de la edad de rebrote sobre el perfil de ácidos grasos en gramíneas tropicales. Ciencia y Tecnología Agropecuaria, 18(2), 217-232

#### Acknowledgments

We thank all donors that globally support the work of the OneCGIAR initiative on Livestock and Climate. Advancing sustainable forage-based livestock production systems in Colombia (CoForLife). We also thank Angus Azul® for the acquisition of animals and CIPAV for the support received during the execution of the experiment.













