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Abstract: Uromyces viciae-fabae Pers. de-Bary is an important fungal pathogen causing rust in peas
(Pisum sativum L.). It is reported in mild to severe forms from different parts of the world where the
pea is grown. Host specificity has been indicated in this pathogen in the field but has not yet been
established under controlled conditions. The uredinial states of U. viciae-fabae are infective under
temperate and tropical conditions. Aeciospores are infective in the Indian subcontinent. The genetics
of rust resistance was reported qualitatively. However, non-hypersensitive resistance responses and
more recent studies emphasized the quantitative nature of pea rust resistance. Partial resistance/slow
rusting had been described as a durable resistance in peas. Such resistance is of the pre-haustorial
type and expressed as longer incubation and latent period, poor infection efficiency, a smaller number
of aecial cups/pustules, and lower units of AUDPC (Area Under Disease Progress Curve). Screening
techniques dealing with slow rusting should consider growth stages and environment, as both have
a significant influence on the disease scores. Our knowledge about the genetics of rust resistance
is increasing, and now molecular markers linked with gene/QTLs (Quantitative Trait Loci) of rust
resistance have been identified in peas. The mapping efforts conducted in peas came out with some
potent markers associated with rust resistance, but they must be validated under multi-location trails
before use in the marker-assisted selection of rust resistance in pea breeding programs.

Keywords: disease resistance; QTL mapping; slow rusting; uredia; genetic variability

1. Introduction

Pea (Pisum sativum L.; 2n = 2x = 14) is an important legume crop worldwide, having a
major impact on agriculture, the environment, animal and human nutrition, and health [1].
Uromyces viciae-fabae (Pers.) J. Schrot (syn. Uromyces fabae Pers. de Bary) is the primary
causal agent of pea rust in the tropical and subtropical regions of the world, which is
characterized by warm, humid weather conditions [2–4]. However, Uromyces pisi (Pers.)
Wint. is suggested to cause pea rust in temperate regions [5]. Both fungi are macroscopically
identical in the uredial stage but can be distinguished based on telial morphology, infection
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structures, and internal transcribed spacer (ITS) markers [6]. U. viciae-fabae is reported
to cause yield losses from 57–100% [7], whereas pea yield reduction due to U. pisi is up
to 30% [8]. Key differences between these two Uromyces species are presented in Table 1.
Interestingly, U. viciae-fabae (Pers.) de Bary also reported infecting faba bean (Vicia faba L.),
lentil (Lens culinaris Medik.), vetches (Vicia sativa L.), and grass pea (Lathyrus sativus L.) [9].

Table 1. Distinguishing features of two types of Uromyces rust pathogens.

Character Uromyces pisi U. viciae-fabae/U. fabae

Occurrence Temperate regions e.g., Europe, Australia, Canada Tropical and sub-tropical regions, e.g., India, China
Conducive

weather Comparatively cooler and less humid Warm humid

Fungus Heteroecious macrocyclic fungus completes life-cycle
on Cypress spurge (Euphorbia cyparissias L.) Autoecious macrocyclic

Infecting stage Uredial Uredial and acidial
Repeating spore Urediospores Aeciospores/Urediospores

Infection structures
Substomatal vesicles (SSVs) of U. pisi are oblong to
oval, with both ends curved, and form one primary

infection hyphae (PIH) each.

SSVs of U. viciae-fabae are variable in shape ranging
from fusiform to cylindrical tubes, oval to globoid

croissant-like, sausage-like, or triangular, and
generally form two PIH.

ITS markers ITS1 region has a unique 90 bp deletion region No such deletion region found
Genetics of
resistance Polygenic Single major gene to polygenic

The genetics of resistance to U. viciae-fabae in peas is still not clearly understood; it
was reported to be governed by both a single dominant gene [10–12] and a polygenic
geneset [3,13]. One of the best possible ways to stabilize the productivity of pea crops
is to grow rust-resistant varieties of peas. Therefore, enhancement of resistance to rust
in agronomically adapted but susceptible cultivars is a major challenge that needs to be
addressed on a priority basis. Several studies related to identification, distribution, host
specialization, mode of infection, biochemical and physiological factors affecting infec-
tion, genetics of resistance, and slow rusting have been performed on this biotrophic
pathogen [2,6,14–16]. A reference genome of U. viciae-fabae (329 Mb) has been sequenced,
comprising 23,153 predicted proteins [17]. Recently, Kreplak et al. [18] developed the
first annotated chromosome-level reference genome assembly using a french pea culti-
var, ‘Caméor.’ These available genomic resources will accelerate genomic-assisted pea
improvement. Host range, global distribution, host specialization, and economic losses
due to U. viciae-fabae make it a pathogen of choice for comprehensive studies on the
above-mentioned aspects. Given the high agronomic and epidemiological importance of
U. viciae-fabae, this review gives a better insight into U. viciae-fabae affecting peas for efficient
strategic planning to control this important global pathogen.

2. Nomenclature, Distribution and Host Range of Uromyces fabae

Uromyces viciae-fabae (=Uromyces fabae) is a macrocyclic rust fungus first reported on
peas by Persoon in 1801. Later the genus was renamed Uromyces viciae-fabae (Pers.) de-
Bary [19]. The pathogen U. viciae-fabae is described as autoecious rust with aeciospores,
urediospores, and teliospores found on the same host plant [20,21]. Aeciospores-like
urediospores are dikaryotic that migrate to the germ tube upon germination. U. viciae-
fabae is classified into nine forma speciales, each with a host range limited to two or three
species [21]. Later, it was observed that the isolates of U. viciae-fabae share so many hosts
in common, and it is impossible to classify them into forma speciales [22]. Based on
the distinctive shape and dimensions of the sub-stomatal vesicle, U. viciae-fabae has been
described as a species complex [23]. It revealed that host-specialized isolates of U. viciae-
fabae were morphologically distinct, differing in both spore dimensions and infection
structure morphology, leading to host specialization within U. viciae-fabae and co-speciation
of rusts [24].
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Several species of Vicia, Lathyrus, Pisum, and Lens susceptible to U. fabae have been
reported in India and abroad [25,26]. In India, the species of Vicia, Lathyrus, and Pisum are
described as host plants for U. viciae-fabae (Pers. de Bary) [27,28]. They observed natural
infection on Vicia sativa L. and also on V. hirsuta Gray (a common weed found in the lentil
field in India). Vicia faba L., V. biennes L., V. hirsuta L., and V. arborensis L. were described as
highly susceptible to U. fabae, but Vicia sativa and Lathyrus aphaca were found disease free.
In total, 52 species of Vicia faba and 22 species of Lathyrus were reported as susceptible to
U. viciae- fabae [22]. Infection of this pathogen has also been found on lentils and faba beans
apart from peas (Figure 1). Pea plants are infected by both U. viciae-fabae and U. pisi [29],
of which U. pisi is a rare occurrence in India and U. viciae-fabae is not common on pea in
Europe [30]. The occurrence of U. viciae-fabae has been reported in mild to severe forms on
peas, lentils, and faba beans from Canada, Europe, Ethiopia, and Australia [2,22,31].
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Figure 1. Symptoms of rust caused by U. viciae-fabae on (A) Pea, (B) Lentil, and (C) Faba bean.

3. Symptoms of Pea Rust

U. viciae-fabae rust is characterized by the appearance of two types of symptoms on
peas. Early symptoms develop on the abaxial side of older leaves and form round to
oval aecidia. Initially, aecidia form creamy white to light yellow to bright orange colored
pustules on the leaf and stem. Aecidia is an aggregation of several small cup-like structures
on the host plant. Aeciospores released from the aecial cups are deposited as yellow powder.
Small aecidial pustules are mostly confined to the leaf, but they can also be seen on the
stem (Figure 2). In ‘afila’ pea genotypes, acedial pustules are found on stipules and tendrils.
Under a favorable environment, these pustules further developed and spread to other parts
of the plants.

Uredial pustules are mostly confined to the stem (Figure 3A) and occasionally found
on the leaf in the Indian subcontinent. They appear as powdery, light brown pustules. The
ruptured epidermis on infected portions of the host exposes black to brown powdery mass.
Telia appear after aecial/ uredial pustules late in the same season or on the part of the plant
leading to senescence. Teliospores are formed in the aecial or uredial pustules. Sometimes
it is also formed independently; it is mostly formed on the stem and tendril previously
occupied by aecidia/ uredia (Figure 3B). Seed size is significantly reduced in badly infected
genotypes, and the color of the seed becomes dull.
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4. Host-Pathogen Interaction

The biotrophic nature of U. viciae-fabae makes it difficult to maintain the pathogen
in culture and apply it to screen segregating host populations under controlled growth
conditions. The complication is likely to be intensified when both the uredial and aecidial
spores create disease, as in peas under warm, humid conditions [4]. The germination
of urediospores differs from that of aeciospores (Figure 4). Infection by uredia is mostly
confined to the epidermal cells and a few layers of mesophyll cells, whereas aecidial
infections reach the mesophyll and spongy tissues to form the aecial cups. Uromyces fungus
enters the plant through direct penetration and forms less differentiated infection structures
such as appressorium, vesicle, and haustorium in case of infection by aeciospore [32].
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(A) Aeciospores (B) Germinating aeciospores, Bars = 24 µm (C) Urediospores (D) Germinating
urediospores, Bars = 30 µm.

U. viciae-fabae acts as a model rust pathogen for studying obligate interactions. The
urediospores of U. viciae-fabae enter the host through stomata by forming an appresso-
rium [32]. A vesicle is formed within the stomatal cavity from which an infection hypha
appears. Upon contact with a mesophyll cell, a haustorial mother cell is differentiated from
which a haustorium is formed. It forms knob-like haustoria within the host to draw its
nutrition [33]. The existence of both pre-haustorial and post-haustorial types of resistance
against Uromyces viciae-fabae has been reported in the lentil germplasm [34]. A complex,
multilayered suite of defense systems is firmly regulated inside the host cell to inhibit
biotrophic colonization [35]. The suppression of host defenses is presented in Figure 5.

Haustorium serves as an active region for the transmission of signals [36]. Nutrient
uptake essentially takes place through a proton symport system in the trans-haustorial
region where protons are supplied by haustorial plasma membrane H+-ATPase regulated
by the Uf PMA1 gene [37,38]. Genes UfAAT3 located in the trans-haustorial region is
responsible for permease production that transports in planta scarce amino acids into
the pathogen, and HXT 1, a hexose transporter gene identified in the trans-haustorial
membrane region, regulates sugar uptake in the pathogen [39,40]. The urediospores of
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U. viciae-fabae were the only infective spore and are used in various resistance-screening
programs in peas [2]. Although, spores of the pathogen germinate well in water without
any surface signals [41]. Urediospores of U. viciae-fabae collected from peas germinate
very efficiently on faba beans indicating some kind of host preference in the pathogen [5].
In the Asian subcontinent, aeciospores are repeating spores and play an important role
in the outbreak of the disease in legumes. Aeciospores are delicate, fragile, short-lived,
and germinate in a single germ tube. Appressorium is seen to develop occasionally
at the tip of the germtube that subsequently produces penetration pegs, and invasion
of the host was recorded through stomata. Infection through aeciospores is not solely
dependent on stomata; occasionally, direct penetration can also be seen. Colonization of
host cells by aeciospores extended to parenchymatous mesophyll cells, while colonization
by urediospores was limited to the epidermal cells of the host tissues [4].
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5. Genetics of Rust Resistance in Pea

Inheritance studies on pea rust resistance are limited and still not well established.
There were reports of the existence of both monogenic as well as polygenic forms of
resistance toward rust in peas. The lack of hypersensitive reaction in peas against U. viciae-
fabae suggests the absence of monogenic forms of race-specific resistance. There are reports
that resistance against rust (U. viciae-fabae) is controlled by a single dominant gene in
peas [10–12]. However, the involvement of oligogenes (designated as Ruf ) showing partial
dominance instead of complete dominance has also been reported. The cited studies [3,42]
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observed a continuous variation in rust disease incidence in 565 germplasm lines of a pea.
The cited study [43] reported that slow rusting in peas is controlled by many genes with
small individual effects. The cited studies [10] have reported the involvement of one to two
major gene(s) and 2–3 additive genes [14]. Non-hypersensitive resistance response and
more recent studies emphasized the quantitative nature of pea rust resistance [44,45]. In
addition, incomplete non-hypersensitive reactions and incomplete hypersensitive reactions
resulting in low to intermediate infection types due to late-acting host cell necrosis have
been reported [34,46].

6. Slow Rusting

Slow rusting was first described in wheat against Puccinia recondita as a type of re-
sistance where the disease progresses at a retarded rate, resulting in intermediate to low
disease levels against all races of a pathogen [47]. Slow rusting resistance is characterized
by a reduced rate of epidemic development, despite a compatible host-pathogen interac-
tion [48–50]. Therefore, a cultivar that only has slow rusting resistance to rust will display
infection responses susceptible to type throughout the life cycle of the plant [49]. Such
forms of resistance are pre-haustorial in nature and are influenced by the growth stages of
the crop and environment on the development of rust colony within the host, including
a reduction in the number and size of haustoria formed [24]. Such a form of resistance is
often associated with the formation of lignin and callose [50].

Slow rusting has been observed in food legumes for Uromyces rusts [51,52]. Enhance-
ment of resistance to U. viciae-fabae in legumes is a major challenge. There are several
strategies for developing varieties with durable resistance. These include multilines [53],
partial resistance/ slow rusting [54], and gene pyramiding [55,56]. Incomplete resistance
makes the problem tricky for pea breeders [42,57,58]. The available resistant sources are of
the slow rusting type [43], which retards disease development, resulting in intermediate
to low disease levels against U. viciae-fabae. Therefore, the selection gain of these lines
can be verified in terms of less disease severity, low AUDPC, prolonged greenness, and
higher seed test weight than the susceptible checks. The gain in the test weight and yield
under protected conditions established the importance of partial resistance. The gain in
test weight and yield was maximum in the susceptible check, and the line showing less
gap in yield under protected conditions was considered resistant [15].

6.1. Components of Slow Rusting

Slow rusting is a durable form of resistance in comparison to monogenic resistance [59].
Wilcoxson [59] characterized the components of slow resistance, viz. length of latent period,
infection frequency, size of uredia, duration of sporulation, and quantity of spores produced,
which operates only after penetration of the host plants by the pathogen. Slow rusting
resistance is component-based and characterized by the combined effect of a longer latent
period, smaller uredinium size, lower receptivity (i.e., lower infection frequency), and
reduced spore production [60]. Kumar et al. [43] found pea genotypes Pant P-8 had the
lowest rust cover, AUDPC value, and apparent infection rate. They reported genotype Type-
163 with good slow rusting phenotype controlled by many genes with small individual
effects. Reference [15] characterized the slow rusting attributes for pea rust resistance in
terms of AUDPC, the number of pustules per leaf, and pustule size. They identified small
pustule sizes and a smaller number of pustules as slow rusting components. Several aecial
cups per pustule were an additional component of slow rusting in peas and were better
over the pustule size [61]. Variations in pustule size due to infection of U. viciae-fabae ranged
from <0.5 mm diameter to >2.5 mm in pea (Figure 6).

6.2. Histopathological Indicators of Slow Rusting
6.2.1. Number and Size of Haustoria

Biotrophic pathogens such as U. viciae-fabae draw their nutrition from host tissues
by forming specialized apparatus known as haustoria. Several signal molecules take
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place at the transmembrane region of haustoria and the host cell wall. Localization of
various biomolecules from pathogen to host nuclear cell has been well documented through
immune histopathology [36]. It indicates that the transmembrane region is an active site
for the transfer of nutrients and signals for the development of the pathogen. Reduction in
size and the number of haustoria indicated restriction to the development of the pathogen
within the host tissue as a result of host resistance mechanisms or non-host phenomenon.
Altered infection structures were noted upon infection by U. viciae-fabae on different hosts
and may also provide indications towards host specialization in U. viciae-fabae [6].
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6.2.2. Early Abortive Colonies

Various reports suggested that after initiation of infection, slow rusting traits are
observed as poorly formed colonies of U. viciae-fabae, which do not produce haustoria
and therefore are unable to grow further and die off [16]. Such colonies are indications
of unsuccessful attempts of colonization by rust fungi in various crops [46]. As a result,
symptom development may delay, resulting in a longer incubation period and/or longer
latent period. It delayed the growth and development of pathogens within the host. This
phenomenon characterizes slow disease development in peas [15].

6.2.3. Enhanced Lignifications under Infected Conditions

Lignins are polyphenolic substances providing structural strength to the cell wall [62].
It forms the basis of structural resistance in many crops, and disruption of lignifications
in host crops may lead to loss of resistance to pathogens [63]. In, pea-U. viciae-fabae
pathosystem-enhanced levels of lignin accumulation were observed in partially resistant
lines of a pea when compared with susceptible lines [16]. Among biochemical factors,
lignification has been observed as the best indicator of slow rusting in peas, influencing
colony size and the number of early abortive colonies [16]. Among other structural changes
are callose deposition and appositions in the cell wall at the site of penetrations are among
the various means of restricting the invasion of the pathogen into the host tissues [64].
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6.3. Biochemicals Associated with Slow Rusting

The association of biochemical parameters such as phenyl ammonia lyase (PAL),
glucanase, chitinase, and phenolics was studied upon infection by U. viciae-fabae infection
in various legumes [65]. Often resistance response is associated with the expression of
PAL activity and phenolics in many other crops. Kushwaha et al. [66] studied slow rusting
(low AUDPC) in pea RILs and showed no association with PAL expression, indicated
by very low positive correlations between AUDPC and PAL activity at 72 h. This might
be due to the rapid metabolism of PAL enzyme in some of the slow rusting lines to
other secondary products. As a result, lower levels of PAL activity were recorded for
some of the slow rusting lines compared to susceptible genotypes. However, a few lines
showed higher PAL enzyme activity at 72 h after inoculation. It indicated that the PAL
enzyme might play a role in the expression of slow rusting, but it is not solely responsible
for its expression. Similarly, a few slow rusting lines in peas had lower levels of total
phenols at 72 h post inoculations, whereas others had higher. Again, Kushwaha et al. [66]
found differential induction of pathogenesis-related protein PR-2 (β-1,3-glucanases) in the
expression of pea rust resistance, and resistant genotypes have enhanced levels of glucanase
expression as compared to susceptible genotypes. Therefore, it may be concluded that
certain biochemicals can increase the slow rusting response by triggering one or other
pathways involved in the plant defense system.

6.4. Interrelationship among Slow Rusting Components

The quantitative nature of pea rust resistance makes it difficult to evaluate different
slow rusting components. Although, the area under the disease progress curve (AUDPC)
is an efficient parameter for the evaluation of slow rusting [67]. Further, environmental
factors greatly influenced the expression of slow rusting components [51]; hence individual
components need to be evaluated. Several efforts have been made to characterize and
quantify the variability of components of the slow rusting resistance and to examine their
interrelationships [15,52,68–70], determining a critical time for the assessment of slow
rusting in peas based on field and polyhouse experiments. They found that the critical
time occurred when disease severity on the susceptible (check) genotype HUVP 1 had
crossed 90% but was <20% on the resistant (check) genotype FC 1. Reference [71] through
multivariate analysis of 38 diverse pea genotypes showed that three of the slow rusting
components, i.e., AUDPC, latent period (LP), and several pustules per leaf (NPL) accounted
for 49.77% of the total variance as the first main factor, while the other three traits distributed
within the next two factors determined 26.34% (pustule size and a number of aecial sups)
and 10.46% (sensitivity of leaf to rust) of the total variance, respectively. Further, a multiple
regression analysis showed that the variation in AUDPC was significantly explained by the
number of pustules followed by a latent period.

Negative correlation between pustule size and the number of pustules per leaf in
resistant pea genotypes, and a positive association in the susceptible genotypes, indicating
compensatory effects between these traits [61]. They observed that the size of aecial cups did
not vary significantly among the genotypes tested, but the number of aecial cups/pustule
varied across the resistant/susceptible genotypes. Reference [71] explained high positive
correlation coefficients among AUDPC, LP, and NPL ranging from 0.751 to 0.808, as an
indication that these traits may be under the same genetic control [72]. The association of
the latent period with pustule size (r = −0.458) and the number of aecial cups per pustule
(r = −0.476) was also significant. This shows that a longer latent period resulted in slow
disease development due to a lower number of pustules per unit leaf area, fewer aecial
cups, and smaller pustule size. Therefore, selection for slow rusting could be based on one
component since they are interdependent, but for accumulating more partial resistance in a
line, selection should be based on more than one component studied.



Genes 2023, 14, 374 10 of 16

7. Pea Rust Screening

Screening techniques usually involve inoculation by urediospores in suspension or as
a powder mixed with talc in the field and polyhouse. Slow rusting is a form of quantitative
resistance that is affected by the growth stages of plants and environmental conditions
that influence the actual performance of resistance. Therefore, time for scoring disease
in the field plays an important role in differentiating the lines/genotypes. Selection for
slow rusting components along with the yield traits are likely to be performed when the
rust in the screening field would be normally distributed with 90% rust severity on the
susceptible check and <20% on the resistance check [70]. Such optimal time ensures high
inoculum pressure and adequate area for infection. The general inoculation procedure
involves dusting of urediospore mixed with pure talc on the test genotypes under field and
polyhouse conditions after sunset. Subsequent irrigations are provided to create a high
humidity for successful pathogenesis [58]. Das et al. [73] emphasized the role of multi-
environment (location and year) evaluation of pea rust to better decipher the magnitude
of environmental and genotype-by-environment interactions to screen for durable rust-
resistant genotypes and their subsequent use in disease-prone areas.

In India, where aeciospores play an important role in outbreaks of the disease in
peas, aeciospore suspension (104/mL) is sprayed on the test genotypes, followed by
3–4 irrigations for screening of rust [58]. Screening genotypes with two different spore
states, i.e., uredial and aecial state of U. viciae-fabae in different geographical areas, may
lead to differential reactions. Resistant genotypes across the globe need to be verified for
their resistance response to the uredial state of U. viciae-fabae and U. pisi of other countries
through the material exchange program. Assessment of rust-resistant genotype in most of
the screening programs is based on AUDPC, disease severity, and epidemic growth rate.

Diseases are scored on various rating scales proposed by various investigators from
time to time. Pal et al. [74] classified pea genotypes with no colonies as resistant, those with
less than 5% of foliage area infected as moderately resistant, those with 6–25% coverage as
moderately susceptible, and those with a value over 26% as highly susceptible. The organs
of the plant affected by the disease have been included in some scales used to evaluate
lines under field conditions. Scores of 0–4 (corresponding to 0–20% area affected) were
classified as resistant, and scores of 5–9 as susceptible [75]. Singh [76] used a 0–9 scale in
which 0 = no colonies; 1 (resistant); 2 = traces of infection on lower leaves covering up to
1% leaf area; 3 (moderately resistant) = rust pustules covering 1–10% leaf area; 5 (tolerant)
= rust pustules covering 11–25% leaf area; 7 (susceptible) = rust pustules leaf area, pods
slightly affected; and 9 (highly susceptible) = severe infection covering 51–100% leaf area,
pods severely infected. Repeated disease evaluation is needed under field conditions to
estimate the level of resistance in genotypes. These repeated disease severity scores are
converted into AUDPC values using the following formula:

AUDPC as ∑ [{(Yi + Y (i+1)2} × (t(i+1) − ti)], where Y = disease severity at time ti and
time ti and (t (i+1) − ti) = time (days between two disease scores) [77].

AUDPC is considered the best parameter for the evaluation of quantitative resistance
both in the field as well as controlled conditions [67,78]. Now, the classification of resistant
and susceptible is also based on microscopic observations of pre-penetration events and
the development of a colony of rust in the host visualized after the tryptan blue staining
technique developed by Sillero and Rubiales [46]. Recently, Yadav et al. [79] have completed
the genetic characterization and population structuring of 119 pea genotypes based on SSR
(simple sequence repeat) markers and AUDPC values.

8. Molecular Mapping and Marker-Assisted Selection (MAS)

In recent years, DNA-based markers have shown great promise in expediting plant
breeding procedures. The identification of molecular markers for resistance genes can effi-
ciently facilitate pyramiding major rust resistance genes/QTLs into a valuable background
in less time and make it more cost-effective (Table 2). In such special cases of disease
resistance breeding, marker-assisted selection (MAS) takes on special roles, whereby pyra-



Genes 2023, 14, 374 11 of 16

miding several major resistance genes into a valuable genetic background is simplified [80].
Using bulked Segregant analysis (BSA), [3] identified two random amplified polymorphic
DNA (RAPD) markers viz., SC10-82360 and SCRI-711000, flanking the pea rust resistance
gene (Ruf ) with a distance of 10.8 and 24.5 cM. These RAPD markers are not close enough
to Ruf to allow a dependable marker-assisted selection for rust resistance. However, if
the two markers flanking Ruf are used together, the effectiveness of MAS would be im-
proved considerably.

A microsatellite markers-based genetic linkage map of peas was developed by Loridon
et al. [81] comprising 229 SSR markers which were evenly distributed throughout the seven
linkage groups of the map and approx. 85% of intervals between the adjacent markers
are less than 10 cM. Using this SSR marker information, Rai et al. [44] have completed
the QTL mapping of pea rust resistance using a RIL population. They identified two
QTLs, one major (Qruf ) and one minor (Qruf1) QTL, for rust resistance on LGVII. The LOD
(5.2–15.8) peak for Qruf was flanked by SSR markers AA505-AA446 (10.8 cM), explaining
22.2–42.4% and 23.5–58.8% of the total phenotypic variation for infection frequency and
AUDPC, respectively. The minor QTL was environment-specific, and it was detected only
in the polyhouse (LOD values 4.2 and 4.8). It was flanked by SSR markers AD146 and
AA416 (7.3 cM) and explained 11.2–12.4% of the total phenotypic variation. The major
QTL Qruf was consistently identified across two years of field and polyhouse experiments.
Rai et al. [44] have used the SSR markers for mapping of resistance gene. In this review,
various genes providing resistance to all currently known pathotypes of the U. viciae-fabae
have been listed in Table 3. Identified genes/QTLs can be used in various pea rust-
resistant breeding programs (Figure 7) after their validation across diverse environments
and genetic backgrounds.

Table 2. Molecular markers associated with rust (Uromyces vicia-fabae Pers.) resistance genes in three
hosts (Pea, Lentil, and Faba bean).

Markers Marker Distance from the
Resistance Gene Host Crop Parents Reference

OPD13736,
OPL181032 &

OPI20900
RAPD - Faba bean 2N52 (resistant) & VF-176

(susceptible) [82]

SC10-82360 &
SCRI-711000 RAPD 10.8 cM and 24.5 cM

from the Ruf gene Pea HUVP 1 (HUVP 1 × FC 1) [3]

F7XEM4a SRAP 7.9 cM Lentil ILL-4605 (resistant) &
ILL-5888 (susceptible) [83]

AD146 & AA416 SSR 7.3 cM Pea HUVP 1 (susceptible) &
FC 1 (resistant) [44]

GLLC106 SSR 10cM Lentil FLIP-2004-7L (resistant) ×
L-9–12 (susceptible) [84]

A446-AA505 and
AD146-AA416 SSR 10.8 cM Pea HUVP 1 (susceptible) and

FC 1 (resistant) [45]

AA446, AA505,
AD146 & AA416 SSR - Pea Pant P 244, Pant P 42 [85]

KASP_Vf_0703 &
KASP_C250539 KASP

4.9 cM & 2.9 cM
from Uvf-2 Faba bean

Doza#12034 × Ac1655
(resistant) × Fiord

(susceptible)

[86]
KASP_Ac×F165 &

KASP_vf_1090
2.5 cM & 10.1 cM

from Uvf-3
LcSSR440 &
LcSSR606 SSR 8.3 and 8.1cM Lentil FLIP-2004-7L (resistant) ×

L-9–12 (susceptible) [87]

Owing to the use of slow rusting as an important strategy for developing durable rust
resistance varieties, Rai et al. [45] reported two new QTLs (Qruf2 and Qruf3) associated with
three components of resistance against U. viciae-fabae viz., number of aecial pustules per leaf
(AP), leaf area covered by sporulating pustules (LASP) and the number of aecial cups per
leaf (TNAC). The new major QTL Qruf2 located on LG1 (phenotypic variance 21.3 to 29.6%)
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appeared to be the most important component-specific QTL, whereas the minor QTL Qruf3
appeared environment-specific and contributed by the susceptible parent. The slow rusting
components are now governed by four QTLs, two major QTLs (Qruf on LGVII, Qruf2) on
LGI, and two minor QTLs (Qruf1 and Qruf3) on LG VII and LGVI, respectively. However,
they suggested the use of SSR markers flanking Qruf for marker-assisted selection for pea
rust (U. viciae-fabae) resistance.

Table 3. List of resistant genes/QTLs against Uromyces viciae-fabae Pers. de-Bary.

Resistant Gene/Locus
Chromosome

Linkage
Group/Chromosome Donor Genotype Corresponding

Pathotype References

Uvf-1 gene - 2N52 Race 1 [88]
Uf2 Chromosome 3 #12034 (Doza) Ac1655 pathotype 24–40 [86]

Ur-3+ - Mex 235 - [89]
Ur-11 B11 PI 181996 - [90]

Ur-3 B11
Chromosome 5 Aurora and NEP-2 Race 44, 63 [89,91]

Ur-4 LG6 (or B6) Early Gallatin (EG) Race 63 [92]
Ur-5 LG4 (or B4) GN BelNeb-RR-1 Race 59, 63 [92,93]
Ur-6 B11 Golden Gate Wax and Olathe Races 49, 67, and 108 [91,94]
Ur-7 LG 11 GN 1140 Race59 [92]
Ur-9, LG1 PC 50 A88TI-20a & D82C1-1 [91,95]
Ur-12 LG 4b PC 50 A88TI-4b [91,95]

Qruf2 and Qruf3 LGI & LGVI FC 1 - [45]
One major (Qruf ) and

one minor (Qruf1) QTL LGVII FC 1 - [45]

Qruf and/or Qruf1 LGVII Pant P 42 - [85]
Uvf-2, Uvf-3 chromosomes III and V Doza#12034 & Ac1655 pathotype 24–40 [86]
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9. Conclusions and the Future Prospects

U. viciae-fabae is a serious pathogen of peas with a worldwide distribution. The present
discussion has comprehensively reviewed different aspects of U. viciae-fabae. Still, a lot
more is needed to be addressed on a priority basis, as below:

• In relation to host specialization, U. viciae-fabae is circumglobal on Lathyrus, Pisum,
and Vicia. So, more research is required to achieve the ultimate classification of the
U. viciae-fabae complex.

• Identification of physiological races based on a standard set of pea rust differentials
is required.

• Survival and recurrence of pea rust pathogen will need to be ascertained by studying
the effect of temperature, soil depth, over-summering, and migration on the surviv-
ability of urediospore of U. viciae-fabae.

• More work is required on host-specificity and pathogenic variability at the molecular
level in U. viciae-fabae to elucidate the differential pathogenicity of isolates.

• Sexual reproduction of this autoecious fungus should be more precisely studied to
conclude the possible effects of the matting system on the lack of association between
molecular polymorphisms and virulence.

• Hypersensitivity is not reported, and a completely effective source of resistance has
not been found. Accumulation of more slow rusting components should be completed
in different resistance genotypes to achieve a high level of durable rust resistance.

These points are necessary to understand more about the pathogen and to hypothesize
better management strategies for the control of pea rust disease. The advent of new
molecular tools will allow greater discrimination of isolates within and between different
groups of U. viciae-fabae and different geographical regions. The draft genome sequence of
U. viciae-fabae would provide a framework to study the molecular basis of pathogenesis,
host-pathogen interaction, and comparative phylogenetic analyses with other sequenced
fungal pathogens. A clearer understanding of the genetics of rust resistance in peas will
facilitate efforts to develop resistant cultivars by facilitating selection for rust resistance in
segregating generations developed in resistance breeding programs. Further, molecular
markers associated with rust resistance will be useful in marker-assisted selection (MAS).
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