
FEDRESOURCE: Federated Learning Based 
Resource Allocation in Modern Wireless 
Networks

1023

Original Scientific Paper 

Abstract – Deep reinforcement learning can effectively deal with resource allocation (RA) in wireless networks. However, more complex 
networks can have slower learning speeds, and a lack of network adaptability requires new policies to be learned for newly introduced 
systems. To address these issues, a novel federated learning-based resource allocation (FEDRESOURCE) has been proposed in this paper 
which efficiently performs RA in wireless networks. The proposed FEDRESOURCE technique uses federated learning (FL) which is a ML 
technique that shares the DRL-based RA model between distributed systems and a cloud server to describe a policy. The regularized 
local loss that occurs in the network will be reduced by using a butterfly optimization technique, which increases the convergence of 
the FL algorithm. The suggested FL framework speeds up policy learning and allows for adoption by employing deep learning and the 
optimization technique. Experiments were conducted using a Python-based simulator and detailed numerical results for the wireless 
RA sub-problems. The theoretical results of the novel FEDRESOURCE algorithm have been validated in terms of transmission power, 
convergence of algorithm, throughput, and cost. The proposed FEDRESOURCE technique achieves maximum transmit power up to 
27%, 55%, and 68% energy efficiency compared to Scheduling policy, Asynchronous FL framework, and Heterogeneous computation 
schemes respectively. The proposed FEDRESOURCE technique can increase discrimination accuracy by 1.7%, 1.2%, and 0.78% compared 
to the scheduling policy framework, Asynchronous FL framework, and Heterogeneous computation schemes respectively.

Keywords: Deep reinforcement learning, federated learning, resource allocation, butterfly optimization technique 

1.  INTRODUCTION

Modern wireless networks and mobile devices fre-
quently come with sophisticated sensors and power-
ful computers, enabling them to acquire and interpret 
enormous amounts of data produced at the network 
edge [1]. The 5th generation (5G) wireless networks 
have strengthened the traditional connection service 
and supported many vertical industries [2]. A cloud 
and edge computing system [3, 4] that intelligently 
uploads user tasks to a cloud data center layer and an 
edge computing layer can provide computation and 
data storage services. Implementing energy-efficient 
node setup and RA in the course of cooperative opera-
tions is a major difficulty in wireless networks due to 

the high quality of service (QoS) requirements of IoT 
applications.

The efficient RA scheme can extend sensors’ life-
time and play a major role in maximizing system per-
formance along with better scheduling [3-5]. Utilizing 
machine learning (ML) techniques [6, 7], with a variety 
of RA strategies have recently been investigated which 
reduces the wireless networks becoming increasingly 
complex [8]. Particularly for difficult decision-making 
issues, deep reinforcement learning (DRL) has been 
applied extensively [9]. They can be used to train a DL 
model with a large representation capacity to develop 
a RA strategy for complicated networks. However, such 
DRL-based approaches still face significant obstacles in 
practice [10, 11].
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An important problem is the policy's inability to re-
spond to changes in network needs [12]. Wireless net-
works often introduce new systems with the same goals 
as current ones [13, 14]. It is therefore possible to apply 
policies to newly arrived systems with no additional 
learning if they are network adaptable [15, 16]. By using 
DRL-based wireless network approaches, we can deploy 
them more effectively than before. In this paper, a novel 
federated learning-based resource allocation (FEDRE-
SOURCE) has been proposed, which efficiently performs 
RA in wireless networks. The main contributions of the 
FEDRESOURCE framework are as follows.

•	 The proposed FEDRESOURCE technique uses fed-
erated learning (FL) optimized using butterfly 
optimization for resource allocation in wireless 
networks, that share the DRL-based RA model be-
tween distributed systems and a cloud server to 
describe a policy.

•	 The policy for the RA in wireless networks can be 
learned collaboratively while taking use of the FL 
technique. 

•	 The regularized local loss that occurs in the net-
work will be reduced by using a butterfly optimiza-
tion technique, which increases the convergence 
of the FL algorithm.

•	 The suggested FL framework speeds up policy 
learning and allows for adoption by employing 
deep learning and the optimization technique. 

The remainder of the paper is organized as follows: 
Section 2 presents a thorough survey of current efforts 
on federated learning-based RA techniques. Section 3, 
presents the system model and problem formulation for 
resource allocation. Section 4 presents the design of the 
FEDRESOURCE framework in detail. Section 5 presents 
the experimental data and its analysis. Section 6 presents 
the conclusions and suggestions for future research.

2. LITERATURE REVIEW

Due to the high Quality-of-Service (QoS) require-
ments of IoT applications, resource scheduling wireless 
networks are becoming more important for better ser-
vice. Several techniques have been developed by many 
experts for RA in wireless networks. Among these, we 
have discussed a few algorithms here. In [16] authors 
introduced a circumstance-independent policy that 
can successfully address the various network scenarios 
even with a single policy. Based on the outcomes of the 
simulation, a single suggested policy can be applied in 
a range of circumstances with results that are compara-
ble to those of a situation-based policy, which chooses 
the appropriate course of action for each circumstance 
on its own.

In [17] authors presented a heterogeneous compu-
tation and RA approach based on heterogeneous mo-
bile architectures. Using simulation data, the proposed 
scheme improves the energy efficiency of the wireless-

powered FL system more than the baseline systems, 
according to the simulation data.

In [18] authors recommended using communication 
pipelining to enable FL in mobile edge computing ap-
plications to become more efficient at utilizing wireless 
spectrum and to become more concurrent. They also 
provide numerical findings that highlight the benefits 
of the suggested technique for various datasets and 
deep learning architectures.

In [19] authors proposed a new asynchronous FL 
framework that considers time-varying local training 
data, wireless link conditions, and computing capa-
bility. The framework also uses a dynamic scheduling 
algorithm to optimize learning performance under 
long-term energy constraints and per-round latency 
requirements. The proposed architecture has been 
demonstrated to improve learning performance and 
system efficiency over other approaches through nu-
merical simulations.

In [20] authors proposed a scheduling policy that 
took user device training data representation and chan-
nel quality into consideration simultaneously. Based 
on simulations, the channel-aware data importance-
based scheduling policy is shown to be more efficient 
than cutting-edge FL methods. In an asynchronous FL 
environment, an "age-aware" aggregation weighting 
approach can also improve learning performance. 

In [21] authors established an efficient integration of 
common edge intelligence nodes based on research on 
energy-efficient bandwidth allocation, CPU frequency 
calculation, optimized transmission performance, and 
required level of learning accuracy. Based on the simula-
tion results, the proposed Alternative Direction Algorithm 
(ADA) can reduce energy consumption while slightly 
increasing FL time in the central processing unit. There 
have been few studies that examine FL design in wireless 
networks for RA. However, FL structures used in the litera-
ture are not very effective, and model updates derived 
from old global models may have limited meaningful 
information about the current version, resulting in slow 
convergence. To the best of our knowledge, no work has 
specifically addressed how to use FL to resolve a wireless 
network RA issue. Instead, to efficiently run FL on wireless 
networks, current studies concentrate on finding a solu-
tion to the RA problem in wireless networks.

2.1. DIFFERENCES BETWEEN ThE ExISTING 
 AND PROPOSED WORk

The important findings from their research as well as 
the differences between the proposed study and the 
existing work are given below.

a. Unlike the proposed method many of the algo-
rithms did not consider FL to resolve a wireless net-
work RA issue 

b. A new FEDRESOURCE technique that uses feder-
ated learning (FL) that shares the DRL-based RA 
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model between distributed systems is presented 
in the proposed work that is not included in any 
other method so far, which makes it unique and 
significant from existing methods.

c. Proposed a federated learning architecture that 
incorporates policy chosen from DRL for resource 
allocation in wireless networks.

d. The existing techniques used in the literature are 
not very effective, and model updates derived from 
old global models may have limited meaningful in-
formation about the current version, resulting in 
slow convergence. However, it is discovered that 
the suggested method increases the convergence 
rate.

3. SySTEM MODEL AND PROBLEM 
FORMULATION 

We take into account a downlink of numerous TDMA 
networks in wireless networks, where each network has a 
local model and a global model, as shown in Fig. 1. R=1,…
,S, where S is the total number of systems, defines the 
set of systems. ℧s=1,…,Us , where Us is the total number 
of sensing nodes (SN) in system s, defines the set of SN 
in system s. In the system s ϵ R, its AP provides services 
to Us SN across discrete time intervals of k ϵ {1,2,…}. We 
make the commonly recognized assumption that each 
system's wireless channels between the global model 

and local model are time-varying but constant during 
a timeslot and satisfy the Markov property. The global 
model schedules one user and transmission power in 
timeslot k of system s, where T is the set of potential 
transmission power levels. Ps is the definition of a state 
of the system s in timeslot k, and ps

k is the state space of 
the system s. Each user's feature information, including 
channel gain and QoS satisfaction levels, is represented 
by the state.

We use a tuple to represent SN m in system s in simple 
notation (s, m). We use f k

s,m,i to denote the ith feature in-
formation of the user (s, m) in timeslot k. cs

k=(ms
k ,Ts

k)∈ Cs 
is the definition of an action of system s in timeslot k, 
which denotes a scheduling choice. A system s policy is 
indicated by the notation πs:Ps→Cs. Then, l(ps

k, πs,(ps
k)), 

where l(.,.) is a utility function typically utilized in the 
systems and is used to express the instantaneous utility 
of system s in timeslot k. In wireless networks with nu-
merous systems, we can construct a general RA issue to 
maximize overall utility as follow state represents each 
individual's feature information.

where the discount factor is 0 < γ < 1 and the policy 
for all systems is π:∏s∈R Ps →∏s∈R Cs. For instance, one 
could use the formula l(ps

k, πs , (ps
k)) = d(ps

k, πs ,(ps
k)) to 

frame the problem of maximizing the total average 
data rate. where the function d(.,.) calculates the cur-
rent data rate.

(1)

Fig. 1. System model
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3.1. FEDERATED LEARNING FOR DyNAMIC 
 RESOURCE ALLOCATION

When S, the number of systems, is high, the complex-
ity of the problem is too great to tackle. To fix this prob-
lem, we break it down into its parts according to each 
system s as

(2)

A (sub)optimal rule for the distributed system s de-
constructed problem may then be identified, and the 
problem can be resolved. A Markov decision process 
is used to solve the decomposed problem, and the 
reward function and environment are the utility func-
tion l(.,.) and transition probabilities over the state and 
action spaces, respectively. The well-known DRL can 
therefore be utilized to resolve the system-wise decon-
structed problem, like the most recent research on RA 
in wireless networks. In particular, every system s par-
ticipates in the DRL as an agent to learn the best policy 
π∗s for the problem's decomposition. Decomposed 
problems fall under the same class as other problems 
that use the same utility functions to accomplish the 
same objective (in this case, RA). FL can therefore be 
used to solve issues more effectively. Fig. 1 illustrates 
how FL can be used and provided if there is a common 
policy π¯ that can be employed in any system. 

Through her DRL technique, each system in FL learns 
common policies on its own. The cloud server then col-
lects the common policies for the system and delivers 
the combined policies. As the experience of all systems 
is used, this accelerates the learning of common poli-
cies. By adding the new global model to the wireless 
network and using the cloud server's common policy, 
it is also possible to adapt to newly introduced systems.

4.  DESIGN OF FEDERATED LEARNING-BASED 
RESOURCE ALLOCATION 

In this section, a novel FEDRESOURCE has been pro-
posed which efficiently performs RA in wireless net-
works. Federated learning is designed to minimize 
training loss while handling distributed neural network 
training across many devices with their local training 
data. The proposed FEDRESOURCE technique shares 
the DRL-based RA model between distributed systems 
and a center node to describe a policy for the FL frame-
work. The weights of the DL models at the center node 
and the SN are indicated in the figure by the notations 
WK

s+1  and Wm, respectively. We refer to the deep learn-
ing models as policy models since they display the 
policies. A DRL approach is used by each distributed 
system to individually learn its local policy model. The 
overall block diagram for the proposed FEDRESOURCE 
model is given in Fig. 2. 

Fig. 2. Proposed FEDRESOURCE model

Similar to the traditional FL approach, the cloud serv-
er combines policy models learned from the system to 
update the central policy model. Then, as shown in Fig. 
2, every system replaces its local policy model with the 
updated central policy model that was redistributed by 
the cloud server to the systems. To exploit all local ex-
periences in the distributed system for learning, even 
if local experiences are not broadcast, FL can quicken 
the learning of the policy model by performing this it-
eratively. The central policy architecture at the center 
node also offers adaptation to recently arrived systems.

FEDRESOURCE employs an iterative method that calls 
for Sg global rounds for global model changes. The SN 
and cloud server interact in the following ways during 
each global round. SNs modify regional models: Each 
SN m first receives the feedback data from the server, to 
generate the local model wm

r at a global round r. It then 
minimizes the surrogate function. 

(3)

One of the fundamental principles of FEDRESOURCE 
is that a sensing device can roughly solve the problem 
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to provide an approximation solution wm
r satisfying  

‖∇Rr
m (wm

r)‖≤θ‖∇Rr
m (wr-1) )‖,∀m, which is parame-

trized by a local accuracy (0, 1) that is shared by all sens-
ing devices. Here, θ = 0 indicates that the local problem 
must be handled optimally, and θ = 1 indicates that no 
progress has been made, for example, by setting wm

r 
= w r-1. FEDRESOURCE avoids employing proximal terms 
to restrict an extra controlling parameter (i.e., ), uses the 
global gradient estimate ∇E r-1 which the server can mea-
sure from the SN’s data—instead of the exact but unreal-
istic ∇E(wr-1) and flexibly resolves local problems roughly 
by controlling will have Rm

r (w)=Em (w)+η∇Er-1-∇Em (w r-1), 
that contains both local gradient estimate Em (w) and 
global gradient estimate weighted by a programmable 
parameter η. Later, we'll discover how influences FE-
DRESOURCE convergence. To attain the advantages of 
a) theoretical linear convergence and b) experimentally 
fast convergence which will be discussed in later sec-
tions, FEDRESOURCE needs more information than cur-
rently accepted standard approaches.

4.1. DyNAMIC LEARNING FOR RESOURCE  
 ALLOCATION USING FL

In this section, the RA strategy for numerous sys-
tems with a center node has been done by maintain-
ing the policy. For the DRL-based policy that has been 
frequently utilized, we here assume a typical DQN 
method, but any alternative DRL-based techniques can 
also be applied. The optimal action-value function A* 
(st, ac), that denotes the maximum return which can 
be realized in state st with action ac, is approximated 
using a deep neural network (DNN) trained to perform 
the DQN method. DQN, as a result, is the name given 
to the DNN, and it is employed to construct policy by 
identifying the action that maximizes return for a given 
state. We use π̅(s̅t;̅ w) to represent the common policy 
based on DNN.

We designate wcd and ws, respectively, as the weights 
of the DNN at the center node and system s. Each sys-
tem s initializes its DNNs ws and ws

pr as wcd once the 
center node initializes its DNN wcd. System s uses the 
DNN ws and the translation functions ts

st and ts
ac to se-

lect the action acs
k in timeslot k after observing its state 

sts
k. The chosen action can be simply identified by the 

formula acs
k=ts

ac(π̅(ts
st (sts

k); ws)). The system provides 
services to the user following the selected action (acs

k), 
and it monitors the utility as ls

k=l(sts
k, acs

k). When train-
ing the DNN, the experience of system s in timeslot k 
is described as (sts

-k, acs
-k, ls

k, sts
-k+1) and stored in the 

buffer. sts
-k+1= ts

st (sts
k+1). The DNN ws is trained to utilize 

the experiences using a variety of training methods, in-
cluding experience replay and fixed target-Q. Each sys-
tem s determines its local gradients for each FL interval 
by deducting its previous aggregated DNN, ws

pr from 
its present DNN. The cloud server then updates its DNN 
wcd by combining the local gradients from all systems. 
The cloud server broadcasts wcd to all systems after ag-
gregation, and each system substitutes ws and ws

pr with 
wcd. Algorithm 1 provides a summary of the process.

Algorithm 1 FEDRESOURCE

1: The cloud server initializes wcd

2: Each system s initializes ws and ws
pr as wcd

3: for k ∈{0,1,…} d0

4: for each system s do ▹ DQN Algorithm

5: Observe sts
k and translate it as s ̅ts

k←ts
k (sts

k)

6: Choose a̅c̅s
k← π̅(4ws) and translate it as acs

k←ts
st (a̅c̅s

k)

7: Do action ac
s
k and observe ls

k and sts
k+1

8: Translate sts
k+1 as s̅ts

k+1 ← ts
st (sts

k+1)

9: Store experience (s ̅ts
k, as̅

k, ls
k, s̅ts

k+1)

10: Update ws using its experiences by a DQN algorithm

11: end for

12: if mod(t, TFL)==0 then ▹FL

13: All systems calculate their local gradients ∇Es's 
from their previous DNN ws To the current DNNs ws's 

14: The cloud server updates wCd by aggregating the 
local gradients from all system

15: All system replaces their DNNs ws's and Ws
pr 's to wCd 

16: endif

17: end for

4.2. MINIMIzE REGULARIzED LOCAL LOSS

Using the DRL algorithm may introduce regularized 
loss. To reduce the loss, the butterfly optimization algo-
rithm (BOA) has been used in this paper.  Butterfly re-
productive behavior and its attraction to pheromones 
have been modeled by the BOA, a meta-heuristic algo-
rithm with an emphasis on group and swarm behavior. 
To attract the opposite gender or to advertise where the 
best blooms are in the environment, butterflies release 
pheromones into their surroundings. Pheromones are 
not only employed by butterflies; other insects, such as 
ants, also release this chemical into the environment 
and use it to guide or lead other creatures. The more 
pheromones a butterfly produces, the more likely it 
is to attract additional butterflies, as butterflies like to 
travel to pheromone-rich environments. This algorithm 
makes the following assumptions:

•	 Every butterfly offers a different approach to the 
issue.

•	 The objective function decides which butterflies 
are eligible for pheromone release.

•	 The more pheromones present, the better the but-
terfly's ability to draw in additional butterflies and 
the better the problem's resolution. 

The butterfly optimization process is considered to 
have a population member called a feature vector, 
each of whose components reflects the choice of the 
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desired quality. Equation (4) demonstrates how the 
BOA algorithm produces a butterfly.

(4)

Fi is a D-dimensional feature vector, and Fi
j denotes 

the jth component of the Ith feature vector. These fea-
ture vectors F can be generated randomly and used as 
the initial BOA population, as shown by Eq (5).

(5)

The initial population of feature vectors utilized for 
intrusion detection is denoted by the letter F, and the 
total number of feature vectors employed in the BOA is 
represented by the number n. The feature vector must 
be optimized by minimizing these two components of 
the objective function.

(6)

In Eq. (6), Network intrusion detection uses a total 
of ||N|| features, whereas ||R|| is the number of features 
chosen to identify unauthorized traffic. The mean ab-
solute error of approved network traffic is known as 
mse, and A number at random between 0 and 1 is "α", 
assuming β=1-α. In BOA, appropriate features can be 
selected to minimize the objective function.

(7)

(8)

In these equations, the feature vector, Fi can be up-
dated by the vector Fj and Fk, as well as by optimized 
feature vectors like F∗. Fi is the quantity of pheromone 
or attraction that a member of the BOA population pro-
duces, and r is a random number in the range of [0, 1].

(9)

As a result, as indicated in Eq (9), extract the absolute 
or binary values using a transition function, such as a 
Gaussian or V-shaped function. 

5. RESULT AND DISCUSSION

We create a special Python-based simulator just for 
the experiments, in which the following system is im-
plemented. On a machine with 64 GB memory and an 
Intel Core i7-10700 processor, the simulation is run. We 
take into account various systems, each of which has a 
5 MHz bandwidth. The noise spectral density is set to 
106 dBm/Hz, the path loss exponent is set to 3.76, and 
a log-normal shadowing with a 6 dB standard deviation 
is taken into consideration. Each system's maximum 
transmission power will be 1 W. The Shannon capac-
ity is used to determine the instantaneous data rate. 
we take into account a RA issue that seeks to satisfy 
average data requirements while minimizing average 
transmission power. The simulation setup for the pro-
posed system is given in Table 1.

Table 1. Network simulation setup

Cellular network parameters Values

Channel bandwidth 11.34

Noise power 2.76

The base station transmits power 2.03

Path loss between the base station and the user 3.76

Lognormal distribution shadow fading 6DB

5.1. PERFORMANCE ANALySIS 

The proposed method has been compared with ex-
isting techniques such as Heterogenous computation 
[18], Asynchronous FL framework [20], and schedul-
ing policy [21] in terms of transmission power, conver-
gence of algorithm, throughput, and cost.

Fig. 3. Energy efficiency

When the maximum transmission power is altered, 
the energy efficiency is indicated in Fig. 3. This simu-
lation demonstrates that as the maximum transmit 
power of the center node rises, all systems' energy 
efficiency initially rises and eventually stabilizes. This 
is because power efficiency does not increase mono-
tonically with transmit power. The extra transmit power 
is not used since it is power-efficient if the maximum 
transmit power is 25 dBm or higher. Fig. 3 also indicates 
that the suggested FEDRESOURCE approach performs 
better than the Scheduling policy [21], Asynchronous 
FL framework [20], and Heterogeneous computation 
[18] schemes. For high maximum transmit power, FE-
DRESOURCE can increase up to 27%, 55%, and 68% 
energy efficiency when compared with the Scheduling 
policy [21], Asynchronous FL framework [20], and Het-
erogeneous computation [18] schemes respectively.

The convergence of the suggested FL algorithm and 
the fundamental method is shown in Figure 4. This 
figure demonstrates that the suggested FL algorithm, 
when compared to the scheduling policy framework, 
Asynchronous FL framework, and Heterogeneous com-
putation schemes can increase discrimination accuracy 
by roughly 1.7%, 1.2%, and 0.78%. This is because the 
proposed FL algorithm updates the policy in the local 
model and is monitored by the DRL technique.
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The model loss is reduced by butterfly optimization 
which also helps to increase the identification accuracy 
and the convergence rate. From the figure, it is clear 
that the proposed method achieves higher identifica-
tion accuracy than existing techniques.

Fig.4. Convergence of FL algorithms

Fig. 5 displays the FL cost variation for the proposed 
approach with iteration for each number of devices. 
The term "iteration" refers to the execution of both the 
device allocation algorithm and the RA algorithm in a 
single process. The FL cost values show quick conver-
gence (up to 6 iterations) for different device counts in 
the suggested design. With more SNs, the cost will dis-
play lower figures. The probability of being allocated to 
the closest SN grows as the number of sensor devices 
increases, which accounts for this pattern. Throughput 
is increased and FL costs are subsequently decreased 
by mapping the device to the nearest node.

Fig. 5. Cost of FL

It can be seen from Fig. 6 that the suggested FE-
DRESOURCE framework can achieve almost the same 
throughput performance as the Scheduling policy algo-
rithm. The reason is that the FEDRESOURCE algorithm 
considers the butterfly optimization algorithm, which 
can avoid loss when allocating resources for sensing 

devices. The throughput performance obtained by the 
Asynchronous FL algorithm is lower than that of the 
FEDRESOURCE algorithm. The uplink throughput per-
formance of the Heterogenous computation algorithm 
is the lowest among the four algorithms.

6. CONCLUSIONS

In this paper, a novel FEDRESOURCE framework has 
been proposed which efficiently performs RA in modern 
wireless networks. We used experiments to show that 
the suggested FL framework may speed up RA policy 
learning and offer flexibility to new systems. Experiments 
were conducted using a Python-based simulator and 
detailed numerical results for the wireless RA sub-prob-
lems. The theoretical results of the novel FEDRESOURCE 
algorithm have been validated in terms of transmission 
power, convergence of algorithm, throughput, and cost. 
The proposed FEDRESOURCE technique achieves maxi-
mum transmit power up to 27%, 55%, and 68% energy 
efficiency when compared to Scheduling policy, Asyn-
chronous FL framework, and Heterogeneous computa-
tion schemes respectively. Future research on this topic 
may include extending the suggested FL framework to 
address intercell interference.
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